WO2008062836A1 - Optical waveguide module and method for manufacturing the same - Google Patents

Optical waveguide module and method for manufacturing the same Download PDF

Info

Publication number
WO2008062836A1
WO2008062836A1 PCT/JP2007/072569 JP2007072569W WO2008062836A1 WO 2008062836 A1 WO2008062836 A1 WO 2008062836A1 JP 2007072569 W JP2007072569 W JP 2007072569W WO 2008062836 A1 WO2008062836 A1 WO 2008062836A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
lens
substrate
mold
waveguide module
Prior art date
Application number
PCT/JP2007/072569
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Hayashi
Toshio Ikugata
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008545435A priority Critical patent/JP5182097B2/en
Publication of WO2008062836A1 publication Critical patent/WO2008062836A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to an optical waveguide module that connects boards, chips, and the like, and a method for manufacturing the same.
  • optical waveguides using resin materials that are easy to manufacture and inexpensive are attracting attention.
  • Patent Document 1 proposes an optical waveguide module in which both the clad layer and the core layer are made of resin, and a lens is formed on one surface of the mounting substrate and a waveguide is formed on the other surface.
  • Patent Document 2 an attempt is made to improve the strength of the optical waveguide module by using a resin material for both the core layer and the cladding layer and providing a reinforcing structure in the cladding layer.
  • JP 2005-181645 JP 2005-181645
  • Patent Document 2 JP 2005-338125 A
  • the lens is constructed integrally with the cladding layer, a resin with a high refractive index cannot be used for the lens, and it is necessary to increase the thickness of the lens in order to obtain the desired refractive power.
  • the degree is low.
  • the optical waveguide module expands due to the hygroscopic nature of the resin, and the optical axis gradually shifts.
  • the method of Patent Document 2 has a problem in that since the module structure is complicated, the manufacturing process is also complicated, and as a result, the production cost increases.
  • an input / output lens and an optical waveguide are integrated into a single module by press molding.
  • an optical waveguide is manufactured by press molding, not only the ultraviolet fountain cured resin is filled into the optical waveguide cavity during pressing, but also a resin layer is formed outside the cavity due to excess resin. Is concerned. This resin layer may cause light leakage and increase in optical loss when actually used as an optical waveguide.
  • the alignment between the inclined portion, which is the light entrance / exit portion of the optical waveguide, and the optical axis of the lens is generated, which causes optical loss. obtain.
  • the present invention includes a substrate, an optical waveguide formed on one surface side of the substrate, and a plurality of lenses formed on the other surface side of the substrate.
  • the optical waveguide has inclined portions at both ends thereof, and the plurality of lenses are respectively formed at positions facing the inclined portion with the substrate interposed therebetween.
  • an optical waveguide module in which each of the plurality of lenses is made of a cured resin, and the refractive index of the substrate is V of the optical waveguide and the plurality of lenses, and is lower than the refractive index of displacement.
  • the substrate is preferably glass.
  • the glass is quartz glass.
  • the optical waveguide is formed on an optical waveguide side base layer formed on one surface of the substrate.
  • the thickness of the optical waveguide side base layer is 5.1 m or less! /.
  • the plurality of lenses are respectively formed on a lens-side base layer formed on the other surface of the substrate.
  • the lens is a lens having a ridge formed on a peripheral edge! /.
  • the optical waveguide module of the present invention preferably includes a plurality of the optical waveguides on one surface side of the substrate.
  • V and the plurality of optical waveguides are simultaneously formed on one surface side of the substrate.
  • the plurality of lenses are preferably formed on the other surface side of the substrate at the same time.
  • the lens is preferably a coupling lens of the optical waveguide and an external optical system.
  • the first resin precursor of the first mold having a dent corresponding to the shape of the optical waveguide is filled with the first resin precursor in the dent. Is attached to the substrate and cured to form an optical waveguide forming step for forming the optical waveguide having inclined portions at both ends on one surface side of the substrate, and a second portion having a recess corresponding to the shape of the lens.
  • the second resin precursor is brought into close contact with the substrate and cured, so that the other side of the substrate is sandwiched between the substrates.
  • the inclined part and the lens are arranged to face each other , To provide a manufacturing method of the optical waveguide module, characterized in that positioning at least one of the first mold and the second mold.
  • At least one of the first mold and the second mold has a alignment mark, and the alignment mark is used as a reference. It is preferable to position at least one of the first mold and the second mold.
  • a thickness is provided between the optical waveguide and the substrate. It is preferable to adjust the distance between the first mold and the substrate so that an optical waveguide side base layer of 5 m or less is formed.
  • the second mold has a recess corresponding to a lens having a ridge formed on the periphery.
  • the ridge is formed continuously on the periphery of the lens.
  • the optical waveguide module of the present invention since the optical waveguide and the lens are formed separately from the substrate, deformation due to heat is small and the positional accuracy is sufficiently excellent. For this reason, the light coupling efficiency is sufficiently excellent. Further, since the refractive index of the substrate is lower than the refractive indexes of the optical waveguide and the lens provided on both surfaces of the substrate, it is possible to reduce the thickness of the lens without impairing the function of the optical waveguide. In addition, since the optical waveguide and the lens can be formed separately from the substrate, it is possible to configure the lens using a resin having a higher refractive index, the thickness of the lens can be made thinner, and design flexibility is sufficient. Very expensive.
  • both the optical waveguide and the lens are formed by press molding, a low-cost and high-precision optical waveguide module can be efficiently manufactured.
  • FIG. 1 is a schematic cross-sectional view schematically showing a cross-sectional structure of an optical waveguide module according to a preferred embodiment of the present invention.
  • FIG. 2 is a process cross-sectional view schematically showing a lens mold manufacturing method using a photoresist.
  • FIG. 3 is a process cross-sectional view schematically showing an optical waveguide type manufacturing method using a photoresist.
  • FIG. 4 is a process cross-sectional view schematically showing an optical waveguide forming step for forming an optical waveguide by press molding using an optical waveguide mold.
  • FIG. 5 is a diagram schematically showing a lens forming step of forming a lens using a lens mold on a substrate.
  • FIG. 1 is a schematic cross-sectional view schematically showing a cross-sectional structure of an optical waveguide module according to a preferred embodiment of the present invention.
  • the optical waveguide module 100 includes a mounting substrate 1 made of quartz glass, an optical waveguide member 20 formed on one surface lb of the mounting substrate 1, and a lens member 30 formed on the other surface la of the mounting substrate 1. With.
  • the optical waveguide member 20 includes an optical waveguide 2 and an optical waveguide side base layer 6, and the optical waveguide side base layer 6 is provided between the mounting substrate 1 and the optical waveguide 2 with a predetermined thickness. .
  • the lens member 30 includes a lens 3, a lens side base layer 7, and a reference protrusion 5, and the lens side base layer 7 is interposed between the mounting substrate 1, the lens 3, and the reference protrusion 5. It is installed with a predetermined thickness.
  • the pair of reference protrusions 5 are separated from the lens 3 at a predetermined interval, and are provided on the lens-side base layer 7 like the lens 3 so as to sandwich the lens 3.
  • the reference protrusion 5 serves as a reference for molding the optical waveguide 2 formed on the surface lb opposite to the lens side of the mounting substrate 1 and has a function of protecting the lens 3.
  • the optical waveguide module 100 is the same as the lens 3 on the one side la side (the right side in FIG. 1) of the mounting substrate 1. With another lens.
  • the optical waveguide 2 is provided with another inclined portion at the end opposite to the inclined portion 2b shown in the figure. Then, the other lens V, not shown, is provided so as to face the other inclined portion.
  • One inclined portion of the optical waveguide 2 functions as a light incident portion, and the other inclined portion functions as a light emitting portion.
  • the lens 3 functions as a lens for entering or emitting an optical signal.
  • the lens 3 includes a convex lens body 3a having a curved surface for changing the light path, and a flange (pedestal) 3b provided continuously around the periphery of the lens body 3a.
  • the flange 3b is formed by a ring-shaped step portion in the lens mold in the lens mold fabrication described later. This step portion is formed between the lens mold and the removal portion when foaming occurs when the photoresist is cured. Functions as a buffer area. Therefore, the lens 3 is provided with the flange 3b at the periphery, whereby the light coupling efficiency can be further improved.
  • the optical waveguide 2 includes a main body 2a that transmits an optical signal, and an inclined portion 2b that changes the traveling direction of light when an optical signal is input to and output from the optical waveguide 2.
  • the inclined portion 2b is provided to face the lens 3 so that the optical axis position of the lens 3 corresponds to the inclined portion 2b of the optical waveguide 2.
  • the inclined portion 2b is formed by a surface lb of the mounting substrate 1, the optical waveguide 2 and the optical waveguide in a cross section parallel to the direction of the optical axis connecting the lens 3 and the inclined portion 2b shown in FIG. It is tilted so that the angle formed with the contact surface with the side base layer 6 is 45 degrees.
  • the cross section in the direction perpendicular to the light transmission direction of the main body 2a which is the optical transmission line portion of the optical waveguide 2 is usually rectangular with several to several tens of sides.
  • the required length of transmission line is required. The length varies depending on the application. Usually, even a short one needs several millimeters or more. If there is an abrupt shape change or a step in the meantime, the light is irregularly reflected and the transmission characteristics tend to deteriorate. In principle, since total reflection of light is used, each surface of the light transmission path of the main body 2a must be flat.
  • the mounting substrate 1 general glass may be used in addition to quartz glass.
  • mounting glass 1 made of ordinary glass or quartz glass the overall dimensions of the optical waveguide module 100 are reduced by suppressing deformation due to heat and external force compared to an optical waveguide module that is made entirely of resin and integrated with a lens. Accuracy can be improved. Therefore, a high-quality optical waveguide can be obtained with stable accuracy.
  • the thickness of the mounting substrate 1 is 0.5 mm or more, it is possible to sufficiently suppress damage and deformation during the production, particularly when the lens or optical waveguide is released from the lens mold or optical waveguide mold. As a result, the yield is improved, and high productivity can be secured.
  • the light incident / exit path in the optical waveguide module 100 will be described.
  • the light incident from the lens 3 travels to the inclined portion 2b of the optical waveguide 2 formed at a position facing the lens 3 with the mounting substrate 1 in between.
  • the traveling direction of light is changed by 90 degrees by being totally reflected by the inclined portion 2b, and is switched to the longitudinal direction of the optical waveguide 2.
  • the mounting substrate 1 has a lower refractive index than the optical waveguide that is the core layer, and functions as a cladding layer in the optical waveguide module 100.
  • the lens 3 can be formed of a material having a high refractive index. For this reason, the lens can be thinned, and the degree of freedom in designing the optical waveguide module can be improved.
  • the optical waveguide member 20 having 6 and the lens member 30 having the lens 3, the reference protrusion 5 and the lens base layer 7 are both formed by a pressure molding method using an ultraviolet curable resin.
  • the optical waveguide member 20 and the lens member 30 are preferably integrally formed by press molding using a mold from the viewpoint of achieving both high dimensional accuracy and strength at a high level.
  • the optical waveguide module mounted on the substrate is formed by press molding, it is necessary to prepare a lens type and an optical waveguide type in advance. Therefore, a manufacturing method of a lens type and an optical waveguide type by an exposure process method using a gray scale mask (GSM) will be described.
  • GSM gray scale mask
  • the lens mold to be produced is used to form a lens for introducing or deriving light from the optical waveguide and a reference protrusion higher than the lens height.
  • FIG. 2 is a process cross-sectional view schematically showing a lens mold manufacturing method using a photoresist.
  • a resist type master having a lens shape is formed by the GSM exposure method, and then a lens type (submaster) is formed using the resist type master. Details of the lens mold manufacturing method will be described below.
  • a substrate is prepared for forming a resist master.
  • quartz glass, Si wafer or the like having good flatness can be used.
  • eztin finally shape In the case of engraving with a substrate, a substrate suitable for the etching process is prepared.
  • the force S using quartz glass and the material of the substrate are not particularly limited.
  • a photoresist layer 21 is formed on the surface of the quartz glass substrate 22, and spin coating or spraying is performed to a thickness corresponding to the thickness of the lens to be finally formed. Apply by applying.
  • an anchor coat may be applied to the substrate 22 as a base before applying the photoresist layer 21.
  • pre-bake treatment it is preferable to perform pre-bake treatment to remove unnecessary gas. By performing this pre-bake treatment, the sensitivity of the photoresist is stabilized, and foaming due to overpower exposure can be suppressed.
  • the applied photoresist layer is exposed using a gray scale mask 23 previously prepared according to the lens shape and developed to form a resist master 200. To do.
  • a plurality of masks are prepared as necessary.
  • three masks are used: the gray scale mask (GSM) 23, the protrusion formation mask, and the alignment mark formation mask.
  • Fig. 2 (b) shows the case where the gray scale mask 23 is used!
  • the gray scale mask (GSM) 23! / For the production of the gray scale mask (GSM) 23! /, First of all, it corresponds to the desired lens shape based on the sensitivity curve of the resist used, the influence of development, data such as the etching rate, etc. It is necessary to determine the aperture ratio to be performed. Then, the light shielding point group or the aperture hole group is arranged so as to match the aperture ratio.
  • the mask is usually made with an electron beam lithography system using a Cr film, and unnecessary parts are removed by the lift-off method or wet etching method.
  • GSM may be manufactured by a direct electron beam lithography apparatus.
  • a 5 ⁇ reduction exposure mask with a stepper a 5 ⁇ size mask may be produced with an electron beam lithography apparatus. According to the latter, further fine holes can be realized with high accuracy.
  • a positive exposure mask is used as the gray scale mask 23.
  • the grayscale mask 23 can be designed by obtaining the exposure dose according to the position from the basic data of the photoresist layer and the desired lens shape. According to such a method, a large number of lenses can be accurately produced within the same plane, and any aspherical shape can be produced with high accuracy and without variation.
  • the gray scale mask 23 is preferably a pattern having a numerical aperture smaller than the resolution of the exposure apparatus used. This makes it possible to form a smooth exposure distribution. In fact, a smoother curved surface can be realized by defocusing during exposure.
  • a binarization mask is used for exposure of the lens portion other than the convex portion.
  • the resist corresponding to the area where nothing is formed (the area where the resin cured product does not remain) is removed.
  • the force S produced by electron beam lithography usually a highly accurate shape like a gray scale mask, is not required.
  • a mask for forming alignment marks can also be produced by electron beam drawing.
  • the alignment mark can be convex or concave. Therefore, a mask for forming alignment marks capable of forming the shape is produced.
  • the photoresist layer 21 applied on the substrate 22 is exposed.
  • the exposure can be performed using a normal ultraviolet irradiation device.
  • a step 24b for forming a lens ridge is provided at the edge of the protrusion 24 corresponding to the lens of the lens-side resist master 200.
  • the step 24b is provided in order to prevent the lens shape from being deformed by foaming during resin hardening.
  • the protrusion 27 of the resist master 200 is a protrusion for forming a reference protrusion 3 formed in a later process described later.
  • the projection forming mask after the exposure using the gray scale mask 23, the projection forming mask
  • An area other than the convex portion is exposed using (binarization mask). After that, alignment Exposure is performed using a mask for forming a mask. Each exposure is performed sequentially using a projection reduction exposure apparatus.
  • the protrusion 24 is provided with a step 24b by performing a process of leaving a one-step resist around it. As a result, it is possible to sufficiently prevent deformation of the lens-shaped protrusion 24 when the resin is cured.
  • the size of the projection 24 corresponding to the lens shape is adjusted to be larger than the diameter of the lens body by adjusting the transmittance of the gray scale mask.
  • the thickness of the step 24b is set to be different depending on the SAG amount (lens center thickness). For example, if the SAG amount is 30 m, it is preferable to adjust the transmittance so that the thickness of the step 24b is 10 to 25 m. By doing so, even if foaming occurs in the exposure for completely removing the flat portion, the stepped portion 24b acts as a buffer region, and the deformation of the portion corresponding to the lens body of the protruding portion 24 is sufficiently performed. Can be suppressed. Note that exposure using a grayscale mask to form the lens body using GSM is usually done with over-exposure, so there is almost no foaming phenomenon.
  • the lens-side resist master 200 is formed with shapes such as a lens, a reference projection, and alignment marks that are finally required. In order to smoothly perform the mold release in the lens forming step described later, it is preferable to apply a known mold release agent and / or to form a Ni light-shielding film on the surface of the completed resist master 200. (Shown Absent).
  • a desired pattern can be engraved in a stable material such as a quartz glass substrate by etching. Usually, it is transferred to a substrate such as quartz glass by RIE (Reactive Ion Etching) or ICP (Inductively Coupled Plasma). This etching rate is also easy to change! / Be careful when making precise shapes.
  • RIE Reactive Ion Etching
  • ICP Inductively Coupled Plasma
  • FIG. 2 (c) schematically shows a press molding process for forming a lens mold.
  • a mold is taken with the ultraviolet curable resin 26 to form a lens mold 29 (submaster).
  • the UV curable resin 26 is dropped on the resist master 200 with the Ni light-shielding film formed on the surface, and the transparent substrate (pressing plate) 25 is pressed against the UV-cured pattern surface of the microlens array. Extend mold resin 26.
  • the UV curable resin 26 is spread evenly and thinly on the pattern surface of the resist master 200.
  • press molding is performed in which the ultraviolet curable resin is closely attached to the pattern surface of the resist master 200 and the transparent substrate 25.
  • pressure is applied between the transparent substrate 25 and the substrate 22 provided with the resist master 200, and the UV curable resin adhesive 26 is sufficiently adhered to the pattern surface of the resist master 200 and the transparent substrate 25.
  • the transparent substrate 25 Preferably.
  • Fig. 2 (d) schematically shows the resin curing process. After performing the pressing process as shown in FIG. 2 (c), in the resin curing step, the ultraviolet curable resin 26 is cured by irradiating ultraviolet rays.
  • Ni light-shielding film is previously formed on the surface of the resist mold master 200, foaming of the cured resin constituting the resist mold master 200 can be sufficiently prevented.
  • it is effective to form a Ni light-shielding film when the center thickness of the projection 24 for forming the lens is thick.
  • the reason is as follows. That is, when the center thickness of the lens-forming projection 24 is thick and the depth of the pattern shape is deep, the UV curable resin layer to be applied increases with the depth, and the UV curable resin is applied in the resin curing process. To cure Therefore, it is necessary to irradiate with high energy ultraviolet rays (uv light).
  • the solvent or the like which has been latent in the cured resin forming the resist type master 200 is vaporized, and there is a tendency that bubble-like defects are generated on the surface of the resist type master 200. Therefore, by forming a Ni light-shielding film on the surface of the resist master 200, it is possible to shield the UV energy when UV-curing the UV-curable resin from being directly transmitted to the resist master 200 side.
  • the light-shielding film is not limited to the Ni light-shielding film, but a normal Ni light-shielding film is preferably used because it has both light-shielding properties and releasability.
  • the amount of foam irradiation on the surface of the resist master 200 can be adjusted by adjusting the amount of ultraviolet irradiation energy without using the Ni light-shielding film. Defects can be sufficiently suppressed. In this way, the presence or absence of the light shielding film, the film thickness, the adjustment of the irradiation power amount of the UV light, etc. can be set according to the pattern shape.
  • Figure 2 (e) schematically shows the mold release process.
  • the lens mold 29 is completed by releasing the cured resin from the resist mold master 200 by the resin curing process.
  • the transfer pattern surface of the ultraviolet curable resin of the lens mold 29 is subjected to a release treatment by a normal method.
  • mold release treatment methods include Ni thin film formation and fluorine mold release agents.
  • Ni thin film formation method a Ni thin film with a thickness of about several tens of angstroms is formed on the surface of the lens mold 29 by a method such as sputtering.
  • fluorine-based mold release agent an ordinary commercially available one can be used, and a fluorocarbon solvent-based one that does not leave a stain or the like is preferably used.
  • the Ni film has a thickness of several tens of angstroms, ultraviolet rays can be sufficiently transmitted. Therefore, in the lens mold forming step described later, the UV light is irradiated through the lens mold.
  • a lens mold As a representative example of a method for manufacturing a lens mold, the force described for the manufacturing method by an exposure method using a gray scale mask is used.
  • a lens mold is manufactured by an optical modeling method. Moyore.
  • the foaming phenomenon occurs in two steps, that is, an exposure process when forming a resist mold master, and a process of forming a lens mold by transferring an ultraviolet curable resin from the resist mold master. It may occur in the resin curing process with UV light.
  • the mold 29 has a recess 29a that forms a convex portion of the lens and a ring-shaped recess 29b.
  • the recess 29b has a larger diameter than the recess 29a in a cross section parallel to the contact surface between the transparent substrate 25 and the resist mold 29.
  • the ring-shaped recess 29b is formed corresponding to the step 24b of the resist mold master 200.
  • FIG. 3 is a process cross-sectional view schematically showing an optical waveguide type fabrication method using a photoresist.
  • an optical waveguide-shaped resist master is formed, and then the optical waveguide mold is formed using the resist master.
  • exposure is performed using two masks, GSM and a binarization mask. Note that GSM was used during lens mold fabrication. However, if the target shape is an inclined plane, the force S for producing the GSM for forming the inclined portion can be reduced by the same design method.
  • a substrate is prepared to form an optical waveguide-shaped resist master (FIG. 3 (a)).
  • the same substrate as that used for the lens mold fabrication can be used.
  • a coating process for coating a thick film photoresist 31 on one surface of the substrate 32 is performed.
  • This coating process can be performed in the same manner as the lens mold manufacturing coating process.
  • the central portion 33b of the gray scale mask 33 is a gray scale.
  • the end portion 33a of the gray scale mask 33 corresponding to the portion that exposes the inclined portion 34b has a lower light transmittance as it is closer to the central portion 33b.
  • This inclined portion 34b is used to form an optical path switching mirror (inclined portion). The portion corresponding to the formation of the transmission portion of the optical waveguide needs to be left in a convex shape, and is not exposed here.
  • the “exposure” development step can be performed in the same manner as in the formation of the lens mold. As a result, an optical waveguide resist master 34 having an inclined portion 34b is obtained.
  • a press molding process is performed in the same manner as the lens mold formation.
  • Fig. 3 (c) schematically shows the press molding process for forming the optical waveguide mold.
  • an ultraviolet curable resin is dropped onto the pattern surface of the resist master 34 formed with a Ni light-shielding film, and the resin is spread by a transparent substrate (press plate) 36.
  • the ultraviolet curable resin 35 is spread evenly and thinly on the pattern surface of the resist master 34 to transfer the shape of the resist master 34.
  • press molding is performed in which the ultraviolet curable resin is brought into close contact with the pattern surface of the resist master 34 and the transparent substrate 36.
  • pressure is applied between the transparent substrate 36 and the substrate 32 having the resist master 34 to bring the UV curable resin adhesion 26 into close contact with the pattern surface of the resist master 34 and the transparent substrate 36. Is preferred.
  • the transfer pattern surface of the ultraviolet curable resin of the optical waveguide mold 37 is preferably subjected to a mold release process by a normal method.
  • the manufacturing method of the lens type and the waveguide type has been described above.
  • the lens mold and the optical waveguide mold can improve the productivity of an optical waveguide module, which will be described later, by producing a plurality of molds on one substrate.
  • An optical waveguide module uses an ultraviolet curable resin on one side of a mounting board to form an optical waveguide, and an ultraviolet spring curable resin on the other side opposite to the one side of the mounting board. Forming a lens Can be obtained.
  • an optical waveguide is formed on one surface of the mounting substrate by press molding using a photo-curing resin.
  • FIG. 4 is a process cross-sectional view schematically showing an optical waveguide forming step for forming an optical waveguide by press molding using an optical waveguide mold.
  • one surface Q of the substrate 1 is subjected to a silane coupling process using a spin coater.
  • quartz glass is used as the substrate 1.
  • a commercially available silane coupling solution can be used.
  • a mixed solution of KBM503 manufactured by Shin-Etsu Chemical Co., Ltd., trade name
  • acidic water with acetic acid and ethanol can be used.
  • a predetermined amount of ultraviolet curable resin 40 is applied dropwise so as to cover the waveguide pattern of the optical waveguide mold 37.
  • the ultraviolet fountain curable resin for an optical waveguide has a curing shrinkage ratio of 6 to 7%, a viscosity of 760 mPa ′ S (25 ° C.), and a refractive index after curing of 1.5536.
  • the acrylic photo-curing resin is used.
  • a normal photocurable resin ultraviolet curable resin
  • defoaming by placing the optical waveguide type 37 coated with the ultraviolet curable resin by dropping into a vacuum defoaming machine.
  • the conditions of the defoamer can be, for example, a heater heating of 50 ° C. and a decompression condition of 75 mmHg.
  • After defoaming for example, press the UV spring curable resin 40 in the direction of the optical waveguide type 37 (arrow direction in Fig. 4 (a)) on the Q surface of the substrate 1 on the plate at 80 ° C, and finally
  • the thickness of the base layer 6 on the optical waveguide side obtained can be made more uniform.
  • FIG. 4B is a schematic cross-sectional view showing a step of irradiating the resin having a predetermined shape with ultraviolet rays (UV light).
  • UV curable resin 40 disposed between the substrate 1 and the optical waveguide mold 37 being in close contact with the substrate 1 and the optical waveguide mold 37, the UV curable resin 40 is irradiated with UV light from outside the mold.
  • the UV curable resin 40 is cured. Thereby, an optical waveguide can be formed on one surface side of the substrate 1.
  • the UV curable resin 40 is cured while pressure is applied between the substrate 1 and the optical waveguide mold 37 so as to sandwich the UV curable resin 40. Is preferred.
  • Irradiation conditions of ultraviolet rays can be set as follows, for example. First, provisional irradiation is performed by moving a 100mm length at a speed of 3 reciprocations / min using an lm m slit. After that, the slit is removed, and main irradiation is performed to expose the entire surface of the UV curable resin 40 in a lump. For example, the integrated irradiation amount of the temporary irradiation and the main irradiation can be set to lOOOOmj / cm 2 . As described above, by performing the provisional irradiation and the main irradiation, a rapid curing reaction can be suppressed, and transfer defects due to curing shrinkage of the ultraviolet ray curable resin can be more reliably prevented.
  • An optical waveguide member 20 comprising an optical waveguide side base layer 6 and an optical waveguide 2 formed on the optical waveguide side base layer 6 by separating the substrate 1 on which the waveguide 2 is formed from the optical waveguide type 37 (release). A substrate 1 on which is formed is obtained.
  • the optical waveguide 2 is fixed to the substrate 1 via the optical waveguide side base layer 6. For this reason, compared with the case where the optical waveguide 2 is directly fixed to the surface of the substrate 1, the force S is firmly fixed on the substrate 1.
  • the thickness of the optical waveguide side base layer 6 is 5 m or more, incident light tends to leak out, and there is a tendency that light loss cannot be sufficiently suppressed. In particular, this optical loss becomes more prominent as the optical path of the optical waveguide becomes longer.
  • the thickness of the base layer 6 on the optical waveguide side can be controlled according to the cavity volume of the optical waveguide type 37, the extension area of the ultraviolet curable resin, the mass or volume of the ultraviolet curable resin measured at the time of dropping. . It can also be adjusted by monitoring with a non-contact measuring instrument when forming the optical waveguide. From the viewpoint of further improving the light coupling efficiency, the thickness of the base layer 6 on the optical waveguide side is preferably 3 111 or less.
  • FIG. 5 is a diagram schematically showing a lens forming step of forming a lens using a lens mold on a substrate. In fact, the force that forms a plurality of modules at once is simplified in FIG. 5 and only one optical waveguide is shown.
  • the lens forming step opposite to one surface of the substrate 1 on which the optical waveguide member is formed A lens member is formed on the other surface on the side.
  • a light incident / exit lens is formed by ultraviolet curable resin molding at a position facing the light incident / exit inclined portion 2b provided in the optical waveguide 2.
  • positioning is performed so that the optical axis of the lens is arranged at the center of the inclined portion 2b that enters and exits.
  • the configuration of the optical waveguide module manufacturing apparatus will be described with reference to FIG.
  • the lens mold 29 formed as described above is set on the vertical drive stage 42 by vacuum suction.
  • the lens mold 29 is provided with alignment marks ml, m2, m3, and m4 for aligning the lens mold 29 in advance when the optical waveguide module is formed.
  • the substrate 1 on which the optical waveguide 2 has already been formed is set in the holder 43a and fixed by the substrate holder 43b.
  • the optical waveguide module manufacturing equipment is equipped with multiple CCD cameras (four in this embodiment) that image alignment marks. With this CCD camera, the lens type alignment marks ml to m4 are imaged, the position coordinates are calculated in advance, and stored in the memory of the manufacturing equipment (with target registration! /).
  • the CCD camera images the alignment marks Ml, M2, M3, and M4 provided on the optical waveguide base layer 6 on which the optical waveguide is formed, and calculates the position coordinates.
  • a predetermined amount of UV curable resin 44 is applied dropwise onto the surface of the lens mold 29 on which the lens pattern is formed.
  • the ultraviolet curable resin used for forming the lens of this embodiment has a curing shrinkage of 6 to 7%, a viscosity of S2600 to 2800 mPa ′ S (25 ° C.), and a refractive index after curing of 1.5536.
  • FIG. 5 (b) shows a state in which the ultraviolet spring curable resin is brought into close contact with the other surface of the substrate 1 and the lens mold 29.
  • the object coordinates object coordinates (ml to m4) registered in advance with respect to the target coordinates (ml to m4) are registered. Align Ml to M4).
  • the target coordinate position registered as the target and the object coordinate position registered as the object Based on the calculation result, alignment is performed by moving the holder 43a of the apparatus on which the substrate 1 is set in the horizontal direction. Thereafter, the vertical drive stage 42 is raised until the thickness of the ultraviolet curable resin between the lens mold 29 and the other surface of the substrate 1 reaches a desired thickness.
  • the alignment of the target coordinates (ml, m2, m3, m4) and the object coordinates (Ml, M2, M3, M4) is performed again. Do.
  • the process of aligning the substrate 1 (optical waveguide) and the lens mold 29 based on the alignment mark is called “positioning step”.
  • UV light is irradiated.
  • the integrated irradiation light quantity of ultraviolet irradiation can be set to, for example, lOOOOmj / cm 2 .
  • the thickness of the lens-side base layer 7 may be set so as to be within the lens design range and easy to mold.
  • the upper and lower drive stages 42 on which the lens mold 29 is set are lowered, and the lens member 30 is peeled off from the lens mold 29.
  • the lens member 30 is formed on the other surface of the substrate 1 opposite to the surface on which the optical waveguide is formed.
  • optical waveguide modules can be efficiently produced in large quantities. If the size per optical waveguide module is 20mm square, 5 x 5 optical waveguide modules are arranged in a matrix on a single substrate with a spacing of 0.3mm plus a distance of 0.3mm. Even so, it can be an area of 101.2 mm square. For example, by producing a lens mold and an optical waveguide mold of this size, the mass production effect of the optical waveguide module can be enhanced. An arbitrary number of alignment marks can be produced for each module. According to the positioning step of this embodiment, all modules are aligned at once. That's the power S.
  • the stepper is used so that the inclined portion 2b of the optical waveguide 2 and the central portion of the lens 3 face each other. It can be positioned well.
  • a step of forming an optical waveguide by press molding using a photo-curing resin on one surface of the mounting substrate, and the other of the mounting substrate Forming a light incident / exit lens on the surface by press molding using a photocurable resin at a position facing the 45 ° inclined portion of the optical waveguide formed in the step.
  • the step of forming the light incident / exit lens based on the alignment marks provided in advance on the molded waveguide surface side and the lens molding die side, the 45 ° inclined portion of the waveguide and the optical axis of the lens V, and then the lens side molding resin is cured.
  • a mounting substrate that supports the polymer optical waveguide, a polymer optical waveguide formed on one surface of the mounting substrate, and a lens formed on the other surface of the mounting substrate.
  • the optical waveguide is provided with an inclined portion for reflecting light inside or outside the optical waveguide, and the position of the lens is a position facing the inclined portion formed in the optical waveguide.
  • a pedestal is provided on the lens side of the mounting board, and the thickness of the pedestal is 10 to 25 mm when the SAG amount is 30 mm to 111 mm.
  • the optical waveguide module is manufactured in the order of the optical waveguide forming step and the lens forming step, but may be performed in the order of the lens forming step and the optical waveguide step. Further, in order to shorten the manufacturing time, the optical waveguide forming step and the lens forming step may be performed simultaneously. Further, the positioning step can be performed before the photocurable resin for forming at least one of the optical waveguide and the lens is cured. For example, the positioning step may be performed in the optical waveguide forming step, or the optical waveguide forming step and the lens. According to the present invention, the optical waveguide module and the manufacturing method thereof can be used for processing various fine optical element patterns and integrating them by using a polymer resin on a flat substrate.

Abstract

An optical waveguide module (100) is provided with a substrate (1), an optical waveguide formed on one surface (1b) of the substrate (1), and a plurality of lenses (3) formed on the other surface (1a) of the substrate (1). The optical waveguide (2) has inclined sections (2b) at the both end sections, and the lenses (3) are formed at the positions facing the inclined sections (2b) by having the substrate (1) in between. The optical waveguide (2) and the lenses (3) are made of a cured resin material, and the refraction index of the substrate (1) is lower than the refraction index of the optical waveguide (2) and any of the refraction indexes of the lenses (3).

Description

明 細 書  Specification
光導波路モジュール及びその製造方法  Optical waveguide module and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、ボード間、チップ間等を接続する光導波路モジュール及びその製造方 法に関する。  The present invention relates to an optical waveguide module that connects boards, chips, and the like, and a method for manufacturing the same.
背景技術  Background art
[0002] 最近、集積回路における信号配線の高速度化 ·高密度化に伴い、光導波路を用い た光配線技術が注目されている。このような事情の下、製造が容易で且つ低価格の 樹脂材料を用いた光導波路が注目されてレ、る。  Recently, with the increase in speed and density of signal wiring in integrated circuits, optical wiring technology using optical waveguides has attracted attention. Under such circumstances, optical waveguides using resin materials that are easy to manufacture and inexpensive are attracting attention.
[0003] 樹脂製の光導波路の製造方法としては、様々な方法が提案されている。例えば、 特許文献 1では、クラッド層及びコア層が共に樹脂であり、実装基板の一方の面にレ ンズ、他方の面に導波路を形成した構成の光導波路モジュールが提案されている。  [0003] Various methods have been proposed as a method for manufacturing a resin optical waveguide. For example, Patent Document 1 proposes an optical waveguide module in which both the clad layer and the core layer are made of resin, and a lens is formed on one surface of the mounting substrate and a waveguide is formed on the other surface.
[0004] また、特許文献 2は、コア層とクラッド層の双方に樹脂材料を用い、クラッド層に補強 構造を設けることにより、光導波路モジュールの強度を向上する試みがなされている 特許文献 1 :特開 2005— 181645号公報  [0004] In Patent Document 2, an attempt is made to improve the strength of the optical waveguide module by using a resin material for both the core layer and the cladding layer and providing a reinforcing structure in the cladding layer. JP 2005-181645
特許文献 2 :特開 2005— 338125号公報  Patent Document 2: JP 2005-338125 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、特許文献 1のレンズと光導波路とを一体化する製造方法では、クラッ ド層及びコア層の双方がともに樹脂製であるため、熱や外力により変形しやすいうえHowever, in the manufacturing method in which the lens and the optical waveguide of Patent Document 1 are integrated, since both the cladding layer and the core layer are made of resin, they are easily deformed by heat and external force.
、さらにレンズがクラッド層と一体で構成されているため屈折率の高い樹脂をレンズに 用いることができず、所望の屈折力を得るためにレンズの厚みを厚くする必要があり、 設計上の自由度が低いという問題がある。また、樹脂の吸湿性のため光導波路モジ ユールが膨張し、光軸が次第にずれるという問題がある。さらに、樹脂を成形して所 望の形状とする工程において、型から樹脂成形品を剥離する際に、変形し易ぐ製 品歩留まりが悪いという問題がある。 [0006] また、特許文献 2の方法では、モジュール構造が複雑であるため、製造工程も複雑 化し、その結果、生産コストも高くなつてしまうという問題がある。 Furthermore, since the lens is constructed integrally with the cladding layer, a resin with a high refractive index cannot be used for the lens, and it is necessary to increase the thickness of the lens in order to obtain the desired refractive power. There is a problem that the degree is low. Another problem is that the optical waveguide module expands due to the hygroscopic nature of the resin, and the optical axis gradually shifts. Furthermore, in the process of molding the resin into the desired shape, there is a problem that when the resin molded product is peeled from the mold, it is easily deformed and the product yield is poor. [0006] In addition, the method of Patent Document 2 has a problem in that since the module structure is complicated, the manufacturing process is also complicated, and as a result, the production cost increases.
[0007] ところで、入出射用レンズと光導波路とを押圧成形により一体モジュール化すること はこれまで実施されていない。押圧成形によって光導波路を製造する場合、押圧時 に紫外泉硬化樹脂が光導波路キヤビティ部に充填されるのみならず、余剰樹脂によ り、キヤビティ部の外にも樹脂層が形成されてしまうことが懸念される。この樹脂層は、 実際に光導波路として使用する際、光の漏れ、光損失増加の原因となり得る。また、 対向して設けられる光導波路及びレンズを、それぞれ形成する際に、光導波路の光 の入出射部である傾斜部とレンズ光軸とのァライメントのずれが発生し、光損失の原 因となり得る。  [0007] Meanwhile, it has not been carried out so far that an input / output lens and an optical waveguide are integrated into a single module by press molding. When an optical waveguide is manufactured by press molding, not only the ultraviolet fountain cured resin is filled into the optical waveguide cavity during pressing, but also a resin layer is formed outside the cavity due to excess resin. Is concerned. This resin layer may cause light leakage and increase in optical loss when actually used as an optical waveguide. Further, when forming the optical waveguide and the lens provided opposite to each other, the alignment between the inclined portion, which is the light entrance / exit portion of the optical waveguide, and the optical axis of the lens is generated, which causes optical loss. obtain.
[0008] 本発明は、上記事情に鑑みてなされたものであり、高い設計の自由度を有しつつ、 光の結合効率に十分優れた光導波路モジュールを提供することを目的とする。また、 本発明では、高 V、生産性でレンズ及び光導波路を十分な位置精度をもって形成でき る光導波路モジュールの製造方法を提供することを目的とする。  [0008] The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical waveguide module having a high degree of freedom in design and sufficiently excellent light coupling efficiency. Another object of the present invention is to provide a method of manufacturing an optical waveguide module that can form a lens and an optical waveguide with sufficient positional accuracy with high V and productivity.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を達成するため、本発明では、基板と、前記基板の一方の面側に形成さ れた光導波路と、前記基板の他方の面側に形成された複数のレンズとを有する光導 波路モジュールであって、前記光導波路はその両端部に傾斜部を有し、前記複数の レンズは、前記基板を挟んで前記傾斜部と対向する位置にそれぞれ形成されており 、前記光導波路及び前記複数のレンズはいずれも樹脂硬化物からなり、前記基板の 屈折率は前記光導波路及び前記複数のレンズの V、ずれの屈折率よりも低 V、ことを特 徴とする光導波路モジュールを提供する。  In order to achieve the above object, the present invention includes a substrate, an optical waveguide formed on one surface side of the substrate, and a plurality of lenses formed on the other surface side of the substrate. In the optical waveguide module, the optical waveguide has inclined portions at both ends thereof, and the plurality of lenses are respectively formed at positions facing the inclined portion with the substrate interposed therebetween. Provided is an optical waveguide module in which each of the plurality of lenses is made of a cured resin, and the refractive index of the substrate is V of the optical waveguide and the plurality of lenses, and is lower than the refractive index of displacement. To do.
[0010] 本発明の光導波路モジュールは、前記基板がガラスであることが好ましい。また、前 記ガラスが石英ガラスであることがより好ましレ、。  [0010] In the optical waveguide module of the present invention, the substrate is preferably glass. In addition, it is more preferable that the glass is quartz glass.
[0011] また、本発明の光導波路モジュールにおいて、光導波路は、前記基板の一方の面 上に形成された光導波路側ベース層上に形成されていることが好ましい。  [0011] In the optical waveguide module of the present invention, it is preferable that the optical waveguide is formed on an optical waveguide side base layer formed on one surface of the substrate.
[0012] また、本発明の光導波路モジュールにおいて、前記光導波路側ベース層の厚さは 5 ,1 m以下であることが好まし!/、。 [0013] また、本発明の光導波路モジュールにおいて、前記複数のレンズは、前記基板の 他方の面上に形成されたレンズ側ベース層上にそれぞれ形成されていることが好ま しい。 [0012] Further, in the optical waveguide module of the present invention, it is preferable that the thickness of the optical waveguide side base layer is 5.1 m or less! /. [0013] In the optical waveguide module of the present invention, it is preferable that the plurality of lenses are respectively formed on a lens-side base layer formed on the other surface of the substrate.
[0014] また、本発明の光導波路モジュールにおいて、前記レンズは、周縁に鍔が形成され て!/、るレンズであることが好まし!/、。  [0014] Further, in the optical waveguide module of the present invention, it is preferable that the lens is a lens having a ridge formed on a peripheral edge! /.
[0015] また、本発明の光導波路モジュールは、前記光導波路を前記基板の一方の面側に 複数備えることが好ましい。  [0015] Further, the optical waveguide module of the present invention preferably includes a plurality of the optical waveguides on one surface side of the substrate.
[0016] 上記の光導波路モジュールにお V、て、複数の前記光導波路が、それぞれ前記基 板の一方の面側に同時に成形されたものであることが好ましい。また、前記複数のレ ンズは、それぞれ前記基板の前記他方の面側に同時に成形されたものであることが 好ましい。また、前記レンズは、前記光導波路と外部光学系との結合レンズであること が好ましい。  [0016] In the above optical waveguide module, it is preferable that V and the plurality of optical waveguides are simultaneously formed on one surface side of the substrate. The plurality of lenses are preferably formed on the other surface side of the substrate at the same time. The lens is preferably a coupling lens of the optical waveguide and an external optical system.
[0017] 本発明では、また、光導波路の形状に対応する凹み部を有する第 1の型の、当該 凹み部に第 1の樹脂前駆体が満たされた状態で、当該第 1の樹脂前駆体を基板に 密着させて硬化させることにより、前記基板の一方の面側に、両端に傾斜部を有する 前記光導波路を形成する光導波路形成ステップと、レンズの形状に対応する凹み部 を有する第 2の型の、当該凹み部に第 2の樹脂前駆体が満たされた状態で、当該第 2の樹脂前駆体を前記基板に密着させて硬化させることにより、前記基板を挟んで前 記基板の他方の面側に、前記レンズを形成するレンズ形成ステップと、を有しており、 前記第 1の樹脂前駆体及び前記第 2の樹脂前駆体の少なくとも一方を硬化させる前 に、前記光導波路の前記傾斜部と前記レンズとが対向して配置されるように、前記第 1の型及び前記第 2の型の少なくとも一方を位置決めすることを特徴とする光導波路 モジュールの製造方法を提供する。  [0017] In the present invention, the first resin precursor of the first mold having a dent corresponding to the shape of the optical waveguide is filled with the first resin precursor in the dent. Is attached to the substrate and cured to form an optical waveguide forming step for forming the optical waveguide having inclined portions at both ends on one surface side of the substrate, and a second portion having a recess corresponding to the shape of the lens. In the state where the second resin precursor is filled with the second resin precursor, the second resin precursor is brought into close contact with the substrate and cured, so that the other side of the substrate is sandwiched between the substrates. A lens forming step for forming the lens on the surface side of the optical waveguide, before curing at least one of the first resin precursor and the second resin precursor. The inclined part and the lens are arranged to face each other , To provide a manufacturing method of the optical waveguide module, characterized in that positioning at least one of the first mold and the second mold.
[0018] また、本発明の光導波路モジュールの製造方法では、前記第 1の型及び前記第 2 の型の少なくとも一方はァライメントマークを有しており、前記ァライメントマークを基 準として、前記第 1の型及び前記第 2の型の少なくとも一方を位置決めすることが好 ましい。  [0018] In the method of manufacturing an optical waveguide module of the present invention, at least one of the first mold and the second mold has a alignment mark, and the alignment mark is used as a reference. It is preferable to position at least one of the first mold and the second mold.
[0019] 本発明の前記光導波路形成ステップでは、前記光導波路と前記基板との間に厚さ 5 m以下の光導波路側ベース層が形成されるように、前記第 1の型と前記基板との 間隔調整を行うことが好ましい。 [0019] In the optical waveguide forming step of the present invention, a thickness is provided between the optical waveguide and the substrate. It is preferable to adjust the distance between the first mold and the substrate so that an optical waveguide side base layer of 5 m or less is formed.
[0020] また、本発明の光導波路モジュールの製造方法において、前記第 2の型は、周縁 に鍔が形成されたレンズに対応した凹み部を有することが好ましい。 [0020] Further, in the method for manufacturing an optical waveguide module of the present invention, it is preferable that the second mold has a recess corresponding to a lens having a ridge formed on the periphery.
[0021] また、本発明の光導波路モジュールの製造方法において、前記鍔は、前記レンズ の周縁に連続して形成されたものであることが好ましい。 [0021] Further, in the method for manufacturing an optical waveguide module of the present invention, it is preferable that the ridge is formed continuously on the periphery of the lens.
発明の効果  The invention's effect
[0022] 本発明の光導波路モジュールは、光導波路及びレンズが基板とは別に形成されて いるため、熱による変形が少なく位置精度に十分優れている。このため、光の結合効 率も十分に優れている。また、基板の屈折率が、該基板の両面上に設けられる光導 波路及びレンズの屈折率よりも低いため、光導波路の機能を損なうことなくレンズの 厚みを薄くすること力できる。また、光導波路及びレンズが基板とは別に形成できるた め、より屈折率の高い樹脂を用いてレンズを構成することが可能になり、レンズの厚 みをより薄くでき、設計の自由度が十分に高い。  In the optical waveguide module of the present invention, since the optical waveguide and the lens are formed separately from the substrate, deformation due to heat is small and the positional accuracy is sufficiently excellent. For this reason, the light coupling efficiency is sufficiently excellent. Further, since the refractive index of the substrate is lower than the refractive indexes of the optical waveguide and the lens provided on both surfaces of the substrate, it is possible to reduce the thickness of the lens without impairing the function of the optical waveguide. In addition, since the optical waveguide and the lens can be formed separately from the substrate, it is possible to configure the lens using a resin having a higher refractive index, the thickness of the lens can be made thinner, and design flexibility is sufficient. Very expensive.
[0023] さらに、光導波路及びレンズをともに押圧成形により形成するため、低コストであり、 高精度な光導波路モジュールを効率的に製造することができる。  Furthermore, since both the optical waveguide and the lens are formed by press molding, a low-cost and high-precision optical waveguide module can be efficiently manufactured.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の好適な実施形態に係る光導波路モジュールの断面構造を模式的に 示す模式断面図である。  FIG. 1 is a schematic cross-sectional view schematically showing a cross-sectional structure of an optical waveguide module according to a preferred embodiment of the present invention.
[図 2]フォトレジストを用いたレンズ型作製方法を模式的に示す工程断面図である。  FIG. 2 is a process cross-sectional view schematically showing a lens mold manufacturing method using a photoresist.
[図 3]フォトレジストを用いた光導波路型作製方法を模式的に示す工程断面図である  FIG. 3 is a process cross-sectional view schematically showing an optical waveguide type manufacturing method using a photoresist.
[図 4]光導波路型を用いた押圧成形により光導波路を形成する光導波路形成ステツ プを模式的に示す工程断面図である。 FIG. 4 is a process cross-sectional view schematically showing an optical waveguide forming step for forming an optical waveguide by press molding using an optical waveguide mold.
[図 5]基板上にレンズ型を用いてレンズを形成するレンズ形成ステップを模式的に示 す図である。  FIG. 5 is a diagram schematically showing a lens forming step of forming a lens using a lens mold on a substrate.
符号の説明  Explanation of symbols
[0025] 1 · · ·基板、 2· · ·導波路、 2b…傾斜部、 6 · · ·光導波路側ベース層、 3· · ·レンズ、 3a- - - レンズ本体、 3b…鍔、 5· · ·基準突起部、 7· · ·レンズ側ベース層、 21 , 31 · · ·フォトレジ スト層、 22, 32…基板、 25, 36· · ·透明基板(押し板)、 26, 35, 40· · ·光硬化型樹脂 (紫外泉硬ィ匕型樹月旨)、 24, 27…突起き ^ 23, 33· · ·グレースケーノレマスク、 34, 200 …レジスト型マスター、 37· · ·光導波路型、 45. CCDカメラ。 [0025] 1 ··· Substrate, 2 ··· Waveguide, 2b ... Inclined portion, 6 ··· Optical waveguide side base layer, 3 ··· Lens, 3a--- Lens body, 3b… 鍔, 5 ··· Reference protrusion, 7 ··· Lens side base layer, 21, 31 ··· Photoresist layer, 22, 32… Substrate, 25, 36 ··· Transparent substrate ( Push plate), 26, 35, 40 ··· Photo-curing resin (ultraviolet spring hard 匕 type moon), 24, 27… Protrusion ^ 23, 33 ··· Graceke Nore mask, 34, 200… Resist type master, 37 ··· Optical waveguide type, 45. CCD camera.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 図 1は本発明の好適な実施形態に係る光導波路モジュールの断面構造を模式的 に示す模式断面図である。光導波路モジュール 100は、石英ガラス製の実装基板 1 と、実装基板 1の一方の面 lb上に形成された光導波路部材 20と、実装基板 1の他方 の面 la上に形成されたレンズ部材 30とを備える。  FIG. 1 is a schematic cross-sectional view schematically showing a cross-sectional structure of an optical waveguide module according to a preferred embodiment of the present invention. The optical waveguide module 100 includes a mounting substrate 1 made of quartz glass, an optical waveguide member 20 formed on one surface lb of the mounting substrate 1, and a lens member 30 formed on the other surface la of the mounting substrate 1. With.
[0027] 光導波路部材 20は、光導波路 2と光導波路側ベース層 6とを備えており、光導波 路側ベース層 6は、実装基板 1と光導波路 2との間に所定の厚みで設けられる。  The optical waveguide member 20 includes an optical waveguide 2 and an optical waveguide side base layer 6, and the optical waveguide side base layer 6 is provided between the mounting substrate 1 and the optical waveguide 2 with a predetermined thickness. .
[0028] レンズ部材 30は、レンズ 3とレンズ側ベース層 7と基準突起部 5とを備えており、レン ズ側ベース層 7は、実装基板 1とレンズ 3及び基準突起部 5との間に所定の厚みで設 けられる。一対の基準突起部 5は、レンズ 3から所定の間隔で離れており、レンズ 3を 挟むようにして、レンズ 3と同様にレンズ側ベース層 7上に設けられる。この基準突起 部 5は、実装基板 1のレンズ側とは反対側の面 lbに形成される光導波路 2成形時の 基準になるとともにレンズ 3を保護する機能を有する。  The lens member 30 includes a lens 3, a lens side base layer 7, and a reference protrusion 5, and the lens side base layer 7 is interposed between the mounting substrate 1, the lens 3, and the reference protrusion 5. It is installed with a predetermined thickness. The pair of reference protrusions 5 are separated from the lens 3 at a predetermined interval, and are provided on the lens-side base layer 7 like the lens 3 so as to sandwich the lens 3. The reference protrusion 5 serves as a reference for molding the optical waveguide 2 formed on the surface lb opposite to the lens side of the mounting substrate 1 and has a function of protecting the lens 3.
[0029] なお、図 1では、便宜上一つのレンズしか示していないが、実際は、光導波路モジ ユール 100は、実装基板 1の一方の面 la側(図 1の右方)に、レンズ 3と同様の別のレ ンズを備える。また、光導波路 2も、同様に図示されている傾斜部 2bとは反対側の端 部に別の傾斜部を備える。そして、当該別の傾斜部に対向するように図示されていな V、前記別のレンズが設けられる。光導波路 2の一方の傾斜部は光の入射部として機 能し、他方の傾斜部は光の出射部として機能する。  In FIG. 1, only one lens is shown for convenience. Actually, the optical waveguide module 100 is the same as the lens 3 on the one side la side (the right side in FIG. 1) of the mounting substrate 1. With another lens. Similarly, the optical waveguide 2 is provided with another inclined portion at the end opposite to the inclined portion 2b shown in the figure. Then, the other lens V, not shown, is provided so as to face the other inclined portion. One inclined portion of the optical waveguide 2 functions as a light incident portion, and the other inclined portion functions as a light emitting portion.
[0030] レンズ 3は、光信号の入射または出射用のレンズとして機能する。レンズ 3は、光の 進路を変えるための曲面を有する凸型のレンズ本体部 3aと、レンズ本体部 3aの周縁 に連続して設けられる鍔(台座部) 3bとを有する。鍔 3bは、後述するレンズ型作製に おいて、レンズ型にあるリング形状の段差部分によって形成される。この段差部分は 、フォトレジストを硬化させる際に発泡が発生した場合に、レンズ型と除去部分との間 の緩衝領域として機能する。したがって、レンズ 3には周縁に鍔 3bが設けられることに よって、光の結合効率を一層向上することができる。 [0030] The lens 3 functions as a lens for entering or emitting an optical signal. The lens 3 includes a convex lens body 3a having a curved surface for changing the light path, and a flange (pedestal) 3b provided continuously around the periphery of the lens body 3a. The flange 3b is formed by a ring-shaped step portion in the lens mold in the lens mold fabrication described later. This step portion is formed between the lens mold and the removal portion when foaming occurs when the photoresist is cured. Functions as a buffer area. Therefore, the lens 3 is provided with the flange 3b at the periphery, whereby the light coupling efficiency can be further improved.
[0031] 光導波路 2は、光信号を伝送する本体部 2aと、光導波路 2に光信号を入出力する 際に光の進行方向を変更する傾斜部 2bとを有する。傾斜部 2bは、レンズ 3の光軸位 置を光導波路 2の傾斜部 2bに対応させるため、レンズ 3と対向するように設けられる。 傾斜部 2bは、図 1に示すレンズ 3と傾斜部 2bとを結ぶ光軸の方向と光導波路 2の長 手方向に平行な断面において、実装基板 1の面 lbと、光導波路 2と光導波路側べ一 ス層 6との接触面とのなす角度が 45度となるように傾斜している。  The optical waveguide 2 includes a main body 2a that transmits an optical signal, and an inclined portion 2b that changes the traveling direction of light when an optical signal is input to and output from the optical waveguide 2. The inclined portion 2b is provided to face the lens 3 so that the optical axis position of the lens 3 corresponds to the inclined portion 2b of the optical waveguide 2. The inclined portion 2b is formed by a surface lb of the mounting substrate 1, the optical waveguide 2 and the optical waveguide in a cross section parallel to the direction of the optical axis connecting the lens 3 and the inclined portion 2b shown in FIG. It is tilted so that the angle formed with the contact surface with the side base layer 6 is 45 degrees.
[0032] 光導波路 2の光伝送路部分である本体部 2aの光の伝送方向に垂直な方向の断面 は、通常、一辺が数 から数十 の矩形形状をしている。伝送路は、当然伝送 したい必要な長さが求められる。長さは用途によって異なる力 通常、短いものでも数 ミリ以上は必要となる。この間に、急激な形状変化や段差があると、光が乱反射され て、伝送特性が悪化する傾向がある。原理的に光の全反射を用いているため、本体 部 2aの光の伝送路の各面は平面性が求められる。  [0032] The cross section in the direction perpendicular to the light transmission direction of the main body 2a, which is the optical transmission line portion of the optical waveguide 2, is usually rectangular with several to several tens of sides. Of course, the required length of transmission line is required. The length varies depending on the application. Usually, even a short one needs several millimeters or more. If there is an abrupt shape change or a step in the meantime, the light is irregularly reflected and the transmission characteristics tend to deteriorate. In principle, since total reflection of light is used, each surface of the light transmission path of the main body 2a must be flat.
[0033] なお、実装基板 1としては石英ガラスの他に、一般のガラスを用いてもよい。実装基 板 1を一般のガラスや石英ガラスとすることによって、全て樹脂製でレンズを一体化し た光導波路モジュールに比べて、熱や外力に対する変形を抑制して、光導波路モジ ユール 100全体の寸法精度を向上させることができる。したがって、安定した精度で 高品質な光導波路を得ることができる。例えば、実装基板 1の厚さを 0. 5mm以上と すれば、製造時、とりわけレンズ型や光導波路型からレンズや光導波路を離型する 際の破損や変形を十分に抑制することができる。これによつて、歩留まりが良くなり、 高!/、生産性を確保することができる。  [0033] As the mounting substrate 1, general glass may be used in addition to quartz glass. By using mounting glass 1 made of ordinary glass or quartz glass, the overall dimensions of the optical waveguide module 100 are reduced by suppressing deformation due to heat and external force compared to an optical waveguide module that is made entirely of resin and integrated with a lens. Accuracy can be improved. Therefore, a high-quality optical waveguide can be obtained with stable accuracy. For example, if the thickness of the mounting substrate 1 is 0.5 mm or more, it is possible to sufficiently suppress damage and deformation during the production, particularly when the lens or optical waveguide is released from the lens mold or optical waveguide mold. As a result, the yield is improved, and high productivity can be secured.
[0034] ここで、光導波路モジュール 100における光の入出射経路について説明する。レン ズ 3から入射した光は、実装基板 1を挟んで当該レンズ 3とは対向する位置に形成さ れている、光導波路 2の傾斜部 2bに進行する。そして、光の進行方向は、当該傾斜 部 2bで全反射されることにより 90度変えられ、光導波路 2の長手方向に切り替えられ る。実装基板 1は、コア層である光導波路よりも低い屈折率を有しており、光導波路モ ジュール 100においてクラッド層として機能する。進行方向が長手方向に切り替えら れた光は、図示されていないもう一方の傾斜部に到達し、再び進行方向が 90度変え られる。その後、実装基板 1を挟んで当該傾斜部に対向して設けられている別のレン ズから出射される。 Here, the light incident / exit path in the optical waveguide module 100 will be described. The light incident from the lens 3 travels to the inclined portion 2b of the optical waveguide 2 formed at a position facing the lens 3 with the mounting substrate 1 in between. The traveling direction of light is changed by 90 degrees by being totally reflected by the inclined portion 2b, and is switched to the longitudinal direction of the optical waveguide 2. The mounting substrate 1 has a lower refractive index than the optical waveguide that is the core layer, and functions as a cladding layer in the optical waveguide module 100. When the direction of travel is switched to the longitudinal direction The incident light reaches the other slope not shown, and the traveling direction is changed 90 degrees again. Thereafter, the light is emitted from another lens provided facing the inclined portion with the mounting substrate 1 interposed therebetween.
[0035] なお、本実施形態では、実装基板 1として屈折率の低い石英ガラス基板を用いてい る。このため、レンズ 3は屈折率の高い材料で形成することができる。このため、レンズ を薄肉化することができ、光導波路モジュールの設計の自由度を向上させることがで きる。  In the present embodiment, a quartz glass substrate having a low refractive index is used as the mounting substrate 1. For this reason, the lens 3 can be formed of a material having a high refractive index. For this reason, the lens can be thinned, and the degree of freedom in designing the optical waveguide module can be improved.
[0036] 実装基板 1の面 la lbにそれぞれ形成される、光導波路 2及び光導波路ベース層  [0036] The optical waveguide 2 and the optical waveguide base layer formed on the surface la lb of the mounting substrate 1, respectively.
6を有する光導波路部材 20と、レンズ 3、基準突起部 5及びレンズベース層 7を有す るレンズ部材 30とは、双方とも紫外線硬化型樹脂を用いて押圧成形方法により形成 される。なお、光導波路部材 20及びレンズ部材 30は、寸法精度と強度とを高水準で 両立する観点から、型を用いた押圧成形により、それぞれ一体的に形成されることが 好ましい。  The optical waveguide member 20 having 6 and the lens member 30 having the lens 3, the reference protrusion 5 and the lens base layer 7 are both formed by a pressure molding method using an ultraviolet curable resin. The optical waveguide member 20 and the lens member 30 are preferably integrally formed by press molding using a mold from the viewpoint of achieving both high dimensional accuracy and strength at a high level.
[0037] 次に、本発明の光導波路モジュールの製造方法について説明する。本実施形態 では、基板に実装される光導波路モジュールを、押圧成形で形成するため、予めレ ンズ型及び光導波路型を作製する必要がある。そこで、グレースケールマスク(GSM )を用いた露光プロセス法によるレンズ型及び光導波路型の作製方法について説明 する。  Next, a method for manufacturing the optical waveguide module of the present invention will be described. In this embodiment, since the optical waveguide module mounted on the substrate is formed by press molding, it is necessary to prepare a lens type and an optical waveguide type in advance. Therefore, a manufacturing method of a lens type and an optical waveguide type by an exposure process method using a gray scale mask (GSM) will be described.
[0038] (レンズ型作製)  [0038] (Lens mold production)
作製するレンズ型は、光導波路 光を導入又は光導波路から光を導出するための レンズと、そのレンズ高さよりも高い基準突起部とを形成するために用いられる。  The lens mold to be produced is used to form a lens for introducing or deriving light from the optical waveguide and a reference protrusion higher than the lens height.
[0039] 図 2は、フォトレジストを用いたレンズ型作製方法を模式的に示す工程断面図であ る。本実施形態では、まず、 GSM露光方式でレンズ形状を有するレジスト型マスター を形成し、その後当該レジスト型マスターを用いてレンズ型(サブマスター)を形成す る。以下に、レンズ型作製方法の詳細について説明する。 FIG. 2 is a process cross-sectional view schematically showing a lens mold manufacturing method using a photoresist. In this embodiment, first, a resist type master having a lens shape is formed by the GSM exposure method, and then a lens type (submaster) is formed using the resist type master. Details of the lens mold manufacturing method will be described below.
[0040] <塗布工程〉 [0040] <Coating process>
まず、レジスト型マスターを形成するために基板を用意する。基板としては、平面性 の良い石英ガラスや Siウェハ等を用いることができる。特に形状を最終的にエツチン グによって彫り込む場合にはそのエッチング工程にあった基板を用意する。本実施 形態では石英ガラスを用いる力 S、基板の材質は特に限定されるものではない。 First, a substrate is prepared for forming a resist master. As the substrate, quartz glass, Si wafer or the like having good flatness can be used. Especially eztin finally shape In the case of engraving with a substrate, a substrate suitable for the etching process is prepared. In this embodiment, the force S using quartz glass and the material of the substrate are not particularly limited.
[0041] 次に、図 2 (a)に示すように、石英ガラス基板 22の面上にフォトレジスト層 21を、最 終的に形成するレンズの厚みに応じた厚さにスピンコートやスプレーなどにより塗布 する。なお、ここでは図示しないが、フォトレジスト層 21と基板 22との密着性を確保す るために、フォトレジスト層 21を塗布する前に、下地として基板 22にアンカーコートを 塗ってもよい。フォトレジストを基板 22の面上に塗布した後、不要なガスを抜くために プリべイク処理を行うことが好ましレ、。このプリべイク処理を行うことでフォトレジストの 感度が安定し、オーバーパワー露光による発泡を抑制することができる。 Next, as shown in FIG. 2 (a), a photoresist layer 21 is formed on the surface of the quartz glass substrate 22, and spin coating or spraying is performed to a thickness corresponding to the thickness of the lens to be finally formed. Apply by applying. Although not shown here, in order to ensure adhesion between the photoresist layer 21 and the substrate 22, an anchor coat may be applied to the substrate 22 as a base before applying the photoresist layer 21. After applying the photoresist on the surface of the substrate 22, it is preferable to perform pre-bake treatment to remove unnecessary gas. By performing this pre-bake treatment, the sensitivity of the photoresist is stabilized, and foaming due to overpower exposure can be suppressed.
[0042] <露光,現像工程〉 [0042] <Exposure and development process>
次に、図 2 (b)に示すように、塗布したフォトレジスト層を予めレンズ形状に応じて作 製されたグレースケールマスク 23を用いて露光し、現像を行って、レジスト型マスター 200を形成する。  Next, as shown in FIG. 2 (b), the applied photoresist layer is exposed using a gray scale mask 23 previously prepared according to the lens shape and developed to form a resist master 200. To do.
[0043] レジスト型マスター 200を形成する前に、必要に応じて複数のマスクを準備する。本 実施形態では、上記のグレースケールマスク(GSM) 23、突起形成用マスク及びァラ ィメントマーク形成用マスクの 3枚のマスクを用いる。なお、図 2 (b)はグレースケール マスク 23を用いる場合を示して!/、る。  Before forming the resist type master 200, a plurality of masks are prepared as necessary. In the present embodiment, three masks are used: the gray scale mask (GSM) 23, the protrusion formation mask, and the alignment mark formation mask. Fig. 2 (b) shows the case where the gray scale mask 23 is used!
[0044] グレースケールマスク(GSM) 23の作製にお!/、ては、まず、使用するレジストの感 度曲線や現像の影響、エッチングレートなどのデータを元に、所望のレンズ形状に該 当する開口率を決定する必要がある。そして、この開口率に整合するように、遮光点 群もしくは開口穴群を配列させる。マスクは、通常 Cr膜を用いて、電子ビーム描画装 置にて作製され、リフトオフ法やウエットエッチング法などで不要部分が取り除かれる [0044] For the production of the gray scale mask (GSM) 23! /, First of all, it corresponds to the desired lens shape based on the sensitivity curve of the resist used, the influence of development, data such as the etching rate, etc. It is necessary to determine the aperture ratio to be performed. Then, the light shielding point group or the aperture hole group is arranged so as to match the aperture ratio. The mask is usually made with an electron beam lithography system using a Cr film, and unnecessary parts are removed by the lift-off method or wet etching method.
Yes
[0045] なお、 GSMは、直接電子ビーム描画装置により作製してもよい。また、ステッパー で 5倍縮小露光マスクとして、電子ビーム描画装置により 5倍のサイズのマスクを作製 するようにしてもよい。後者によれば、さらなる微細な穴を高精度に実現することがで きる。  [0045] Note that GSM may be manufactured by a direct electron beam lithography apparatus. In addition, as a 5 × reduction exposure mask with a stepper, a 5 × size mask may be produced with an electron beam lithography apparatus. According to the latter, further fine holes can be realized with high accuracy.
[0046] 本実施形態では、グレースケールマスク 23としてポジ型の露光用マスクを用いる。 厚いフォトレジスト層 21に、グレースケールマスク 23を介して露光を行うことにより、フ オトレジスト層 21に任意の露光分布を与える。露光後、現像することにより、レンズ側 レジスト型マスター 200を作製できる。この方法によれば、フォトレジスト層の基礎デ ータと所望のレンズ形状とから、位置に応じて照射する露光量を求めて、グレースケ ールマスク 23を設計することができる。このような方法によれば、同一面内に正確に 多数のレンズを作成することができ、また、任意の非球面形状を高精度にバラツキ無 く作製することが可能となる。 In the present embodiment, a positive exposure mask is used as the gray scale mask 23. By exposing the thick photoresist layer 21 through the gray scale mask 23, an arbitrary exposure distribution is given to the photoresist layer 21. By developing after exposure, the lens-side resist master 200 can be produced. According to this method, the grayscale mask 23 can be designed by obtaining the exposure dose according to the position from the basic data of the photoresist layer and the desired lens shape. According to such a method, a large number of lenses can be accurately produced within the same plane, and any aspherical shape can be produced with high accuracy and without variation.
[0047] グレースケールマスク 23は、使用する露光装置の分解解像度よりも小さな開口数を 持つパターンにすることが好ましい。これによつて、なめらかな露光分布を形成するこ と力 Sできる。また、実際には露光時にデフォーカスすることでさらになめらかな曲面を 実現できる。 [0047] The gray scale mask 23 is preferably a pattern having a numerical aperture smaller than the resolution of the exposure apparatus used. This makes it possible to form a smooth exposure distribution. In fact, a smoother curved surface can be realized by defocusing during exposure.
[0048] また、レンズ部ゃ凸部以外の露光には二値化マスクを用いる。レンズ型の形状とし て、何も形成されないエリア (樹脂硬化物が残存しないエリア)に相当する部分のレジ ストを除去する為、レンズゃ凸部などの必要な領域を隠す目的のマスクになる。こちら も電子ビーム描画により作製する力 S、通常、グレースケールマスクのような高精度な形 状は必要としない。  [0048] A binarization mask is used for exposure of the lens portion other than the convex portion. As the shape of the lens mold, the resist corresponding to the area where nothing is formed (the area where the resin cured product does not remain) is removed. Here too, the force S produced by electron beam lithography, usually a highly accurate shape like a gray scale mask, is not required.
[0049] ァライメントマーク形成用のマスクも電子ビーム描画にて作製することができる。なお 、ァライメントマークは、凸形状とすることも凹形状とすることも可能である。したがって 、当該形状が形成可能なァライメントマーク形成用のマスクを作製する。  A mask for forming alignment marks can also be produced by electron beam drawing. The alignment mark can be convex or concave. Therefore, a mask for forming alignment marks capable of forming the shape is produced.
[0050] 上述の 3枚のマスクを用いて、基板 22上に塗布されたフォトレジスト層 21の露光を 行う。露光は通常の紫外線照射装置を用いて行うことができる。  [0050] Using the above-described three masks, the photoresist layer 21 applied on the substrate 22 is exposed. The exposure can be performed using a normal ultraviolet irradiation device.
[0051] ここで、レンズ側レジスト型マスター 200のレンズに対応する突起部 24の縁部には 、レンズの鍔を形成するための段差 24bが設けられている。この段差 24bは、樹脂硬 化時の発泡によりレンズ形状が変形するのを防止するために設けられている。レジス ト型マスター 200の突起部 27は、後述する後工程で形成される基準突起部 3を形成 するための突起である。  [0051] Here, a step 24b for forming a lens ridge is provided at the edge of the protrusion 24 corresponding to the lens of the lens-side resist master 200. The step 24b is provided in order to prevent the lens shape from being deformed by foaming during resin hardening. The protrusion 27 of the resist master 200 is a protrusion for forming a reference protrusion 3 formed in a later process described later.
[0052] 本実施形態では、グレースケールマスク 23を用いて露光した後、突起形成用マスク  In the present embodiment, after the exposure using the gray scale mask 23, the projection forming mask
(二値化マスク)を用いて凸部分以外のエリアの露光を行う。その後、ァライメントマ一 ク形成用マスクを用いて露光を行う。なお、各露光は投影縮小露光装置を用いて順 次行う。 An area other than the convex portion is exposed using (binarization mask). After that, alignment Exposure is performed using a mask for forming a mask. Each exposure is performed sequentially using a projection reduction exposure apparatus.
[0053] 特に、突起形成用マスクを用いての露光では、凸部もレンズ部分も何もない平坦部 分の全てのレジストを除去する。この露光では、厚いフォトレジスト層を完全露光しょう とするのでどうしてもオーバーパワーになりがちとなる。このようにパワーが過大な高 エネルギーの光を照射すると、ガス (発泡)が発生して、レジスト形状を破壊する発泡 現象が生じる傾向がある。この発泡現象を十分に抑制するために、図 2 (b)に示すよ うに、突起部 24には、周りに一段レジストを薄く残す処理をして、段差 24bを設けるこ とが好ましい。これによつて、樹脂硬化時に、レンズ形状の突起部 24の変形を十分に 防止すること力でさる。  [0053] In particular, in the exposure using the projection forming mask, all the resist for the flat portion having no convex portion and no lens portion is removed. This exposure tends to be overpowered because it tries to fully expose the thick photoresist layer. In this way, irradiation with high-energy light with excessive power tends to generate gas (foaming) and cause a foaming phenomenon that destroys the resist shape. In order to sufficiently suppress this foaming phenomenon, as shown in FIG. 2 (b), it is preferable that the protrusion 24 is provided with a step 24b by performing a process of leaving a one-step resist around it. As a result, it is possible to sufficiently prevent deformation of the lens-shaped protrusion 24 when the resin is cured.
[0054] 段差 24bを形成するためには、レンズ形状に対応する突起部 24のサイズをグレー スケールマスクの透過率を調整することによって、レンズ本体の直径よりも大きな面積 となるようにしておく。透過率の調整にあたっては、段差 24bの厚みが SAG量(レンズ 中心厚)により異なるように設定することが好ましい。例えば、 30 mの SAG量であ れば、段差 24bの厚みが 10〜25 mとなるように透過率を調整することが好ましい。 このようにすることで、平坦部分を完全除去するための露光において発泡が仮に発 生したとしても、段差部 24bが緩衝領域として作用し、突起部 24のレンズ本体に対応 する部分の変形を十分に抑制することができる。なお、 GSMを用いたレンズ本体部 分を形成するためにグレースケールマスクを用いて行う露光は、通常オーバーパヮ 一で行わなレ、ため、ほとんど発泡現象は発生しなレ、。  [0054] In order to form the step 24b, the size of the projection 24 corresponding to the lens shape is adjusted to be larger than the diameter of the lens body by adjusting the transmittance of the gray scale mask. In adjusting the transmittance, it is preferable that the thickness of the step 24b is set to be different depending on the SAG amount (lens center thickness). For example, if the SAG amount is 30 m, it is preferable to adjust the transmittance so that the thickness of the step 24b is 10 to 25 m. By doing so, even if foaming occurs in the exposure for completely removing the flat portion, the stepped portion 24b acts as a buffer region, and the deformation of the portion corresponding to the lens body of the protruding portion 24 is sufficiently performed. Can be suppressed. Note that exposure using a grayscale mask to form the lens body using GSM is usually done with over-exposure, so there is almost no foaming phenomenon.
[0055] 露光完了後、通常の方法により現像を行う。露光された基板の表面に、現像液が均 等に触れるように流すことにより、強く光の照射を受けた部分は多く除去され、弱く光 の照射を受けた部分は少なく除去される。これによつて、図 2 (b)に示すように、マイク 口レンズアレイのパターン(レンズ側レジスト型マスター 200)が得られる。  [0055] After the exposure is completed, development is performed by a normal method. By allowing the developer to flow evenly on the exposed surface of the substrate, many portions that are strongly irradiated with light are removed, and few portions that are weakly irradiated with light are removed. As a result, as shown in FIG. 2 (b), a pattern of the lens array on the microphone opening (lens side resist type master 200) is obtained.
[0056] レンズ側レジスト型マスター 200には、最終的に必要となるレンズや基準突起部、ァ ライメントマークなどの形状が形成されている。なお、後述するレンズ形成ステップに おける離型をスムーズに行うため、完成したレジスト型マスター 200の表面に、公知 の離型剤を塗布すること、及び/又は、 Ni遮光膜を形成することが好ましい(図示し ない)。 The lens-side resist master 200 is formed with shapes such as a lens, a reference projection, and alignment marks that are finally required. In order to smoothly perform the mold release in the lens forming step described later, it is preferable to apply a known mold release agent and / or to form a Ni light-shielding film on the surface of the completed resist master 200. (Shown Absent).
[0057] なお、本実施形態では行っていないが、エッチングによって所望のパターンを石英 ガラス基板などの安定物質に彫り込む事もできる。通常、 RIE (反応性イオンエツチン グ)、 ICP (誘導結合型プラズマ: Inductively Coupled Plasma)などで石英ガラ スなどの基板に転写する。このエッチングレートも変動しやす!/、ので精密な形状を作 製する場合は注意を要する。  [0057] Although not performed in the present embodiment, a desired pattern can be engraved in a stable material such as a quartz glass substrate by etching. Usually, it is transferred to a substrate such as quartz glass by RIE (Reactive Ion Etching) or ICP (Inductively Coupled Plasma). This etching rate is also easy to change! / Be careful when making precise shapes.
[0058] <押圧成形工程〉  [0058] <Press molding process>
図 2 (c)は、レンズ型を形成するための押圧成形工程を模式的に示している。上記 の通り作製したレジスト型マスター 200を元にして、紫外線硬化型樹脂 26で型を取り 、レンズ型 29 (サブマスター)を形成する。具体的には、 Ni遮光膜が表面に形成され たレジスト型マスター 200に紫外線硬化型樹脂 26を滴下し、透明基板(押し板) 25を 押し当てて、マイクロレンズアレイのパターン面にこの紫外線硬化型樹脂 26をのばす 。これにより、レジスト型マスター 200のパターン面に紫外線硬化型樹脂 26をまんベ んなく薄く行き渡らせる。そして、紫外線硬化型樹脂をレジスト型マスター 200のバタ ーン面と透明基板 25とに密着させる押圧成形を行う。なお、この際、透明基板 25とレ ジスト型マスター 200を備える基板 22との間に圧力をかけて、紫外線硬化型樹脂密 着 26をレジスト型マスター 200のパターン面と透明基板 25とに十分密着させることが 好ましい。  FIG. 2 (c) schematically shows a press molding process for forming a lens mold. Based on the resist mold master 200 produced as described above, a mold is taken with the ultraviolet curable resin 26 to form a lens mold 29 (submaster). Specifically, the UV curable resin 26 is dropped on the resist master 200 with the Ni light-shielding film formed on the surface, and the transparent substrate (pressing plate) 25 is pressed against the UV-cured pattern surface of the microlens array. Extend mold resin 26. As a result, the UV curable resin 26 is spread evenly and thinly on the pattern surface of the resist master 200. Then, press molding is performed in which the ultraviolet curable resin is closely attached to the pattern surface of the resist master 200 and the transparent substrate 25. At this time, pressure is applied between the transparent substrate 25 and the substrate 22 provided with the resist master 200, and the UV curable resin adhesive 26 is sufficiently adhered to the pattern surface of the resist master 200 and the transparent substrate 25. Preferably.
[0059] <樹脂硬化工程〉  [0059] <Resin curing process>
図 2 (d)は、樹脂硬化工程を模式的に示している。図 2 (c)に示すような押圧成形ェ 程を行った後、樹脂硬化工程では、紫外線を照射して紫外線硬化型樹脂 26を硬化 させる。  Fig. 2 (d) schematically shows the resin curing process. After performing the pressing process as shown in FIG. 2 (c), in the resin curing step, the ultraviolet curable resin 26 is cured by irradiating ultraviolet rays.
[0060] なお、レジスト型マスター 200の表面に予め Ni遮光膜を形成していれば、レジスト 型マスター 200を構成する硬化樹脂の発泡を十分に防止することができる。特に、レ ンズ形成用の突起部 24の中心厚が厚い場合に Ni遮光膜を形成しておくことが有効 である。その理由は以下の通りである。すなわち、レンズ形成用の突起部 24の中心 厚が厚ぐパターン形状の深さが深い場合、その深さにともない塗布する紫外線硬化 型樹脂の層も厚くなり、樹脂硬化工程において、紫外線硬化型樹脂を硬化させるた めに高エネルギーの紫外線 (uv光)の照射が必要となる。その結果、レジスト型マス ター 200を形成する硬化樹脂中に潜在していた溶剤等が気化し、レジスト型マスター 200の表面に泡状の欠陥が発生する傾向がある。そこで、レジスト型マスター 200の 表面に Ni遮光膜を形成することにより、紫外線硬化型樹脂を紫外線硬化する時の U Vエネルギーをレジスト型マスター 200側に直接伝えないように遮光することができる 。遮光膜は、 Ni遮光膜に限定されるものではないが、通常の Ni遮光膜は、遮光性と 離型性とを兼ね備えて!/、るために好ましく用いられる。 Note that if a Ni light-shielding film is previously formed on the surface of the resist mold master 200, foaming of the cured resin constituting the resist mold master 200 can be sufficiently prevented. In particular, it is effective to form a Ni light-shielding film when the center thickness of the projection 24 for forming the lens is thick. The reason is as follows. That is, when the center thickness of the lens-forming projection 24 is thick and the depth of the pattern shape is deep, the UV curable resin layer to be applied increases with the depth, and the UV curable resin is applied in the resin curing process. To cure Therefore, it is necessary to irradiate with high energy ultraviolet rays (uv light). As a result, the solvent or the like which has been latent in the cured resin forming the resist type master 200 is vaporized, and there is a tendency that bubble-like defects are generated on the surface of the resist type master 200. Therefore, by forming a Ni light-shielding film on the surface of the resist master 200, it is possible to shield the UV energy when UV-curing the UV-curable resin from being directly transmitted to the resist master 200 side. The light-shielding film is not limited to the Ni light-shielding film, but a normal Ni light-shielding film is preferably used because it has both light-shielding properties and releasability.
[0061] なお、レンズの中心厚が厚くなぐパターン形状の深さも深くなければ、 Ni遮光膜を 用いずに、紫外線の照射エネルギー量を調整することにより、レジスト型マスター 200 の表面の泡状の欠陥を十分に抑制することができる。このようにパターン形状に応じ て、遮光膜の有無や膜厚、 UV光の照射パワー量調整などを設定することができる。  [0061] If the depth of the pattern shape that increases the center thickness of the lens is not deep, the amount of foam irradiation on the surface of the resist master 200 can be adjusted by adjusting the amount of ultraviolet irradiation energy without using the Ni light-shielding film. Defects can be sufficiently suppressed. In this way, the presence or absence of the light shielding film, the film thickness, the adjustment of the irradiation power amount of the UV light, etc. can be set according to the pattern shape.
[0062] <離型工程〉  [0062] <Mold release process>
図 2 (e)は離型工程を模式的に示している。上記の樹脂硬化工程によって、硬化し た樹脂をレジスト型マスター 200から離型することにより、レンズ型 29が完成する。  Figure 2 (e) schematically shows the mold release process. The lens mold 29 is completed by releasing the cured resin from the resist mold master 200 by the resin curing process.
[0063] レンズ型 29の紫外線硬化型樹脂の転写パターン面は、通常の方法によって、離型 処理が施される。離型処理の方法としては、 Ni薄膜形成法やフッ素系離型剤の処理 が挙げられる。 Ni薄膜形成法は、スパッタなどの方法で数十オングストローム程度の 厚さの Ni薄膜をレンズ型 29の表面に形成する。また、フッ素系離型剤としては、通常 の市販のものを用いることができ、シミ等の残らないフロン溶媒系のものが好ましく用 いられる。  [0063] The transfer pattern surface of the ultraviolet curable resin of the lens mold 29 is subjected to a release treatment by a normal method. Examples of mold release treatment methods include Ni thin film formation and fluorine mold release agents. In the Ni thin film formation method, a Ni thin film with a thickness of about several tens of angstroms is formed on the surface of the lens mold 29 by a method such as sputtering. In addition, as the fluorine-based mold release agent, an ordinary commercially available one can be used, and a fluorocarbon solvent-based one that does not leave a stain or the like is preferably used.
[0064] 数十オングストロームの Ni膜であれば、紫外線は十分透過可能である。したがって 、後述するレンズ型形成ステップにおいて、 UV光はレンズ型を透過して照射される。  [0064] If the Ni film has a thickness of several tens of angstroms, ultraviolet rays can be sufficiently transmitted. Therefore, in the lens mold forming step described later, the UV light is irradiated through the lens mold.
[0065] 本実施形態では、レンズ型の製造方法の代表例として、グレースケールマスクを用 いた露光法による製造方法について説明した力 それ以外の方法、例えば、光造形 法によってレンズ型を製造してもよレ、。  In this embodiment, as a representative example of a method for manufacturing a lens mold, the force described for the manufacturing method by an exposure method using a gray scale mask is used. For example, a lens mold is manufactured by an optical modeling method. Moyore.
[0066] また、発泡現象は、二つの工程、すなわち、レジスト型マスターを形成する際の露 光'現像工程と、レジスト型マスターから紫外線硬化型樹脂を転写してレンズ型を形 成する際の UV光による樹脂硬化工程とにおいて生じる場合がある。このため、レン ズ型 29は、レンズの凸部を形成する凹み部 29aと、リング状の凹み部 29bとを有して いる。凹み部 29bは、透明基板 25とレジスト型 29との接触面に平行な断面において 、凹み部 29aよりも大きい直径を有している。なお、リング状の凹み部 29bはレジスト 型マスター 200の段差 24bに対応して形成される。 [0066] In addition, the foaming phenomenon occurs in two steps, that is, an exposure process when forming a resist mold master, and a process of forming a lens mold by transferring an ultraviolet curable resin from the resist mold master. It may occur in the resin curing process with UV light. For this reason, The mold 29 has a recess 29a that forms a convex portion of the lens and a ring-shaped recess 29b. The recess 29b has a larger diameter than the recess 29a in a cross section parallel to the contact surface between the transparent substrate 25 and the resist mold 29. The ring-shaped recess 29b is formed corresponding to the step 24b of the resist mold master 200.
[0067] (光導波路型作製) [0067] (Optical waveguide type fabrication)
図 3は、フォトレジストを用いた光導波路型作製方法を模式的に示す工程断面図で ある。本実施形態では、光導波路形状のレジスト型マスターを形成し、その後当該レ ジスト型マスターを用いて光導波路型を形成する。本実施形態では、 GSMと二値化 マスクの 2枚のマスクを用いて露光を行う。なお、レンズ型作製時に GSMを用いたが 、 目標形状を傾斜平面とすれば同様な設計方法で傾斜部形成用の GSMを作製す ること力 Sでさる。  FIG. 3 is a process cross-sectional view schematically showing an optical waveguide type fabrication method using a photoresist. In this embodiment, an optical waveguide-shaped resist master is formed, and then the optical waveguide mold is formed using the resist master. In this embodiment, exposure is performed using two masks, GSM and a binarization mask. Note that GSM was used during lens mold fabrication. However, if the target shape is an inclined plane, the force S for producing the GSM for forming the inclined portion can be reduced by the same design method.
[0068] 基板の選択や、 GSMや二値化マスクの作製、及び各工程は、前述のレンズ型と同 様に行うことができるので、場合により重複する説明を省略する。  [0068] Since the selection of the substrate, the production of the GSM and the binarization mask, and the respective steps can be performed in the same manner as the above-described lens mold, redundant description is omitted in some cases.
[0069] <塗布工程〉  [0069] <Coating process>
まず、光導波路形状のレジスト型マスターを形成するために基板を用意する(図 3 ( a) )。基板 32は、レンズ型作製に用いた基板と同様のものを用いることができる。  First, a substrate is prepared to form an optical waveguide-shaped resist master (FIG. 3 (a)). As the substrate 32, the same substrate as that used for the lens mold fabrication can be used.
[0070] 次に、図 3 (a)に示すように、基板 32の一方の面上に厚膜フォトレジスト 31を塗布 する塗布工程を行う。この塗布工程は、レンズ型作製の塗布工程と同様にして行うこ と力 Sできる。  Next, as shown in FIG. 3 (a), a coating process for coating a thick film photoresist 31 on one surface of the substrate 32 is performed. This coating process can be performed in the same manner as the lens mold manufacturing coating process.
[0071] <露光,現像工程〉  <Exposure and development process>
次に、図 3 (b)に示すように、傾斜部 34bのみをグレースケールマスク 33を用いて露 光する。図 3 (b)において、グレースケールマスク 33のうち中央部分 33bがグレースケ ールとなっている。そして、傾斜部 34bを露光する部分に相当するグレースケールマ スク 33の端部 33aは、中央部 33bに近いほど光の透過率が低くなつている。この傾 斜部 34bは光路切り換えミラー(傾斜部)の形成に用いられる。光導波路の伝送部分 の形成に相当する部分は、凸型に残す必要があるため、ここでは露光しない。  Next, as shown in FIG. 3 (b), only the inclined portion 34 b is exposed using the gray scale mask 33. In FIG. 3 (b), the central portion 33b of the gray scale mask 33 is a gray scale. The end portion 33a of the gray scale mask 33 corresponding to the portion that exposes the inclined portion 34b has a lower light transmittance as it is closer to the central portion 33b. This inclined portion 34b is used to form an optical path switching mirror (inclined portion). The portion corresponding to the formation of the transmission portion of the optical waveguide needs to be left in a convex shape, and is not exposed here.
[0072] 続いて不要な平坦部分を露光し、突起部(導波路)を残すための二値化マスク露光 を行う。特に導波路断面を台形ではなく矩形に近づけるため、比較的強いパワーで 露光する。これによつて、紫外線硬化型樹脂が硬化される。 Subsequently, an unnecessary flat portion is exposed, and binarized mask exposure is performed to leave a protruding portion (waveguide). In particular, because the waveguide cross section is close to a rectangle instead of a trapezoid, Exposure. Thereby, the ultraviolet curable resin is cured.
[0073] その後、必要に応じてァライメントマーク形成用の露光を行い、現像処理を行う。露 光'現像工程は、レンズ型の形成と同様な方法で行うことができる。これによつて、傾 斜部 34bを有する光導波路型のレジスト型マスター 34が得られる。  Thereafter, exposure for forming alignment marks is performed as necessary, and development processing is performed. The “exposure” development step can be performed in the same manner as in the formation of the lens mold. As a result, an optical waveguide resist master 34 having an inclined portion 34b is obtained.
[0074] なお、光導波路型のレジスト型マスター 34においても、レンズ型のレジスト型マスタ 一 200と同様にして、表面に、 Ni遮光膜を形成することが好ましい。  It is to be noted that, also in the optical waveguide resist master 34, it is preferable to form a Ni light-shielding film on the surface in the same manner as the lens resist master 200.
[0075] <押圧成形工程〉  [0075] <Press molding process>
次に、レンズ型形成と同様にして、押圧成形工程を行う。図 3 (c)は、光導波路型を 形成するための押圧成形工程を模式的に示している。具体的には、 Ni遮光膜を形 成したレジスト型マスター 34のパターン面に紫外線硬化型樹脂を滴下し、透明基板( 押し板) 36により樹脂をのばす。これにより、レジスト型マスター 34のパターン面に紫 外線硬化型樹脂 35をまんべんなく薄く行き渡らせて、レジスト型マスター 34の形状を 転写する。そして、紫外線硬化型樹脂をレジスト型マスター 34のパターン面と透明基 板 36とに密着させる押圧成形を行う。なお、この際、透明基板 36とレジスト型マスタ 一 34を備える基板 32との間に圧力をかけて、紫外線硬化型樹脂密着 26をレジスト 型マスター 34のパターン面と透明基板 36とに密着させることが好ましい。  Next, a press molding process is performed in the same manner as the lens mold formation. Fig. 3 (c) schematically shows the press molding process for forming the optical waveguide mold. Specifically, an ultraviolet curable resin is dropped onto the pattern surface of the resist master 34 formed with a Ni light-shielding film, and the resin is spread by a transparent substrate (press plate) 36. As a result, the ultraviolet curable resin 35 is spread evenly and thinly on the pattern surface of the resist master 34 to transfer the shape of the resist master 34. Then, press molding is performed in which the ultraviolet curable resin is brought into close contact with the pattern surface of the resist master 34 and the transparent substrate 36. At this time, pressure is applied between the transparent substrate 36 and the substrate 32 having the resist master 34 to bring the UV curable resin adhesion 26 into close contact with the pattern surface of the resist master 34 and the transparent substrate 36. Is preferred.
[0076] <樹脂硬化工程、離型工程〉  <Resin curing process, mold release process>
その後、レンズ型形成と同様に樹脂硬化工程を行い、図 3 (d)に示すように光導波 路型 34から離型する離型工程により、透明基板 36上に光導波路型 37が完成する。 なお、レンズ型 29と同様に、光導波路型 37の紫外線硬化型樹脂の転写パターン面 には、通常の方法によって、離型処理を施すことが好ましい。  Thereafter, a resin curing process is performed in the same manner as the lens mold formation, and the optical waveguide mold 37 is completed on the transparent substrate 36 by a mold release process for releasing from the optical waveguide mold 34 as shown in FIG. As in the case of the lens mold 29, the transfer pattern surface of the ultraviolet curable resin of the optical waveguide mold 37 is preferably subjected to a mold release process by a normal method.
[0077] 以上、レンズ型と導波路型の製造方法について説明した。なお、レンズ型及び光導 波路型は、それぞれ一つの基板上に複数個の型を作製することにより、後述する光 導波路モジュールの生産性を向上させることができる。  [0077] The manufacturing method of the lens type and the waveguide type has been described above. The lens mold and the optical waveguide mold can improve the productivity of an optical waveguide module, which will be described later, by producing a plurality of molds on one substrate.
[0078] (光導波路モジュールの製造)  [0078] (Manufacture of optical waveguide module)
次に、光導波路モジュールの製造法について説明する。光導波路モジュールは、 実装基板の一方の面側に紫外線硬化型樹脂を用いて光導波路を形成し、実装基板 の一方の面とは反対側の他方の面側に紫外泉硬化型樹脂を用いてレンズを形成す ることによって得られる。 Next, a method for manufacturing the optical waveguide module will be described. An optical waveguide module uses an ultraviolet curable resin on one side of a mounting board to form an optical waveguide, and an ultraviolet spring curable resin on the other side opposite to the one side of the mounting board. Forming a lens Can be obtained.
[0079] (1)光導波路形成ステップ  [0079] (1) Optical waveguide formation step
光導波路形成ステップでは、実装基板の一方の面上に光硬化樹脂を用いて押圧 成形により光導波路を形成する。  In the optical waveguide forming step, an optical waveguide is formed on one surface of the mounting substrate by press molding using a photo-curing resin.
[0080] 図 4は、光導波路型を用いた押圧成形により光導波路を形成する光導波路形成ス テツプを模式的に示す工程断面図である。まず、基板 1の一方の面 Qに、スピンコー ターによるシランカップリング処理を施す。本実施形態では基板 1として石英ガラスを 用いている。なお、シランカップリング液は市販のものを用いることができる。具体的 には、 KBM503 (信越化学工業株式会社製、商品名)と酢酸酸性水とエタノールと の混合液を用いることができる。  FIG. 4 is a process cross-sectional view schematically showing an optical waveguide forming step for forming an optical waveguide by press molding using an optical waveguide mold. First, one surface Q of the substrate 1 is subjected to a silane coupling process using a spin coater. In this embodiment, quartz glass is used as the substrate 1. A commercially available silane coupling solution can be used. Specifically, a mixed solution of KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name), acidic water with acetic acid and ethanol can be used.
[0081] 次に、図 4 (a)に示すように、光導波路型 37の導波路パターンを覆うように所定量 の紫外線硬化型樹脂 40を滴下塗布する。  Next, as shown in FIG. 4 (a), a predetermined amount of ultraviolet curable resin 40 is applied dropwise so as to cover the waveguide pattern of the optical waveguide mold 37.
[0082] この光導波路用の紫外泉硬化型樹脂としては、本実施形態では、硬化収縮率が 6 〜7%、粘度が 760mPa ' S (25°C)、硬化後の屈折率が 1. 5536のアクリル系光硬化 型樹脂を用いている。なお、アクリル系光硬化型樹脂の他に、通常の光硬化型樹脂( 紫外線硬化型樹脂)を用いることができる。  In this embodiment, the ultraviolet fountain curable resin for an optical waveguide has a curing shrinkage ratio of 6 to 7%, a viscosity of 760 mPa ′ S (25 ° C.), and a refractive index after curing of 1.5536. The acrylic photo-curing resin is used. In addition to the acrylic photocurable resin, a normal photocurable resin (ultraviolet curable resin) can be used.
[0083] 紫外線硬化型樹脂が滴下塗布された光導波路型 37を減圧脱泡機中に入れて脱 泡を行うことが好ましい。脱泡機の条件は、例えば、ヒータ加熱 50°C、減圧条件 75m mHgとすることができる。脱泡終了後、例えば、 80°Cのプレート上で基板 1の Q面で 紫外泉硬化型樹脂 40を光導波路型 37の方向(図 4 (a)の矢印方向)に加圧すること により、最終的に得られる光導波路側のベース層 6の厚みを一層均一にすることがで きる。  [0083] It is preferable to perform defoaming by placing the optical waveguide type 37 coated with the ultraviolet curable resin by dropping into a vacuum defoaming machine. The conditions of the defoamer can be, for example, a heater heating of 50 ° C. and a decompression condition of 75 mmHg. After defoaming, for example, press the UV spring curable resin 40 in the direction of the optical waveguide type 37 (arrow direction in Fig. 4 (a)) on the Q surface of the substrate 1 on the plate at 80 ° C, and finally Thus, the thickness of the base layer 6 on the optical waveguide side obtained can be made more uniform.
[0084] 図 4 (b)は、所定の形状となった樹脂に紫外線 (UV光)を照射する工程を示す模式 断面図である。基板 1と光導波路型 37との間に配置された紫外線硬化型樹脂 40を 基板 1と光導波路型 37とに密着させた状態で、 UV光を型外から紫外線硬化型樹脂 40に照射して、紫外線硬化型樹脂 40を硬化させる。これによつて、基板 1の一方の 面側に光導波路を形成することができる。紫外線硬化型樹脂 40を硬化は、紫外線硬 化型樹脂 40を挟むように基板 1と光導波路型 37との間に圧力をかけながら行うこと が好ましい。 FIG. 4B is a schematic cross-sectional view showing a step of irradiating the resin having a predetermined shape with ultraviolet rays (UV light). With the UV curable resin 40 disposed between the substrate 1 and the optical waveguide mold 37 being in close contact with the substrate 1 and the optical waveguide mold 37, the UV curable resin 40 is irradiated with UV light from outside the mold. The UV curable resin 40 is cured. Thereby, an optical waveguide can be formed on one surface side of the substrate 1. The UV curable resin 40 is cured while pressure is applied between the substrate 1 and the optical waveguide mold 37 so as to sandwich the UV curable resin 40. Is preferred.
[0085] 紫外線 (UV光)の照射条件は、例えば、以下のようにすること力 Sできる。まず、 lm mのスリットを用い、長さ 100mmを 3往復/ minの速さで移動させる仮照射を行う。そ の後、スリットを撤去し、紫外線硬化型樹脂 40の全面に一括で露光する本照射を行 う。仮照射及び本照射の積算照射量は、例えば lOOOOmj/cm2とすることができる。 このように、仮照射と本照射とを行うことで急激な硬化反応を抑えることができ、紫外 線硬化型樹脂の硬化収縮による転写不良を一層確実に防止することができる。 [0085] Irradiation conditions of ultraviolet rays (UV light) can be set as follows, for example. First, provisional irradiation is performed by moving a 100mm length at a speed of 3 reciprocations / min using an lm m slit. After that, the slit is removed, and main irradiation is performed to expose the entire surface of the UV curable resin 40 in a lump. For example, the integrated irradiation amount of the temporary irradiation and the main irradiation can be set to lOOOOmj / cm 2 . As described above, by performing the provisional irradiation and the main irradiation, a rapid curing reaction can be suppressed, and transfer defects due to curing shrinkage of the ultraviolet ray curable resin can be more reliably prevented.
[0086] 上述の通り、紫外線硬化型樹脂 40を硬化させることにより、光導波路 2と光導波路 側ベース層 6とを形成した後、図 4 (c)に示すように、一方の面側に光導波路 2が形成 された基板 1を光導波路型 37から離す (離型)ことによって、光導波路側ベース層 6と 光導波路側ベース層 6上に形成された光導波路 2とからなる光導波路部材 20が形成 された基板 1が得られる。  [0086] As described above, after the ultraviolet curable resin 40 is cured to form the optical waveguide 2 and the optical waveguide side base layer 6, as shown in FIG. An optical waveguide member 20 comprising an optical waveguide side base layer 6 and an optical waveguide 2 formed on the optical waveguide side base layer 6 by separating the substrate 1 on which the waveguide 2 is formed from the optical waveguide type 37 (release). A substrate 1 on which is formed is obtained.
[0087] この光導波路 2は、光導波路側ベース層 6を介して基板 1に固定されている。このた め、光導波路 2を直接基板 1の面に直接固定する場合に比べて、強固に基板 1上に 固定すること力 Sでさる。  The optical waveguide 2 is fixed to the substrate 1 via the optical waveguide side base layer 6. For this reason, compared with the case where the optical waveguide 2 is directly fixed to the surface of the substrate 1, the force S is firmly fixed on the substrate 1.
[0088] なお、光導波路側ベース層 6の厚みは、 5 m以上になると、入射した光が、漏れ 出し易くなり、光損失を十分に抑制できない傾向がある。特に、この光損失は、光導 波路の光路が長くなるほど顕著となる。光導波路側のベース層 6の厚みは、光導波 路型 37のキヤビティ体積、紫外線硬化型樹脂の延び面積、滴下時に測定した紫外 線硬化型樹脂の質量または体積などに応じて制御することができる。また、光導波路 の形成時に非接触測定器によりモニタリングして調整することもできる。なお、光の結 合効率を一層向上させる観点から、光導波路側のベース層 6の厚みは、 3 111以下 にすることが好ましい。  [0088] When the thickness of the optical waveguide side base layer 6 is 5 m or more, incident light tends to leak out, and there is a tendency that light loss cannot be sufficiently suppressed. In particular, this optical loss becomes more prominent as the optical path of the optical waveguide becomes longer. The thickness of the base layer 6 on the optical waveguide side can be controlled according to the cavity volume of the optical waveguide type 37, the extension area of the ultraviolet curable resin, the mass or volume of the ultraviolet curable resin measured at the time of dropping. . It can also be adjusted by monitoring with a non-contact measuring instrument when forming the optical waveguide. From the viewpoint of further improving the light coupling efficiency, the thickness of the base layer 6 on the optical waveguide side is preferably 3 111 or less.
[0089] (2)レンズ形成ステップ  [0089] (2) Lens forming step
図 5は、基板上にレンズ型を用いてレンズを形成するレンズ形成ステップを模式的 に示す図である。実際には複数個のモジュールを一括して形成する力 図 5では説 明のため簡略化し、一つの光導波路のみを示す。  FIG. 5 is a diagram schematically showing a lens forming step of forming a lens using a lens mold on a substrate. In fact, the force that forms a plurality of modules at once is simplified in FIG. 5 and only one optical waveguide is shown.
[0090] レンズ形成ステップでは、光導波路部材が形成された基板 1の一方の面とは反対 側の他方の面にレンズ部材を形成する。このステップでは光導波路 2に備えられる光 入出射用の傾斜部 2bと対向する位置に、光入出射用のレンズを紫外線硬化型樹脂 成形により形成する。レンズを成形する際、入出射する傾斜部 2bの中央部にレンズ 光軸が配置されるように、位置決め(ァライメント処理)を行う。 [0090] In the lens forming step, opposite to one surface of the substrate 1 on which the optical waveguide member is formed A lens member is formed on the other surface on the side. In this step, a light incident / exit lens is formed by ultraviolet curable resin molding at a position facing the light incident / exit inclined portion 2b provided in the optical waveguide 2. When molding the lens, positioning (alignment processing) is performed so that the optical axis of the lens is arranged at the center of the inclined portion 2b that enters and exits.
[0091] 光導波路モジュール製造装置の構成を、図 5 (a)を用いて説明する。上述の通り形 成されたレンズ型 29は、上下駆動ステージ 42に真空吸着によりセットされる。レンズ 型 29には、予め光導波路モジュールを形成する際にレンズ型 29を位置あわせする ためのァライメントマーク ml、 m2、 m3、 m4が設けられている。すでに光導波路 2が 形成されている基板 1は、ホルダー 43aにセットされ、基板押さえ 43bで固定される。 光導波路モジュール製造装置には、ァライメントマークを撮像する複数台(本実施形 態では 4台)の CCDカメラが設けられている。この CCDカメラにより、レンズ型のァライ メントマーク ml〜m4を撮像して、予め位置座標を算出し、製造装置のメモリに記憶 しておく(ターゲット登録とも!/、う)。  The configuration of the optical waveguide module manufacturing apparatus will be described with reference to FIG. The lens mold 29 formed as described above is set on the vertical drive stage 42 by vacuum suction. The lens mold 29 is provided with alignment marks ml, m2, m3, and m4 for aligning the lens mold 29 in advance when the optical waveguide module is formed. The substrate 1 on which the optical waveguide 2 has already been formed is set in the holder 43a and fixed by the substrate holder 43b. The optical waveguide module manufacturing equipment is equipped with multiple CCD cameras (four in this embodiment) that image alignment marks. With this CCD camera, the lens type alignment marks ml to m4 are imaged, the position coordinates are calculated in advance, and stored in the memory of the manufacturing equipment (with target registration! /).
[0092] また、上記 CCDカメラは、光導波路が形成された光導波側ベース層 6上に設けら れたァライメントマーク Ml、 M2、 M3, M4を CCDカメラで撮像し、位置座標を算出 し、メモリに記憶する(オブジェクト登録とも!/、う)。  In addition, the CCD camera images the alignment marks Ml, M2, M3, and M4 provided on the optical waveguide base layer 6 on which the optical waveguide is formed, and calculates the position coordinates. , Memorize it in memory (with object registration! /).
[0093] 図 5に基づいてレンズ形成ステップの詳細について以下に説明する。図 5 (a)に示 すように、レンズ型 29のレンズパターンが形成された面に紫外線硬化型樹脂 44を所 定量滴下塗布する。本実施形態のレンズ形成に用いる紫外線硬化型樹脂は、硬化 収縮率が 6〜7%、粘度力 S2600〜2800mPa' S (25°C)であり、硬化後の屈折率は 1 . 5536である。  Details of the lens forming step will be described below based on FIG. As shown in FIG. 5 (a), a predetermined amount of UV curable resin 44 is applied dropwise onto the surface of the lens mold 29 on which the lens pattern is formed. The ultraviolet curable resin used for forming the lens of this embodiment has a curing shrinkage of 6 to 7%, a viscosity of S2600 to 2800 mPa ′ S (25 ° C.), and a refractive index after curing of 1.5536.
[0094] 次に上下駆動ステージ 42を上昇させて、シランカップリング処理されている基板 1 の他方の面に、レンズ型上に滴下された紫外線硬化型樹脂を密着させる。図 5 (b)は 、紫外泉硬化型樹脂を基板 1の他方の面とレンズ型 29とに密着させた状態を示して いる。このように紫外線硬化型樹脂を基板 1の他方の面とレンズ型 29に密着させた 状態で、予めターゲット登録されたターゲット座標(ml〜m4)の位置に対してォブジ ェクト登録されたオブジェクト座標(Ml〜M4)の位置を合わせる。この時、ターゲット 登録されたターゲット座標位置とオブジェクト登録されたオブジェクト座標位置とのず れ量を計算し、その計算結果に基づいて、基板 1がセットされている装置のホルダー 43aを水平方向に移動させる位置合わせを行う。その後、レンズ型 29と基板 1の他方 の面との間の紫外線硬化型樹脂の厚さが所望の厚さになるまで上下駆動ステージ 4 2を上昇させる。 Next, the vertical drive stage 42 is raised, and the ultraviolet curable resin dropped on the lens mold is brought into close contact with the other surface of the substrate 1 subjected to the silane coupling treatment. FIG. 5 (b) shows a state in which the ultraviolet spring curable resin is brought into close contact with the other surface of the substrate 1 and the lens mold 29. In this manner, with the UV curable resin being in close contact with the other surface of the substrate 1 and the lens mold 29, the object coordinates (object coordinates (ml to m4) registered in advance with respect to the target coordinates (ml to m4) are registered. Align Ml to M4). At this time, the target coordinate position registered as the target and the object coordinate position registered as the object Based on the calculation result, alignment is performed by moving the holder 43a of the apparatus on which the substrate 1 is set in the horizontal direction. Thereafter, the vertical drive stage 42 is raised until the thickness of the ultraviolet curable resin between the lens mold 29 and the other surface of the substrate 1 reaches a desired thickness.
[0095] 上記紫外線硬化型樹脂の厚さが所望の値になった位置でターゲット座標 (ml、 m 2、 m3、 m4)とオブジェクト座標(Ml、 M2、 M3、 M4)との位置合わせを再度行う。 このようにァライメントマークに基づいて、基板 1 (光導波路)とレンズ型 29との位置あ わせを行う工程を「位置決めステップ」という。  [0095] At the position where the thickness of the UV curable resin reaches a desired value, the alignment of the target coordinates (ml, m2, m3, m4) and the object coordinates (Ml, M2, M3, M4) is performed again. Do. The process of aligning the substrate 1 (optical waveguide) and the lens mold 29 based on the alignment mark is called “positioning step”.
[0096] 位置決めステップ終了後に紫外線 (UV光)の照射を行う。これによつて、位置精度 が高ぐ光の結合効率に十分に優れる光導波路モジュールを得ることができる。なお 、紫外線照射の積算照射光量は、例えば、 lOOOOmj/cm2とすることができる。 [0096] After the positioning step is completed, ultraviolet (UV) light is irradiated. This makes it possible to obtain an optical waveguide module that is sufficiently excellent in light coupling efficiency with high positional accuracy. In addition, the integrated irradiation light quantity of ultraviolet irradiation can be set to, for example, lOOOOmj / cm 2 .
[0097] なお、レンズ側ベース層 7では光損失は発生しないため、光導波路側ベース層 6よ りも、厚さを薄くする必要性は小さい。レンズ側ベース層 7の厚さはレンズの設計範囲 内に収まり、且つ成形しやすい厚さにすればよい。レンズ側ベース層 7を十分厚くす ること(10 以上)により、光硬化型樹脂の硬化収縮による転写不良の発生が抑制 されるので、紫外線を高パワーで一括照射することができる。  Note that since no optical loss occurs in the lens-side base layer 7, it is less necessary to reduce the thickness than in the optical waveguide-side base layer 6. The thickness of the lens-side base layer 7 may be set so as to be within the lens design range and easy to mold. By making the lens-side base layer 7 sufficiently thick (10 or more), the occurrence of transfer failure due to curing shrinkage of the photo-curing resin is suppressed, so that ultraviolet rays can be collectively irradiated with high power.
[0098] 次に、図 5 (c)に示すように、 UV光の照射終了後、レンズ型 29をセットした上下駆 動ステージ 42を下降させて、レンズ型 29からレンズ部材 30を剥離する。これによつ て、光導波路が形成された面とは反対側の、基板 1の他方の面上にレンズ部材 30が 形成される。  Next, as shown in FIG. 5 (c), after the irradiation of UV light, the upper and lower drive stages 42 on which the lens mold 29 is set are lowered, and the lens member 30 is peeled off from the lens mold 29. As a result, the lens member 30 is formed on the other surface of the substrate 1 opposite to the surface on which the optical waveguide is formed.
[0099] なお、多数個のレンズ及び光導波路を成形するレンズ型及び光導波路型を製作す ることにより、光導波路モジュールを大量に効率よく生産することができる。光導波路 モジュール一個あたりのサイズが 20mm角であれば、切断しろ 0. 3mmを加えた間 隔 20. 3mmで一枚の基板の上に、マトリクス状に 5 X 5個の光導波路モジュールを 並べたとしても、 101. 2mm角の領域ですむ。例えば、このサイズのレンズ型及び光 導波路型を作製することにより、光導波路モジュールの量産効果を高めることができ る。なお、ァライメントマークはモジュール毎に任意の個数作製することができる。本 実施形態の位置決めステップによれば、全モジュールの位置あわせを一括して行う こと力 Sでさる。 [0099] By manufacturing a lens mold and an optical waveguide mold for molding a large number of lenses and optical waveguides, optical waveguide modules can be efficiently produced in large quantities. If the size per optical waveguide module is 20mm square, 5 x 5 optical waveguide modules are arranged in a matrix on a single substrate with a spacing of 0.3mm plus a distance of 0.3mm. Even so, it can be an area of 101.2 mm square. For example, by producing a lens mold and an optical waveguide mold of this size, the mass production effect of the optical waveguide module can be enhanced. An arbitrary number of alignment marks can be produced for each module. According to the positioning step of this embodiment, all modules are aligned at once. That's the power S.
[0100] このように多数個取りのレンズ型及び光導波路型を製作する場合、ステッパーを用 いることにより、光導波路 2の傾斜部 2bとレンズ 3の中心部とがそれぞれ相対するよう に、精度良く位置決めすることができる。  [0100] When manufacturing a multi-piece lens mold and an optical waveguide mold in this manner, the stepper is used so that the inclined portion 2b of the optical waveguide 2 and the central portion of the lens 3 face each other. It can be positioned well.
[0101] すなわち、本実施形態の高分子光導波路モジュールの製造方法は、実装基板の 一方の面上に光硬化樹脂を用いて押圧成形により光導波路を形成するステップと、 前記実装基板の他方の面に、前記ステップにて形成した光導波路の 45度傾斜部に 対向した位置に光硬化型樹脂を用いて押圧成形により光入出射用レンズを形成する ステップと、を含んでいる。そして、光入出射用レンズを形成するステップにおいて、 成形された導波路面側及びレンズ成型用型側に予め設けられたァライメントマークに 基づいて、導波路の 45度傾斜部とレンズの光軸とをァライメントし、その後でレンズ側 成形樹脂を硬化することを特徴として V、る。  [0101] That is, in the method of manufacturing a polymer optical waveguide module of the present embodiment, a step of forming an optical waveguide by press molding using a photo-curing resin on one surface of the mounting substrate, and the other of the mounting substrate Forming a light incident / exit lens on the surface by press molding using a photocurable resin at a position facing the 45 ° inclined portion of the optical waveguide formed in the step. Then, in the step of forming the light incident / exit lens, based on the alignment marks provided in advance on the molded waveguide surface side and the lens molding die side, the 45 ° inclined portion of the waveguide and the optical axis of the lens V, and then the lens side molding resin is cured.
[0102] 上記の製造方法によって、高分子光導波路を支持する実装基板と、該実装基板の 一方の面上に形成された高分子光導波路と、該実装基板の他方の面上に形成され レンズとを備えた光導波路モジュールが得られる。光導波路は、光導波路内または 外 光を反射させるための傾斜部を備えており、レンズの位置は光導波路内に形成 されている傾斜部と対向する位置とされている。なお、実装基板上のレンズ側には台 座が備えられており、その台座の厚みは、 SAG量 30〃111の時 10〜25〃111となって いる。  [0102] By the above manufacturing method, a mounting substrate that supports the polymer optical waveguide, a polymer optical waveguide formed on one surface of the mounting substrate, and a lens formed on the other surface of the mounting substrate. Is obtained. The optical waveguide is provided with an inclined portion for reflecting light inside or outside the optical waveguide, and the position of the lens is a position facing the inclined portion formed in the optical waveguide. A pedestal is provided on the lens side of the mounting board, and the thickness of the pedestal is 10 to 25 mm when the SAG amount is 30 mm to 111 mm.
[0103] なお、本発明は上記実施形態に限定されるものではない。上記実施形態では、光 導波路モジュールの製造を、光導波路形成ステップ、レンズ形成ステップの順で実 施したが、レンズ形成ステップ、光導波路ステップの順で実施してもよい。また、製造 時間の短縮のため、光導波路形成ステップとレンズ形成ステップとを同時に実施して もよい。また、位置決めステップは、光導波路及びレンズの少なくとも一方を形成する ための光硬化型樹脂を硬化させる前に行うことができる。例えば、位置決めステップ は、光導波路形成ステップにおいて行ってもよいし、光導波路形成ステップ及びレン 本発明によれば、光導波路モジュール及びその製造方法は、平面基板に高分子 樹脂を用いて微細な様々な光学素子パターンの加工及びその集積化に利用するこ と力 Sできる。 It should be noted that the present invention is not limited to the above embodiment. In the above embodiment, the optical waveguide module is manufactured in the order of the optical waveguide forming step and the lens forming step, but may be performed in the order of the lens forming step and the optical waveguide step. Further, in order to shorten the manufacturing time, the optical waveguide forming step and the lens forming step may be performed simultaneously. Further, the positioning step can be performed before the photocurable resin for forming at least one of the optical waveguide and the lens is cured. For example, the positioning step may be performed in the optical waveguide forming step, or the optical waveguide forming step and the lens. According to the present invention, the optical waveguide module and the manufacturing method thereof can be used for processing various fine optical element patterns and integrating them by using a polymer resin on a flat substrate.

Claims

請求の範囲 The scope of the claims
[1] 基板と、前記基板の一方の面側に形成された光導波路と、前記基板の他方の面側 に形成された複数のレンズとを有する光導波路モジュールであって、  [1] An optical waveguide module comprising a substrate, an optical waveguide formed on one surface side of the substrate, and a plurality of lenses formed on the other surface side of the substrate,
前記光導波路はその両端部に傾斜部を有し、  The optical waveguide has inclined portions at both ends thereof,
前記複数のレンズは、前記基板を挟んで前記傾斜部と対向する位置にそれぞれ形 成されており、  The plurality of lenses are respectively formed at positions facing the inclined portion with the substrate interposed therebetween.
前記光導波路及び前記複数のレンズはいずれも樹脂硬化物からなり、 前記基板の屈折率は前記光導波路及び前記複数のレンズのいずれの屈折率より も低!/、ことを特徴とする光導波路モジュール。  The optical waveguide module and the plurality of lenses are both made of a cured resin, and the refractive index of the substrate is lower than the refractive index of any of the optical waveguide and the plurality of lenses. .
[2] 前記基板がガラスであることを特徴とする請求項 1記載の光導波路モジュール。 2. The optical waveguide module according to claim 1, wherein the substrate is made of glass.
[3] 前記ガラスが石英ガラスであることを特徴とする請求項 2記載の光導波路モジユー ル。 3. The optical waveguide module according to claim 2, wherein the glass is quartz glass.
[4] 前記光導波路は、前記基板の一方の面上に形成された光導波路側ベース層上に 形成されていることを特徴とする請求項;!〜 3のいずれか一項に記載の光導波路モ ジユーノレ。  [4] The optical waveguide according to any one of [1] to [3], wherein the optical waveguide is formed on an optical waveguide-side base layer formed on one surface of the substrate. Waveguide module.
[5] 前記光導波路側ベース層の厚さは 5 a m以下であることを特徴とする請求項 4に記 載の光導波路モジュール。  5. The optical waveguide module according to claim 4, wherein the thickness of the optical waveguide side base layer is 5 am or less.
[6] 前記複数のレンズは、前記基板の他方の面上に形成されたレンズ側ベース層上に それぞれ形成されていることを特徴とする請求項;!〜 5のいずれか一項に記載の光 導波路モジュール。 [6] The plurality of lenses, respectively, are formed on a lens-side base layer formed on the other surface of the substrate; Optical waveguide module.
[7] 前記レンズは、周縁に鍔が形成されているレンズであることを特徴とする請求項 1〜 7. The lens according to claim 1, wherein the lens is a lens having a ridge formed on a peripheral edge.
6の V、ずれか一項に記載の光導波路モジュール。 An optical waveguide module according to item 6 of V, deviation.
[8] 前記光導波路を前記基板の一方の面側に複数備える請求項;!〜 7のいずれか一 項に記載の光導波路モジュール。 [8] The optical waveguide module according to any one of [8] to [7], wherein a plurality of the optical waveguides are provided on one surface side of the substrate.
[9] 複数の前記光導波路が、それぞれ前記基板の一方の面側に同時に成形されたも のであることを特徴とする請求項 1〜8のいずれか一項に記載の光導波路モジュール [9] The optical waveguide module according to any one of [1] to [8], wherein the plurality of optical waveguides are each simultaneously formed on one surface side of the substrate.
[10] 前記複数のレンズは、それぞれ前記基板の前記他方の面側に同時に成形されたも のであることを特徴とする請求項 1〜9のいずれか一項に記載の光導波路モジュール[10] Each of the plurality of lenses is simultaneously molded on the other surface side of the substrate. The optical waveguide module according to any one of claims 1 to 9, wherein
Yes
[11] 前記レンズは、前記光導波路と外部光学系との結合レンズであることを特徴とする 請求項;!〜 10の V、ずれか一項に記載の光導波路モジュール。  11. The optical waveguide module according to claim 10, wherein the lens is a coupling lens of the optical waveguide and an external optical system.
[12] 光導波路の形状に対応する凹み部を有する第 1の型の、当該凹み部に第 1の樹脂 前駆体が満たされた状態で、当該第 1の樹脂前駆体を基板に密着させて硬化させる ことにより、前記基板の一方の面側に、両端に傾斜部を有する前記光導波路を形成 する光導波路形成ステップと、  [12] With the first mold having a recess corresponding to the shape of the optical waveguide, the first resin precursor is brought into close contact with the substrate in a state where the recess is filled with the first resin precursor. An optical waveguide forming step of forming the optical waveguide having inclined portions at both ends on one surface side of the substrate by curing;
レンズの形状に対応する凹み部を有する第 2の型の、当該凹み部に第 2の樹脂前 駆体が満たされた状態で、当該第 2の樹脂前駆体を前記基板に密着させて硬化させ ることにより、前記基板を挟んで前記基板の他方の面側に、前記レンズを形成するレ ンズ形成ステップと、を有しており、  In the second mold having a recess corresponding to the shape of the lens, the second resin precursor is brought into close contact with the substrate and cured with the recess filled with the second resin precursor. A lens forming step of forming the lens on the other surface side of the substrate across the substrate,
前記第 1の樹脂前駆体及び前記第 2の樹脂前駆体の少なくとも一方を硬化させる 前に、前記光導波路の前記傾斜部と前記レンズとが対向して配置されるように、前記 第 1の型及び前記第 2の型の少なくとも一方を位置決めすることを特徴とする光導波 路モジュールの製造方法。  Before curing at least one of the first resin precursor and the second resin precursor, the first mold is so arranged that the inclined portion of the optical waveguide and the lens are arranged to face each other. And a method of manufacturing an optical waveguide module, wherein at least one of the second molds is positioned.
[13] 前記第 1の型及び前記第 2の型の少なくとも一方はァライメントマークを有しており、 前記ァライメントマークを基準として、前記第 1の型及び前記第 2の型の少なくとも一 方を位置決めすることを特徴とする請求項 12記載の光導波路モジュールの製造方 法。  [13] At least one of the first mold and the second mold has an alignment mark, and at least one of the first mold and the second mold with reference to the alignment mark. 13. The method of manufacturing an optical waveguide module according to claim 12, wherein the optical waveguide module is positioned.
[14] 前記光導波路形成ステップでは、  [14] In the optical waveguide forming step,
前記光導波路と前記基板との間に厚さ 5 11 m以下の光導波路側ベース層が形成さ れるように、前記第 1の型と前記基板との間隔調整を行うことを特徴とする請求項 12 又は 13に記載の光導波路モジュールの製造方法。  The distance between the first mold and the substrate is adjusted so that an optical waveguide-side base layer having a thickness of 5 11 m or less is formed between the optical waveguide and the substrate. 14. A method for producing an optical waveguide module according to 12 or 13.
[15] 前記第 2の型は、 [15] The second mold is:
周縁に鍔が形成されたレンズに対応した凹み部を有することを特徴とする請求項 1 2〜; 14のいずれか一項に記載の光導波路モジュールの製造方法。  15. The method for manufacturing an optical waveguide module according to any one of claims 12 to 14, wherein the optical waveguide module has a recess corresponding to a lens having a ridge formed on its periphery.
[16] 前記鍔は、前記レンズの周縁に連続して形成されたものであることを特徴とする請 求項 15に記載の光導波路モジュールの製造方法。 [16] The collar is characterized in that it is formed continuously on the periphery of the lens. 16. A method for manufacturing an optical waveguide module according to claim 15.
PCT/JP2007/072569 2006-11-22 2007-11-21 Optical waveguide module and method for manufacturing the same WO2008062836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008545435A JP5182097B2 (en) 2006-11-22 2007-11-21 Manufacturing method of optical waveguide module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-315910 2006-11-22
JP2006315910 2006-11-22

Publications (1)

Publication Number Publication Date
WO2008062836A1 true WO2008062836A1 (en) 2008-05-29

Family

ID=39429765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072569 WO2008062836A1 (en) 2006-11-22 2007-11-21 Optical waveguide module and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP5182097B2 (en)
WO (1) WO2008062836A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313927A (en) * 2010-07-05 2012-01-11 日东电工株式会社 Optical waveguide manufacturing method
CN102455464A (en) * 2010-10-27 2012-05-16 日东电工株式会社 Optical waveguide production method
JP2013217989A (en) * 2012-04-04 2013-10-24 Hitachi Chemical Co Ltd Optical fiber connector
JP2013231860A (en) * 2012-04-27 2013-11-14 Hitachi Chemical Co Ltd Manufacturing method of lens-equipped optical waveguide
JP2013242370A (en) * 2012-05-18 2013-12-05 Hitachi Chemical Co Ltd Optical waveguide
US8771562B2 (en) 2010-06-02 2014-07-08 Nitto Denko Corporation Optical waveguide production method
US8778451B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide
JP2015108647A (en) * 2013-12-03 2015-06-11 住友ベークライト株式会社 Manufacturing method for optical waveguide with lens, optical waveguide with lens, photo-electric hybrid board and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123301A (en) * 1988-11-01 1990-05-10 Nippon Sheet Glass Co Ltd Plate lens array with guide
JP2001290008A (en) * 2000-04-04 2001-10-19 Sony Corp Method for producing optical element
JP2004361858A (en) * 2003-06-06 2004-12-24 Sharp Corp Optical waveguide with micro lens and its manufacturing method
JP2006178160A (en) * 2004-12-22 2006-07-06 Hoya Corp Manufacturing method of substrate with microlens, manufacturing method of counter substrate of liquid crystal display panel, and manufacturing method of liquid crystal panel
JP2006175767A (en) * 2004-12-24 2006-07-06 Sony Corp Manufacturing method for molded article, and molded article
JP2006235115A (en) * 2005-02-23 2006-09-07 Sony Corp Optical signal inputting device and electronic equipment using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768901B2 (en) * 2002-02-28 2006-04-19 松下電器産業株式会社 Manufacturing method of three-dimensional optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123301A (en) * 1988-11-01 1990-05-10 Nippon Sheet Glass Co Ltd Plate lens array with guide
JP2001290008A (en) * 2000-04-04 2001-10-19 Sony Corp Method for producing optical element
JP2004361858A (en) * 2003-06-06 2004-12-24 Sharp Corp Optical waveguide with micro lens and its manufacturing method
JP2006178160A (en) * 2004-12-22 2006-07-06 Hoya Corp Manufacturing method of substrate with microlens, manufacturing method of counter substrate of liquid crystal display panel, and manufacturing method of liquid crystal panel
JP2006175767A (en) * 2004-12-24 2006-07-06 Sony Corp Manufacturing method for molded article, and molded article
JP2006235115A (en) * 2005-02-23 2006-09-07 Sony Corp Optical signal inputting device and electronic equipment using it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771562B2 (en) 2010-06-02 2014-07-08 Nitto Denko Corporation Optical waveguide production method
CN102313927A (en) * 2010-07-05 2012-01-11 日东电工株式会社 Optical waveguide manufacturing method
US8778452B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide
US8778451B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide
CN102455464A (en) * 2010-10-27 2012-05-16 日东电工株式会社 Optical waveguide production method
JP2012093564A (en) * 2010-10-27 2012-05-17 Nitto Denko Corp Method of manufacturing optical waveguide
US8652569B2 (en) 2010-10-27 2014-02-18 Nitto Denko Corporation Optical waveguide production method
JP2013217989A (en) * 2012-04-04 2013-10-24 Hitachi Chemical Co Ltd Optical fiber connector
JP2013231860A (en) * 2012-04-27 2013-11-14 Hitachi Chemical Co Ltd Manufacturing method of lens-equipped optical waveguide
JP2013242370A (en) * 2012-05-18 2013-12-05 Hitachi Chemical Co Ltd Optical waveguide
JP2015108647A (en) * 2013-12-03 2015-06-11 住友ベークライト株式会社 Manufacturing method for optical waveguide with lens, optical waveguide with lens, photo-electric hybrid board and electronic equipment

Also Published As

Publication number Publication date
JPWO2008062836A1 (en) 2010-03-04
JP5182097B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5182097B2 (en) Manufacturing method of optical waveguide module
JP4815464B2 (en) Fine structure transfer stamper and fine structure transfer apparatus
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP7056013B2 (en) Templates and template blanks, manufacturing method of template substrate for imprint, manufacturing method of template for imprint, and template
US20100255139A1 (en) Micropattern transfer stamper and micropattern transfer device
US6989932B2 (en) Method of manufacturing micro-lens
TWI399620B (en) Method for fabricating 3d microstructure
JP2012529069A (en) Lens and manufacturing method thereof
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
TWI426353B (en) Imprint lithography system and method of imprinting
KR20050033987A (en) Micro-lens array and manufacturing method thereof
JP2009181617A (en) Imprint device
KR100541027B1 (en) Image sensor, fabrication method of an image sensor and mold for fabricating a micro condenser element array used in the same
JP2004361858A (en) Optical waveguide with micro lens and its manufacturing method
US7294293B2 (en) Method for manufacturing diffraction optical element
JP4371777B2 (en) Resin curing method and resin molded product manufacturing method
JP6281592B2 (en) Manufacturing method of replica template
KR100647283B1 (en) Manufacturing method of micro-lens
CN113573877B (en) Wafer alignment feature
CN113557126B (en) Method for manufacturing a plurality of optical elements and products thereof
JP7267589B2 (en) IMPRINT MOLD, IMPRINT MOLD MANUFACTURING METHOD, AND IMAGE SENSOR MANUFACTURING METHOD
JP3165167B2 (en) Micro lens and manufacturing method thereof
TWI398670B (en) Method for making lens array
JP2004358559A (en) Method of manufacturing article with fine surface structure, and die and method of manufacturing the same
JP2003177215A (en) Method for making microlens, laminating device of substrate, microlens and optical pickup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008545435

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832299

Country of ref document: EP

Kind code of ref document: A1