WO2008051068A1 - Novel geometry for a tubeless solar collector for water - Google Patents

Novel geometry for a tubeless solar collector for water Download PDF

Info

Publication number
WO2008051068A1
WO2008051068A1 PCT/MX2007/000128 MX2007000128W WO2008051068A1 WO 2008051068 A1 WO2008051068 A1 WO 2008051068A1 MX 2007000128 W MX2007000128 W MX 2007000128W WO 2008051068 A1 WO2008051068 A1 WO 2008051068A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
heat
collector
solar
low
Prior art date
Application number
PCT/MX2007/000128
Other languages
Spanish (es)
French (fr)
Inventor
Gerardo GÓNGORA GALLARDO
Original Assignee
Gongora Gallardo Gerardo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gongora Gallardo Gerardo filed Critical Gongora Gallardo Gerardo
Publication of WO2008051068A1 publication Critical patent/WO2008051068A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/60Solar heat collectors using working fluids the working fluids trickling freely over absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/54Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the second heat path is in the direction of the tubes (4) that are welded to the absorbent plate and which contain the liquid that finally takes advantage of the heat.
  • the rear face of this plate is lined with high thermal resistance insulator (6) to prevent heat loss to the environment and ensure the highest concentration of heat in the tubes.
  • the transfer of heat between the walls of the tubes to the liquid is carried out by means of the conduction phenomenon (7) and on a smaller scale by natural convection.
  • the latter is due to the heating of a container from below and the heated liquid (less dense) rises to be replaced by a denser cold liquid, ensuring a better heat transfer than by the phenomenon of thermal conduction, which is through the elastic shock between molecules and electrons.
  • Another option is to recirculate the cold fluid by means of an external pump.
  • the new tubeless solar collector geometry (figures 2A and 2B) 5 consists of two plates containing the fluid (8) between a transparent upper cover (9), which allows the entry of visible solar radiation, and another plate (10 ) inferior and opaque to the solar radiation that absorbs it and converts it into infrared heat radiation.
  • a transparent upper cover (9) which allows the entry of visible solar radiation
  • another plate (10 ) inferior and opaque to the solar radiation that absorbs it and converts it into infrared heat radiation since there are no fluid conductive tubes on the plate and only one insulation lining on its back (13) and on its sides (not shown in Figure 2A), there will be a only way where the heat will try to escape to the environment, which is the same where the radiation enters (the volume of the liquid). Then, the heat will flow from the bottom up through the phenomenon of natural convection (11), canceling the phenomenon of thermal conduction that is the mainstay in conventional systems. After transferring its heat to the liquid then it goes to the transparent covers (9) and (12) where they play their greenhouse role
  • the frictional loss of the flow of the liquid that passes through is reduced and, its flow velocity is increased causing two benefits: Less is maintained " heat "to the collector and also, its connection can be extended to the heat accumulator tank without detriment to the thermosiphon effect (or for effects of loss of power in the systems with pumping). Therefore, the new tubeless collector: increases efficiency; It cuts production costs against conventional solar collectors, by saving both tubes and labor by welding, as well as expensive metal selective plates. Now the manufacture of these new collectors can be carried out with polymeric materials that facilitate molding on an industrial scale.
  • the objective of the new collector are applications that use different liquids, such as: Natural water; fluids used by heat exchange systems (antifreeze, silicone, petroleum derivative, opaque liquids to solar radiation, etc.).
  • This new collector is useful and adaptable in single-family, multi-family homes, in offices and for the preheating of liquids in industrial heat transfer processes, as well as in the heating of swimming pools or sinks.
  • This new collector covers the ways to transfer heat, whether they are the thermosiphon system or using pumping equipment.
  • This new collector is suitable for use as a receiver for solar radiation concentrating reflector attachments.
  • the geometry of the new collector allows through its two transparent covers (9) and (12) (or more) to expose the bacteria, contained in the water, to the bactericidal action of ultraviolet radiation from the transmitted solar spectrum.
  • the Legionella pneumophila bacteria and other Legionella species are eliminated with low levels of solar UV radiation and their exposure time that depends on the flow rate of the water.
  • the new collector does not require temperatures above 50 0 C to eliminate bacteria as in the collectors conventional, and therefore, better performance is achieved by lower temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The invention relates to a novel geometry for a flat-plate solar collector for water, having no grid of fluid delivery tubes or head tubes and comprising a pair of plates forming a sandwich containing the fluid. The upper cover is transparent to solar radiation and the lower opaque absorbent plate converts said radiation into heat which is distributed to the water by means of natural convection. The liquid contained between the plates removes the radiation from between same, dispensing with the need for costly selective metal low-emissivity plates which are replaced by dark polymer plates while the Low-e function is provided by the transparent cover. The volume generated by a second transparent cover is used to reduce heat loss employing different techniques, such as: vacuum glazing; injection of gases with low heat transfer, such as argon and krypton; and filling with porous silica aerogels with low heat transfer. The geometry of the collector eradicates bacteria of the Legionella family due to the bactericidal action of the ultraviolet radiation.

Description

NUEVA GEOMETRÍA DE COLECTOR SOLAR PARA AGUA5 NEW SOLAR COLLECTOR GEOMETRY FOR WATER 5
SIN TUBOSWITHOUT TUBES
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
En la actualidad los colectores solares para calentamiento de agua convencionales (figuras IA sin cubierta y IB con cubierta) utilizan para convertir la energía del espectro solar a radiaciones de onda larga (infrarrojas) de calor, mediante el uso de placas (1) metálicas selectivas tratadas químicamente que incrementan la capacidad de absorción de la radiación solar y que disminuyen su emisividad de calor o, la otra opción, se le recubre con pintura negra. Después de lo anterior, la radiación infrarroja trata de escapar al medio ambiente (el cual generalmente es más frío) por dos caminos; el primero es por la cara anterior (por donde ingresó la radiación) y, para evitarlo, se utiliza una cubierta (2) de vidrio (o de polímero) transparente al espectro solar pero opaca al infrarrojo lejano, para crear el efecto invernadero en el volumen de aire (3) y también, para que aumente la resistencia al escape del calor al medio ambiente. El segundo camino del calor es en dirección a los tubos (4) que van soldados a la placa absorbente y los cuales contienen el líquido que finalmente aprovecha al calor. La cara posterior de esta placa se forra con aislante (6) de alta resistencia térmica para evitar la pérdida de calor al medio ambiente y asegurar la mayor concentración del calor en los tubos.Currently, conventional solar water heating collectors (figures IA without cover and IB with cover) use to convert the energy of the solar spectrum to long-wave (infrared) heat radiation, by using selective metal plates (1) chemically treated that increase the absorption capacity of solar radiation and decrease its heat emissivity or, the other option, is coated with black paint. After the above, infrared radiation tries to escape to the environment (which is generally colder) by two paths; the first is on the front side (where the radiation entered) and, to avoid it, a cover (2) of glass (or polymer) transparent to the solar spectrum but opaque to the far infrared is used, to create the greenhouse effect in the air volume (3) and also, so that the resistance to heat escape to the environment increases. The second heat path is in the direction of the tubes (4) that are welded to the absorbent plate and which contain the liquid that finally takes advantage of the heat. The rear face of this plate is lined with high thermal resistance insulator (6) to prevent heat loss to the environment and ensure the highest concentration of heat in the tubes.
La transferencia de calor entre las paredes de los tubos al líquido se lleva a cabo por medio del fenómeno de conducción (7) y en menor escala por la convección natural. Este último, se debe al calentamiento de un recipiente desde abajo y el líquido calentado (menos denso) asciende para ser sustituido por un líquido frío más denso, procurando una mejor transferencia de calor que por el fenómeno de la conducción térmica, que es por medio del choque elástico entre moléculas y electrones.The transfer of heat between the walls of the tubes to the liquid is carried out by means of the conduction phenomenon (7) and on a smaller scale by natural convection. The latter is due to the heating of a container from below and the heated liquid (less dense) rises to be replaced by a denser cold liquid, ensuring a better heat transfer than by the phenomenon of thermal conduction, which is through the elastic shock between molecules and electrons.
Elevada la temperatura del fluido, contenido en la reja de tubos, asciende por el fenómeno de termosifón por el tubo cabezal (8) transversal a la reja hasta un tanque acumulador, renovando así el agua caliente en el colector por la tría. Otra opción es recircular el fluido frío por medio de una bomba extema.Raised the temperature of the fluid, contained in the tube rack, rises due to the thermosiphon phenomenon through the head tube (8) transverse to the grill to an accumulator tank, thus renewing the hot water in the collector through the tria. Another option is to recirculate the cold fluid by means of an external pump.
En los primeros sistemas convencionales por placas absorbentes pintadas de negro, la pérdida de calor por convección del viento se redujo al colocar, una cubierta (2) transparente, sin embargo, con lo anterior, se produjo otra pérdida extra de calor hacia el medio ambiente debido al fenómeno de radiación entre la placa oscura y la cubierta pero, como su valor es inferior al de la pérdida por convección al viento entonces, fue útil agregar cubiertas.In the first conventional systems by absorbent plates painted black, the heat loss by wind convection was reduced by placing a transparent cover (2), however, with the above, there was another extra loss of heat towards the environment due to the phenomenon of radiation between the dark plate and the cover but, since its value is lower than the loss due to convection to the wind then, it was useful to add covers.
La problemática anterior, por la pérdida de calor por radiación infrarroja entre la placa pintada de negro y la cubierta transparente, fue mejorada por los sistemas convencionales revistiendo químicamente superficies de placas absorbentes metálicas para convertirlas en placas selectivas, las cuales mantienen un alto valor del coeficiente de absorción solar y un bajo valor de coeficiente de emisividad de calor. Esta última característica redujo el fenómeno extra de radiación entre placas; pero esto implicó el encarecimiento de los sistemas colectores solares convencionales.The previous problem, due to the loss of heat by infrared radiation between the black painted plate and the transparent cover, was improved by conventional systems by chemically coating surfaces of metal absorbent plates to convert them into selective plates, which maintain a high coefficient value of solar absorption and a low value of heat emissivity coefficient. This last feature reduced the extra phenomenon of radiation between plates; but this implied the cost of conventional solar collector systems.
Existen diversas geometrías de placas planas con tubos: placa absorbente con tubos en su cara inferior (como en la figura -IA); placas con tubos en su cara superior; tubos seccionando la placa en forma de aletas; también tubos que serpentean sobre la placa absorbente; tubos seccionando placas en forma de aletas planas angostas pero montados dentro de un tubo de vidrio evacuado a baja presión. Sin embargo, en todos estas geometrías la conducción térmica es maximizada utilizando materiales metálicos tanto en la placa absorbente como en los tubos adheridos a esta.There are various geometries of flat plates with tubes: absorbent plate with tubes on its lower face (as in figure -IA); plates with tubes on its upper face; tubes sectioning the plate in the form of fins; also tubes that meander over the absorbent plate; tubes sectioning plates in the form of narrow flat fins but mounted inside a glass tube evacuated at low pressure. However, in all these geometries the thermal conduction is maximized using metallic materials both in the absorbent plate and in the tubes attached to it.
Por otro lado, existen en otros países normas específicas de sanidad para la eliminación de bacterias del agua en colectores solares, como es la exigencia de elevar las temperaturas a su salida hasta valores superiores aOn the other hand, there are specific health regulations in other countries for the elimination of bacteria from water in solar collectors, such as the requirement to raise temperatures at their exit to values higher than
50 0C. Esto se debe a que las bacterias latentes circulan en los colectores convencionales sobre vías oscuras de tubería de cobre y de baja temperatura, que al momento de ser activadas por la elevación de temperatura del agua ( como es de esperarse en un colector solar) las convierte en un problema de salud pública, como es la bacteria Legionella pneumophila. Sin embargo, elevar a estas temperaturas cuando el agua a utilizarse deba estar entre 36 a50 0 C. This is due to the latent bacteria circulating in conventional collectors on dark tracks of copper and low temperature pipes, which at the time of being activated by the rise in water temperature (as expected in a collector solar) makes them a public health problem, such as Legionella pneumophila bacteria. However, raise to these temperatures when the water to be used must be between 36 to
42 0C, los hace ineficientes.42 0 C, makes them inefficient.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La nueva geometría de colector solar sin tubos (figuras 2A y 2B)5 consiste de dos placas que contienen al fluido (8) entre una cubierta (9) transparente superior, que permite el ingreso de la radiación solar visible, y otra placa (10) inferior y opaca a la radiación solar que la absorbe y la convierte en radiaciones infrarrojas de calor. Sin embargo, al no haber tubos conductores de fluidos en la placa y solo un forro de aislamiento en su parte posterior (13) y en sus laterales (no mostrados en la figura 2A), habrá un solo camino donde el calor tratará de escapar al medio ambiente, que es el mismo por donde ingresan las radiaciones (el volumen del líquido). Entonces, el calor fluirá de abajo hacia arriba por el fenómeno de convección natural (11), anulando el fenómeno de conducción térmica que es el primordial en los sistemas convencionales. Luego de transferir su calor al líquido entonces pasa a las cubiertas transparentes (9) y (12) donde hacen su papel de efecto invernadero para después dejar escapar el calor residual al medio ambiente.The new tubeless solar collector geometry (figures 2A and 2B) 5 consists of two plates containing the fluid (8) between a transparent upper cover (9), which allows the entry of visible solar radiation, and another plate (10 ) inferior and opaque to the solar radiation that absorbs it and converts it into infrared heat radiation. However, since there are no fluid conductive tubes on the plate and only one insulation lining on its back (13) and on its sides (not shown in Figure 2A), there will be a only way where the heat will try to escape to the environment, which is the same where the radiation enters (the volume of the liquid). Then, the heat will flow from the bottom up through the phenomenon of natural convection (11), canceling the phenomenon of thermal conduction that is the mainstay in conventional systems. After transferring its heat to the liquid then it goes to the transparent covers (9) and (12) where they play their greenhouse role and then let the residual heat escape into the environment.
Es del dominio científico, que el coeficiente de transferencia de calor por convección en un líquido, es mayor que el coeficiente de transferencia conductivo térmico (que usan los colectores convencionales); de esta manera, teniendo un solo camino para la evacuación del calor (a través del líquido) y habiendo un mayor coeficiente de transferencia de calor por convección se garantiza una mayor rapidez de distribución del calor en el líquido que en los sistemas convencionales.It is from the scientific domain that the coefficient of heat transfer by convection in a liquid is greater than the coefficient of thermal conductive transfer (used by conventional collectors); in this way, having a single path for the evacuation of heat (through the liquid) and having a higher coefficient of heat transfer by convection ensures a faster distribution of heat in the liquid than in conventional systems.
Del problema anteriormente mencionado en antecedentes, por el encarecimiento de los colectores solares convencionales para contar con placas selectivas; con el nuevo colector sin tubos el problema de emisividad de la placa absorbente deja de tener importancia, porque el fenómeno de la transferencia por radiación entre placas se nulifica habiendo líquido de por medio, quedando por lo tanto, solo el fenómeno de transferencia de calor por convección natural sobre el líquido; luego pueden ser utilizadas cualquier otro tipo de placas opacas absorbentes más económicas como pueden ser los materiales polímeros entre otros materiales. La función de baja emisividad de calor para el colector sigue siendo necesaria, pero en esta nueva geometría ahora la realiza la cubierta transparente (9) de baja emisividad como se señalará más adelante.From the aforementioned problem in the background, by the cost of conventional solar collectors to have selective plates; With the new tubeless collector, the emissivity problem of the absorbent plate ceases to be important, because the phenomenon of radiation transfer between plates is nullified by having liquid in between, leaving therefore only the phenomenon of heat transfer by natural convection over the liquid; Then, any other type of cheaper absorbent opaque plates such as polymeric materials, among other materials, can be used. The low heat emissivity function for the collector is still necessary, but in this new geometry it is now performed by the transparent low cover (9) emissivity as noted below.
Con la eliminación de la reja de tubos elevadores de temperatura y el par de tubos cabezales en el nuevo colector, se disminuye la pérdida por fricción del flujo del líquido que atraviesa y, se incrementa su velocidad del flujo ocasionando dos beneficios: Se mantiene menos "caliente" al colector y también, se puede alarga su conexión hasta el tanque acumulador de calor sin detrimento del efecto termosifón (o para efectos de la pérdida de potencia en los sistemas con bombeo). Por lo anterior, el nuevo colector sin tubos: aumenta la eficiencia; abate los costos de producción contra los colectores solares convencionales, por el ahorro tanto de tubos como en mano de obra por soldadura, así como de costosas placas selectivas metálicas. Ahora la fabricación de estos nuevos colectores se puede llevar a cabo con materiales polímeros que faciliten el moldeo a escala industrial.With the elimination of the rack of temperature risers and the pair of head tubes in the new manifold, the frictional loss of the flow of the liquid that passes through is reduced and, its flow velocity is increased causing two benefits: Less is maintained " heat "to the collector and also, its connection can be extended to the heat accumulator tank without detriment to the thermosiphon effect (or for effects of loss of power in the systems with pumping). Therefore, the new tubeless collector: increases efficiency; It cuts production costs against conventional solar collectors, by saving both tubes and labor by welding, as well as expensive metal selective plates. Now the manufacture of these new collectors can be carried out with polymeric materials that facilitate molding on an industrial scale.
Aún con lo anterior, mejores rendimientos se presentan al sellar el recinto de aire que se forma entre las cubiertas transparentes (9) y (12), para luego utilizar diversas técnicas, elementos y compuestos que reduzcan las pérdidas de calor hacia el medio ambiente, como son : a) La aplicación de bajo, medio o alto vacío sobre el recinto de aire para eliminar su convección y disminuir o eliminar su conductancia térmica pero utilizado pilares de soporte entre las cubiertas (9) y (12) contra la presión atmosférica generada "Vacuum Glazing". b) La aplicación de gases estancos para eliminar el fenómeno de convección y disminuir la conductancia térmica. Estos son: Argón, Criptón. Xenón, CO2, entre otros más. c) Utilizar aerogeles de estructuras de sílice poroso y ultraligeros que eliminan la emisividad térmica entre placas, así como el de la convección, logrando bajas conductancias térmicas. d) Utilizar película delgada sobre las caras de las cubiertas transparentes (9) y (12), para disminuir la reflexión solar "AR" y por lo tanto, aumentar su transmisión solar. e) Utilizar película delgada sobre la cara interna del reciento en la cubierta transparente (9), para disminuir la emisividad de calor "low- e", por medio de óxidos conductores transparentes "TCO" con Estaño, Zinc, Cadmio, Plata, Titanio, entre otros.Even with the above, better performances are presented by sealing the air enclosure that forms between the transparent covers (9) and (12), and then using various techniques, elements and compounds that reduce heat losses to the environment, such as: a) The application of low, medium or high vacuum on the air enclosure to eliminate its convection and decrease or eliminate its thermal conductance but used supporting pillars between the covers (9) and (12) against the atmospheric pressure generated "Vacuum Glazing". b) The application of watertight gases to eliminate the phenomenon of convection and reduce thermal conductance. These are: Argon, Krypton. Xenon, CO 2 , among others. c) Use aerogels of porous and ultralight silica structures that eliminate thermal emissivity between plates, as well as convection, achieving low thermal conductances. d) Use thin film on the faces of the transparent covers (9) and (12), to reduce the solar reflection "AR" and therefore, increase its solar transmission. e) Use thin film on the inner face of the recess in the transparent cover (9), to reduce the emissivity of heat "low-e", by means of transparent conductive oxides "TCO" with Tin, Zinc, Cadmium, Silver, Titanium , among others.
EI objetivo del nuevo colector son aplicaciones que utilizan diferentes líquidos, como son: El agua natural; fluidos utilizados por sistemas intercambiadores de calor (anticongelante, silicona, derivado del petróleo, líquidos opacos a la radiación solar, etcétera). Este nuevo colector es útil y adaptable en viviendas unifamiliares, multifamiliares, en oficinas y para el precalentamiento de líquidos en procesos industriales de transferencia de calor, así como en el calentamiento de albercas o piletas. Este nuevo colector abarca los modos para transferir el calor, sean estos el sistema termosifón o utilizando equipo de bombeo. Este nuevo colector es adecuado para su utilización como receptor de aditamentos reflectores concentradores de radiación solar.The objective of the new collector are applications that use different liquids, such as: Natural water; fluids used by heat exchange systems (antifreeze, silicone, petroleum derivative, opaque liquids to solar radiation, etc.). This new collector is useful and adaptable in single-family, multi-family homes, in offices and for the preheating of liquids in industrial heat transfer processes, as well as in the heating of swimming pools or sinks. This new collector covers the ways to transfer heat, whether they are the thermosiphon system or using pumping equipment. This new collector is suitable for use as a receiver for solar radiation concentrating reflector attachments.
La geometría del nuevo colector permite a través de sus dos cubiertas transparentes (9) y (12) (o más) exponer a las bacterias, contenidas en el agua, a la acción bactericida de la radiación ultravioleta proveniente del espectro solar transmitido. La bacteria Legionella pneumophila y otras especies de Legionella se eliminan con bajos niveles de radiación UV solar y por su tiempo de exposición que depende de la velocidad de flujo del agua. De esta manera el nuevo colector no requiere de temperaturas superiores a los 50 0C para eliminar a las bacterias como en los colectores convencionales, y por lo tanto, se logra mejor rendimiento por las temperaturas inferiores. The geometry of the new collector allows through its two transparent covers (9) and (12) (or more) to expose the bacteria, contained in the water, to the bactericidal action of ultraviolet radiation from the transmitted solar spectrum. The Legionella pneumophila bacteria and other Legionella species are eliminated with low levels of solar UV radiation and their exposure time that depends on the flow rate of the water. In this way the new collector does not require temperatures above 50 0 C to eliminate bacteria as in the collectors conventional, and therefore, better performance is achieved by lower temperatures.

Claims

REIVINDICACIONES
1,- Nueva geometría de colector solar plano que no utiliza tubos calentadores soldados a la placa opaca absorbente, como en los colectores convencionales; y está caracterizado por una cubierta superior transparente (9) (vidrio o polímero) a la radiación solar y una placa inferior opaca (10) a la radiación solar que contienen al líquido como en un emparedado y, dos aberturas laterales para permitir su flujo. Forrado de manera convencional con material aislante térmico en la cara posterior y en sus costados. La radiación solar incidente es convertida en calor por la placa inferior opaca absorbente (10), que luego es distribuido eficientemente en el líquido por medio de la convección natural. El agua, puede ser distribuida por termosifón al sistema de almacenamiento o por una bomba para su distribución. El calor residual escapa al medio ambiente a través del recinto entre las cubiertas transparentes (9) y (12) (o demás cubiertas).1, - New flat solar collector geometry that does not use heating tubes welded to the opaque absorbent plate, as in conventional collectors; and is characterized by a transparent upper cover (9) (glass or polymer) to solar radiation and an opaque lower plate (10) to solar radiation containing the liquid as in a sandwich and, two lateral openings to allow its flow. Conventionally lined with thermal insulating material on the back and sides. The incident solar radiation is converted into heat by the opaque absorbent bottom plate (10), which is then efficiently distributed in the liquid by means of natural convection. The water can be distributed by thermosiphon to the storage system or by a pump for distribution. Residual heat escapes into the environment through the enclosure between transparent covers (9) and (12) (or other covers).
2.- Derivado de la reivindicación uno, el recinto de aire formado por las dos cubiertas transparentes (9) y (12), se caracteriza por reducir la pérdida de calor al ambiente y se caracteriza también por utilizar elementos, compuestos y diversas técnicas de manera individual o combinada para disminuir la pérdida térmica; mismos que se describen: a) Relleno de gases de baja conductancia que reducen la convección térmica, como son el: Argón, Criptón, Xenón, CO2, entre otros; b) así como también, mediante la aplicación de bajo, medio o alto vacío de gases para reducir la convección y la conducción térmica, y que utiliza pilares de soporte contra la presión atmosférica "Vacuum Glazing" entre las cubiertas (9) y (12); c) así mismo, mediante el relleno de estructuras porosas de sílice llamadas aerogeles, de baja conductancia térmica que reducen la emisividad y la convección térmica, d) También por la aplicación de película delgada con óxidos conductores transparentes "TCO" sobre la cara interna (al recinto) de la cubierta (9) reduciendo la emisividad de calor "low-e". e) También con la aplicación de película delgada sobre las caras de las cubiertas (9) y (12), que producen efecto de anti- reflexión solar "AR" para aumentar su transmisión solar.2.- Derived from claim one, the air enclosure formed by the two transparent covers (9) and (12), is characterized by reducing heat loss to the environment and is also characterized by using elements, compounds and various techniques of individual or combined way to reduce thermal loss; same that are described: a) Filling of low conductance gases that reduce thermal convection, such as: Argon, Krypton, Xenon, CO 2 , among others; b) as well as, by applying low, medium or high gas vacuum to reduce convection and thermal conduction, and using support pillars against atmospheric pressure "Vacuum Glazing" between the covers (9) and (12 ); c) likewise, by filling porous silica structures called aerogels, of low thermal conductance that reduce emissivity and convection thermal, d) Also by the application of thin film with transparent conductive oxides "TCO" on the inner face (to the enclosure) of the roof (9) reducing the emissivity of heat "low-e". e) Also with the application of thin film on the faces of the roofs (9) and (12), which produce the "AR" solar anti-reflection effect to increase its solar transmission.
3- Derivado de la reivindicación uno, que al contener líquido entre la cubierta transparente (9) y la placa absorbente (10), el fenómeno de transferencia de calor por radiación entre ellas deja de tener efecto, entonces su función se caracteriza por utilizar placas oscuras absorbentes sin importar su emisividad, seleccionando materiales polímeros (u otro tipo de material) que son fácilmente construidos utilizando moldes y por lo tanto, más barato.3- Derived from claim one, that by containing liquid between the transparent cover (9) and the absorbent plate (10), the phenomenon of heat transfer by radiation between them ceases to have effect, then its function is characterized by using plates dark absorbents regardless of their emissivity, selecting polymeric materials (or other type of material) that are easily constructed using molds and therefore, cheaper.
4- Derivado de la reivindicación uno, al eliminar los tubos en el nuevo colector, su función se caracteriza por disminuir la pérdida por fricción del líquido dentro del nuevo colector. Teniendo consecuencias como: el incremento de la velocidad del fluido (disminución de la temperatura del colector) y el incremento de la distancia entre colector y acumulador sin afectar el fenómeno de termosifón.4- Derived from claim one, by eliminating the tubes in the new manifold, its function is characterized by decreasing the frictional loss of the liquid within the new manifold. Having consequences such as: the increase of the speed of the fluid (decrease of the temperature of the collector) and the increase of the distance between collector and accumulator without affecting the phenomenon of thermosiphon.
5,- Derivado de la reivindicación uno, la bacteria legionella pneumophila se expone a la radiación ultravioleta que atraviesa las cubiertas (9) y (12) del nuevo colector, y que lo caracteriza como un agente bactericida dependiendo del tiempo que le impone la velocidad de flujo autorregulada por termosifón o, en su caso, por la de una bomba externa. 5, - Derived from claim one, the legionella pneumophila bacterium is exposed to the ultraviolet radiation that crosses the covers (9) and (12) of the new collector, and which characterizes it as a bactericidal agent depending on the time imposed by the velocity flow regulated by thermosiphon or, where appropriate, by an external pump.
PCT/MX2007/000128 2006-10-27 2007-10-24 Novel geometry for a tubeless solar collector for water WO2008051068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/2006/012473 2006-10-27
MXPA06012473 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008051068A1 true WO2008051068A1 (en) 2008-05-02

Family

ID=39324803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2007/000128 WO2008051068A1 (en) 2006-10-27 2007-10-24 Novel geometry for a tubeless solar collector for water

Country Status (1)

Country Link
WO (1) WO2008051068A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029676A1 (en) 2008-06-24 2009-12-31 Pommersheim, Rainer, Dr. Solar collector e.g. solar thermal collector, for heating e.g. industrial water, has fluid channels packed in absorber surface in sealed manner and running parallel to each other, where channels completely grip absorber surface
WO2011140948A1 (en) * 2010-05-11 2011-11-17 王勇 Flat plate solar heat collector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611108A1 (en) * 1976-03-16 1977-09-29 Interglas Gmbh & Co Kg SOLAR HEAT COLLECTOR
FR2364414A1 (en) * 1976-09-14 1978-04-07 Bergeon Et Cie Plane-type solar energy collector - has two transparent sheets enclosing insulation and heat collecting layers above heat absorbing bed
US4085732A (en) * 1976-06-07 1978-04-25 Hysom Ervin E Method and apparatus for heating a liquid using solar energy
US4271825A (en) * 1978-06-09 1981-06-09 Phenol Engineering S.A.R.L. Solar energy collector
DE3629816A1 (en) * 1986-09-02 1988-03-10 Dietrich Dipl Phys Dr Bloch Solar collector
WO2003040631A1 (en) * 2001-11-06 2003-05-15 Gjersoee Thomas Wahl Solar heating panel
FR2836210A1 (en) * 2002-02-15 2003-08-22 Raymond Charles Etienne Nauert Solar panel has black emitting layer that exchanges heat directly with circulating heat transfer fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611108A1 (en) * 1976-03-16 1977-09-29 Interglas Gmbh & Co Kg SOLAR HEAT COLLECTOR
US4085732A (en) * 1976-06-07 1978-04-25 Hysom Ervin E Method and apparatus for heating a liquid using solar energy
FR2364414A1 (en) * 1976-09-14 1978-04-07 Bergeon Et Cie Plane-type solar energy collector - has two transparent sheets enclosing insulation and heat collecting layers above heat absorbing bed
US4271825A (en) * 1978-06-09 1981-06-09 Phenol Engineering S.A.R.L. Solar energy collector
DE3629816A1 (en) * 1986-09-02 1988-03-10 Dietrich Dipl Phys Dr Bloch Solar collector
WO2003040631A1 (en) * 2001-11-06 2003-05-15 Gjersoee Thomas Wahl Solar heating panel
FR2836210A1 (en) * 2002-02-15 2003-08-22 Raymond Charles Etienne Nauert Solar panel has black emitting layer that exchanges heat directly with circulating heat transfer fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029676A1 (en) 2008-06-24 2009-12-31 Pommersheim, Rainer, Dr. Solar collector e.g. solar thermal collector, for heating e.g. industrial water, has fluid channels packed in absorber surface in sealed manner and running parallel to each other, where channels completely grip absorber surface
WO2011140948A1 (en) * 2010-05-11 2011-11-17 王勇 Flat plate solar heat collector

Similar Documents

Publication Publication Date Title
US4686961A (en) Integrated solar thermal energy collector system
ES2692659T3 (en) Sheet ceiling
EP2220442A1 (en) Solar thermal energy collector
Kalogirou Nontracking solar collection technologies for solar heating and cooling systems
EP2924364B1 (en) Solar collector with integrated storage tank
JP2013508661A (en) Solar collector
US9377216B2 (en) Overheat protection mechanism for solar thermal collector
Norton Anatomy of a solar collector: developments in materials, components and efficiency improvements in solar thermal collector systems
US4180056A (en) Laminar solar energy collecting unit having absorber plates consisting of hollow fibers
CN101865539A (en) Linear Fresnel solar heat collector device
KR100803614B1 (en) Non-glass solar vacuum tube collector
WO2008051068A1 (en) Novel geometry for a tubeless solar collector for water
CN201973902U (en) Solar thermal collector adopting gas as working medium
CN110121623B (en) Solar energy utilization system
CN103528205A (en) Air thermal power circulation water heater with solar straight-through vacuum pipe
CN211502977U (en) Solar heating device
CN101846402A (en) Fresnel solar collector
CN110214254B (en) Curved absorber type solar fluid heater
WO2009013578A2 (en) Solar panel for fluid heating
KR101103591B1 (en) parabolic trough concentrator for keeping the refraction rate and reducing the heat loss
RU174142U1 (en) Flat vacuum solar collector
RU2253808C1 (en) Solar energy collector
CN213090156U (en) Balcony integrated embedded solar water heater
RU2540192C2 (en) Modular solar collector for solar water heating
CN217520075U (en) High-efficient conversion highlight heat solar water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07834509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07834509

Country of ref document: EP

Kind code of ref document: A1