WO2008065977A1 - Exposure method, pattern forming method, exposure device, and device manufacturing method - Google Patents

Exposure method, pattern forming method, exposure device, and device manufacturing method Download PDF

Info

Publication number
WO2008065977A1
WO2008065977A1 PCT/JP2007/072715 JP2007072715W WO2008065977A1 WO 2008065977 A1 WO2008065977 A1 WO 2008065977A1 JP 2007072715 W JP2007072715 W JP 2007072715W WO 2008065977 A1 WO2008065977 A1 WO 2008065977A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
exposure
exposure apparatus
mask
Prior art date
Application number
PCT/JP2007/072715
Other languages
French (fr)
Japanese (ja)
Inventor
Kei Nara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2008065977A1 publication Critical patent/WO2008065977A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Definitions

  • the present invention relates to an exposure method, a pattern formation method, an exposure apparatus, and a device manufacturing method, and more specifically, an exposure method and pattern used when manufacturing a liquid crystal display element or a semiconductor element.
  • the present invention relates to a forming method, an exposure apparatus suitable for carrying out the exposure method, the exposure method, a pattern forming method, and a device manufacturing method using the exposure apparatus.
  • a scanning exposure apparatus having a plurality of projection optical systems is used relatively frequently in order to expand an area that can be exposed at one time as a substrate for a display device becomes larger.
  • the light flux emitted from the light source is made uniform through an optical system including a fly-eye lens, etc., and then shaped into a desired shape by a field stop to illuminate the mask pattern surface.
  • a plurality of illumination optical systems are provided.
  • the plurality of illumination optical systems illuminate different partial areas (illumination areas) on the mask.
  • the light beams that have passed through the mask form mask pattern images in different projection areas on the substrate through different projection optical systems. Then, the entire surface of the pattern area on the mask is transferred onto the substrate by synchronizing the mask and the substrate and scanning the projection optical system.
  • step-and-scan type scanning exposure apparatuses are becoming mainstream in current liquid crystal exposure apparatuses (see, for example, Patent Document 1).
  • the mask and glass plate are moved in synchronization with the scanning direction (the direction parallel to the long or short side of the plate) and formed on the mask.
  • the scanning (scanning) exposure operation that transfers the pattern to one partition area (shot area) on the plate via the projection optical system and the stepping operation that moves stepwise in the non-scanning direction orthogonal to the scanning direction are alternated Repeated.
  • 6-sided taking 6 liquid crystal display element substrates from one glass plate and 8-sided taking 8 liquid crystal display element substrates from one glass plate are generally performed.
  • the target chamfering is performed such that six scan exposure operations are performed in the case of six chamfering, and eight scan exposure operations are performed in the case of eight chamfering. Since the number of scan exposures depends on the number, the tact time has become longer as the number of chamfers increases. In addition, since the tact time increases / decreases depending on the number of chamfers, the performance of the entire line including the exposure apparatus and the coater's developer changes depending on the number of chamfers when inline connection is made with the coater's developer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-195353
  • the present invention has been made under the circumstances described above. From a first viewpoint, the present invention has a matrix arrangement of m rows n ⁇ IJ (m ⁇ n) on a substrate, and there are m X n pieces. In the exposure method for forming a pattern region, (m X n) pattern regions are formed in a matrix arrangement on the substrate by performing exposure less than (m X n) times. .
  • the target number of pattern areas can be formed on the substrate with a smaller number of exposures than the target number of pattern areas (number of chamfers) (m X n)
  • the number of chamfers depends on the number of chamfers. Throughput can be improved compared to the case where exposure was performed a number of times.
  • a step of exposing a substrate using the exposure method of the present invention a step of developing the exposed substrate; a step of processing the developed substrate;
  • a first device manufacturing method including:
  • the etching S is a force S corresponding to the above-described process, and “processing the substrate” means that the substrate is not limited to these, and some processing is performed on the substrate.
  • processing is used in terms of force.
  • the substrate is exposed using the exposure method of the present invention, the production of the device It is possible to improve the performance.
  • the present invention provides a pattern formation that forms (m X n) pattern regions on a substrate in a matrix arrangement of m rows and n columns (m ⁇ n) by a scanning operation.
  • the method is a pattern forming method in which (m X n) pattern regions are formed in a matrix arrangement on the substrate by scanning operations less than (m X n) times.
  • the scan operation may be an operation for forming a pattern on the substrate.
  • the scanning operation is not limited to the exposure operation.
  • An example of the scanning operation is a substrate scanning operation.
  • the target number of pattern areas can be formed on the substrate by the number of scan operations less than the target number of pattern areas (number of chamfers) (m X n), the chamfering is performed.
  • the throughput can be improved compared to the number of scan operations depending on the number.
  • the present invention includes a step of forming a pattern on a substrate using the pattern forming method of the present invention; and a step of processing the substrate on which the pattern is formed. 2 is a device manufacturing method.
  • an exposure apparatus for forming a substantially rectangular pattern region on a substrate in a matrix arrangement of m rows and n columns (m ⁇ n), wherein the matrix columns
  • a pattern generating device capable of forming the pattern region by exposing at least two regions apart from each other in a predetermined direction parallel to the direction; a substrate driving device for driving the substrate; and the m rows on the substrate.
  • a control system that controls the pattern generation device and the substrate driving device so that the movement in the direction is alternately repeated.
  • the control system causes the pattern generation device and the substrate driving device to alternately repeat the formation of at least two pattern regions separated by a natural number k times the size of the substrate and the movement of the substrate in the predetermined direction. Be controlled.
  • the pattern generation device and the substrate driving device to alternately repeat the formation of at least two pattern regions separated by a natural number k times the size of the substrate and the movement of the substrate in the predetermined direction. Be controlled.
  • m X n ⁇ exposures that is, the number of exposures less than the target number of pattern areas (number of chamfers) (m X n)
  • a pattern area of (m ⁇ n) can be formed. Therefore, the throughput can be improved as compared with the case where (m X n) pattern regions are formed on the substrate by the same number of exposures (m X n) as the target chamfering number.
  • an exposure apparatus that exposes a substrate to form a plurality of rectangular pattern regions on the substrate, each of which forms a pattern corresponding to the pattern region.
  • a driving system that drives the mask stage system and the substrate stage.
  • each mask is scanned in the scanning direction by the drive system in synchronization with the substrate stage on which the substrate is mounted, with the illumination system illuminating a plurality of masks with illumination light almost simultaneously.
  • the mask stage system and the substrate stage can be driven. Therefore, the patterns respectively formed on the plurality of masks can be transferred almost simultaneously to different regions on the substrate through the corresponding projection optical systems. In other words, it is possible to transfer the pattern formed on each of the plurality of masks to different areas on the substrate by the scanning exposure method. Therefore, the throughput can be improved as compared with the case where one pattern region is formed on the substrate by one scanning exposure.
  • the present invention provides an exposure apparatus that forms m X n pattern regions on a substrate in a matrix arrangement of m rows and n columns (m ⁇ n), A pattern generation device capable of forming the pattern region by exposing two regions apart from each other in a direction parallel to the column direction of the matrix; and detecting the marks formed on the substrate, and the matrix At least 2 spaced apart in a direction parallel to the column direction m mark detection systems; and at least some of the 2m mark detection systems formed near both ends of each of the two regions on the substrate that are simultaneously exposed.
  • the interval between the at least 2m mark detection systems is set so that the two detected marks can be detected simultaneously.
  • At least a part of the mark detection system can simultaneously detect each of the two marks formed in the vicinity of both end portions of each of the two regions to be exposed simultaneously on the substrate. Is possible. Therefore, it is possible to shorten the time required for the mark detection process and to improve the throughput as compared with the case of detecting the mark inside each area to be exposed.
  • a step of forming a pattern on a substrate using any of the first, second and third exposure apparatuses of the present invention A third device manufacturing method comprising: developing the substrate; and processing the developed substrate.
  • the present invention provides a display panel in which a display device is formed on a substrate depending on whether the first, second, and third device manufacturing methods of the present invention are! / It is.
  • FIG. 1 is a perspective view schematically showing a configuration of an exposure apparatus according to an embodiment.
  • FIG. 2 (A) is a plan view showing five image fields, two masks, and plates extracted from the two projection optical system modules in FIG. 1, and FIG. 2 (B) is a projection. It is a figure for demonstrating the substantial image feed of an optical system module.
  • FIG. 3 is a diagram for explaining the arrangement of alignment system AL;! To AL8.
  • FIG. 4 is a block diagram schematically showing a configuration of a control system of the exposure apparatus of one embodiment.
  • FIGS. 5 (A) and 5 (B) are diagrams showing a plate used in the case of 6 chamfering and 8 chamfering, and the arrangement of shot areas and alignment marks on the plate, respectively.
  • FIGS. 6 (A) to 6 (D) are diagrams for explaining the flow of alignment mark detection operation in the case of six chamfering.
  • Fig.7 shows the flow of alignment mark detection operation in case of 8-chamfering. It is a figure for demonstrating.
  • FIG. 8 is a diagram for explaining the arrangement and relationship between a mask in the case of 6 chamfering, a pattern area on the mask, and image fields of two projection optical system modules.
  • FIG. 9 (A) to FIG. 9 (D) are diagrams for explaining an exposure sequence in the case of six chamfering.
  • FIG. 10 is a diagram for explaining the arrangement and relationship between the mask in the case of eight chamfers, the pattern area on the mask, and the image fields of two projection optical system modules.
  • FIG. 11 (A) to FIG. 11 (D) are diagrams for explaining an exposure sequence in the case of eight chamfering.
  • Fig.12 [Fig.12] Fig.12 (A) and Fig.12 (B) adjust the positional relationship between the pattern areas PA and PB by adjusting the Y-axis direction position of the two masks in the case of 6 chamfering and 8 chamfering respectively. It is a figure which shows a method.
  • FIG. 13 is a flowchart for explaining a semiconductor device manufacturing method.
  • FIG. 14 is a flowchart for explaining a method of manufacturing a liquid crystal display element.
  • FIG. 1 shows a schematic configuration of a step-and-scan type liquid crystal exposure apparatus 10 suitable for carrying out the exposure method (and pattern formation method) according to the present invention.
  • the exposure apparatus 10 includes a plate stage 14 arranged along the XY plane (horizontal plane), the Z axis direction upward facing the plate stage, and the Y axis direction on substantially the same XY plane.
  • a pair of mask stages 12A and 12B arranged at a predetermined interval, and a plurality (in this case, five) of projection optical units 16A and 16B are arranged between the mask stages 12A and 12B and the plate stage 14, respectively.
  • illumination light for example, ultra-high pressure mercury run An ultraviolet emission line (eg, g-line, i-line, etc.) from a laser, ArF excimer laser light with a wavelength of 193 nm, or KrF excimer laser light with a wavelength of 248 nm is used.
  • An ultraviolet emission line eg, g-line, i-line, etc.
  • a rectangular mask 20A having a pattern region formed on one surface is placed, and similarly on the other mask stage 12B. Is mounted with a rectangular mask 20B having a pattern region formed on one surface (the Z-side surface in FIG. 1).
  • a large rectangular glass substrate (hereinafter referred to as “plate”) 22 is placed on the plate stage 14. This plate 22 is a substrate for a display device.
  • the mask stages 12A and 12B are driven in a predetermined scanning direction (here, X) by a pair of mask stage drive systems 24 4A and 24B (not shown in FIG. 1, see FIG. 4) including a linear motor or the like.
  • a predetermined scanning direction here, X
  • a pair of mask stage drive systems 24 4A and 24B including a linear motor or the like.
  • it is finely driven in the XY plane (including rotation around the Z axis ( ⁇ z rotation)).
  • the plate stage 14 includes a plate stage drive system 26 (Fig.
  • the plate stage 14 is driven by a minute drive in the Z-axis direction, tilt drive with respect to the XY plane (rotation around the X axis ( ⁇ X rotation), and rotation around the Y axis ( ⁇ y) by the plate stage drive system 26. Rotation)) is possible.
  • the positional information of the mask stages 12A and 12B is a mask interferometer system 28 including a plurality of interferometers each irradiating a measurement beam onto a reflecting surface fixed or formed on the mask stages 12A and 12B (not shown in FIG. 1).
  • the position information of the mask stages 12A and 12B thus measured is supplied to the main controller 50 (see FIG. 4).
  • the mask interferometer system 28 includes a plurality of laser interferometers (position detection devices) that detect the position (X position) in the X-axis direction of the mask stage 12A that supports the mask 20A, as shown in a simplified manner in FIG.
  • the mask interferometer system 28 is It is possible to measure the X position, Y position, and ⁇ z rotation amount (rotation information) of each of the stage 12A and 12B.
  • the force is shown so that the end face of the mask is irradiated with an interferometer beam (length measuring beam).
  • an interferometer beam length measuring beam.
  • movement not shown in the mask stages 12A and 12B A mirror (or mirror-finished reflecting surface) is provided, which is configured to irradiate an interferometer beam.
  • Position information (including rotation information (including ⁇ ⁇ rotation information, ⁇ ⁇ rotation information, and ⁇ y rotation information)) in the X-axis and Y-axis directions of the plate stage 14 is fixed or formed on the plate stage 14.
  • a plate interferometer system 30 (not shown in FIG. 1, see FIG. 4) including a plurality of interferometers each irradiating a measuring surface with a measurement beam, and the measured position information is supplied to the main controller 50 Has been.
  • the plate interferometer system 30 includes a plurality of laser interferometers (position detection devices) Pxl and ⁇ 2 that detect the X position of the plate stage 14 that supports the plate 22, and the Y position of the plate stage 14.
  • the plate interferometer system 30 can measure the X position, the Y position, and the ⁇ z rotation amount (rotation information) of the plate stage 14. Further, the plate interferometer system 30 is configured such that the measurement axis of each interferometer is not greatly deviated from the center of the virtual lens with respect to the plurality of projection modules PL Ml and PLM2.
  • a force indicating that the end surface of the plate is irradiated with an interferometer beam (measurement beam)
  • a movable mirror (not shown) is applied to the plate stage 14. (Or a mirrored reflective surface) is provided and is configured to irradiate an interferometer beam against it!
  • the position information of the plate stage 14 in the Z-axis direction is disclosed in a measurement system (not shown) that measures the surface position information of the surface of the plate 22, such as US Pat. No. 6,552,775. It is measured indirectly by the measurement system.
  • an encoder may be used in place of at least some of the interferometers constituting mask interferometer system 28 and plate interferometer system 30, or mask interferometer system 28 and plate interferometer.
  • An encoder system may be provided in addition to the system 30, and the position information of the mask stages 12A and 12B and the plate stage 14 may be measured by a hybrid system of an interferometer system and an encoder system.
  • the five projection optical units 16A, 16B, 16C, 16D, and 16E that constitute the one projection optical system module PLM1 have the Z-axis direction in which the respective optical axes are orthogonal to the XY plane. Has been.
  • the projection optical units 16A, 16B, 16C, 16D, and 16E those that form an erect image with a double-sided telecentric equal magnification system are used.
  • the projection optical units 16A, 16B, and 16C are arranged at predetermined intervals along the ⁇ axis direction, and the remaining projection optical units 16D and 16E are slightly shifted to the + X side (right side in FIG. 1) of the Y axis. They are arranged at predetermined intervals along the direction.
  • the five projection optical units 16A, 16B, 16C, 16D, and 16E are arranged in a so-called zigzag pattern to constitute an array of projection optical units, and the mask stage 12A and the plate stage 14 include When scanned in the X-axis direction (see arrows A1 and A3 in Figure 1), the image fields (projection areas) of the five projection optical units 16A, 16B, 16C, 16D, and 16E are masks 2 OA and The entire surface of the rectangular area (shot area) to be exposed on the plate 22 can be covered.
  • the image fields 16AI, 16BI, 16CI, 16DI, and 16EI of the projection optical units 16A, 16B, 16C, 16D, and 16E are trapezoidal as shown in the plan view of FIG. It has a staggered arrangement as shown in Fig. 2 (A).
  • the shape of these image fields is defined by a field stop (not shown) arranged in the illumination system 18A or in each projection optical unit.
  • the image fields 16AI, 16BI, 16CI, 16DI, and 16EI the image fields 16AI and 16CI that are located at the extreme ends in the Y-axis direction are each a table whose outer ends are straight lines parallel to the X-axis.
  • the remaining image fields 16BI, 16DI, and 16EI have the same isosceles trapezoid shape.
  • the image fields 16DI and 16EI are translated by a predetermined distance in the X direction, as shown in FIG. 2 (B), as a whole, the length is W3 and the width is B.
  • a rectangular area is formed.
  • the partial projection areas (image fields 16AI to 16EI) irradiated by the projection optical units 16A to 16E are overlapped and synthesized to form a substantial projection area (shown in FIG. 2B).
  • a rectangular area elongated in the Y-axis direction) is formed.
  • the five projection optical units 16A, 16B, 16C, 16D, and 16E that constitute the projection optical system module PLM1 are each a single rectangular image image shown in FIG. This is equivalent to a projection optical system having a threshold.
  • the projection optical units 16A, 16B, 16C, 16D, and 16E actually constitute the projection optical system module PLM1 as shown in FIG. 2A, but the projection optical units 16A, 16B, and 16C.
  • illustration of some components such as the housing of the projection optical system module PLM1 is omitted in FIG.
  • the other projection optical system module PLM2 is configured in exactly the same manner as the projection optical system module PLM1 described above.
  • the projection optical system having the same configuration as the projection optical system modules PLMl and PLM2 of this embodiment for example, see Japanese Patent Application Laid-Open No. 2001-215718 (corresponding to US Pat. No. 6,552,775). It is disclosed in detail.
  • the exposure apparatus 10 includes eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, and AL8 of the offifism system.
  • These eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8 are positioned at a predetermined distance on the + X side of the projection optical modules PLM1, PLM2, as shown in FIG. Arranged at predetermined intervals along the Y-axis direction.
  • These eight alignment systems AL;! To AL8 are held above the plate stage 14 by a plate-like holding member 32 extending in the Y-axis direction along the XY plane, and the holding member is supported by a support member (not shown). Supported on the surface.
  • FIA Field Image Alignment
  • the image processing method that images the image of the target mark imaged on the light-receiving surface and the image of the index (not shown) using an image sensor (CCD) etc. and outputs the imaged signals
  • CCD image sensor
  • the target mark is irradiated with coherent detection light to detect scattered light or diffracted light generated from the target mark, or two diffracted lights generated from the target mark (for example, of the same order)
  • coherent detection light to detect scattered light or diffracted light generated from the target mark, or two diffracted lights generated from the target mark (for example, of the same order)
  • the alignment sensor for detecting the interference by singly or in combination.
  • the placement of alignment AL;! To AL8 will be further described later.
  • a mark plate MP having a longitudinal direction in the Y-axis direction is disposed in the vicinity of the ⁇ X side end of the upper surface of the plate stage 14.
  • the surface of the mark plate MP is placed on the plate stage 14.
  • the height is set so as to be substantially flush with the surface of the placed plate 22.
  • On the surface of this mark plate MP as an example, there are 8 reference mark areas corresponding to the above-mentioned eight alignment systems AL1, AL2, AL3, AL4, 8 and 6 and 7 and 8, respectively. ⁇ [Is formed. That is, the eight reference mark areas on the mark plate MP can be detected simultaneously and individually with the eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8. .
  • the remaining six reference mark areas FM excluding the two reference mark areas FM in the center are respectively below.
  • Six mark image detection systems MD1, MD2, MD3, MD4, MD5, and MD6 (not shown in FIG. 1, refer to FIG. 4), are arranged at positions. ing.
  • the alignment sequence of the plate 22 in the case where so-called six chamfering is performed in the exposure apparatus 10 of the present embodiment will be described.
  • the plate 22 for example, a rectangular glass plate having an L1 of 2800 mm and an L2 force S2400 mm, that is, a ratio of L1 to L2 of about 32:27 is used.
  • the positional relationship force S of each of the six alignment marks AM located in the same straight line in the Y-axis direction, the alignment system AL;! To AL5, AL7 The arrangement of 24 alignment marks AM is determined so as to almost coincide with.
  • the main controller 50 drives the plate stage 14 in the XY plane while monitoring the position information of the plate stage 14 measured by the plate interferometer system 30, so that FIG.
  • the main controller 50 has the alignment system Hashi 1, Hashi 2, Hashi 3, Hachi 4, Hashi Hoshi 5 with the plate stage 14 positioned at the position shown in FIG. , Measure the position information of the six alignment marks AM (position information of the alignment marks centered on the unillustrated index) almost simultaneously.
  • the main controller 50 determines the XY plane of the six alignment marks AM based on the measurement results of the position information of the six alignment marks AM and the measurement values of the plate interferometer system 30 at the time of the measurement.
  • the position information (XY coordinate value) is calculated and stored in a memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (B). And The main controller 50 sets the alignment system Hashi 1, Hashi 2, Hashi 3, Hachi 4, Hashi 5, Hashi 7 with the plate stage 14 positioned at the position shown in FIG.
  • the position information (position information of the alignment mark centered on the unillustrated index) is measured almost simultaneously, and the measurement result and the plate interferometer at the time of measurement are used.
  • position information XY coordinate values of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (C). Then, the main controller 50 positions the alignment stage 8, 1, 2, 2, 3, 4, 4, 5, 5, 8, with the plate stage 14 positioned at the position shown in FIG. 6 (C). 7 is used to measure the position information (position information of the alignment mark centered on the unillustrated index) of the six alignment marks 8 ⁇ [almost at the same time. Based on the measurement values of the interferometer system 30, position information (XY coordinate values) of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (D). Then, the main control unit 50 positions the alignment stage 8, 1, 2, 2, 3, 4, 4, 5, 5, 8, with the plate stage 14 positioned at the position shown in FIG. 6 (D). 7 is used to measure the position information (position information of the alignment mark centered on the unillustrated index) of the six alignment marks 8 ⁇ [almost at the same time. Based on the measurement values of the interferometer system 30, position information (XY coordinate values) of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
  • 6 alignment marks on the plate 22 are simultaneously measured using 6 alignment systems of 8 alignment systems AL;! To AL8.
  • the alignment mark position information of 6 X 4 24 points (4 points in each of the six shot areas) can be measured only by performing simultaneous measurement of the alignment marks four times.
  • the alignment sequence of the plate 22 when the exposure apparatus 10 performs so-called eight chamfering will be described.
  • the plate 22 for example, a rectangular glass plate having L1 of 2800 mm and L2 force S2400 mm, that is, a ratio of L1 to L2 of about 36:32 is used.
  • 32 alignment marks AM are formed in the vicinity of the four corners of each of the eight shot regions of the plate 22, one in total. .
  • the positional relationship force of each of the eight alignment marks AM that are positioned on the same straight line in the Y-axis direction is almost identical to the positional relationship of alignment system AL;!
  • the arrangement of 32 alignment marks AM is determined.
  • the main controller 50 drives the plate stage 14 in the XY plane while monitoring the position information of the plate stage 14 measured by the plate interferometer system 30, so that FIG. ).
  • Fig. 7 (A) four shot areas SA2, SA4, SA6, aligned in the Y-axis direction on the plate 22 within the detection field of alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8.
  • main controller 50 positions position information of the eight alignment marks AM using alignment system AL;! To AL8 in a state where plate stage 14 is positioned at the position shown in FIG. (Alignment mark position information centered on an unillustrated index) is measured almost simultaneously, and based on the measurement result and the measured value of the plate interferometer system 30 at the time of measurement, eight alignment marks The position information (XY coordinate value) in the XY plane of AM is calculated and stored in a memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (B). Then, main controller 50 positions position information (index not shown) of eight alignment marks AM using alignment system AL;! To AL8 with plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered on) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, eight alignment marks are measured. The position information (XY coordinate value) of the ment mark AM in the XY plane is calculated and stored in the memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (C). Then, the main controller 50 positions the eight alignment marks AM using the alignment system AL;! To AL8 (index not shown) with the plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered at the center) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, the eight alignment marks AM within the XY plane are measured. Calculate the position information (XY coordinate value) and store it in the memory (not shown).
  • main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (D). Then, main controller 50 positions position information (index not shown) of eight alignment marks AM using alignment system AL;! To AL8 with plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered at the center) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, the eight alignment marks AM within the XY plane are measured. Calculate the position information (XY coordinate value) and store it in the memory (not shown).
  • the width in the non-scanning direction (here, the Y-axis direction orthogonal to the X-axis direction) perpendicular to the scanning direction of the substantial image field of each of the projection optical system modules PLM1 and PLM2 is also shown in FIG. As mentioned above, it is W3. Also, the distance in the non-scanning direction between the edges of the projection optical modules PLM1 and PLM2 in the non-scanning direction is W1, and the edges of the projection optical modules PLM1 and PLM2 that are far from each other in the image field Let W2 be the distance between them in the non-scanning direction.
  • Wl, W2, and W3 are set so as to satisfy the following equations (6) to (8), respectively.
  • pattern areas PA and PB are formed on the masks 20A and 20B mounted on the mask stages 12A and 12B, respectively.
  • the same pattern for the display element is formed in the pattern areas PA and PB.
  • the width of the blank area on the + Y side of the mask 12A (the pattern or area where the pattern is not formed) is as narrow as possible (for example, approximately zero), and the width of the blank area on the Y side is widened. Thus, it is formed on the mask substrate of the mask 20A closer to the + Y side.
  • the width of the blank area on the Y side of the mask 20B is as narrow as possible (eg, almost zero), and the width of the blank area on the + Y side is widened on the mask substrate of the mask 20B. It is formed on the Y side.
  • the distance between the pattern areas PA and PB shown in Fig. 8 PI is about L2 / 3
  • the distance P2 in the non-scanning direction between the far edges of PA and PB in the pattern area is about L2.
  • masks 20A and 20B are mounted on mask stages 12A and 12B by a transport system (not shown), respectively, and the mark image detection system MD;! To MD6, alignment systems AL1 to AL8, and Mark plate MP using mask reference mark and alignment system AL;! ⁇ AL8 baseline measurement force etc. It is assumed that the procedure is performed in the same way as normal.
  • main controller 50 measures the position information of a total of 24 alignment marks AM on plate 22 (see FIG. 5A) according to the procedure described above! Save measurement results to memory.
  • the pattern areas PA and PB of the masks 20A and 20B are transferred to the six shot areas S1 to S6 on the plate 22 in the following procedure.
  • main controller 20 monitors the measurement values of plate interferometer system 30 and mask interferometer system 28, and the result of measurement of positional information of alignment mark AM performed in advance, and Based on the measurement result of the baseline, the plate stage 14 and the mask stages 12A and 12B are moved to the acceleration start positions for exposure of the shot areas SA2 and SA6 on the plate 22, respectively.
  • main controller 20 starts scanning plate stage 14 in the + X direction as indicated by arrow A3 in FIG. 1, and in synchronization with this, mask stages 12A and 12B are respectively indicated by arrows. Scanning is started as indicated by Al and A2.
  • the plate stage 14 and the mask stages 12A and 12B reach the target scanning speed, respectively, the plate stage 14 and the mask stage 12A, and the plate stage 14 and the mask stage 12B reach the constant speed synchronization state.
  • the pattern areas PA and PB of the masks 20A and 20B begin to be illuminated with illumination light, and scanning exposure on the shot areas S A2 and SA6 on the plate 22 is started.
  • the field stop (not shown) inside the illumination systems 18A and 18B is controlled so that illumination light is not irradiated to the outside of the pattern areas PA and PB of the masks 20A and 20B. Yes.
  • FIG. 9 (A) the force shown in the figure is as if the plate 22 (and masks 20A and 20B) are fixed and the projection optical system modules PL Ml and PLM2 are moving. In this case, the projection optical modules PLM1 and PLM2 are fixed, and the plate 22 (and masks 20A and 20B) moves (see FIG. 1). In FIG. 9 (B) to FIG. 9 (D), the projection optical system modules PLM1 and PLM2 are moved relative to the plate 22 for the same reason! The
  • main controller 50 monitors the measurement value of plate interferometer system 30, and based on the result of measurement of position information of alignment mark AM performed in advance and the measurement result of baseline. Then, in order to move the plate stage 14 to the acceleration start position for the exposure of the shot area SA4 on the plate 22, the plate stage 14 is moved in the + Y direction approximately the same distance as the dimension of the shot area in the Y-axis direction.
  • main controller 50 performs scanning exposure on shot area SA4 by scanning plate stage 14 and mask stage 12A (and 12B) in synchronism with each other in the reverse direction.
  • FIG. 9B shows a state immediately after this scanning exposure is started. In this case, the illumination of illumination light from the illumination system 18B is stopped by the main controller 50.
  • Main controller 50 repeats the same procedure thereafter, and performs simultaneous scanning exposure for transferring pattern areas PA and PB to shot areas SA1 and SA5 on plate 22 (see FIG. 9C), shots Scan exposure (see Fig. 9 (D)) is performed to transfer pattern area PA to area SA3.
  • the width of the blank area on the + Y side becomes wide, and the width of the blank area on the Y side becomes as narrow as possible (for example, approximately zero Is formed on the mask substrate of the mask 20A so as to be closer to the Y side.
  • the pattern area ⁇ is placed on the glass substrate of the mask 20 — so that the width of the blank area on the heel side becomes wider and the width of the blank area on the heel side becomes as narrow as possible (for example, almost zero). It is biased to the side.
  • the interval P1 is about L1 / 4
  • the distance ⁇ 2 is about 3 X (L1 / 4).
  • Main controller 50 performs step-and-scan exposure by the same sequence as in the case of the above-described six chamfering (partially different control of illumination system 18B), so that shot area SA2 , Pattern area PA, ⁇ almost simultaneously transferred to SA6 (see Fig. 11 (A)), pattern area PA, ⁇ ⁇ ⁇ ⁇ almost transferred to shot area SA4, SA8 (see Fig. 11 (B)), shot area SA1,,
  • the pattern areas PA and ⁇ ⁇ ⁇ ⁇ are transferred almost simultaneously to SA5 (see FIG. 11C), and the pattern areas PA and ⁇ ⁇ ⁇ ⁇ are transferred almost simultaneously to the shot areas SA3 and SA7 (see FIG. 11D).
  • eight chamfering can be realized with four scanning exposures.
  • FIGS. 11A to 11D the shot area where the pattern area has been transferred immediately before is shown with a shadow line, and the shot area where the pattern area has been transferred before that is shown. The area is shown with a mesh pattern!
  • the plate stage 14 and the mask stages 12A and 12B can be driven according to the same sequence. Even when in-line connection with the coater / developers is possible, the tact time can be made almost constant regardless of whether the chamfering is done with 6 or 8 chamfers, and the entire line including the exposure system and the coater / developers. Performance can be maintained.
  • a pattern region of m rows and ⁇ columns (m ⁇ n), for example, 3 rows and 2 columns, or 4 rows and 2 columns, is formed on the plate 22.
  • the two shot areas separated by the same distance as the dimension in the Y-axis direction of the shot area in the Y-axis direction parallel to the column direction of the matrix on the plate 22, and the Y-axis of the plate 22
  • the main controller 50 causes the lighting system 18A, 18B and mask stages 12A and 12B (mask stage drive systems 24A and 24B) and plate stage 14 (plate stage drive system 26) are controlled.
  • main controller 50 drives mask stage while illumination systems 18A and 18B illuminate a plurality of masks 20A and 20B with illumination light almost simultaneously.
  • the mask stages 12A and 12B and the plate stage are scanned in the scanning direction in synchronization with the plate stage 14 on which the plate 22 is mounted via the systems 24A and 24B and the plate stage drive system 26. 14 can be driven.
  • the patterns formed on each of the plurality of masks can be platened through the five projection optical units 16A, 16B, 16C, 16D, and 16E, respectively, which can support the corresponding projection optical system modules PLM1 and PLM2. It can be transferred to different areas on 22 almost simultaneously. That is, the patterns formed on the plurality of masks can be transferred to different regions on the plate 22 by the scanning exposure method. Therefore, the throughput can be improved compared to the case where one pattern area is formed on the plate 22 by one scanning exposure.
  • the number of target pattern areas (number of chamfers) is also determined during the exposure of the first layer by the above-described sequence. )
  • the target number of pattern areas can be formed on the plate 22 with fewer exposures than (m X n).
  • a small mask is used without using a large mask.
  • the four scan exposures required can improve the cost performance of the equipment.
  • infrastructure for manufacturing a large mask is not required even if the substrate is enlarged.
  • two pattern regions on the plate 22 are separated by the same distance as the dimension of the pattern region (shot region) in the predetermined direction with respect to a predetermined direction parallel to the matrix column.
  • the present invention is not limited to this. That is, two pattern areas separated by a natural number k times, for example, twice or three times the dimension of the pattern area (shot area) in the predetermined direction with respect to a predetermined direction parallel to the matrix column are placed on the plate (substrate). It may be formed, or not limited to two pattern areas, but three or more pattern areas may be simultaneously formed on the substrate. In any case, the target number of pattern areas can be formed on the plate 22 with a smaller number of exposures than the number of target pattern areas (the number of chamfers) (m X n).
  • the present invention is not limited to this, and two masks are used as in the above embodiment, and the interval between the two masks in the non-scanning direction is set.
  • m x n pattern areas are formed in a matrix on the substrate by (m / 2 X n) exposures. It is also possible. In this case, if m is an odd number, m x n pattern regions may be formed in a matrix arrangement on the substrate by Km + l) / 2 X n ⁇ exposures.
  • the force S described for the case where the masks 20A and 20B are mounted on separate mask stages is not limited to this, and the masks 20A and 2 are not limited to a single mask stage.
  • the OB force S and the non-scanning direction may be arranged at a predetermined distance.
  • the pattern stage PA and PB of the masks 20A and 20B can be transferred onto the plate 22 almost simultaneously by scanning the mask stage in synchronization with the plate stage 14 during scanning exposure. become.
  • the pattern areas of the masks 20A and 20B are divided into a plurality of parts, and the same pattern is formed in each of the divided areas.
  • a larger number of small-sized pattern regions can be formed on the plate 22.
  • 18 pattern areas can be formed on the plate 22 in a 3 ⁇ 6 matrix arrangement.
  • a part of the four scanning exposures for example, the first two exposures
  • a part of the three divided areas of the masks 20A and 20B for example, only two divided areas, It may be transferred onto the plate 22.
  • 15 pattern regions can be formed on the plate 22 in a 3 ⁇ 5 matrix arrangement.
  • 24 pattern areas are arranged on the plate 22 in a 6-by-4 matrix arrangement. Can be formed.
  • the force described for adjusting the pattern formation position (drawing position) on the mask in accordance with the number of chamfers is not limited to this, and the position of the mask in the Y-axis direction is not limited to this. Good as an adjustment.
  • the mask 20A is driven in the + Y direction indicated by the arrow yl through the mask stage 12A and the mask stage 12B.
  • the distance P1 between the pattern areas PA and PB is about L2 / 3
  • the distance between the far edges of the pattern areas PA and PB may be about L2.
  • the width of the masks 20A and 20B in the non-scanning direction is approximately L2 / 3, which is advantageous in that the mask can be made smaller than in the above-described embodiment.
  • the mask stage 12A is interposed. Then, the mask 20A is driven in the Y direction indicated by the arrow y3 and the mask 20 ⁇ is driven in the + ⁇ direction indicated by the arrow y4 via the mask stage 12 ⁇ so that the distance between the pattern areas PA and PB is P1. May be about L1 / 4, and the distance P2 in the non-scanning direction between the far edges of PA and PB in the pattern area may be about 3 X (L1 / 4).
  • the effective area should be slightly inside (approximately 10 to 20 mm) from the outer edge of the plate. If there is such an effective area, the plate size (L1 X L2) in the above embodiment may be replaced with the effective area dimension.
  • the force S, the mask 20A and the mask 20B described in the case where the same pattern is formed in the pattern region on one surface of the mask 20A and the one surface of the mask 20B. Different patterns may be formed in the pattern region.
  • double exposure may be performed on each shot region of the plate 22 using the mask 20A and the mask 20B in which different patterns are formed in the pattern region, and the projection optical system modules PLM1 and PLM2. .
  • illumination light for example, infrared or visible single wavelength laser light oscillated from a DFB semiconductor laser or fiber laser is used, for example, erbium (or both erbium and ytterbium). ) May be used, and harmonics that are amplified with a fiber amplifier doped with light and then converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a light source that generates vacuum ultraviolet light such as F laser light having a wavelength of 157 nm, Kr excimer laser light having a wavelength of 146 nm, Ar excimer laser light having a wavelength of 126 nm may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system modules PLM1 and PLM2 have been explained for the case of a multi-lens projection optical system having five projection optical units, and the number of projection optical units is Not limited to one or more.
  • the projection optical system is not limited to a multilens projection optical system, and may be a projection optical system using an Offner type large mirror.
  • the projection optical system modules PLM1 and PLM2 are used as projection magnifications.
  • the projection optical system may be either a reduction system or an enlargement system.
  • an enlargement system is used as the projection optical system, it is possible to use a smaller mask, so that the mask stage can be downsized and the illumination system can be downsized. For this reason, the control performance of the mask stage can be expected to be improved, and the degree of freedom of arrangement of the mask stage and illumination system is improved.
  • the magnification of the projection optical system is taken into consideration so that projection images of patterns adjacent to each other in the non-scanning direction among the patterns formed on the mask do not overlap on the force plate. Therefore, it is necessary to design the layout of the pattern.
  • the projection optical system may be any of a refractive system, a reflective system, and a catadioptric system, and the projected image may be an inverted image.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern') is formed on a light-transmitting mask substrate can be used instead of this mask.
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed You can use it.
  • a variable molding mask that uses a DMD (Digital Micro-mirror Device), which is a type of non-light emitting image display element (also called a spatial light modulator), prepare two variable molding masks.
  • DMD Digital Micro-mirror Device
  • Two variable molding masks are arranged on substantially the same plane at a predetermined interval in the non-scanning direction (Y-axis direction). Then, during exposure, the distance between the edges close to each other in the non-scanning direction is P1 described above, and the distance between the edges farther from each other in the non-scanning direction satisfies P2 described above.
  • Only the mirror element group within the range to be used may be used for pattern generation. That is, a mirror element outside the range is always turned off, and each mirror element included in the two mirror element groups within the range is turned off according to the pattern data to generate light including pattern information.
  • the substrate (plate 22) may be moved in the scanning direction in synchronization with a change in light including pattern information generated by two variable shaping masks.
  • the pattern corresponding to the light including the pattern information generated by the two variable shaping masks is transferred to the two regions on the plate 22 through the projection optical system by the scanning exposure method.
  • the variable molding mask has the length in the Y-axis direction as described above. If there is more than P2, only one may be provided. In such a case, only two mirror element groups corresponding to two mirror element groups within the above range may be used for pattern generation. Therefore, in the scanning type exposure apparatus using this variable shaping mask, the same control sequence as that of the above-described embodiment is adopted, so that the Y axis of the shot area with respect to the Y axis direction parallel to the column direction of the matrix on the plate 22 is used.
  • variable molding mask and The plate stage 14 (plate stage drive system 26) is controlled. Thereby, an effect equivalent to that of the above embodiment can be obtained.
  • the present invention is applied to a projection exposure apparatus that performs scanning exposure involving step-and-scan operation of a plate (substrate) has been described, but the present invention is not limited thereto.
  • the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
  • the present invention can also be applied to a step-and-repeat exposure apparatus (so-called stepper) or a step-and-stitch exposure apparatus. Even in such an exposure apparatus, by alternately repeating the step of simultaneously forming at least two pattern regions separated in a predetermined direction on the substrate and the step of moving the substrate in the predetermined direction, An effect equivalent to that of the above embodiment can be obtained.
  • the present invention is applied to, for example, an immersion type exposure apparatus in which a liquid is filled between a projection optical system and a wafer as disclosed in, for example, US Patent Application Publication No. 2005/0259234. Also good.
  • an exposure apparatus that forms line and space patterns on a wafer by forming interference fringes on the wafer.
  • the present invention can also be applied to a system.
  • the use of the exposure apparatus is not limited to an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate.
  • an exposure apparatus for semiconductor manufacturing, a thin film magnetic head, a micromachine It can be widely applied to an exposure apparatus for manufacturing DNA chips and the like.
  • reticles or reticles used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc. which are made only by microdevices such as semiconductor elements.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate or a silicon wafer in order to manufacture a mask.
  • the object to be exposed is not limited to a glass plate.
  • a wafer, a ceramic substrate, a film member, or a mask for example, a wafer, a ceramic substrate, a film member, or a mask.
  • the ink jet head group disclosed in the above publication discloses a substrate (for example, PET, glass, silicon, paper, etc.) by discharging a predetermined functional liquid (metal-containing liquid, photosensitive material, etc.) from a nozzle (discharge port). Etc.) are provided. Therefore, two functional liquid applicators such as the ink jet heads are prepared, and these two functional liquid applicators are arranged on substantially the same plane at a predetermined interval in the non-scanning direction (Y-axis direction). Deploy .
  • the substrate may be moved in the scanning direction in synchronization with the on / off of each ink jet head included in one ink jet head group. As a result, two pattern areas are formed on the substrate by the functional liquid applied by the two functional liquid applying apparatuses.
  • the same control sequence as that of the above-described embodiment may be adopted to control the functional liquid application apparatus and the substrate stage that holds the substrate. good.
  • the formation of two shot areas (pattern areas) separated by a natural number k times the dimension in the Y-axis direction of the pattern area with respect to the Y-axis direction parallel to the matrix column direction on the substrate, and the substrate Y Axially By alternately repeating the movement, (m X n) pattern regions can be formed in a matrix arrangement on the substrate. Also in this case, (m X n) pattern regions can be formed in a matrix arrangement on the substrate by a scan operation less than (m X n) times.
  • the substrate may be fixed, and the functional liquid application device may be scanned in the scanning direction, or the substrate, the functional liquid application device, May be scanned in opposite directions.
  • FIG. 13 is a flowchart for explaining a method of manufacturing a semiconductor device as a microdevice.
  • step 102 of FIG. 13 a metal film is deposited on one lot of Ueno (plate).
  • step 104 a photoresist is applied on the metal film on the loto (plate).
  • step 106 the above-described various exposure apparatuses are used to form the pattern image, the one lot of wafers, and each shot area on the (plate). That is, each shot area on the wafer and the (plate) is sequentially exposed with the pattern image.
  • step 108 the photoresist on the lot (the plate) is developed, and in step 110, the resist pattern is used as a mask on the wafer (plate) in the lot.
  • step 110 the resist pattern is used as a mask on the wafer (plate) in the lot.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer.
  • step 106 the plate is exposed with high throughput using the above-described various exposure apparatuses (including the exposure apparatus 10 of the above-described embodiment). As a result, a device such as a semiconductor element is obtained. Productivity can be improved. [0115] Further, instead of the process in step 106 in at least one layer, a pattern may be formed on the substrate using the element manufacturing apparatus described above. In this case, since the pattern is formed on the substrate with high throughput, it is possible to improve the productivity of devices such as semiconductor elements.
  • a liquid crystal display element as a microdevice can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • FIG. 14 is a flowchart for explaining a method of manufacturing a liquid crystal display element as a micro device by forming a predetermined pattern on a plate using the various exposure apparatuses described above.
  • step 202 in FIG. 14 a so-called photolithographic process, in which a pattern image is formed on a photosensitive substrate (such as a glass substrate coated with a resist) using the various exposure apparatuses described above. Executed.
  • a photosensitive substrate such as a glass substrate coated with a resist
  • processing steps such as a developing step, an etching step, and a resist stripping step, whereby a predetermined pattern is formed on the substrate.
  • step 204 a group of three dots corresponding to R (Red), G (Green), and B (B1 ue) are arranged in a matrix or R, A color filter is formed by arranging a set of three stripe filters G and B in the horizontal scanning line direction. Then, after the color filter forming step (step 204), the cell assembling step of step 206 is executed. In the cell assembly process of step 206, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation process and the color filter obtained in the color filter formation process.
  • a liquid crystal panel liquid crystal cell
  • liquid crystal is injected between a substrate having a predetermined pattern obtained in the pattern formation process and a color filter obtained in the color filter formation process.
  • Manufactures panels liquid crystal cells.
  • each part such as an electric circuit and a backlight for performing display operation of the assembled liquid crystal panel (liquid crystal cell) is attached to complete the liquid crystal display element.
  • a pattern may be formed on the photosensitive substrate using the element manufacturing apparatus described above.
  • the pattern is formed on the photosensitive substrate with a high throughput, and as a result, the productivity of the liquid crystal display element can be improved.
  • the exposure method, pattern formation method, and exposure apparatus of the present invention are suitable for forming a pattern on an object such as a plate.
  • the device manufacturing method of the present invention is suitable for manufacturing display devices and other micro devices.

Abstract

While illumination systems (18A, 18B) are almost simultaneously illuminating masks (20A, 20B) by illumination lights, a drive system drives mask stages (12A, 12B) and a substrate stage (14) so that the masks (20A, 20B) are scanned in the scan direction in synchronization with the substrate stage (14) on which a substrate (22) is mounted. Thus, it is possible to transfer patterns formed on the masks (20A, 20B) onto different regions of the substrate (22) via corresponding projection optical systems (PLM1, PLM2), respectively, almost simultaneously. That is, it is possible to transfer the patterns formed on a plurality of masks onto different regions on the substrate. Accordingly, it is possible to improve the throughput as compared to a case when one pattern region is formed on the substrate by one scan exposure.

Description

明 細 書  Specification
露光方法、パターン形成方法、及び露光装置、並びにデバイス製造方法 技術分野  Exposure method, pattern forming method, exposure apparatus, and device manufacturing method
[0001] 本発明は、露光方法、パターン形成方法、及び露光装置、並びにデバイス製造方 法に係り、更に詳しくは、液晶表示素子あるいは半導体素子などを製造する場合な どに用いられる露光方法、パターン形成方法、及び前記露光方法の実施に好適な 露光装置、並びに前記露光方法、パターン形成方法、及び前記露光装置を用いる デバイス製造方法に関する。  The present invention relates to an exposure method, a pattern formation method, an exposure apparatus, and a device manufacturing method, and more specifically, an exposure method and pattern used when manufacturing a liquid crystal display element or a semiconductor element. The present invention relates to a forming method, an exposure apparatus suitable for carrying out the exposure method, the exposure method, a pattern forming method, and a device manufacturing method using the exposure apparatus.
背景技術  Background art
[0002] 従来、液晶表示素子等の表示デバイスを製造するためのリソグラフイエ程では、マ スクに形成されたパターンを投影光学系を介して基板に転写する種々の投影露光装 置が用いられている。特に、液晶露光装置では、近年、表示デバイス用の基板の大 型化に伴い、一度に露光できる領域を拡大するために、複数の投影光学系を備えた 走査型露光装置が比較的多く用いられている。この走査型露光装置では、光源から 射出された光束を、フライアイレンズ等を含む光学系を介して光量を均一化した後、 視野絞りによって所望の形状に整形してマスクのパターン面を照明する照明光学系 を複数備える。複数の照明光学系は、マスク上の異なる部分領域 (照明領域)をそれ ぞれ照明する。マスクを透過した光束は、それぞれ異なる投影光学系を介して基板 上の異なる投影領域にマスクのパターン像を結像する。そして、マスクと基板とを同 期させて投影光学系に対して走査することによって、マスク上のパターン領域の全面 を基板上に転写する。  Conventionally, in a lithographic process for manufacturing a display device such as a liquid crystal display element, various projection exposure apparatuses that transfer a pattern formed on a mask to a substrate via a projection optical system have been used. Yes. In particular, in a liquid crystal exposure apparatus, in recent years, a scanning exposure apparatus having a plurality of projection optical systems is used relatively frequently in order to expand an area that can be exposed at one time as a substrate for a display device becomes larger. ing. In this scanning type exposure apparatus, the light flux emitted from the light source is made uniform through an optical system including a fly-eye lens, etc., and then shaped into a desired shape by a field stop to illuminate the mask pattern surface. A plurality of illumination optical systems are provided. The plurality of illumination optical systems illuminate different partial areas (illumination areas) on the mask. The light beams that have passed through the mask form mask pattern images in different projection areas on the substrate through different projection optical systems. Then, the entire surface of the pattern area on the mask is transferred onto the substrate by synchronizing the mask and the substrate and scanning the projection optical system.
[0003] 液晶表示素子の製造に用いられる角形のガラスプレートは、 1辺の長さが 500mm を超える矩形の基板が用いられている力 世代とともに大型化し、今や、 1辺が 2mを 超える大きさになっている。このため、現在の液晶露光装置は、ステップ'アンド'スキ ヤン方式の走査型露光装置が主流となりつつある(例えば、特許文献 1参照)。このス テツプ'アンド 'スキャン方式の走査型露光装置では、マスクとガラスプレートとを走査 方向(プレートの長辺又は短辺に平行な方向)に同期して移動し、マスクに形成され たパターンを投影光学系を介してプレート上の 1つの区画領域 (ショット領域)に転写 する走査 (スキャン)露光動作と、走査方向に直交する非走査方向にステップ移動す るステッピング動作とが交互に繰り返される。このようにして、例えばガラスプレート 1 枚から液晶表示素子基板を 6面取る 6面取りや、ガラスプレート 1枚から液晶表示素 子基板を 8面取る 8面取りが一般に行われている。 [0003] Square glass plates used in the manufacture of liquid crystal display elements have grown in size with the generation of power using a rectangular substrate with a side length of more than 500mm, and now each side has a size exceeding 2m. It has become. For this reason, step-and-scan type scanning exposure apparatuses are becoming mainstream in current liquid crystal exposure apparatuses (see, for example, Patent Document 1). In this step-and-scan type scanning exposure apparatus, the mask and glass plate are moved in synchronization with the scanning direction (the direction parallel to the long or short side of the plate) and formed on the mask. The scanning (scanning) exposure operation that transfers the pattern to one partition area (shot area) on the plate via the projection optical system and the stepping operation that moves stepwise in the non-scanning direction orthogonal to the scanning direction are alternated Repeated. In this way, for example, 6-sided taking 6 liquid crystal display element substrates from one glass plate and 8-sided taking 8 liquid crystal display element substrates from one glass plate are generally performed.
[0004] しかるに、従来の走査型露光装置では、 6面取りの場合は 6回のスキャン露光動作 を行い、 8面取りの場合は 8回のスキャン露光動作を行うというように、 目標とする面取 り数に応じてスキャン露光の回数が決まるため、面取り数が増加すると、タクトタイムが 長くなつていた。また、面取り数に応じてタクトタイムが増減するため、コータ 'デベロッ パ等とインライン接続を行った場合に、面取り数によって露光装置とコータ 'デベロッ ノ とを含むライン全体のパフォーマンスが変わってしまう。  [0004] However, in the conventional scanning exposure apparatus, the target chamfering is performed such that six scan exposure operations are performed in the case of six chamfering, and eight scan exposure operations are performed in the case of eight chamfering. Since the number of scan exposures depends on the number, the tact time has become longer as the number of chamfers increases. In addition, since the tact time increases / decreases depending on the number of chamfers, the performance of the entire line including the exposure apparatus and the coater's developer changes depending on the number of chamfers when inline connection is made with the coater's developer.
[0005] 特許文献 1:特開 2006— 195353号公報  [0005] Patent Document 1: Japanese Patent Laid-Open No. 2006-195353
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、上述の事情の下でなされたもので、第 1の観点からすると、基板上に m 行 n歹 IJ (m≥n)のマトリクス状の配置で、 m X n個のパターン領域を形成する露光方 法において、(m X n)回より少ない回数の露光により、前記基板上にマトリクス状の配 置で (m X n)個の前記パターン領域を形成する露光方法である。  [0006] The present invention has been made under the circumstances described above. From a first viewpoint, the present invention has a matrix arrangement of m rows n 歹 IJ (m≥n) on a substrate, and there are m X n pieces. In the exposure method for forming a pattern region, (m X n) pattern regions are formed in a matrix arrangement on the substrate by performing exposure less than (m X n) times. .
[0007] これによれば、 目標とするパターン領域の数(面取り数)(m X n)より少ない回数の 露光で、 目標とする数のパターン領域を基板上に形成できるので、面取り数に応じた 回数の露光を行っていた場合に比べてスループットの向上が可能である。  [0007] According to this, since the target number of pattern areas can be formed on the substrate with a smaller number of exposures than the target number of pattern areas (number of chamfers) (m X n), the number of chamfers depends on the number of chamfers. Throughput can be improved compared to the case where exposure was performed a number of times.
[0008] 本発明は、第 2の観点からすると、本発明の露光方法を用いて基板を露光するェ 程と;露光された基板を現像する工程と;現像された基板を加工する工程と;を含む 第 1のデバイス製造方法である。ここで、例えばエッチングなどは当然にここでいう加 ェに該当する力 S、「基板を加工」するとは、それらに限らず、その基板に対して何らか の処理を施すという意味である。本明細書では、力、かる意味で「加工」という用語を用 いるものとする。  [0008] According to a second aspect of the present invention, a step of exposing a substrate using the exposure method of the present invention; a step of developing the exposed substrate; a step of processing the developed substrate; A first device manufacturing method including: Here, for example, the etching S is a force S corresponding to the above-described process, and “processing the substrate” means that the substrate is not limited to these, and some processing is performed on the substrate. In this specification, the term “processing” is used in terms of force.
[0009] これによれば、本発明の露光方法を用いて基板を露光するので、デバイスの生産 性の向上を図ることが可能になる。 According to this, since the substrate is exposed using the exposure method of the present invention, the production of the device It is possible to improve the performance.
[0010] 本発明は、第 3の観点からすると、スキャン動作により基板上に m行 n列 (m≥n)の マトリクス状の配置で、(m X n)個のパターン領域を形成するパターン形成方法にお いて、(m X n)回より少ない回数のスキャン動作により、前記基板上にマトリクス状の 配置で (m X n)個の前記パターン領域を形成するパターン形成方法である。  [0010] According to a third aspect, the present invention provides a pattern formation that forms (m X n) pattern regions on a substrate in a matrix arrangement of m rows and n columns (m≥n) by a scanning operation. The method is a pattern forming method in which (m X n) pattern regions are formed in a matrix arrangement on the substrate by scanning operations less than (m X n) times.
[0011] ここで、スキャン動作は、基板上にパターンを形成するための動作であれば良い。  Here, the scan operation may be an operation for forming a pattern on the substrate.
すなわち、スキャン動作は露光動作に限られない。スキャン動作の一例は、基板のス キャン動作が挙げられる。  That is, the scanning operation is not limited to the exposure operation. An example of the scanning operation is a substrate scanning operation.
[0012] これによれば、 目標とするパターン領域の数(面取り数)(m X n)より少ない回数の スキャン動作により、 目標とする数のパターン領域を基板上に形成できるので、面取 り数に応じた回数のスキャン動作を行う場合に比べてスループットの向上が可能であ  [0012] According to this, since the target number of pattern areas can be formed on the substrate by the number of scan operations less than the target number of pattern areas (number of chamfers) (m X n), the chamfering is performed. The throughput can be improved compared to the number of scan operations depending on the number.
[0013] 本発明は、第 4の観点からすると、本発明のパターン形成方法を用いて基板にバタ ーンを形成する工程と;前記パターンが形成された基板を加工する工程と;を含む第 2のデバイス製造方法である。 [0013] From a fourth aspect, the present invention includes a step of forming a pattern on a substrate using the pattern forming method of the present invention; and a step of processing the substrate on which the pattern is formed. 2 is a device manufacturing method.
[0014] これによれば、パターン形成方法を用いて基板にパターンを形成するので、デバイ スの生産性の向上を図ることが可能になる。  [0014] According to this, since the pattern is formed on the substrate using the pattern forming method, it becomes possible to improve the productivity of the device.
[0015] 本発明は、第 5の観点からすると、基板上にほぼ矩形のパターン領域を m行 n列 (m ≥n)のマトリクス状の配置で形成する露光装置であって、前記マトリクスの列方向に 平行な所定方向に関して離れた少なくとも 2つの領域を一度に露光して前記パター ン領域を形成可能なパターン生成装置と;前記基板を駆動する基板駆動装置と;前 記基板上に前記 m行 n列の前記パターン領域を形成する際に、前記基板上で前記 所定方向に関して前記パターン領域の前記所定方向の寸法の自然数 k倍だけ離間 した少なくとも 2つのパターン領域の形成と、前記基板の前記所定方向への移動とが 交互に繰り返されるように、前記パターン生成装置と前記基板駆動装置とを制御する 制御システムと;を備える第 1の露光装置である。  According to a fifth aspect of the present invention, there is provided an exposure apparatus for forming a substantially rectangular pattern region on a substrate in a matrix arrangement of m rows and n columns (m ≥ n), wherein the matrix columns A pattern generating device capable of forming the pattern region by exposing at least two regions apart from each other in a predetermined direction parallel to the direction; a substrate driving device for driving the substrate; and the m rows on the substrate. When forming the n rows of pattern regions, forming at least two pattern regions spaced apart by a natural number k times the dimension of the pattern region in the predetermined direction with respect to the predetermined direction on the substrate; And a control system that controls the pattern generation device and the substrate driving device so that the movement in the direction is alternately repeated.
[0016] これによれば、基板上に m行 n列 (m≥n)のパターン領域を形成する際に、基板上 でマトリタスの列方向に平行な所定方向に関して前記パターン領域の前記所定方向 の寸法の自然数 k倍だけ離間した少なくとも 2つのパターン領域の形成と、基板の前 記所定方向への移動とが交互に繰り返されるように、制御システムにより、パターン生 成装置と基板駆動装置とが制御される。これにより、最大でも { (m- 1) X n}回の露 光、すなわち目標とするパターン領域の数(面取り数)(m X n)より少ない回数の露光 で、基板上に m行 n列 (m≥n)のパターン領域を形成することができる。従って、 目標 とする面取り数と同じ回数 (m X n)回の露光で基板上に(m X n)個のパターン領域を 形成していた場合に比べて、スループットの向上を図ることができる。 According to this, when forming a pattern region of m rows and n columns (m≥n) on the substrate, the predetermined direction of the pattern region with respect to a predetermined direction parallel to the column direction of Matritas on the substrate The control system causes the pattern generation device and the substrate driving device to alternately repeat the formation of at least two pattern regions separated by a natural number k times the size of the substrate and the movement of the substrate in the predetermined direction. Be controlled. As a result, at most ((m-1) X n} exposures, that is, the number of exposures less than the target number of pattern areas (number of chamfers) (m X n), m rows and n columns on the substrate. A pattern area of (m≥n) can be formed. Therefore, the throughput can be improved as compared with the case where (m X n) pattern regions are formed on the substrate by the same number of exposures (m X n) as the target chamfering number.
[0017] 本発明は、第 6の観点からすると、基板を露光して前記基板上に矩形のパターン領 域を複数形成する露光装置であって、前記パターン領域に対応するパターンがそれ ぞれ形成された複数のマスクが搭載されるマスクステージ系と;前記複数のマスクを ほぼ同時に照明光で照明可能な照明系と;前記複数のマスクにそれぞれ対応して設 けられ、各マスクを介した前記照明光を前記基板上の投射領域にそれぞれ投射する 複数の投影光学系と;前記基板が搭載される基板ステージと;前記基板ステージに 同期して前記各マスクが走査方向に走査されるように前記マスクステージ系と前記基 板ステージとを駆動する駆動システムと;を備える第 2の露光装置である。  [0017] According to a sixth aspect of the present invention, there is provided an exposure apparatus that exposes a substrate to form a plurality of rectangular pattern regions on the substrate, each of which forms a pattern corresponding to the pattern region. A mask stage system on which a plurality of masks are mounted; an illumination system capable of illuminating the plurality of masks almost simultaneously with illumination light; and a mask stage system provided corresponding to each of the plurality of masks, and A plurality of projection optical systems that respectively project illumination light onto a projection area on the substrate; a substrate stage on which the substrate is mounted; and the masks are scanned in a scanning direction in synchronization with the substrate stage. And a driving system that drives the mask stage system and the substrate stage.
[0018] これによれば、照明系により複数のマスクをほぼ同時に照明光で照明した状態で、 駆動システムにより、基板が搭載された基板ステージに同期して各マスクが走査方向 に走査されるようにマスクステージ系と基板ステージとを駆動することができる。従つ て、複数のマスクにそれぞれ形成されたパターンを、対応する投影光学系をそれぞ れ介して基板上の異なる領域にほぼ同時に転写することができる。すなわち、走査露 光方式で、基板上の異なる領域に複数のマスクにそれぞれ形成されたパターンを転 写すること力 Sできる。従って、一回の走査露光で基板上に 1つのパターン領域を形成 する場合に比べて、スループットの向上が可能になる。  According to this, each mask is scanned in the scanning direction by the drive system in synchronization with the substrate stage on which the substrate is mounted, with the illumination system illuminating a plurality of masks with illumination light almost simultaneously. In addition, the mask stage system and the substrate stage can be driven. Therefore, the patterns respectively formed on the plurality of masks can be transferred almost simultaneously to different regions on the substrate through the corresponding projection optical systems. In other words, it is possible to transfer the pattern formed on each of the plurality of masks to different areas on the substrate by the scanning exposure method. Therefore, the throughput can be improved as compared with the case where one pattern region is formed on the substrate by one scanning exposure.
[0019] 本発明は、第 7の観点からすると、基板上に m行 n列 (m≥n)のマトリクス状の配置 で、 m X n個のパターン領域を形成する露光装置であって、前記マトリクスの列方向 に平行な方向に関して離れた 2つの領域を一度に露光して前記パターン領域を形成 可能なパターン生成装置と;前記基板上に形成されたマークをそれぞれ検出するとと もに、前記マトリクスの列方向に平行な方向に関して離間して配置された少なくとも 2 m個のマーク検出系と;を備え、前記 2m個のうちの少なくとも一部のマーク検出系に より、前記基板上の同時に露光対象となる各 2つの領域それぞれの内部の両端部近 傍に形成された各 2つのマークの同時検出が可能となるように、前記少なくとも 2m個 のマーク検出系の間隔が設定されている第 3の露光装置である。 [0019] According to a seventh aspect, the present invention provides an exposure apparatus that forms m X n pattern regions on a substrate in a matrix arrangement of m rows and n columns (m≥n), A pattern generation device capable of forming the pattern region by exposing two regions apart from each other in a direction parallel to the column direction of the matrix; and detecting the marks formed on the substrate, and the matrix At least 2 spaced apart in a direction parallel to the column direction m mark detection systems; and at least some of the 2m mark detection systems formed near both ends of each of the two regions on the substrate that are simultaneously exposed. In the third exposure apparatus, the interval between the at least 2m mark detection systems is set so that the two detected marks can be detected simultaneously.
[0020] これによれば、少なくとも一部のマーク検出系により、基板上の同時に露光対象とな る各 2つの領域それぞれの内部の両端部近傍に形成された各 2つのマークの同時検 出が可能である。従って、露光対象となる領域毎にその内部のマークを検出する場 合に比べて、マーク検出処理に要する時間の短縮化、ひいてはスループットの向上 を図ることが可能である。  [0020] According to this, at least a part of the mark detection system can simultaneously detect each of the two marks formed in the vicinity of both end portions of each of the two regions to be exposed simultaneously on the substrate. Is possible. Therefore, it is possible to shorten the time required for the mark detection process and to improve the throughput as compared with the case of detecting the mark inside each area to be exposed.
[0021] 本発明は、第 8の観点からすると、本発明の第 1、第 2及び第 3の露光装置のいず れかを用いて基板にパターンを形成する工程と;パターンが形成された基板を現像 する工程と;現像された基板を加工する工程と;を含む第 3のデバイス製造方法であ  [0021] According to an eighth aspect of the present invention, there is provided a step of forming a pattern on a substrate using any of the first, second and third exposure apparatuses of the present invention; A third device manufacturing method comprising: developing the substrate; and processing the developed substrate.
[0022] これによれば、デバイスの生産性の向上を図ることが可能である。 [0022] According to this, it is possible to improve the productivity of the device.
[0023] 本発明は、第 9の観点からすると、本発明の第 1、第 2及び第 3のデバイス製造方法 の!/、ずれかによつて、基板上に表示デバイスが形成された表示パネルである。  [0023] From a ninth viewpoint, the present invention provides a display panel in which a display device is formed on a substrate depending on whether the first, second, and third device manufacturing methods of the present invention are! / It is.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]一実施形態に係る露光装置の構成を概略的に示す斜視図である。  FIG. 1 is a perspective view schematically showing a configuration of an exposure apparatus according to an embodiment.
[図 2]図 2 (A)は、図 1の 2つの投影光学系モジュールの各 5つのイメージフィールドと 、 2つのマスクと、プレートとを取り出して示す平面図、図 2 (B)は、投影光学系モジュ ールの実質的なイメージフィードを説明するための図である。  [FIG. 2] FIG. 2 (A) is a plan view showing five image fields, two masks, and plates extracted from the two projection optical system modules in FIG. 1, and FIG. 2 (B) is a projection. It is a figure for demonstrating the substantial image feed of an optical system module.
[図 3]ァライメント系 AL;!〜 AL8の配置を説明するための図である。  FIG. 3 is a diagram for explaining the arrangement of alignment system AL;! To AL8.
[図 4]一実施形態の露光装置の制御系の構成を概略的に示すブロック図である。  FIG. 4 is a block diagram schematically showing a configuration of a control system of the exposure apparatus of one embodiment.
[図 5]図 5 (A)、図 5 (B)は、それぞれ 6面取り、 8面取りの場合に用いられるプレート 及びそのプレート上のショット領域及びァライメントマークの配置を示す図である。  [FIG. 5] FIGS. 5 (A) and 5 (B) are diagrams showing a plate used in the case of 6 chamfering and 8 chamfering, and the arrangement of shot areas and alignment marks on the plate, respectively.
[図 6]図 6 (A)〜図 6 (D)は、 6面取りの場合のァライメントマークの検出動作の流れを 説明するための図である。  [FIG. 6] FIGS. 6 (A) to 6 (D) are diagrams for explaining the flow of alignment mark detection operation in the case of six chamfering.
[図 7]図 7 (A)〜図 7 (D)は、 8面取りの場合のァライメントマークの検出動作の流れを 説明するための図である。 [Fig.7] Fig.7 (A) to Fig.7 (D) shows the flow of alignment mark detection operation in case of 8-chamfering. It is a figure for demonstrating.
[図 8]6面取りの場合のマスク、マスク上のパターン領域、及び 2つの投影光学系モジ ユールのイメージフィールドについて、これらの配置及び関係を説明するための図で ある。  FIG. 8 is a diagram for explaining the arrangement and relationship between a mask in the case of 6 chamfering, a pattern area on the mask, and image fields of two projection optical system modules.
[図 9]図 9 (A)〜図 9 (D)は、 6面取りの場合の露光シーケンスを説明するための図で ある。  [FIG. 9] FIG. 9 (A) to FIG. 9 (D) are diagrams for explaining an exposure sequence in the case of six chamfering.
[図 10]8面取りの場合のマスク、マスク上のパターン領域、及び 2つの投影光学系モ ジュールのイメージフィールドについて、これらの配置及び関係を説明するための図 である。  FIG. 10 is a diagram for explaining the arrangement and relationship between the mask in the case of eight chamfers, the pattern area on the mask, and the image fields of two projection optical system modules.
[図 11]図 11 (A)〜図 11 (D)は、 8面取りの場合の露光シーケンスを説明するための 図である。  FIG. 11 (A) to FIG. 11 (D) are diagrams for explaining an exposure sequence in the case of eight chamfering.
[図 12]図 12 (A)、図 12 (B)は、それぞれ 6面取り、 8面取りの場合に 2つのマスクの Y 軸方向の位置を調整してパターン領域 PA, PBの位置関係を調整する方法を示す 図である。  [Fig.12] Fig.12 (A) and Fig.12 (B) adjust the positional relationship between the pattern areas PA and PB by adjusting the Y-axis direction position of the two masks in the case of 6 chamfering and 8 chamfering respectively. It is a figure which shows a method.
[図 13]半導体デバイスの製造方法を説明するためのフローチャートである。  FIG. 13 is a flowchart for explaining a semiconductor device manufacturing method.
[図 14]液晶表示素子を製造する方法を説明するためのフローチャートである。  FIG. 14 is a flowchart for explaining a method of manufacturing a liquid crystal display element.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の一実施形態を図 1〜図 11に基づいて説明する。図 1には、本発明 に係る露光方法 (及びパターン形成方法)の実施に好適なステップ ·アンド'スキャン 方式の液晶露光装置 10の概略構成が示されている。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a step-and-scan type liquid crystal exposure apparatus 10 suitable for carrying out the exposure method (and pattern formation method) according to the present invention.
[0026] この露光装置 10は、 XY平面(水平面)に沿って配置されたプレートステージ 14と、 このプレートステージに対向して Z軸方向上方に、かつほぼ同一の XY平面上で Y軸 方向に所定間隔を隔てて配置された一対のマスクステージ 12A, 12Bと、マスクステ ージ 12A, 12Bのそれぞれとプレートステージ 14との間に配置され、複数(ここでは 5 つ)の投影光学ユニット 16A、 16B、 16C、 16D、 16Eをそれぞれ含む一対の投影光 学系モジュール PLM1 , PLM2と、投影光学ユニット 16A〜16Eの XY断面の全てを 包含する矩形領域を照明光(以下、適宜、露光光ともいう)でそれぞれ照明可能な一 対の照明系 18A, 18Bと、を備えている。照明光としては、例えば、超高圧水銀ラン プからの紫外域の輝線(例えば g線、 i線など)、又は波長 193nmの ArFエキシマレ 一ザ光あるいは波長 248nmの KrFエキシマレーザ光などが用いられる。 [0026] The exposure apparatus 10 includes a plate stage 14 arranged along the XY plane (horizontal plane), the Z axis direction upward facing the plate stage, and the Y axis direction on substantially the same XY plane. A pair of mask stages 12A and 12B arranged at a predetermined interval, and a plurality (in this case, five) of projection optical units 16A and 16B are arranged between the mask stages 12A and 12B and the plate stage 14, respectively. , 16C, 16D, 16E each including a pair of projection optical system modules PLM1, PLM2 and a rectangular area including all of the XY cross sections of the projection optical units 16A to 16E (hereinafter also referred to as exposure light as appropriate) Are provided with a pair of illumination systems 18A and 18B, respectively. As illumination light, for example, ultra-high pressure mercury run An ultraviolet emission line (eg, g-line, i-line, etc.) from a laser, ArF excimer laser light with a wavelength of 193 nm, or KrF excimer laser light with a wavelength of 248 nm is used.
[0027] 一方のマスクステージ 12A上には一方の面(図 1における Z側の面)にパターン 領域が形成された矩形状のマスク 20Aが載置され、同様に他方のマスクステージ 12 B上には、一方の面(図 1における Z側の面)にパターン領域が形成された矩形状 のマスク 20Bが載置されている。また、これらに対応して、プレートステージ 14上には 矩形状の大型ガラス基板(以下、「プレート」という) 22が載置されている。このプレー ト 22は、表示デバイス用の基板である。  [0027] On one mask stage 12A, a rectangular mask 20A having a pattern region formed on one surface (the surface on the Z side in FIG. 1) is placed, and similarly on the other mask stage 12B. Is mounted with a rectangular mask 20B having a pattern region formed on one surface (the Z-side surface in FIG. 1). Corresponding to these, a large rectangular glass substrate (hereinafter referred to as “plate”) 22 is placed on the plate stage 14. This plate 22 is a substrate for a display device.
[0028] マスクステージ 12A, 12Bは、リニアモータ等を含む一対のマスクステージ駆動系 2 4A, 24B (図 1では不図示、図 4参照)のそれぞれによって、所定の走査方向(ここで は、 X軸方向(図 1における左右方向)とする)に所定ストロークで往復駆動されるとと もに、 XY平面内で微小駆動(Z軸回りの回転( Θ z回転)を含む)される。  [0028] The mask stages 12A and 12B are driven in a predetermined scanning direction (here, X) by a pair of mask stage drive systems 24 4A and 24B (not shown in FIG. 1, see FIG. 4) including a linear motor or the like. In addition to being reciprocated with a predetermined stroke in the axial direction (left and right in Fig. 1), it is finely driven in the XY plane (including rotation around the Z axis (Θ z rotation)).
[0029] また、プレートステージ 14は、リニアモータ等を含むプレートステージ駆動系 26 (図  [0029] The plate stage 14 includes a plate stage drive system 26 (Fig.
1では不図示、図 4参照)によって、 XY平面内で自在に駆動(Z軸回りの回転( Θ z回 転)を含む)される。また、プレートステージ 14は、プレートステージ駆動系 26によつ て、 Z軸方向の微小駆動、 XY平面に対する傾斜駆動(X軸回りの回転( θ X回転)、 及び Y軸回りの回転( Θ y回転))が可能である。  1 (not shown, see Fig. 4), it can be driven freely in the XY plane (including rotation around the Z axis (including Θ z rotation)). In addition, the plate stage 14 is driven by a minute drive in the Z-axis direction, tilt drive with respect to the XY plane (rotation around the X axis (θ X rotation), and rotation around the Y axis (Θ y) by the plate stage drive system 26. Rotation)) is possible.
[0030] マスクステージ 12A, 12Bの位置情報は、マスクステージ 12A, 12Bに固定又は形 成された反射面に計測ビームをそれぞれ照射する複数の干渉計を含むマスク干渉 計システム 28 (図 1では不図示、図 2、図 4参照)によって個別に計測されており、そ の計測されたマスクステージ 12A, 12Bの位置情報が主制御装置 50 (図 4参照)に 供給されている。マスク干渉計システム 28は、図 2に簡略化して示されるように、マス ク 20Aを支持するマスクステージ 12Aの X軸方向に関する位置 (X位置)を検出する 複数のレーザ干渉計 (位置検出装置) Mxl l、 Mxl2と、マスクステージ 12Aの Y軸 方向に関する位置 (Y位置)を検出するレーザ干渉計 (位置検出装置) Mylと、マス ク 20Bを支持するマスクステージ 12Bの X位置を検出する複数のレーザ干渉計 (位 置検出装置) Mx21、 Mx22と、マスクステージ 12Bの Y位置を検出するレーザ干渉 計 (位置検出装置) My2と、を備えている。従って、マスク干渉計システム 28は、マス クステージ 12A、 12Bのぞれぞれの X位置、 Y位置及び Θ z回転量(回転情報)を計 測可能である。なお、図 2では、図示の簡略化のため、マスクの端面に干渉計ビーム (測長ビーム)が照射されているように示している力 実際には、マスクステージ 12A、 12Bに不図示の移動鏡(又は鏡面加工された反射面)が設けられており、それに対し て干渉計ビームを照射するように構成されて V、る。 [0030] The positional information of the mask stages 12A and 12B is a mask interferometer system 28 including a plurality of interferometers each irradiating a measurement beam onto a reflecting surface fixed or formed on the mask stages 12A and 12B (not shown in FIG. 1). The position information of the mask stages 12A and 12B thus measured is supplied to the main controller 50 (see FIG. 4). The mask interferometer system 28 includes a plurality of laser interferometers (position detection devices) that detect the position (X position) in the X-axis direction of the mask stage 12A that supports the mask 20A, as shown in a simplified manner in FIG. Mxl l, Mxl2, and laser interferometer (position detection device) that detects the position (Y position) of the mask stage 12A in the Y-axis direction Multiple positions that detect the X position of the mask stage 12B that supports the mask 20B Laser interferometers (position detection devices) Mx21 and Mx22 and a laser interferometer (position detection device) My2 for detecting the Y position of the mask stage 12B are provided. Therefore, the mask interferometer system 28 is It is possible to measure the X position, Y position, and θ z rotation amount (rotation information) of each of the stage 12A and 12B. In FIG. 2, for simplification of the drawing, the force is shown so that the end face of the mask is irradiated with an interferometer beam (length measuring beam). Actually, movement not shown in the mask stages 12A and 12B A mirror (or mirror-finished reflecting surface) is provided, which is configured to irradiate an interferometer beam.
[0031] プレートステージ 14の X軸、 Y軸方向の位置情報(回転情報(θ ζ回転情報、 θ χ回 転情報、及び Θ y回転情報)を含む)は、プレートステージ 14に固定又は形成された 反射面に計測ビームをそれぞれ照射する複数の干渉計を含むプレート干渉計システ ム 30 (図 1では不図示、図 4参照)によって計測され、その計測された位置情報が主 制御装置 50に供給されている。プレート干渉計システム 30は、図 2に示されるように 、プレート 22を支持するプレートステージ 14の X位置を検出する複数のレーザ干渉 計 (位置検出装置) Pxl , Ρχ2と、プレートステージ 14の Y位置を検出するレーザ干 渉計 (位置検出装置) Pyと、を備えている。従って、プレート干渉計システム 30は、プ レートステージ 14の X位置、 Y位置及び Θ z回転量(回転情報)を計測可能である。ま た、プレート干渉計システム 30は、各干渉計の測長軸が、複数の投影モジュール PL Ml、 PLM2に対して、仮想レンズ中心から大きく外れることなく構成されている。な お、図 2では、図示の簡略化のため、プレートの端面に干渉計ビーム(測長ビーム)が 照射されているように示している力 実際には、プレートステージ 14に不図示の移動 鏡(又は鏡面加工された反射面)が設けられており、それに対して干渉計ビームを照 射するように構成されて!/、る。  [0031] Position information (including rotation information (including θ ζ rotation information, θ χ rotation information, and Θ y rotation information)) in the X-axis and Y-axis directions of the plate stage 14 is fixed or formed on the plate stage 14. Measured by a plate interferometer system 30 (not shown in FIG. 1, see FIG. 4) including a plurality of interferometers each irradiating a measuring surface with a measurement beam, and the measured position information is supplied to the main controller 50 Has been. As shown in FIG. 2, the plate interferometer system 30 includes a plurality of laser interferometers (position detection devices) Pxl and Ρχ2 that detect the X position of the plate stage 14 that supports the plate 22, and the Y position of the plate stage 14. And a laser interferometer (position detection device) Py for detecting Therefore, the plate interferometer system 30 can measure the X position, the Y position, and the Θ z rotation amount (rotation information) of the plate stage 14. Further, the plate interferometer system 30 is configured such that the measurement axis of each interferometer is not greatly deviated from the center of the virtual lens with respect to the plurality of projection modules PL Ml and PLM2. In FIG. 2, for simplification of the drawing, a force indicating that the end surface of the plate is irradiated with an interferometer beam (measurement beam) Actually, a movable mirror (not shown) is applied to the plate stage 14. (Or a mirrored reflective surface) is provided and is configured to irradiate an interferometer beam against it!
[0032] また、プレートステージ 14の Z軸方向の位置情報は、プレート 22表面の面位置情 報を計測する不図示の計測系、例えば米国特許第 6, 552, 775号明細書などに開 示される計測系によって間接的に計測される。  [0032] The position information of the plate stage 14 in the Z-axis direction is disclosed in a measurement system (not shown) that measures the surface position information of the surface of the plate 22, such as US Pat. No. 6,552,775. It is measured indirectly by the measurement system.
[0033] なお、マスク干渉計システム 28及びプレート干渉計システム 30を構成する、少なく とも一部の干渉計の代わりに、エンコーダを用いても良いし、あるいはマスク干渉計シ ステム 28及びプレート干渉計システム 30に加えてエンコーダシステムを設け、干渉 計システムとエンコーダシステムとのハイブリッドシステムによって、マスクステージ 12 A, 12B、プレートステージ 14の位置情報を計測するようにしても良い。 [0034] 図 1に戻り、前記一方の投影光学系モジュール PLM1を構成する 5つの投影光学 ユニット 16A、 16B、 16C、 16D、 16Eは、それぞれの光軸が XY平面に直交する Z 車由方向とされている。投影光学ユニット 16A、 16B、 16C、 16D、 16Eとしては、 ί列え ば両側テレセントリックな等倍系で正立正像を形成するものが用いられている。この 内、投影光学ユニット 16A、 16B、 16Cは Υ軸方向に沿って所定間隔で配置され、 残りの投影光学ユニット 16D、 16Eはこれらの + X側(図 1における右側)に少しずれ て Y軸方向に沿って所定間隔で配置されている。すなわち、本実施形態では、 5つの 投影光学ユニット 16A、 16B、 16C、 16D、 16Eをいわゆる千鳥状に配置することに より、投影光学ユニットのアレーを構成し、マスクステージ 12Aとプレートステージ 14 とが一体的に X軸方向に走査されたとき(図 1中の矢印 A1,A3参照)、 5つの投影光 学ユニット 16A、 16B、 16C、 16D、 16Eのイメージフィールド(投影領域)がマスク 2 OA及びプレート 22の露光対象の矩形領域 (ショット領域)の全面を網羅することがで さるように構成されている。 [0033] It should be noted that an encoder may be used in place of at least some of the interferometers constituting mask interferometer system 28 and plate interferometer system 30, or mask interferometer system 28 and plate interferometer. An encoder system may be provided in addition to the system 30, and the position information of the mask stages 12A and 12B and the plate stage 14 may be measured by a hybrid system of an interferometer system and an encoder system. [0034] Returning to FIG. 1, the five projection optical units 16A, 16B, 16C, 16D, and 16E that constitute the one projection optical system module PLM1 have the Z-axis direction in which the respective optical axes are orthogonal to the XY plane. Has been. As the projection optical units 16A, 16B, 16C, 16D, and 16E, those that form an erect image with a double-sided telecentric equal magnification system are used. Among these, the projection optical units 16A, 16B, and 16C are arranged at predetermined intervals along the Υ axis direction, and the remaining projection optical units 16D and 16E are slightly shifted to the + X side (right side in FIG. 1) of the Y axis. They are arranged at predetermined intervals along the direction. That is, in the present embodiment, the five projection optical units 16A, 16B, 16C, 16D, and 16E are arranged in a so-called zigzag pattern to constitute an array of projection optical units, and the mask stage 12A and the plate stage 14 include When scanned in the X-axis direction (see arrows A1 and A3 in Figure 1), the image fields (projection areas) of the five projection optical units 16A, 16B, 16C, 16D, and 16E are masks 2 OA and The entire surface of the rectangular area (shot area) to be exposed on the plate 22 can be covered.
[0035] すなわち、投影光学ユニット 16A、 16B、 16C、 16D、 16Eそれぞれのイメージフィ 一ルド 16AI、 16BI、 16CI、 16DI、 16EIは、図 2 (A)の平面図に示されるように、台 形状を有し、図 2 (A)に示されるような千鳥状の配置となっている。これらのイメージフ ィールドの形状は、照明系 18Aの内部又は各投影光学ユニット内部に配置された不 図示の視野絞りによって規定される。イメージフィールド 16AI、 16BI、 16CI、 16DI 、 16EIのうち、最も Y軸方向の両端に位置するイメージフィールド 16AI、 16CIは、そ れぞれの外側の端部が X軸に平行な直線とされた台形状を有し、残りのイメージフィ 一ルド 16BI、 16DI、 16EIは、同一大きさの等脚台形状を有している。本実施形態 では、イメージフィールド 16DI、 16EIを、 X方向に所定距離平行移動すると、図 2 (B)に示されるように、全体として、長さが W3で幅が Bの、 Y軸方向に細長い長方形 状の領域が形成される。すなわち、本実施形態では、投影光学ユニット 16A〜; 16E で照射された部分投射領域 (イメージフィールド 16AI〜; 16EI)を重複させて合成し、 実質的な投射領域(図 2 (B)に示される Y軸方向に細長い長方形状の領域)が形成 される。従って、投影光学系モジュール PLM1を構成する 5つの投影光学ユニット 16 A、 16B、 16C、 16D、 16Eは、図 2 (B)に示される長方形状の単一のイメージフィー ルドを持つ投影光学系と等価である。なお、投影光学ユニット 16A、 16B、 16C、 16 D、 16Eは、実際には、図 2 (A)に示されるような投影光学系モジュール PLM1を構 成するが、投影光学ユニット 16A、 16B、 16C、 16D、 16Eの相互の位置関係を示 すために、図 1では、投影光学系モジュール PLM1の筐体など一部の構成部分の図 示が省略されている。 That is, the image fields 16AI, 16BI, 16CI, 16DI, and 16EI of the projection optical units 16A, 16B, 16C, 16D, and 16E are trapezoidal as shown in the plan view of FIG. It has a staggered arrangement as shown in Fig. 2 (A). The shape of these image fields is defined by a field stop (not shown) arranged in the illumination system 18A or in each projection optical unit. Among the image fields 16AI, 16BI, 16CI, 16DI, and 16EI, the image fields 16AI and 16CI that are located at the extreme ends in the Y-axis direction are each a table whose outer ends are straight lines parallel to the X-axis. The remaining image fields 16BI, 16DI, and 16EI have the same isosceles trapezoid shape. In this embodiment, when the image fields 16DI and 16EI are translated by a predetermined distance in the X direction, as shown in FIG. 2 (B), as a whole, the length is W3 and the width is B. A rectangular area is formed. In other words, in the present embodiment, the partial projection areas (image fields 16AI to 16EI) irradiated by the projection optical units 16A to 16E are overlapped and synthesized to form a substantial projection area (shown in FIG. 2B). A rectangular area elongated in the Y-axis direction) is formed. Therefore, the five projection optical units 16A, 16B, 16C, 16D, and 16E that constitute the projection optical system module PLM1 are each a single rectangular image image shown in FIG. This is equivalent to a projection optical system having a threshold. The projection optical units 16A, 16B, 16C, 16D, and 16E actually constitute the projection optical system module PLM1 as shown in FIG. 2A, but the projection optical units 16A, 16B, and 16C. In order to show the mutual positional relationship between 16D and 16E, illustration of some components such as the housing of the projection optical system module PLM1 is omitted in FIG.
[0036] 他方の投影光学系モジュール PLM2は、上述した投影光学系モジュール PLM1と 全く同様に構成されている。なお、本実施形態の投影光学系モジュール PLMl, PL M2と同様の構成の投影光学系については、例えば特開 2001— 215718号公報( 対応する米国特許第 6, 552, 775号明細書)などに詳細に開示されている。  The other projection optical system module PLM2 is configured in exactly the same manner as the projection optical system module PLM1 described above. As for the projection optical system having the same configuration as the projection optical system modules PLMl and PLM2 of this embodiment, for example, see Japanese Patent Application Laid-Open No. 2001-215718 (corresponding to US Pat. No. 6,552,775). It is disclosed in detail.
[0037] さらに、露光装置 10は、 8つのオファクシス方式のァライメント系 AL1 , AL2, AL3 , AL4, AL5,AL6,AL7,AL8を備えている。これら 8つのァライメント系 AL1 , AL2 , AL3, AL4, AL5,AL6,AL7,AL8は、図 1に示されるように、投影光学系モジユー ル PLM1、 PLM2の + X側に所定距離隔てた位置に、 Y軸方向に沿って所定間隔 で配置されている。これら 8つのァライメント系 AL;!〜 AL8は、 XY平面に沿って Y軸 方向に延びる板状の保持部材 32によってプレートステージ 14の上方で保持され、該 保持部材は、不図示の支持部材によって床面上で支持されている。ァライメント系 A LI , AL2, AL3, AL4, AL5,AL6,AL7,AL8としては、例えばプレート 22上のレジ ストを感光させないブロードバンドな検出光束を対象マークに照射し、その対象マー クからの反射光により受光面に結像された対象マークの像と不図示の指標の像とを 撮像素子(CCD)等を用いて撮像し、それらの撮像信号を出力する画像処理方式の FIA (Field Image Alignment)系のセンサがそれぞれ用いられる。なお、 FIA系に限ら ず、コヒーレントな検出光を対象マークに照射し、その対象マークから発生する散乱 光又は回折光を検出し、あるいはその対象マークから発生する 2つの回折光(例えば 同次数)を干渉させて検出するァライメントセンサを単独であるいは適宜組み合わせ て用いることは勿論可能である。なお、ァライメント系 AL;!〜 AL8の配置については さらに後述する。  Furthermore, the exposure apparatus 10 includes eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, and AL8 of the offifism system. These eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8 are positioned at a predetermined distance on the + X side of the projection optical modules PLM1, PLM2, as shown in FIG. Arranged at predetermined intervals along the Y-axis direction. These eight alignment systems AL;! To AL8 are held above the plate stage 14 by a plate-like holding member 32 extending in the Y-axis direction along the XY plane, and the holding member is supported by a support member (not shown). Supported on the surface. The alignment systems A LI, AL2, AL3, AL4, AL5, AL6, AL7, AL8, for example, irradiate the target mark with a broadband detection light beam that does not expose the resist on the plate 22, and the reflected light from the target mark. FIA (Field Image Alignment) of the image processing method that images the image of the target mark imaged on the light-receiving surface and the image of the index (not shown) using an image sensor (CCD) etc. and outputs the imaged signals Each sensor of the system is used. Not limited to the FIA system, the target mark is irradiated with coherent detection light to detect scattered light or diffracted light generated from the target mark, or two diffracted lights generated from the target mark (for example, of the same order) Of course, it is possible to use the alignment sensor for detecting the interference by singly or in combination. The placement of alignment AL;! To AL8 will be further described later.
[0038] また、プレートステージ 14上面の— X側の端部近傍には、 Y軸方向を長手方向とす るマーク板 MPが配置されている。マーク板 MPの表面は、プレートステージ 14に載 置されたプレート 22の表面とほぼ同一面になるように、その高さが設定されている。こ のマーク板 MPの表面には、一例として前述の 8つのァライメント系 AL1,AL2, AL3 , AL4,八し5 し6 し7 し8のそれぞれに対応して8っの基準マーク領域?^[が 形成されている。すなわち、マーク板 MP上の 8つの基準マーク領域 FM内部に形成 された基準マークを、 8つのァライメント系 AL1,AL2, AL3, AL4, AL5,AL6,AL7, AL8で同時にかつ個別に検出可能である。 In addition, a mark plate MP having a longitudinal direction in the Y-axis direction is disposed in the vicinity of the −X side end of the upper surface of the plate stage 14. The surface of the mark plate MP is placed on the plate stage 14. The height is set so as to be substantially flush with the surface of the placed plate 22. On the surface of this mark plate MP, as an example, there are 8 reference mark areas corresponding to the above-mentioned eight alignment systems AL1, AL2, AL3, AL4, 8 and 6 and 7 and 8, respectively. ^ [Is formed. That is, the eight reference mark areas on the mark plate MP can be detected simultaneously and individually with the eight alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8. .
[0039] また、プレートステージ 14の内部で、マーク板 MP上の 8つの基準マーク領域 FM のうち、例えば中央の 2つの基準マーク領域 FMを除ぐ残りの 6つの基準マーク領域 FMそれぞれの下方の位置には、レンズ系と撮像素子(CCD等)とをそれぞれ含む 6 つのマーク像検出系 MD1,MD2, MD3, MD4, MD5,MD6 (図 1では不図示、図 4参照)が、それぞれ配置されている。これらのマーク検出系 MD;!〜 MD6は、露光 光で照明されたマスク 20A、又は 20B上のァライメントマーク(不図示)の投影光学ュ ニット 16A〜; 16E及びレンズ系による像と、基準マークのレンズ系による像とを同時 に検出し、基準マーク(の像)を基準とするァライメントマーク(の像)の位置情報を、 主制御装置 50に供給する。  [0039] Further, within the plate stage 14, among the eight reference mark areas FM on the mark plate MP, for example, the remaining six reference mark areas FM excluding the two reference mark areas FM in the center are respectively below. Six mark image detection systems MD1, MD2, MD3, MD4, MD5, and MD6 (not shown in FIG. 1, refer to FIG. 4), each including a lens system and an image pickup device (CCD, etc.), are arranged at positions. ing. These mark detection systems MD;! To MD6 are projection optical units 16A to 16E of alignment marks (not shown) on the mask 20A or 20B illuminated by exposure light; And the position information of the alignment mark (image) relative to the reference mark (image) is supplied to the main controller 50.
[0040] 次に、ァライメント系 AL;!〜 AL8の配置について説明する。  [0040] Next, the arrangement of the alignment system AL;! To AL8 will be described.
[0041] ここで、プレート 22としては、長辺 LI X短辺 L2の矩形のガラスプレートが用いられ ているものとする。また、ァライメント系 AL;!〜 AL8の間隔を、図 3に示されるように、 WA1~WA4,及び WB;!〜 WB4とすると、 WA;!〜 WA4、及び WB;!〜 WB4力 次 の式(1 1)〜式(5)の条件を満足するように、ァライメント系 AL;!〜 AL8が配置され ている。  Here, it is assumed that a rectangular glass plate having a long side LI X a short side L2 is used as the plate 22. As shown in Fig. 3, if the interval between alignment AL;! To AL8 is WA1 to WA4 and WB;! To WB4, WA;! To WA4 and WB;! To WB4 force (11) Alignment AL;! To AL8 are arranged so as to satisfy the conditions of (1) to (5).
WAK L1/4 •••(l-i)  WAK L1 / 4 ••• (l-i)
WA2< Ll/4 -•(1-2)  WA2 <Ll / 4-• (1-2)
WA3< Ll/4 -•(1-3)  WA3 <Ll / 4-• (1-3)
WA4< Ll/4 -•(1-4)  WA4 <Ll / 4-• (1-4)
WB3< L2 -•(2)  WB3 <L2-• (2)
WB2 >L2/3 … )  WB2> L2 / 3…)
WB4< L1 -•(4) WBK L2/3 · ' · (5) WB4 <L1-• (4) WBK L2 / 3 '' (5)
なお、式(1 1)〜式(5)の条件を満足する範囲で、 WA;!〜 WA4はなるべく大きく とることが望ましい。  It should be noted that WA;! To WA4 should be as large as possible within the range satisfying the conditions of formulas (11) to (5).
[0043] 次に、本実施形態の露光装置 10で、いわゆる 6面取りを行う場合の、プレート 22の ァライメントシーケンスについて説明する。プレート 22としては、例えば L1が 2800m mで、 L2力 S2400mm、すなわち L1と L2との比がおよそ 32: 27の矩形のガラスプレ ートが用いられるものとする。  Next, the alignment sequence of the plate 22 in the case where so-called six chamfering is performed in the exposure apparatus 10 of the present embodiment will be described. As the plate 22, for example, a rectangular glass plate having an L1 of 2800 mm and an L2 force S2400 mm, that is, a ratio of L1 to L2 of about 32:27 is used.
[0044] 前提として、図 5 (A)に示されるように、プレート 22の 6つのショット領域 SA;!〜 SA6 のそれぞれの、四隅の近傍に、各 1つ、合計 24個のァライメントマーク AMが形成さ れている。そして、この 24個のァライメントマーク AMのうち、ほぼ Y軸方向の同一直 線状に位置する各 6つのァライメントマーク AMの位置関係力 S、ァライメント系 AL;!〜 AL5、 AL7の位置関係にほぼ一致するように、 24個のァライメントマーク AMの配置 が定められている。  [0044] As a premise, as shown in FIG. 5 (A), each of the six shot areas SA of the plate 22;! To SA6, one near each of the four corners, a total of 24 alignment marks AM Is formed. Of these 24 alignment marks AM, the positional relationship force S of each of the six alignment marks AM located in the same straight line in the Y-axis direction, the alignment system AL;! To AL5, AL7 The arrangement of 24 alignment marks AM is determined so as to almost coincide with.
[0045] この場合、主制御装置 50は、プレート干渉計システム 30で計測されるプレートステ ージ 14の位置情報をモニタしつつ、プレートステージ 14を XY平面内で駆動して、図 6 (A)に示される、ァラィメント系八し1,八し2,八し3,八し4,八し5,八し7の検出視野内に、 プレート 22上の Y軸方向に並ぶ 3つのショット領域 SA2, SA4, SA6内の各 2つ、合 計 6つのァライメントマーク AMがそれぞれ位置する位置に、位置決めする。  In this case, the main controller 50 drives the plate stage 14 in the XY plane while monitoring the position information of the plate stage 14 measured by the plate interferometer system 30, so that FIG. The three shot areas SA2 lined up in the Y-axis direction on the plate 22 within the detection field of the alignment system 8, 1, 2, 3, 8, 4, 8, 5, 7 , SA4, SA6 Position each at the position where two alignment marks AM are located.
[0046] そして、主制御装置 50は、図 6 (A)の位置にプレートステージ 14を位置決めした状 態で、ァラィメント系八し1,八し2,八し3,八し4,八し5,八し7を用ぃてその6っのァラィメン トマーク AMの位置情報(不図示の指標を中心とするァライメントマークの位置情報) を、ほぼ同時に計測する。これとともに、主制御装置 50は、その 6つのァライメントマ ーク AMの位置情報の計測結果と、その計測時におけるプレート干渉計システム 30 の計測値とに基づいて、 6つのァライメントマーク AMの XY平面内の位置情報(XY 座標値)を算出し、不図示のメモリに記憶する。  [0046] Then, the main controller 50 has the alignment system Hashi 1, Hashi 2, Hashi 3, Hachi 4, Hashi Hoshi 5 with the plate stage 14 positioned at the position shown in FIG. , Measure the position information of the six alignment marks AM (position information of the alignment marks centered on the unillustrated index) almost simultaneously. At the same time, the main controller 50 determines the XY plane of the six alignment marks AM based on the measurement results of the position information of the six alignment marks AM and the measurement values of the plate interferometer system 30 at the time of the measurement. The position information (XY coordinate value) is calculated and stored in a memory (not shown).
[0047] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Bで示され る + X方向に所定距離駆動して、図 6 (B)に示される位置に位置決めする。そして、 主制御装置 50は、図 6 (B)の位置にプレートステージ 14を位置決めした状態で、了 ラィメント系八し1,八し2,八し3,八し4,八し5,八し7を用ぃて6っのァラィメントマーク八^[ の位置情報(不図示の指標を中心とするァライメントマークの位置情報)を、ほぼ同時 に計測し、この計測結果と計測時におけるプレート干渉計システム 30の計測値とに 基づいて、 6つのァライメントマーク AMの XY平面内の位置情報(XY座標値)を算出 し、不図示のメモリに記憶する。 [0047] After the above measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (B). And The main controller 50 sets the alignment system Hashi 1, Hashi 2, Hashi 3, Hachi 4, Hashi 5, Hashi 7 with the plate stage 14 positioned at the position shown in FIG. The position information (position information of the alignment mark centered on the unillustrated index) is measured almost simultaneously, and the measurement result and the plate interferometer at the time of measurement are used. Based on the measurement values of the system 30, position information (XY coordinate values) of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
[0048] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Bで示され る + X方向に所定距離駆動して、図 6 (C)に示される位置に位置決めする。そして、 主制御装置 50は、図 6 (C)の位置にプレートステージ 14を位置決めした状態で、ァ ラィメント系八し1,八し2,八し3,八し4,八し5,八し7を用ぃて6っのァラィメントマーク八^[ の位置情報(不図示の指標を中心とするァライメントマークの位置情報)を、ほぼ同時 に計測し、この計測結果と計測時におけるプレート干渉計システム 30の計測値とに 基づいて、 6つのァライメントマーク AMの XY平面内の位置情報(XY座標値)を算出 し、不図示のメモリに記憶する。  [0048] After the measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (C). Then, the main controller 50 positions the alignment stage 8, 1, 2, 2, 3, 4, 4, 5, 5, 8, with the plate stage 14 positioned at the position shown in FIG. 6 (C). 7 is used to measure the position information (position information of the alignment mark centered on the unillustrated index) of the six alignment marks 8 ^ [almost at the same time. Based on the measurement values of the interferometer system 30, position information (XY coordinate values) of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
[0049] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Bで示され る + X方向に所定距離駆動して、図 6 (D)に示される位置に位置決めする。そして、 主制御装置 50は、図 6 (D)の位置にプレートステージ 14を位置決めした状態で、ァ ラィメント系八し1,八し2,八し3,八し4,八し5,八し7を用ぃて6っのァラィメントマーク八^[ の位置情報(不図示の指標を中心とするァライメントマークの位置情報)を、ほぼ同時 に計測し、この計測結果と計測時におけるプレート干渉計システム 30の計測値とに 基づいて、 6つのァライメントマーク AMの XY平面内の位置情報(XY座標値)を算出 し、不図示のメモリに記憶する。  [0049] After the above measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow B. Drive the distance and position it at the position shown in Fig. 6 (D). Then, the main control unit 50 positions the alignment stage 8, 1, 2, 2, 3, 4, 4, 5, 5, 8, with the plate stage 14 positioned at the position shown in FIG. 6 (D). 7 is used to measure the position information (position information of the alignment mark centered on the unillustrated index) of the six alignment marks 8 ^ [almost at the same time. Based on the measurement values of the interferometer system 30, position information (XY coordinate values) of the six alignment marks AM in the XY plane is calculated and stored in a memory (not shown).
[0050] このように、本実施形態では、 8個のァライメント系 AL;!〜 AL8のうちの 6個のァライ メント系を使って、プレート 22上の 6個のァライメントマークを同時に計測する、ァライ メントマークの同時計測を、 4回行うのみで、 6 X 4 = 24点(6つのショット領域内各 4 点)のァライメントマークの位置情報の計測が可能になっている。 [0051] 次に、露光装置 10で、いわゆる 8面取りを行う場合の、プレート 22のァライメントシ 一ケンスについて説明する。この場合、プレート 22としては、例えば L1が 2800mm で、 L2力 S2400mm、すなわち L1と L2との比がおよそ 36: 32の矩形のガラスプレート が用いられるものとする。 [0050] Thus, in this embodiment, 6 alignment marks on the plate 22 are simultaneously measured using 6 alignment systems of 8 alignment systems AL;! To AL8. The alignment mark position information of 6 X 4 = 24 points (4 points in each of the six shot areas) can be measured only by performing simultaneous measurement of the alignment marks four times. [0051] Next, the alignment sequence of the plate 22 when the exposure apparatus 10 performs so-called eight chamfering will be described. In this case, as the plate 22, for example, a rectangular glass plate having L1 of 2800 mm and L2 force S2400 mm, that is, a ratio of L1 to L2 of about 36:32 is used.
[0052] 前提として、図 5 (B)に示されるように、プレート 22の 8つのショット領域のそれぞれ の、四隅の近傍に、各 1つ、合計 32個のァライメントマーク AMが形成されている。そ して、この 32個のァライメントマーク AMのうち、ほぼ Y軸方向の同一直線状に位置 する各 8つのァライメントマーク AMの位置関係力 ァライメント系 AL;!〜 AL8の位置 関係にほぼ一致するように、 32個のァライメントマーク AMの配置が定められている。  [0052] As a premise, as shown in FIG. 5 (B), 32 alignment marks AM are formed in the vicinity of the four corners of each of the eight shot regions of the plate 22, one in total. . Of these 32 alignment marks AM, the positional relationship force of each of the eight alignment marks AM that are positioned on the same straight line in the Y-axis direction is almost identical to the positional relationship of alignment system AL;! As shown, the arrangement of 32 alignment marks AM is determined.
[0053] この場合、主制御装置 50は、プレート干渉計システム 30で計測されるプレートステ ージ 14の位置情報をモニタしつつ、プレートステージ 14を XY平面内で駆動して、図 7 (A)に示される位置に、位置決めする。図 7 (A)では、ァライメント系 AL1,AL2,AL 3,AL4,AL5,AL6,AL7,AL8の検出視野内に、プレート 22上の Y軸方向に並ぶ 4 つのショット領域 SA2, SA4, SA6, SA8内の各 2つ、合計 8つのァライメントマーク AMがそれぞれ位置して!/、る。  In this case, the main controller 50 drives the plate stage 14 in the XY plane while monitoring the position information of the plate stage 14 measured by the plate interferometer system 30, so that FIG. ). In Fig. 7 (A), four shot areas SA2, SA4, SA6, aligned in the Y-axis direction on the plate 22 within the detection field of alignment systems AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8. There are two alignment marks AM in SA8, a total of eight alignment marks AM!
[0054] そして、主制御装置 50は、図 7 (A)の位置にプレートステージ 14を位置決めした状 態で、ァライメント系 AL;!〜 AL8を用いてその 8つのァライメントマーク AMの位置情 報(不図示の指標を中心とするァライメントマークの位置情報)を、ほぼ同時に計測し 、この計測結果とその計測時におけるプレート干渉計システム 30の計測値とに基づ いて、 8つのァライメントマーク AMの XY平面内の位置情報(XY座標値)を算出し、 不図示のメモリに記憶する。  [0054] Then, main controller 50 positions position information of the eight alignment marks AM using alignment system AL;! To AL8 in a state where plate stage 14 is positioned at the position shown in FIG. (Alignment mark position information centered on an unillustrated index) is measured almost simultaneously, and based on the measurement result and the measured value of the plate interferometer system 30 at the time of measurement, eight alignment marks The position information (XY coordinate value) in the XY plane of AM is calculated and stored in a memory (not shown).
[0055] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Cで示され る + X方向に所定距離駆動して、図 7 (B)に示される位置に位置決めする。そして、 主制御装置 50は、図 7 (B)の位置にプレートステージ 14を位置決めした状態で、ァ ライメント系 AL;!〜 AL8を用いて 8つのァライメントマーク AMの位置情報(不図示の 指標を中心とするァライメントマークの位置情報)を、ほぼ同時に計測し、この計測結 果と計測時におけるプレート干渉計システム 30の計測値とに基づいて、 8つのァライ メントマーク AMの XY平面内の位置情報 (XY座標値)を算出し、不図示のメモリに記 [0055] After the above measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (B). Then, main controller 50 positions position information (index not shown) of eight alignment marks AM using alignment system AL;! To AL8 with plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered on) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, eight alignment marks are measured. The position information (XY coordinate value) of the ment mark AM in the XY plane is calculated and stored in the memory (not shown).
[0056] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Cで示され る + X方向に所定距離駆動して、図 7 (C)に示される位置に位置決めする。そして、 主制御装置 50は、図 7 (C)の位置にプレートステージ 14を位置決めした状態で、ァ ライメント系 AL;!〜 AL8を用いて 8つのァライメントマーク AMの位置情報(不図示の 指標を中心とするァライメントマークの位置情報)を、ほぼ同時に計測し、この計測結 果と計測時におけるプレート干渉計システム 30の計測値とに基づいて、 8つのァライ メントマーク AMの XY平面内の位置情報 (XY座標値)を算出し、不図示のメモリに記 [0056] After the above measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (C). Then, the main controller 50 positions the eight alignment marks AM using the alignment system AL;! To AL8 (index not shown) with the plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered at the center) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, the eight alignment marks AM within the XY plane are measured. Calculate the position information (XY coordinate value) and store it in the memory (not shown).
[0057] 上記計測終了後、主制御装置 50は、プレート干渉計システム 30で計測されるプレ ートステージ 14の位置情報をモニタしつつ、プレートステージ 14を、矢印 Cで示され る + X方向に所定距離駆動して、図 7 (D)に示される位置に位置決めする。そして、 主制御装置 50は、図 7 (D)の位置にプレートステージ 14を位置決めした状態で、ァ ライメント系 AL;!〜 AL8を用いて 8つのァライメントマーク AMの位置情報(不図示の 指標を中心とするァライメントマークの位置情報)を、ほぼ同時に計測し、この計測結 果と計測時におけるプレート干渉計システム 30の計測値とに基づいて、 8つのァライ メントマーク AMの XY平面内の位置情報 (XY座標値)を算出し、不図示のメモリに記 [0057] After the above measurement is completed, main controller 50 monitors the position information of plate stage 14 measured by plate interferometer system 30 and moves plate stage 14 in the + X direction indicated by arrow C. Drive the distance and position it at the position shown in Fig. 7 (D). Then, main controller 50 positions position information (index not shown) of eight alignment marks AM using alignment system AL;! To AL8 with plate stage 14 positioned at the position shown in FIG. (Alignment mark position information centered at the center) is measured almost simultaneously, and based on the measurement results and the measured values of the plate interferometer system 30 at the time of measurement, the eight alignment marks AM within the XY plane are measured. Calculate the position information (XY coordinate value) and store it in the memory (not shown).
[0058] このように、本実施形態では、 8個のァライメント系 AL;!〜 AL8を使って、プレート 2 2上の 8個のァライメントマークを同時に計測する、ァライメントマークの同時計測を、 4 回行うのみで、 8 X 4 = 32点(8つのショット領域内各 4点)のァライメントマークの位置 情報の計測が可能になっている。 As described above, in the present embodiment, the eight alignment marks AL on the plate 22 are simultaneously measured using the eight alignment marks AL;! To AL8. By performing only 4 times, it is possible to measure the alignment information of 8 X 4 = 32 points (4 points each in 8 shot areas).
[0059] また、これまでの説明から明らかなように、本実施形態の露光装置 10では、 6面取り と、 8面取りの場合とで、ァライメント系 AL;!〜 AL8のうち、少なくとも 6個のァライメント 系を共用することができ、この結果、 6面取りと、 8面取りの場合とで、同一のシーケン スにて、プレート上のァライメントマークの位置情報の計測が可能になっている。換言 すれば、このような同一のシーケンスでの 6面取りと 8面取りとのァライメントを実現す るために、前述の式(1-1)〜式(5)の関係を満たすように、ァライメント系 AL;!〜 AL 8の配置(間隔)を設定して!/、るのである。 [0059] Further, as is clear from the above description, in the exposure apparatus 10 of the present embodiment, at least 6 alignments among alignment systems AL;! To AL8 in the case of 6 chamfering and 8 chamfering. As a result, it is possible to measure alignment mark position information on the plate in the same sequence for 6 and 8 chamfers. In other words If this is the case, in order to achieve such alignment of 6 and 8 chamfers in the same sequence, alignment system AL; ! ~ Set AL 8 layout (interval)! /.
[0060] 次に、本実施形態の露光装置 10で行われる露光動作について説明する。まず、 6 面取りの場合について説明する。  Next, an exposure operation performed by the exposure apparatus 10 of the present embodiment will be described. First, the case of 6 chamfering will be described.
[0061] 投影光学系モジュール PLM1,PLM2それぞれの実質的なイメージフィールドの走 查方向に直交する非走査方向(ここでは、 X軸方向に直交する Y軸方向)の幅は、図 8にも示されるように前述した W3である。また、投影光学系モジュール PLM1,PLM 2のイメージフィールドの近!/、側の端縁同士の前記非走査方向の距離を W1、投影 光学系モジュール PLM1,PLM2のイメージフィールド相互の遠い側の端縁同士の 非走査方向の距離を W2とする。  [0061] The width in the non-scanning direction (here, the Y-axis direction orthogonal to the X-axis direction) perpendicular to the scanning direction of the substantial image field of each of the projection optical system modules PLM1 and PLM2 is also shown in FIG. As mentioned above, it is W3. Also, the distance in the non-scanning direction between the edges of the projection optical modules PLM1 and PLM2 in the non-scanning direction is W1, and the edges of the projection optical modules PLM1 and PLM2 that are far from each other in the image field Let W2 be the distance between them in the non-scanning direction.
[0062] 本実施形態では、 Wl , W2, W3は次式(6)〜(8)をそれぞれ満足するように、設 定されている。  In the present embodiment, Wl, W2, and W3 are set so as to satisfy the following equations (6) to (8), respectively.
[0063] W2≥L2 · · · ½)  [0063] W2≥L2 · · · ½)
Wl≤Ll/4 · ' · (7)  Wl≤Ll / 4 '' (7)
W3≥L2/3 · ' · (8)  W3≥L2 / 3 '' (8)
なお、上記式 ½)〜(8)が成立する限りにおいて、 W3はなるべく小さい方が、装置 コストの点で有利となる。  As long as the above formulas (1) to (8) hold, it is advantageous in terms of apparatus cost that W3 is as small as possible.
[0064] マスクステージ 12A, 12Bにそれぞれ搭載されるマスク 20A, 20Bのそれぞれには 、図 8に示されるように、パターン領域 PA, PBがそれぞれ形成されている。また、ここ では、パターン領域 PA, PBには、同一の表示素子用のパターンが形成されているも のとする。 As shown in FIG. 8, pattern areas PA and PB are formed on the masks 20A and 20B mounted on the mask stages 12A and 12B, respectively. Here, it is assumed that the same pattern for the display element is formed in the pattern areas PA and PB.
[0065] パターン領域 PAは、マスク 12Aの + Y側のブランク領域(パターンが形成されてい なレ、領域)の幅が極力狭く(例えばほぼ零)となり、 Y側のブランク領域の幅が広く なるように、マスク 20Aのマスク基板上に + Y側寄りに形成されている。反対に、パタ ーン領域 PBは、マスク 20Bの Y側のブランク領域の幅が極力狭く(例えばほぼ零) となり、 +Y側のブランク領域の幅が広くなるように、マスク 20Bのマスク基板上に Y 側寄りに形成されている。この結果、図 8に示される、パターン領域 PAと PBとの間隔 PIは、約 L2/3になり、パターン領域の PAと PBとの互いに遠い側の端縁同士の非 走査方向の距離 P2は、約 L2になっている。 [0065] In the pattern area PA, the width of the blank area on the + Y side of the mask 12A (the pattern or area where the pattern is not formed) is as narrow as possible (for example, approximately zero), and the width of the blank area on the Y side is widened. Thus, it is formed on the mask substrate of the mask 20A closer to the + Y side. On the other hand, in the pattern area PB, the width of the blank area on the Y side of the mask 20B is as narrow as possible (eg, almost zero), and the width of the blank area on the + Y side is widened on the mask substrate of the mask 20B. It is formed on the Y side. As a result, the distance between the pattern areas PA and PB shown in Fig. 8 PI is about L2 / 3, and the distance P2 in the non-scanning direction between the far edges of PA and PB in the pattern area is about L2.
[0066] 前提として、不図示の搬送系により、マスクステージ 12A, 12B上にマスク 20A, 20 Bがそれぞれ搭載され、前述したマーク像検出系 MD;!〜 MD6、及びァライメント系 AL1~AL8,並びにマーク板 MP上の基準マークを用いたマスクァライメント及びァ ライメント系 AL;!〜 AL8のベースライン計測など力 通常と同様の手順で行われてい るあのとする。 [0066] As a premise, masks 20A and 20B are mounted on mask stages 12A and 12B by a transport system (not shown), respectively, and the mark image detection system MD;! To MD6, alignment systems AL1 to AL8, and Mark plate MP using mask reference mark and alignment system AL;! ~ AL8 baseline measurement force etc. It is assumed that the procedure is performed in the same way as normal.
[0067] この状態で、主制御装置 50は、前述した手順で、プレート 22 (図 5 (A)参照)上の 合計 24個のァライメントマーク AMの位置情報の計測を行!/、、その計測結果をメモリ に保存する。  [0067] In this state, main controller 50 measures the position information of a total of 24 alignment marks AM on plate 22 (see FIG. 5A) according to the procedure described above! Save measurement results to memory.
[0068] このような準備作業の後、以下の手順で、プレート 22上の 6つのショット領域 S1〜S 6に、マスク 20A, 20Bのパターン領域 PA, PBの転写が行われる。  [0068] After such a preparatory work, the pattern areas PA and PB of the masks 20A and 20B are transferred to the six shot areas S1 to S6 on the plate 22 in the following procedure.
[0069] まず、主制御装置 20は、プレート干渉計システム 30、マスク干渉計システム 28の計 測値をモニタしつつ、事前に行われたァライメントマーク AMの位置情報の計測の結 果、及びベースラインの計測結果に基づいて、プレート 22上のショット領域 SA2, SA 6の露光のための加速開始位置にプレートステージ 14、及びマスクステージ 12A, 1 2Bを、それぞれ移動する。  [0069] First, main controller 20 monitors the measurement values of plate interferometer system 30 and mask interferometer system 28, and the result of measurement of positional information of alignment mark AM performed in advance, and Based on the measurement result of the baseline, the plate stage 14 and the mask stages 12A and 12B are moved to the acceleration start positions for exposure of the shot areas SA2 and SA6 on the plate 22, respectively.
[0070] 次いで、主制御装置 20は、プレートステージ 14を図 1の矢印 A3で示されるように、 + X方向に走査開始し、これと同期して、マスクステージ 12A、 12Bを、それぞれ矢 印 Al , A2で示されるように、走査開始する。  Next, main controller 20 starts scanning plate stage 14 in the + X direction as indicated by arrow A3 in FIG. 1, and in synchronization with this, mask stages 12A and 12B are respectively indicated by arrows. Scanning is started as indicated by Al and A2.
[0071] そして、プレートステージ 14、マスクステージ 12A、 12Bが、 目標走査速度にそれ ぞれ達すると、プレートステージ 14とマスクステージ 12A、及びプレートステージ 14と マスクステージ 12Bが、等速同期状態に達し、所定の整定時間の後、照明光でマス ク 20A, 20Bのパターン領域 PA, PBが照明され始め、プレート 22上のショット領域 S A2, SA6に対する走査露光が開始される。なお、走査露光中に、マスク 20A, 20B のパターン領域 PA, PBの外側の部分に照明光が照射されることがないように、照明 系 18A, 18B内部の不図示の視野絞りが制御されている。  [0071] When the plate stage 14 and the mask stages 12A and 12B reach the target scanning speed, respectively, the plate stage 14 and the mask stage 12A, and the plate stage 14 and the mask stage 12B reach the constant speed synchronization state. After a predetermined settling time, the pattern areas PA and PB of the masks 20A and 20B begin to be illuminated with illumination light, and scanning exposure on the shot areas S A2 and SA6 on the plate 22 is started. During scanning exposure, the field stop (not shown) inside the illumination systems 18A and 18B is controlled so that illumination light is not irradiated to the outside of the pattern areas PA and PB of the masks 20A and 20B. Yes.
[0072] 上述のようにしてプレート 22上のショット領域 SA2, SA6に対する走査露光が開始 された直後の状態が図 9 (A)に模式的に示されている。この図 9 (A)では、図示の便 宜上から、プレート 22 (及びマスク 20A, 20B)が固定で、投影光学系モジュール PL Ml、 PLM2が移動しているかのように図示されている力 実際には、投影光学系モ ジュール PLM1、 PLM2が固定でプレート 22 (及びマスク 20A, 20B)が移動する( 図 1参照)。図 9 (B)から図 9 (D)においても、同様の理由により、プレート 22に対して 投影光学系モジュール PLM1、 PLM2が移動して!/、る力、のように図示されて!/、る。 [0072] As described above, scanning exposure for shot areas SA2 and SA6 on plate 22 is started. The state immediately after being applied is schematically shown in Fig. 9 (A). In FIG. 9 (A), for convenience of illustration, the force shown in the figure is as if the plate 22 (and masks 20A and 20B) are fixed and the projection optical system modules PL Ml and PLM2 are moving. In this case, the projection optical modules PLM1 and PLM2 are fixed, and the plate 22 (and masks 20A and 20B) moves (see FIG. 1). In FIG. 9 (B) to FIG. 9 (D), the projection optical system modules PLM1 and PLM2 are moved relative to the plate 22 for the same reason! The
[0073] そして、プレート 22上のショット領域 SA2, SA6に対する走査露光が終了すると、 プレート 22上のショット領域 SA2, SA6にマスク 20A, 20Bのパターン領域 PA, PB がそれぞれ転写される(図 9 (B)参照)。図 9 (B)においては、陰影線が付されたショッ ト領域が転写済みのショット領域である。図 9 (C)、図 9 (D)においても同様である。  [0073] Then, when the scanning exposure for the shot areas SA2 and SA6 on the plate 22 is completed, the pattern areas PA and PB of the masks 20A and 20B are transferred to the shot areas SA2 and SA6 on the plate 22 (FIG. 9 ( See B)). In FIG. 9 (B), the shot area with the shaded line is the shot area that has been transferred. The same applies to FIGS. 9C and 9D.
[0074] 次いで、主制御装置 50は、プレート干渉計システム 30の計測値をモニタしつつ、 事前に行われたァライメントマーク AMの位置情報の計測の結果、及びベースライン の計測結果に基づいて、プレート 22上のショット領域 SA4の露光のための加速開始 位置にプレートステージ 14を移動させるため、プレートステージ 14を + Y方向にショ ット領域の Y軸方向の寸法とほぼ同一距離移動させる。  [0074] Next, main controller 50 monitors the measurement value of plate interferometer system 30, and based on the result of measurement of position information of alignment mark AM performed in advance and the measurement result of baseline. Then, in order to move the plate stage 14 to the acceleration start position for the exposure of the shot area SA4 on the plate 22, the plate stage 14 is moved in the + Y direction approximately the same distance as the dimension of the shot area in the Y-axis direction.
[0075] 次いで、主制御装置 50は、プレートステージ 14とマスクステージ 12A (及び 12B)と を同期して、それぞれ前と逆向きに走査して、ショット領域 SA4に対する走査露光を 行う。図 9 (B)には、この走査露光が開始された直後の状態が示されている。この場 合、照明系 18Bからの照明光の照射は、主制御装置 50によって停止される。  Next, main controller 50 performs scanning exposure on shot area SA4 by scanning plate stage 14 and mask stage 12A (and 12B) in synchronism with each other in the reverse direction. FIG. 9B shows a state immediately after this scanning exposure is started. In this case, the illumination of illumination light from the illumination system 18B is stopped by the main controller 50.
[0076] 主制御装置 50は、以後同様の手順を繰り返して、プレート 22上のショット領域 SA1 , SA5に対するパターン領域 PA, PBの転写のための同時走査露光(図 9 (C)参照) 、ショット領域 SA3に対するパターン領域 PAの転写のための走査露光(図 9 (D)参 照)を行う。  Main controller 50 repeats the same procedure thereafter, and performs simultaneous scanning exposure for transferring pattern areas PA and PB to shot areas SA1 and SA5 on plate 22 (see FIG. 9C), shots Scan exposure (see Fig. 9 (D)) is performed to transfer pattern area PA to area SA3.
[0077] このようにすることで、 6面取りの露光を 4回の走査露光によって実現することができ  [0077] By doing in this way, six-chamfer exposure can be realized by four scanning exposures.
[0078] 次に、露光装置 10で行われる 8面取りの場合の露光動作について説明する。 Next, an exposure operation in the case of eight chamfering performed by the exposure apparatus 10 will be described.
[0079] この場合、図 10に示されるように、マスク 20A上のパターン領域 PAは、 +Y側のブ ランク領域の幅が広くなり、 Y側のブランク領域の幅が極力狭くなる(例えばほぼ零 になる)ように、マスク 20Aのマスク基板上に一 Y側寄りに形成されている。反対に、 パターン領域 ΡΒは、 Υ側のブランク領域の幅が広くなり、 +Υ側のブランク領域の 幅が極力狭くなる(例えばほぼ零になる)ように、マスク 20Βのガラス基板上に— Υ側 に偏って形成されている。この結果、間隔 P1が約 L1/4になり、かつ距離 Ρ2が約 3 X (L1/4)になっている。 In this case, as shown in FIG. 10, in the pattern area PA on the mask 20A, the width of the blank area on the + Y side becomes wide, and the width of the blank area on the Y side becomes as narrow as possible (for example, approximately zero Is formed on the mask substrate of the mask 20A so as to be closer to the Y side. On the other hand, the pattern area ΡΒ is placed on the glass substrate of the mask 20 — so that the width of the blank area on the heel side becomes wider and the width of the blank area on the heel side becomes as narrow as possible (for example, almost zero). It is biased to the side. As a result, the interval P1 is about L1 / 4, and the distance Ρ2 is about 3 X (L1 / 4).
[0080] 主制御装置 50は、上述した 6面取りの場合と同一のシーケンス(照明系 18Bの制御 は一部異なる)により、ステップ'アンド '·スキャン方式の露光を実行することで、ショット 領域 SA2, SA6に対するパターン領域 PA, ΡΒのほぼ同時転写(図 11 (A)参照)、 ショット領域 SA4, SA8に対するパターン領域 PA, ΡΒのほぼ同時転写(図 11 (B)参 照)、ショット領域 SA1 , SA5に対するパターン領域 PA, ΡΒのほぼ同時転写(図 11 ( C)参照)、ショット領域 SA3, SA7に対するパターン領域 PA, ΡΒのほぼ同時転写( 図 11 (D)参照)を行う。すなわち、 8面取りを 4回の走査露光で実現することができる 。なお、図 11 (A)〜図 11 (D)では、直前にパターン領域の転写が行われたショット 領域が陰影線を付して示され、それ以前にパターン領域の転写が行われたショット領 域が網目模様を付して示されて!/、る。  [0080] Main controller 50 performs step-and-scan exposure by the same sequence as in the case of the above-described six chamfering (partially different control of illumination system 18B), so that shot area SA2 , Pattern area PA, ΡΒ almost simultaneously transferred to SA6 (see Fig. 11 (A)), pattern area PA, に 対 す る almost transferred to shot area SA4, SA8 (see Fig. 11 (B)), shot area SA1,, The pattern areas PA and に 対 す る are transferred almost simultaneously to SA5 (see FIG. 11C), and the pattern areas PA and に 対 す る are transferred almost simultaneously to the shot areas SA3 and SA7 (see FIG. 11D). In other words, eight chamfering can be realized with four scanning exposures. In FIGS. 11A to 11D, the shot area where the pattern area has been transferred immediately before is shown with a shadow line, and the shot area where the pattern area has been transferred before that is shown. The area is shown with a mesh pattern!
[0081] また、基板を 90度回転させて基板の長辺と短辺とを変更し、 6面取りと 8面取りとを 変更した場合においても、共に 4回の走査露光で実現することができるので、スルー プットをほぼ同じとすることができる。  [0081] Further, even when the substrate is rotated 90 degrees to change the long side and the short side of the substrate to change the 6 chamfering and the 8 chamfering, both can be realized by four scanning exposures. The throughput can be almost the same.
[0082] また、本実施形態によると、 6面取りと 8面取りとの場合に、同一のシーケンスに従つ て、少なくともプレートステージ 14と、マスクステージ 12A, 12Bとを駆動することがで きるので、コータ 'デベロツバとのインライン接続などを行う場合であっても、 6面取り、 8面取りに関わらず、タクトタイムをほぼ一定にすることができるとともに、露光装置とコ ータ .デベロツバとを含むライン全体のパフォーマンスを維持することができる。  Further, according to the present embodiment, in the case of 6 chamfering and 8 chamfering, at least the plate stage 14 and the mask stages 12A and 12B can be driven according to the same sequence. Even when in-line connection with the coater / developers is possible, the tact time can be made almost constant regardless of whether the chamfering is done with 6 or 8 chamfers, and the entire line including the exposure system and the coater / developers. Performance can be maintained.
[0083] 以上説明したように、本実施形態によると、プレート 22上に m行 η列 (m≥n)、例え ば 3行 2列、又は 4行 2列のパターン領域(ショット領域)を形成する際に、プレート 22 上でマトリクスの列方向に平行な Y軸方向に関してショット領域の Y軸方向の寸法と 同じ距離だけ離間した 2つのショット領域 (パターン領域)の形成と、プレート 22の Y 軸方向への移動とが交互に繰り返されるように、主制御装置 50により、照明系 18A, 18B及びマスクステージ 12A, 12B (マスクステージ駆動系 24A, 24B)と、プレート ステージ 14 (プレートステージ駆動系 26)が制御される。これにより、最大でも { (m— 1) X n}回の露光、すなわち目標とするパターン領域の数(面取り数)(m X n)より少 ない回数の露光で、プレート 22上に m行 n歹 l] (m≥n)のショット領域(パターン領域) を形成すること力できる。従って、 目標とする面取り数と同じ回数 (m X n)回の露光で プレート 22上に(m X n)個のパターン領域を形成して!/、た場合に比べて、スループ ットの向上を図ることができる。 [0083] As described above, according to the present embodiment, a pattern region (shot region) of m rows and η columns (m≥n), for example, 3 rows and 2 columns, or 4 rows and 2 columns, is formed on the plate 22. The two shot areas (pattern areas) separated by the same distance as the dimension in the Y-axis direction of the shot area in the Y-axis direction parallel to the column direction of the matrix on the plate 22, and the Y-axis of the plate 22 The main controller 50 causes the lighting system 18A, 18B and mask stages 12A and 12B (mask stage drive systems 24A and 24B) and plate stage 14 (plate stage drive system 26) are controlled. As a result, at most ((m – 1) X n} exposures, that is, exposures that are less than the target number of pattern areas (number of chamfers) (m X n), m rows n on the plate 22歹 l] (m≥n) can form a shot area (pattern area). Therefore, the throughput is improved compared to the case where (m X n) pattern areas are formed on the plate 22 with the same number of exposures (m X n) as the target chamfer number! Can be achieved.
[0084] また、本実施形態に係る露光装置 10によると、照明系 18A, 18Bにより複数のマス ク 20A, 20Bをほぼ同時に照明光で照明した状態で、主制御装置 50は、マスクステ ージ駆動系 24A, 24B及びプレートステージ駆動系 26を介して、プレート 22が搭載 されたプレートステージ 14に同期して各マスク 20A, 20Bが走査方向に走査されるよ うに、マスクステージ 12A, 12Bとプレートステージ 14とを駆動することができる。これ により、複数のマスクにそれぞれ形成されたパターンを、対応する投影光学系モジュ 一ノレ PLM1 , PLM2力 蓆える各 5つの投景光学ユニット 16A, 16B, 16C, 16D, 16 Eをそれぞれ介してプレート 22上の異なる領域にほぼ同時に転写することができる。 すなわち、走査露光方式で、プレート 22上の異なる領域に複数のマスクにそれぞれ 形成されたパターンを転写することができる。従って、一回の走査露光でプレート 22 上に 1つのパターン領域を形成する場合に比べて、スループットの向上が可能になるIn addition, according to exposure apparatus 10 according to the present embodiment, main controller 50 drives mask stage while illumination systems 18A and 18B illuminate a plurality of masks 20A and 20B with illumination light almost simultaneously. The mask stages 12A and 12B and the plate stage are scanned in the scanning direction in synchronization with the plate stage 14 on which the plate 22 is mounted via the systems 24A and 24B and the plate stage drive system 26. 14 can be driven. As a result, the patterns formed on each of the plurality of masks can be platened through the five projection optical units 16A, 16B, 16C, 16D, and 16E, respectively, which can support the corresponding projection optical system modules PLM1 and PLM2. It can be transferred to different areas on 22 almost simultaneously. That is, the patterns formed on the plurality of masks can be transferred to different regions on the plate 22 by the scanning exposure method. Therefore, the throughput can be improved compared to the case where one pattern area is formed on the plate 22 by one scanning exposure.
Yes
[0085] なお、これまでの説明では、第 2層目以降の露光を行う場合について説明したが、 第 1層目の露光に際しても、前述したシーケンスにより、 目標とするパターン領域の数 (面取り数)(m X n)より少ない回数の露光で、 目標とする数のパターン領域をプレー ト 22上に形成できる。  In the description so far, the case of performing exposure for the second and subsequent layers has been described, but the number of target pattern areas (number of chamfers) is also determined during the exposure of the first layer by the above-described sequence. ) The target number of pattern areas can be formed on the plate 22 with fewer exposures than (m X n).
[0086] また、本実施形態によると、ァライメント系 AL;!〜 AL8のうちの少なくとも一部のァラ ィメント系により、プレート 22上の同時に露光対象となる各 2つのショット領域それぞ れの内部の両端部近傍に形成された各 2つのァライメントマーク AMの同時検出が 可能であることから、露光対象となるショット領域毎にその内部のァライメントマークを 検出する場合に比べて、マーク検出処理に要する時間の短縮化、ひいてはスループ ットの向上を図ることが可能である。 [0086] Further, according to the present embodiment, the interior of each of the two shot areas that are simultaneously exposed on the plate 22 by at least some of the alignment systems AL;! To AL8. Because it is possible to detect two alignment marks AM formed in the vicinity of both ends of the mark at the same time, the mark detection process is performed compared to the case of detecting the alignment marks inside each shot area to be exposed. Shortens the time it takes to complete, and in turn sloops It is possible to improve the network.
[0087] また、上述した説明から明らかなように、本実施形態によると、大型プレートからの 6 面取り、又は 8面取りを行うに際し、いずれの場合も大型マスクを使うことなく小型のマ スクを用いた 4回の走査露光で足りるので、装置のコストパフォーマンスを向上させる こと力 Sできる。また、大型マスクを必要としないため、基板が大型化しても、大型マスク 製造のためのインフラも不要である。  Further, as is clear from the above description, according to the present embodiment, when performing 6 chamfering or 8 chamfering from a large plate, in any case, a small mask is used without using a large mask. The four scan exposures required can improve the cost performance of the equipment. In addition, since a large mask is not required, infrastructure for manufacturing a large mask is not required even if the substrate is enlarged.
[0088] なお、上記実施形態では、プレート 22上に、マトリクスの列に平行な所定方向に関 してパターン領域 (ショット領域)の前記所定方向の寸法と同じ距離だけ離間した 2つ のパターン領域を同時に形成する、すなわちそのような 2つのショット領域を同時に露 光する場合について説明した力 本発明がこれに限定されるものではない。すなわち 、マトリクスの列に平行な所定方向に関してパターン領域 (ショット領域)の前記所定 方向の寸法の自然数 k倍、例えば 2倍、 3倍だけ離間した 2つのパターン領域をプレ ート(基板)上に形成することとしても良いし、 2つのパターン領域に限らず、 3つ以上 のパターン領域を、基板上に同時に形成することとしても良い。いずれにしても、 目 標とするパターン領域の数(面取り数)(m X n)より少ない回数の露光で、 目標とする 数のパターン領域をプレート 22上に形成できる。  [0088] In the above embodiment, two pattern regions on the plate 22 are separated by the same distance as the dimension of the pattern region (shot region) in the predetermined direction with respect to a predetermined direction parallel to the matrix column. However, the present invention is not limited to this. That is, two pattern areas separated by a natural number k times, for example, twice or three times the dimension of the pattern area (shot area) in the predetermined direction with respect to a predetermined direction parallel to the matrix column are placed on the plate (substrate). It may be formed, or not limited to two pattern areas, but three or more pattern areas may be simultaneously formed on the substrate. In any case, the target number of pattern areas can be formed on the plate 22 with a smaller number of exposures than the number of target pattern areas (the number of chamfers) (m X n).
[0089] また、上記実施形態では、 6面取り、又は 8面取りについて説明したが、これに限ら ず、上記実施形態と同様に 2つのマスクを用い、その 2つのマスクの非走査方向の間 隔をマトリクスの行数 mに応じて設定することで、 mが偶数の場合、(m/2 X n)回の 露光により、基板上にマトリクス状の配置で m X n個のパターン領域を形成することと しても良い。また、この場合において、 mが奇数の場合、 Km+ l) /2 X n}回の露光 により、前記基板上にマトリクス状の配置で m X n個のパターン領域を形成することと すれば良い。ここで、 mが偶数の場合には、上記の 2つのマスクの非走査方向の間 隔は、パターン領域の非走査方向の寸法の k= (m/2— 1)倍の距離にする。また、 mが奇数の場合には、 2つのマスクの非走査方向の間隔は、パターン領域の非走査 方向の寸法の k= { (m+ 1) /2— 1 }倍の距離にする。  Further, in the above embodiment, 6 chamfering or 8 chamfering has been described. However, the present invention is not limited to this, and two masks are used as in the above embodiment, and the interval between the two masks in the non-scanning direction is set. By setting according to the number of rows m in the matrix, if m is an even number, m x n pattern areas are formed in a matrix on the substrate by (m / 2 X n) exposures. It is also possible. In this case, if m is an odd number, m x n pattern regions may be formed in a matrix arrangement on the substrate by Km + l) / 2 X n} exposures. Here, when m is an even number, the distance between the two masks in the non-scanning direction is a distance k = (m / 2−1) times the dimension of the pattern region in the non-scanning direction. When m is an odd number, the distance between the two masks in the non-scanning direction is a distance k = {(m + 1) / 2−1} times the dimension of the pattern region in the non-scanning direction.
[0090] なお、上記実施形態では、マスク 20A, 20Bが、別々のマスクステージに搭載され る場合について説明した力 S、これに限らず、単一のマスクステージ上にマスク 20A, 2 OB力 S、非走査方向に関して所定距離隔てて配置されていても良い。かかる場合には 、走査露光に際して、そのマスクステージを、プレートステージ 14に同期して走査す ることで、マスク 20A, 20Bのパターン領域 PA, PBを、プレート 22上にほぼ同時に 転写することが可能になる。この場合、マスク 20A, 20Bは、マスクステージ上で個別 に位置調整が可能であることが望ましレ、。 In the above-described embodiment, the force S described for the case where the masks 20A and 20B are mounted on separate mask stages is not limited to this, and the masks 20A and 2 are not limited to a single mask stage. The OB force S and the non-scanning direction may be arranged at a predetermined distance. In such a case, the pattern stage PA and PB of the masks 20A and 20B can be transferred onto the plate 22 almost simultaneously by scanning the mask stage in synchronization with the plate stage 14 during scanning exposure. become. In this case, it is desirable that the positions of the masks 20A and 20B can be individually adjusted on the mask stage.
[0091] また、上記実施形態の露光装置を用いて露光を行う場合に、マスク 20A, 20Bのパ ターン領域を複数に分割し、各分割領域に同一のパターンを形成し、上記実施形態 と同様のシーケンス(4回の走査露光)で露光を行うことで、小さなサイズのパターン 領域をより多くプレート 22上に形成できる。例えば、マスク 20A, 20Bのパターン領 域を走査方向に関して 3分割することで、 3行 6列のマトリクス状の配置で 18個のバタ ーン領域をプレート 22上に形成できる。この場合において、例えば 4回の走査露光 のうち、一部の露光、例えば最初の 2回の露光では、マスク 20A, 20Bの 3つの分割 領域のうちの一部、例えば 2つの分割領域のみを、プレート 22上に転写することとし ても良い。この場合には、 3行 5列のマトリクス状の配置で 15個のパターン領域をプレ ート 22上に形成できる。また、マスク 20A, 20Bのパターン領域を 4分割(走査方向 に 2分割、かつ非走査方向に 2分割)することで、 6行 4列のマトリクス状の配置で 24 個のパターン領域をプレート 22上に形成できる。  [0091] When exposure is performed using the exposure apparatus of the above embodiment, the pattern areas of the masks 20A and 20B are divided into a plurality of parts, and the same pattern is formed in each of the divided areas. By performing exposure in this sequence (four times of scanning exposure), a larger number of small-sized pattern regions can be formed on the plate 22. For example, by dividing the pattern area of the masks 20A and 20B into three in the scanning direction, 18 pattern areas can be formed on the plate 22 in a 3 × 6 matrix arrangement. In this case, for example, a part of the four scanning exposures, for example, the first two exposures, a part of the three divided areas of the masks 20A and 20B, for example, only two divided areas, It may be transferred onto the plate 22. In this case, 15 pattern regions can be formed on the plate 22 in a 3 × 5 matrix arrangement. In addition, by dividing the pattern area of the masks 20A and 20B into 4 (2 divisions in the scanning direction and 2 divisions in the non-scanning direction), 24 pattern areas are arranged on the plate 22 in a 6-by-4 matrix arrangement. Can be formed.
[0092] また、上記実施形態では、面取り数に対応してマスク上のパターンの形成位置 (描 画位置)を調整する場合について説明した力 これに限らず、マスクの Y軸方向の位 置を調整することとしてあ良い。  In the above embodiment, the force described for adjusting the pattern formation position (drawing position) on the mask in accordance with the number of chamfers is not limited to this, and the position of the mask in the Y-axis direction is not limited to this. Good as an adjustment.
[0093] すなわち、例えば 6面取りの場合、図 12 (A)に示されるように、マスクステージ 12A を介してマスク 20Aを矢印 ylで示される + Y方向に駆動するとともに、マスクステー ジ 12Bを介してマスク 20Bを矢印 y2で示される一 Y方向に駆動することで、パターン 領域 PA, PBの間隔 P1が約 L2/3になり、パターン領域の PAと PBとの互いに遠い 側の端縁同士の非走査方向の距離 P2が約 L2になるようにしても良い。この場合、マ スク 20A, 20Bの非走査方向の幅がほぼ L2/3あれば足りるので、前述の実施形態 に比べてマスクを小さくできるメリットがある。  That is, for example, in the case of 6 chamfering, as shown in FIG. 12 (A), the mask 20A is driven in the + Y direction indicated by the arrow yl through the mask stage 12A and the mask stage 12B. By driving the mask 20B in the Y direction indicated by the arrow y2, the distance P1 between the pattern areas PA and PB is about L2 / 3, and the distance between the far edges of the pattern areas PA and PB The distance P2 in the non-scanning direction may be about L2. In this case, it is sufficient that the width of the masks 20A and 20B in the non-scanning direction is approximately L2 / 3, which is advantageous in that the mask can be made smaller than in the above-described embodiment.
[0094] また、例えば 8面取りの場合、図 12 (B)に示されるように、マスクステージ 12Aを介 してマスク 20Aを矢印 y3で示される一 Y方向に駆動するとともに、マスクステージ 12 Βを介してマスク 20Βを矢印 y4で示される + Υ方向に駆動することで、パターン領域 PA, PBの間隔 P1が約 L1/4になり、パターン領域の PAと PBとの互いに遠い側の 端縁同士の非走査方向の距離 P2が約 3 X (L1/4)になるようにしても良い。 [0094] Further, for example, in the case of eight chamfering, as shown in Fig. 12B, the mask stage 12A is interposed. Then, the mask 20A is driven in the Y direction indicated by the arrow y3 and the mask 20Β is driven in the + Υ direction indicated by the arrow y4 via the mask stage 12 Β so that the distance between the pattern areas PA and PB is P1. May be about L1 / 4, and the distance P2 in the non-scanning direction between the far edges of PA and PB in the pattern area may be about 3 X (L1 / 4).
[0095] ところで、プレートの外周部では成膜やレジスト塗布で、ムラが発生しやすぐ外周 部をデバイスの製造に使用しないことがある。このような場合、プレートの外縁より僅 かに内側(概ね 10〜20mm)を有効領域とする。このような有効領域がある場合には 、上記実施形態におけるプレートのサイズ (L1 X L2)を、有効エリア寸法に置き換え れば良い。 [0095] By the way, in the outer periphery of the plate, unevenness may occur due to film formation or resist coating, and the outer periphery may not be used immediately for device manufacture. In such cases, the effective area should be slightly inside (approximately 10 to 20 mm) from the outer edge of the plate. If there is such an effective area, the plate size (L1 X L2) in the above embodiment may be replaced with the effective area dimension.
[0096] また、上記実施形態では、マスク 20Aの一方の面とマスク 20Bの一方の面とには、 パターン領域に同じパターンが形成された場合について説明した力 S、マスク 20Aとマ スク 20Bとのパターン領域に異なるパターンを形成しても良い。  [0096] In the above embodiment, the force S, the mask 20A and the mask 20B described in the case where the same pattern is formed in the pattern region on one surface of the mask 20A and the one surface of the mask 20B. Different patterns may be formed in the pattern region.
[0097] さらに、パターン領域に互いに異なるパターンが形成されたマスク 20Aとマスク 20B 、及び投影光学系モジュール PLM1、 PLM2を用いて、プレート 22の各ショット領域 に対して二重露光を行っても良い。  Further, double exposure may be performed on each shot region of the plate 22 using the mask 20A and the mask 20B in which different patterns are formed in the pattern region, and the projection optical system modules PLM1 and PLM2. .
[0098] また、上記各実施形態において、照明光として、例えば DFB半導体レーザ又はフ アイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えば エルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプ で増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。  [0098] In each of the above embodiments, as illumination light, for example, infrared or visible single wavelength laser light oscillated from a DFB semiconductor laser or fiber laser is used, for example, erbium (or both erbium and ytterbium). ) May be used, and harmonics that are amplified with a fiber amplifier doped with light and then converted into ultraviolet light using a nonlinear optical crystal may be used.
[0099] また、光源としては、波長 157nmの Fレーザ光、波長 146nmの Krエキシマレー ザ光、波長 126nmの Arエキシマレーザ光などの真空紫外光を発生する光源を使 用しても良い。また、固体レーザ(波長: 355nm、 266nm)などを使用しても良い。  [0099] Further, as the light source, a light source that generates vacuum ultraviolet light such as F laser light having a wavelength of 157 nm, Kr excimer laser light having a wavelength of 146 nm, Ar excimer laser light having a wavelength of 126 nm may be used. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
[0100] なお、上記実施形態では、投影光学系モジュール PLM1 , PLM2力 5本の投影 光学ユニットを備えたマルチレンズ方式の投影光学系である場合について説明した 力、投影光学ユニットの本数はこれに限らず、 1本以上あれば良い。また、マルチレン ズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などで あっても い。  [0100] In the above embodiment, the projection optical system modules PLM1 and PLM2 have been explained for the case of a multi-lens projection optical system having five projection optical units, and the number of projection optical units is Not limited to one or more. The projection optical system is not limited to a multilens projection optical system, and may be a projection optical system using an Offner type large mirror.
[0101] また、上記実施形態では投影光学系モジュール PLM1 , PLM2として、投影倍率 が等倍のものを用いる場合について説明したが、これに限らず、投影光学系は縮小 系及び拡大系のいずれでも良い。特に、投影光学系として、拡大系を用いる場合に は、より小さなマスクを使用することが可能になるためマスクステージの小型化、及び 照明系の小型化が可能となる。また、このため、マスクステージの制御性能の向上が 期待できるとともに、マスクステージや照明系の配置の自由度が向上するというメリット もある。但し、この場合には、マスク上に形成されるパターンのうち、非走査方向に隣 接するパターンの投影像同士力 プレート上で重ならないように、投影光学系の拡大 率 (投影倍率)を考慮して、パターンのレイアウトを設計する必要がある。また、投影 光学系は、屈折系、反射系及び反射屈折系のいずれでも良いし、その投影像は倒 立像であっても良い。 [0101] In the above embodiment, the projection optical system modules PLM1 and PLM2 are used as projection magnifications. However, the present invention is not limited to this, and the projection optical system may be either a reduction system or an enlargement system. In particular, when an enlargement system is used as the projection optical system, it is possible to use a smaller mask, so that the mask stage can be downsized and the illumination system can be downsized. For this reason, the control performance of the mask stage can be expected to be improved, and the degree of freedom of arrangement of the mask stage and illumination system is improved. However, in this case, the magnification of the projection optical system (projection magnification) is taken into consideration so that projection images of patterns adjacent to each other in the non-scanning direction among the patterns formed on the mask do not overlap on the force plate. Therefore, it is necessary to design the layout of the pattern. The projection optical system may be any of a refractive system, a reflective system, and a catadioptric system, and the projected image may be an inverted image.
なお、上記実施形態においては、光透過性のマスク基板上に所定の遮光パターン (又は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマス クに代えて、例えば米国特許第 6 , 778 , 257号明細書に開示されているように、露 光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、ある いは発光パターンを形成する電子マスク(可変成形マスク)を用いても良レ、。例えば、 非発光型画像表示素子(空間光変調器とも呼ばれる)の一種である DMD (Digital M icro-mirror Device)を用いる可変成形マスクを用いる場合、その可変成形マスクを 2 つ用意し、その 2つの可変成形マスクを、非走査方向(Y軸方向)に所定間隔を隔て てほぼ同一面上に配置する。そして、露光の際には、互いに近い側の端縁同士の非 走査方向の間隔が前述した P 1で、互いに遠い側の端縁同士の非走査方向の距離 が前述した P2となる条件を満足する範囲内のミラー素子群のみを、パターンの生成 に用いることとすれば良い。すなわち、範囲外のミラー素子を、常時オフ状態とし、範 囲内にある 2つのミラー素子群に含まれる各ミラー素子をパターンデータに応じてォ ンオフしてパターン情報を含む光を発生させ、その 2つの可変成形マスクで発生され るパターン情報を含む光の変化に同期して、基板 (プレート 22)を走査方向に移動さ せれば良い。これにより、 2つの可変成形マスクで発生されるパターン情報を含む光 に対応するパターンが走査露光方式でプレート 22上の 2つの領域に投影光学系を 介して転写される。この場合において、可変成形マスクは、 Y軸方向の長さが前述し た P2以上あるものであれば、 1つのみ設けられていても良い。かかる場合には、上記 の範囲内にある 2つのミラー素子群に対応する 2つのミラー素子群のみをパターンの 生成に用いることとすれば良い。従って、この可変成形マスクを用いる走査型露光装 置では、前述した実施形態と同様の制御シーケンスを採用することで、プレート 22上 でマトリクスの列方向に平行な Y軸方向に関してショット領域の Y軸方向の寸法と同 一距離だけ離間した 2つのショット領域 (パターン領域)の形成と、プレート 22の Y軸 方向への移動とが交互に繰り返されるように、制御装置により、その可変成形マスクと 、プレートステージ 14 (プレートステージ駆動系 26)が制御される。これにより、上記 実施形態と同等の効果を得ることができる。 In the above embodiment, force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern') is formed on a light-transmitting mask substrate can be used instead of this mask. As disclosed in US Pat. No. 6,778,257, an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed You can use it. For example, when using a variable molding mask that uses a DMD (Digital Micro-mirror Device), which is a type of non-light emitting image display element (also called a spatial light modulator), prepare two variable molding masks. Two variable molding masks are arranged on substantially the same plane at a predetermined interval in the non-scanning direction (Y-axis direction). Then, during exposure, the distance between the edges close to each other in the non-scanning direction is P1 described above, and the distance between the edges farther from each other in the non-scanning direction satisfies P2 described above. Only the mirror element group within the range to be used may be used for pattern generation. That is, a mirror element outside the range is always turned off, and each mirror element included in the two mirror element groups within the range is turned off according to the pattern data to generate light including pattern information. The substrate (plate 22) may be moved in the scanning direction in synchronization with a change in light including pattern information generated by two variable shaping masks. As a result, the pattern corresponding to the light including the pattern information generated by the two variable shaping masks is transferred to the two regions on the plate 22 through the projection optical system by the scanning exposure method. In this case, the variable molding mask has the length in the Y-axis direction as described above. If there is more than P2, only one may be provided. In such a case, only two mirror element groups corresponding to two mirror element groups within the above range may be used for pattern generation. Therefore, in the scanning type exposure apparatus using this variable shaping mask, the same control sequence as that of the above-described embodiment is adopted, so that the Y axis of the shot area with respect to the Y axis direction parallel to the column direction of the matrix on the plate 22 is used. In order to alternately repeat the formation of two shot areas (pattern areas) separated by the same distance as the dimension in the direction and the movement of the plate 22 in the Y-axis direction, the variable molding mask and The plate stage 14 (plate stage drive system 26) is controlled. Thereby, an effect equivalent to that of the above embodiment can be obtained.
[0103] なお、これまでは、本発明が、プレート(基板)のステップ ·アンド 'スキャン動作を伴 う走査型露光を行う投影露光装置に適用された場合について説明したが、これに限 らず、本発明は、投影光学系を用いない、プロキシミティ方式の露光装置にも適用す ること力 Sできる。また、本発明は、ステップ ·アンド'リピート方式の露光装置(いわゆる ステツパ)あるいはステップ ·アンド'ステイッチ方式の露光装置にも適用することがで きる。このような露光装置であっても、基板上の所定方向に離れた少なくとも 2つのパ タ一ン領域を同時に形成する工程と、基板を前記所定方向に移動する工程とを交互 に繰り返すことで、上記実施形態と同等の効果を得ることができる。  Heretofore, the case where the present invention is applied to a projection exposure apparatus that performs scanning exposure involving step-and-scan operation of a plate (substrate) has been described, but the present invention is not limited thereto. The present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system. The present invention can also be applied to a step-and-repeat exposure apparatus (so-called stepper) or a step-and-stitch exposure apparatus. Even in such an exposure apparatus, by alternately repeating the step of simultaneously forming at least two pattern regions separated in a predetermined direction on the substrate and the step of moving the substrate in the predetermined direction, An effect equivalent to that of the above embodiment can be obtained.
[0104] この他、例えば米国特許出願公開第 2005/0259234号明細書などに開示され る、投影光学系とウェハとの間に液体が満たされる液浸型露光装置などに本発明を 適用しても良い。  In addition, the present invention is applied to, for example, an immersion type exposure apparatus in which a liquid is filled between a projection optical system and a wafer as disclosed in, for example, US Patent Application Publication No. 2005/0259234. Also good.
[0105] また、例えば国際公開第 2001/035168号パンフレットに開示されているように、 干渉縞をウェハ上に形成することによって、ウェハ上にライン'アンド 'スペースパター ンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。  Further, as disclosed in, for example, pamphlet of International Publication No. 2001/035168, an exposure apparatus (lithography) that forms line and space patterns on a wafer by forming interference fringes on the wafer. The present invention can also be applied to a system.
[0106] また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転 写する液晶用の露光装置に限定されることなぐ例えば半導体製造用の露光装置、 薄膜磁気ヘッド、マイクロマシン及び DNAチップなどを製造するための露光装置に も広く適用できる。また、半導体素子などのマイクロデバイスだけでなぐ光露光装置 、 EUV露光装置、 X線露光装置、及び電子線露光装置などで使用されるレチクル又 はマスクを製造するために、ガラス基板又はシリコンウェハなどに回路パターンを転 写する露光装置にも本発明を適用できる。なお、露光対象となる物体はガラスプレー トに限られるものでなぐ例えばウェハ、セラミック基板、フィルム部材、あるいはマスク
Figure imgf000028_0001
Further, the use of the exposure apparatus is not limited to an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate. For example, an exposure apparatus for semiconductor manufacturing, a thin film magnetic head, a micromachine, It can be widely applied to an exposure apparatus for manufacturing DNA chips and the like. In addition, reticles or reticles used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc., which are made only by microdevices such as semiconductor elements. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate or a silicon wafer in order to manufacture a mask. Note that the object to be exposed is not limited to a glass plate. For example, a wafer, a ceramic substrate, a film member, or a mask.
Figure imgf000028_0001
[0107] なお、これまでは、 (m X n)回より少ない回数の、少なくとも基板のスキャン動作によ り、基板上にマトリクス状の配置で (m X n)個のパターン領域を形成する露光装置に について説明したが、スキャン動作により、基板上にマトリクス状の配置で (m X n)個 のパターン領域を形成する方法は、露光装置に限らず、例えば、特開 2004— 1303 12号公報などに開示される,インクジェットヘッド群と同様のインクジェット式の機能 性液体付与装置を備えた素子製造装置を用いても実現可能である。  Note that, until now, exposure that forms (m X n) pattern regions in a matrix arrangement on the substrate at least by a scan operation of the substrate, which is less than (m X n) times. Although the apparatus has been described, a method of forming (m X n) pattern regions in a matrix arrangement on a substrate by a scanning operation is not limited to an exposure apparatus, for example, Japanese Patent Laid-Open No. 2004-130312 It is also possible to use an element manufacturing apparatus equipped with an ink jet type functional liquid application device similar to the ink jet head group disclosed in the above.
[0108] 上記公開公報に開示されるインクジェットヘッド群は、所定の機能性液体 (金属含 有液体、感光材料など)をノズル(吐出口 )から吐出して基板 (例えば PET、ガラス、 シリコン、紙など)に付与するインクジェットヘッドを複数有している。従って、このイン クジェットヘッド群のような機能性液体付与装置を 2つ用意し、この 2つの機能性液体 付与装置を、非走査方向 (Y軸方向)に所定間隔を隔ててほぼ同一面上に配置する 。この場合互いに近い側の端縁同士の非走査方向の間隔が前述した P1で、互いに 遠い側の端縁同士の非走査方向の距離が前述した P2となる条件を満足する範囲内 のインクジェットヘッドのみを、パターンの生成に用いることとすれば良い。すなわち、 範囲外のインクジェットヘッドを、常時オフ状態とし、範囲内にある 2つのインクジェット ヘッド群に含まれる各インクジェットヘッドをパターンデータに応じてオンオフして機 能性液体を基板に付与し、その 2つのインクジェットヘッド群に含まれる各インクジエツ トヘッドのオンオフに同期して、基板を走査方向に移動させれば良い。これにより、 2 つの機能性液体付与装置で付与される機能性液体により基板上に 2つのパターン領 域が形成される。この 2つの機能性液体付与装置を備えた素子製造装置では、前述 した実施形態と同様の制御シーケンスを採用して、機能性液体付与装置と、基板を 保持する基板ステージとを制御することとしても良い。このようにすると、基板上でマト リクスの列方向に平行な Y軸方向に関してパターン領域の Y軸方向の寸法の自然数 k倍だけ離間した 2つのショット領域 (パターン領域)の形成と、基板の Y軸方向への 移動とを交互に繰り返すことで、基板上にマトリクス状の配置で (m X n)個のパターン 領域を形成することができる。この場合にも、(m X n)回より少ない回数のスキャン動 作により、基板上にマトリクス状の配置で (m X n)個のパターン領域を形成することが できる。また、この 2つの機能性液体付与装置を備えた素子製造装置では、基板を固 定して、機能性液体付与装置を走査方向にスキャンしても良いし、基板と機能性液 体付与装置とを相互に逆向きに走査しても良い。 [0108] The ink jet head group disclosed in the above publication discloses a substrate (for example, PET, glass, silicon, paper, etc.) by discharging a predetermined functional liquid (metal-containing liquid, photosensitive material, etc.) from a nozzle (discharge port). Etc.) are provided. Therefore, two functional liquid applicators such as the ink jet heads are prepared, and these two functional liquid applicators are arranged on substantially the same plane at a predetermined interval in the non-scanning direction (Y-axis direction). Deploy . In this case, only the inkjet heads within the range satisfying the condition that the distance between the edges close to each other in the non-scanning direction is P1, and the distance between the edges farther from each other in the non-scanning direction is P2 described above. May be used for pattern generation. That is, an inkjet head outside the range is always turned off, and each inkjet head included in the two inkjet head groups within the range is turned on / off according to the pattern data to apply the functional liquid to the substrate. The substrate may be moved in the scanning direction in synchronization with the on / off of each ink jet head included in one ink jet head group. As a result, two pattern areas are formed on the substrate by the functional liquid applied by the two functional liquid applying apparatuses. In the element manufacturing apparatus including these two functional liquid application apparatuses, the same control sequence as that of the above-described embodiment may be adopted to control the functional liquid application apparatus and the substrate stage that holds the substrate. good. In this way, the formation of two shot areas (pattern areas) separated by a natural number k times the dimension in the Y-axis direction of the pattern area with respect to the Y-axis direction parallel to the matrix column direction on the substrate, and the substrate Y Axially By alternately repeating the movement, (m X n) pattern regions can be formed in a matrix arrangement on the substrate. Also in this case, (m X n) pattern regions can be formed in a matrix arrangement on the substrate by a scan operation less than (m X n) times. Further, in the element manufacturing apparatus provided with these two functional liquid application devices, the substrate may be fixed, and the functional liquid application device may be scanned in the scanning direction, or the substrate, the functional liquid application device, May be scanned in opposite directions.
[0109] なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開パン フレット、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細 書の記載の一部とする。  [0109] It should be noted that all the publications relating to the exposure apparatus and the like cited in the above embodiment, the international publication brochure, the US patent application publication specification, and the disclosure of the US patent specification are incorporated as part of the description of this specification. To do.
[0110] 《デバイス製造方法》  [0110] <Device Manufacturing Method>
次に、上記実施形態の露光装置 10を含む上述した各種露光装置をリソグラフイエ 程で使用したマイクロデバイスの製造方法について説明する。図 13は、マイクロデバ イスとしての半導体デバイスの製造方法を説明するためのフローチャートである。  Next, a microdevice manufacturing method using the above-described various exposure apparatuses including the exposure apparatus 10 of the above-described embodiment in a lithographic process will be described. FIG. 13 is a flowchart for explaining a method of manufacturing a semiconductor device as a microdevice.
[0111] まず、図 13のステップ 102において、 1ロットのウエノ、(プレート)上に金属膜が蒸着 される。次のステップ 104において、その 1ロットのウエノ、(プレート)上の金属膜上に フォトレジストが塗布される。その後、ステップ 106において、上述した各種露光装置 を用いて、パターン像カ、その 1ロットのウエノ、(プレート)上の各ショット領域にそれぞ れ形成される。すなわち、ウエノ、(プレート)上の各ショット領域がパターン像で順次 露光される。  First, in step 102 of FIG. 13, a metal film is deposited on one lot of Ueno (plate). In the next step 104, a photoresist is applied on the metal film on the loto (plate). Thereafter, in step 106, the above-described various exposure apparatuses are used to form the pattern image, the one lot of wafers, and each shot area on the (plate). That is, each shot area on the wafer and the (plate) is sequentially exposed with the pattern image.
[0112] その後、ステップ 108において、その 1ロットのウエノ、(プレート)上のフォトレジストの 現像が行われた後、ステップ 110において、その 1ロットのウェハ(プレート)上でレジ ストパターンをマスクとしてエッチングを行うことによって、パターン像に対応する回路 パターンが、各ウェハ(プレート)上の各ショット領域に形成される。  [0112] After that, in step 108, the photoresist on the lot (the plate) is developed, and in step 110, the resist pattern is used as a mask on the wafer (plate) in the lot. By performing etching, a circuit pattern corresponding to the pattern image is formed in each shot area on each wafer (plate).
[0113] その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子 等のデバイスが製造される。  [0113] After that, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer.
[0114] この場合、ステップ 106において、上述した各種露光装置(上記実施形態の露光装 置 10を含む)を用いて高スループットでプレートの露光が行われるので、結果的に、 半導体素子等のデバイスの生産性を向上させることができる。 [0115] また、少なくとも 1つのレイヤにおける上記ステップ 106の処理に代えて、前述した 素子製造装置を用いて基板上にパターンを形成することとしても良い。この場合、高 スループットで基板上にパターンを形成するので、結果的に半導体素子等のデバィ スの生産性の向上を図ることが可能になる。 In this case, in step 106, the plate is exposed with high throughput using the above-described various exposure apparatuses (including the exposure apparatus 10 of the above-described embodiment). As a result, a device such as a semiconductor element is obtained. Productivity can be improved. [0115] Further, instead of the process in step 106 in at least one layer, a pattern may be formed on the substrate using the element manufacturing apparatus described above. In this case, since the pattern is formed on the substrate with high throughput, it is possible to improve the productivity of devices such as semiconductor elements.
[0116] また、上述した各種露光装置では、プレート (ガラス基板)上に所定のパターン(回 路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶 表示素子を得ることもできる。図 14は、上述した各種露光装置を用いてプレート上に 所定のパターンを形成することによって、マイクロデバイスとしての液晶表示素子を製 造する方法を説明するためのフローチャートである。  In the various exposure apparatuses described above, a liquid crystal display element as a microdevice can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). FIG. 14 is a flowchart for explaining a method of manufacturing a liquid crystal display element as a micro device by forming a predetermined pattern on a plate using the various exposure apparatuses described above.
[0117] 図 14のステップ 202のパターン形成工程では、上述した各種露光装置を用いて、 ノ ターン像を感光性基板(レジストが塗布されたガラス基板等)に形成する、いわゆる 光リソグラフイエ程が実行される。この光リソグラフイエ程によって、感光性基板上には 多数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像 工程、エッチング工程、及びレジスト剥離工程等の各処理工程を経ることによって、 基板上に所定のパターンが形成される。  [0117] In the pattern forming process of step 202 in FIG. 14, a so-called photolithographic process, in which a pattern image is formed on a photosensitive substrate (such as a glass substrate coated with a resist) using the various exposure apparatuses described above. Executed. By this optical lithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to processing steps such as a developing step, an etching step, and a resist stripping step, whereby a predetermined pattern is formed on the substrate.
[0118] 次に、ステップ 204のカラーフィルタ形成工程において、 R (Red)、 G (Green)、 B (B1 ue)に対応した 3つのドットの組がマトリックス状に多数配列されたり、又は R、 G、 Bの 3本のストライプのフィルタの組を複数水平走査線方向に配列したカラーフィルタを形 成する。そして、カラーフィルタ形成工程(ステップ 204)の後に、ステップ 206のセル 組み立て工程が実行される。ステップ 206のセル組み立て工程では、パターン形成 工程にて得られた所定パターンを有する基板、及びカラーフィルタ形成工程にて得 られたカラーフィルタ等を用いて液晶パネル (液晶セル)を組み立てる。  [0118] Next, in the color filter forming process of step 204, a group of three dots corresponding to R (Red), G (Green), and B (B1 ue) are arranged in a matrix or R, A color filter is formed by arranging a set of three stripe filters G and B in the horizontal scanning line direction. Then, after the color filter forming step (step 204), the cell assembling step of step 206 is executed. In the cell assembly process of step 206, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation process and the color filter obtained in the color filter formation process.
[0119] ステップ 206のセル組み立て工程では、例えば、パターン形成工程にて得られた所 定パターンを有する基板とカラーフィルタ形成工程にて得られたカラーフィルタとの 間に液晶を注入して、液晶パネル (液晶セル)を製造する。その後、ステップ 208のモ ジュール組立工程にて、組み立てられた液晶パネル (液晶セル)の表示動作を行わ せる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。  [0119] In the cell assembly process of step 206, for example, liquid crystal is injected between a substrate having a predetermined pattern obtained in the pattern formation process and a color filter obtained in the color filter formation process. Manufactures panels (liquid crystal cells). Thereafter, in the module assembling process of step 208, each part such as an electric circuit and a backlight for performing display operation of the assembled liquid crystal panel (liquid crystal cell) is attached to complete the liquid crystal display element.
[0120] この場合、パターン形成工程にお!/、て、上述した各種露光装置(上記実施形態の 露光装置 10を含む)を用いて高スループットでプレートの露光が行われるので、結果 的に、液晶表示素子の生産性を向上させることができる。 [0120] In this case, in the pattern forming process,! / As a result, the productivity of the liquid crystal display element can be improved.
[0121] また、ステップ 202のパターン形成工程で、前述した素子製造装置を用いて感光性 基板上にパターンを形成することとしても良い。この場合、高スループットで感光性基 板上にパターンを形成するので、結果的に液晶表示素子の生産性の向上を図ること が可能になる。 [0121] Further, in the pattern forming step of Step 202, a pattern may be formed on the photosensitive substrate using the element manufacturing apparatus described above. In this case, the pattern is formed on the photosensitive substrate with a high throughput, and as a result, the productivity of the liquid crystal display element can be improved.
産業上の利用可能性  Industrial applicability
[0122] 以上説明したように、本発明の露光方法、パターン形成方法、及び露光装置は、プ レートなどの物体上にパターンを形成するのに適している。また、本発明のデバイス 製造方法は、表示デバイスその他のマイクロデバイスの製造に適して!/、る。 [0122] As described above, the exposure method, pattern formation method, and exposure apparatus of the present invention are suitable for forming a pattern on an object such as a plate. The device manufacturing method of the present invention is suitable for manufacturing display devices and other micro devices.

Claims

請求の範囲 The scope of the claims
[1] 基板上に m行 n歹 IJ (m≥n)のマトリクス状の配置で、 m X n個のパターン領域を形成 する露光方法において、  [1] In an exposure method for forming m × n pattern regions on a substrate in a matrix arrangement of m rows n 歹 IJ (m≥n),
(m X n)回より少ない回数の露光により、前記基板上にマトリクス状の配置で (m X n )個の前記パターン領域を形成する露光方法。  An exposure method in which (m X n) pattern areas are formed in a matrix arrangement on the substrate by exposure less than (m X n) times.
[2] 請求項 1に記載の露光方法において、 [2] In the exposure method according to claim 1,
各回の露光により、前記マトリクスの列に平行な所定方向に関して前記パターン領 域の前記所定方向の寸法の自然数 k倍だけ離間した少なくとも 2つのパターン領域 を前記基板上に形成する工程と;  Forming on the substrate at least two pattern regions separated by a natural number k times the dimension of the pattern region in the predetermined direction with respect to a predetermined direction parallel to the matrix column by each exposure;
前記基板を前記所定方向に移動する工程と;を交互に繰り返すことで、前記基板 上にマトリクス状の配置で m X n個の前記パターン領域を形成する露光方法。  An exposure method of forming m X n pattern regions in a matrix arrangement on the substrate by alternately repeating the step of moving the substrate in the predetermined direction.
[3] 請求項 2に記載の露光方法において、 [3] In the exposure method according to claim 2,
mが偶数の場合、(m/2 X n)回の露光により、前記基板上にマトリクス状の配置で m X n個の前記パターン領域を形成する露光方法。  When m is an even number, an exposure method of forming m × n pattern regions in a matrix arrangement on the substrate by (m / 2 × n) exposures.
[4] 請求項 2に記載の露光方法において、 [4] In the exposure method according to claim 2,
mが奇数の場合、 Km+ l) /2 X n}回の露光により、前記基板上にマトリクス状の 配置で m X n個の前記パターン領域を形成する露光方法。  When m is an odd number, the exposure method forms m X n pattern areas on the substrate in a matrix arrangement by Km + l) / 2 X n} exposures.
[5] 請求項;!〜 4の V、ずれか一項に記載の露光方法にお V、て、 [5] Claim: V of! ~ 4, V in the exposure method according to one of the above,
各回の露光は、パターン情報を含む照明光に対して、前記基板を前記マトリクスの 行に平行な走査方向に移動する走査露光により行われる露光方法。  Each exposure is performed by scanning exposure in which the substrate is moved in a scanning direction parallel to the rows of the matrix with respect to illumination light including pattern information.
[6] 請求項 5に記載の露光方法において、 [6] In the exposure method according to claim 5,
前記露光は、前記パターン領域に対応するパターンが形成されたマスクを照明光 により照明しつつ、前記マスクと前記基板とを同期して、前記走査方向に沿って移動 させることで行われる露光方法。  The exposure is performed by illuminating a mask on which a pattern corresponding to the pattern region is formed with illumination light, and moving the mask and the substrate in synchronization with the scanning direction.
[7] 請求項 5に記載の露光方法において、 [7] The exposure method according to claim 5,
前記露光は、パターン発生装置で発生されるパターン情報を含む光の変化に同期 して、前記基板を前記走査方向に移動させることで行われる露光方法。  The exposure method is an exposure method in which the substrate is moved in the scanning direction in synchronization with a change in light including pattern information generated by a pattern generator.
[8] 請求項;!〜 7の V、ずれか一項に記載の露光方法にお V、て、 前記露光は、パターン情報を含む光を前記基板上に投射する投影光学系を介して 行われる露光方法。 [8] Claim: V of! ~ 7, V in the exposure method according to any one of The exposure is performed by a projection optical system that projects light including pattern information onto the substrate.
請求項 8に記載の露光方法において、  In the exposure method according to claim 8,
前記投影光学系として、等倍系もしくは拡大系が用いられる露光方法。  An exposure method using an equal magnification system or an enlargement system as the projection optical system.
請求項 8又は 9に記載の露光方法において、  In the exposure method according to claim 8 or 9,
前記露光は、前記投影光学系を 2つ以上用いて行われる露光方法。  The exposure is performed by using two or more projection optical systems.
請求項 10に記載の露光方法において、  The exposure method according to claim 10, wherein
前記露光は、前記 2つ以上の投影光学系に対応して、前記マスクを同数用いて行 われる露光方法。  The exposure method wherein the exposure is performed using the same number of the masks corresponding to the two or more projection optical systems.
請求項 1〜; 11のいずれか一項に記載の露光方法を用いて基板を露光する工程と; 露光された基板を現像する工程と;  A step of exposing a substrate using the exposure method according to any one of claims 1 to 11; a step of developing the exposed substrate;
現像された基板を加工する工程と;を含むデバイス製造方法。  And a step of processing the developed substrate.
スキャン動作により基板上に m行 n歹 IJ (m≥n)のマトリクス状の配置で、(m X n)個の パターン領域を形成するパターン形成方法において、  In a pattern forming method of forming (m X n) pattern regions in a matrix arrangement of m rows n 歹 IJ (m≥n) on a substrate by a scanning operation,
(m X n)回より少ない回数のスキャン動作により、前記基板上にマトリクス状の配置 で (m X n)個の前記パターン領域を形成するパターン形成方法。  A pattern forming method of forming (m X n) pattern regions in a matrix arrangement on the substrate by a scan operation less than (m X n) times.
請求項 13に記載のパターン形成方法において、  In the pattern formation method according to claim 13,
各回のスキャン動作により、前記マトリクスの列に平行な所定方向に関して前記バタ ーン領域の前記所定方向の寸法の自然数 k倍だけ離間した少なくとも 2つのパター ン領域を前記基板上に形成する工程と;  Forming on the substrate at least two pattern regions spaced apart by a natural number k times the size of the pattern region in the predetermined direction with respect to a predetermined direction parallel to the matrix column by each scanning operation;
前記基板を前記所定方向に移動する工程と;を交互に繰り返すことで、前記基板 上にマトリクス状の配置で m X n個の前記パターン領域を形成するパターン形成方法 請求項 13又は 14に記載のパターン形成方法を用いて基板にパターンを形成する 工程と;  The pattern forming method according to claim 13 or 14, wherein the step of moving the substrate in the predetermined direction is alternately repeated to form m X n pattern regions on the substrate in a matrix arrangement. Forming a pattern on a substrate using a pattern forming method;
前記パターンが形成された基板を加工する工程と;を含むデバイス製造方法。 基板上にほぼ矩形のパターン領域を m行 n列 (m≥n)のマトリクス状の配置で形成 する露光装置であって、 前記マトリクスの列方向に平行な所定方向に関して離れた少なくとも 2つの領域を 一度に露光して前記パターン領域の少なくとも一部を前記基板上の異なる位置に形 成可能なパターン生成装置と; And a step of processing the substrate on which the pattern is formed. An exposure apparatus for forming a substantially rectangular pattern region on a substrate in a matrix arrangement of m rows and n columns (m≥n), A pattern generation device capable of exposing at least two regions apart from each other in a predetermined direction parallel to a column direction of the matrix at a time to form at least a part of the pattern region at different positions on the substrate;
前記基板を駆動する基板駆動装置と;  A substrate driving device for driving the substrate;
前記基板上に前記 m行 n列の前記パターン領域を形成する際に、前記基板上で前 記所定方向に関して前記パターン領域の前記所定方向の寸法の自然数 k倍だけ離 間した少なくとも 2つのパターン領域の形成と、前記基板の前記所定方向 の移動と が交互に繰り返されるように、前記パターン生成装置と前記基板駆動装置とを制御 する制御システムと;を備える露光装置。  When forming the pattern region of m rows and n columns on the substrate, at least two pattern regions spaced apart by a natural number k times the dimension of the pattern region in the predetermined direction with respect to the predetermined direction on the substrate. And a control system that controls the pattern generation device and the substrate driving device so that the formation of the substrate and the movement of the substrate in the predetermined direction are alternately repeated.
[17] 請求項 16に記載の露光装置において、  [17] The exposure apparatus according to claim 16,
前記制御システムは、前記パターン生成装置で発生されるパターン情報を含む照 明光に対して、前記基板を前記マトリクスの行に平行な走査方向に移動する露光装 置。  An exposure apparatus that moves the substrate in a scanning direction parallel to the rows of the matrix with respect to illumination light including pattern information generated by the pattern generation device.
[18] 請求項 16又は 17に記載の露光装置において、  [18] The exposure apparatus according to claim 16 or 17,
前記基板上に形成されたマークをそれぞれ検出するとともに、前記マトリクスの列方 向に平行な方向に関して離間して配置された少なくとも 2m個のマーク検出系をさら に備え、  Each of the marks formed on the substrate is detected, and further includes at least 2m mark detection systems arranged apart from each other in a direction parallel to the column direction of the matrix,
前記 2m個のうちの少なくとも一部のマーク検出系により、 mが奇数の場合及び偶 数の場合の両方で、前記基板上の同時に露光対象となる少なくとも 2つの領域それ ぞれの各領域の内部の両端部近傍に形成された各 2つのマークの同時検出が可能 となるように、前記少なくとも 2m個のマーク検出系の間隔が設定されている露光装置  By at least a part of the 2m mark detection system, the inside of each of at least two areas on the substrate to be exposed at the same time in both cases where m is an odd number and an even number. An exposure apparatus in which an interval between the at least 2 m mark detection systems is set so that two marks formed near both ends of the mark can be detected simultaneously.
[19] 請求項 18に記載の露光装置において、 [19] The exposure apparatus according to claim 18,
前記基板は、矩形の基板であり、  The substrate is a rectangular substrate;
該矩形の基板を 90度回転させ露光する際には、前記少なくとも 2m個のマーク検 出系のうち(2m— 2)個のマーク検出系を用いて、 90度回転させた際に用いるマーク を検出する露光装置。  When the rectangular substrate is rotated 90 degrees for exposure, the mark used when rotated 90 degrees using (2m-2) mark detection systems out of the at least 2 m mark detection systems. Exposure device to detect.
[20] 基板を露光して前記基板上に矩形のパターン領域を複数形成する露光装置であ つて、 [20] An exposure apparatus that exposes a substrate to form a plurality of rectangular pattern regions on the substrate. About
前記パターン領域に対応するパターンがそれぞれ形成された複数のマスクが搭載 されるマスクステージ系と;  A mask stage system on which a plurality of masks each having a pattern corresponding to the pattern region are mounted;
前記複数のマスクをほぼ同時に照明光で照明可能な照明系と;  An illumination system capable of illuminating the plurality of masks with illumination light substantially simultaneously;
前記複数のマスクにそれぞれ対応して設けられ、各マスクを介した前記照明光を前 記基板上の投射領域にそれぞれ投射する複数の投影光学系と;  A plurality of projection optical systems provided respectively corresponding to the plurality of masks and projecting the illumination light through the masks onto projection areas on the substrate;
前記基板が搭載される基板ステージと;  A substrate stage on which the substrate is mounted;
前記基板ステージに同期して前記各マスクが走査方向に走査されるように前記マス クステージ系と前記基板ステージとを駆動する駆動システムと;を備える露光装置。  An exposure apparatus comprising: a driving system that drives the mask stage system and the substrate stage so that the masks are scanned in a scanning direction in synchronization with the substrate stage.
[21] 請求項 20に記載の露光装置において、 [21] The exposure apparatus according to claim 20,
前記マスクステージ系は、前記複数のマスクがそれぞれ搭載される複数のマスクス テージを含む露光装置。  The mask stage system is an exposure apparatus including a plurality of mask stages on which the plurality of masks are respectively mounted.
[22] 請求項 20に記載の露光装置において、 [22] The exposure apparatus according to claim 20,
前記マスクステージ系は、前記複数のマスクが同時に搭載される単一のマスクステ ージを含む露光装置。  The mask stage system is an exposure apparatus including a single mask stage on which the plurality of masks are simultaneously mounted.
[23] 請求項 20〜22の!/、ずれか一項に記載の露光装置にお!/、て、 [23] In the exposure apparatus according to claim 20! /! Or any one of the deviations! /,
前記複数のマスクは、前記駆動システムにより、マスクステージ系を介して前記走査 方向に直交する非走査方向に関して所定距離離れた位置で前記走査方向に沿って それぞれ走査され、  The plurality of masks are respectively scanned along the scanning direction by the driving system at positions separated by a predetermined distance with respect to the non-scanning direction orthogonal to the scanning direction via a mask stage system.
前記複数の投影光学系は、前記複数のマスクステージの走査経路の位置関係に 対応する距離だけ離間して前記非走査方向に沿って配置されている露光装置。  The exposure apparatus, wherein the plurality of projection optical systems are arranged along the non-scanning direction separated by a distance corresponding to a positional relationship of scanning paths of the plurality of mask stages.
[24] 請求項 20に記載の露光装置において、 [24] The exposure apparatus according to claim 20,
前記マスクと前記投影光学系とは、それぞれ 2つ設けられている露光装置。  An exposure apparatus provided with two each of the mask and the projection optical system.
[25] 請求項 24に記載の露光装置において、 [25] The exposure apparatus according to claim 24,
前記 2つの投影光学系による照明光の投射領域相互の近い側の端縁同士の前記 非走査方向の距離が、前記基板の長辺の 1/4以下に設定され、  The distance in the non-scanning direction between the edges near the projection areas of the illumination light by the two projection optical systems is set to 1/4 or less of the long side of the substrate,
かつ前記投射領域相互の遠 V、側の端縁同士の前記非走査方向の距離が、前記 基板の短辺以上に設定され、 かつ前記各投射領域の前記非走査方向の幅が、前記基板の短辺の 1/3以上に 設定されている露光装置。 And the distance V between the projection areas and the distance between the side edges in the non-scanning direction is set to be equal to or longer than the short side of the substrate, An exposure apparatus in which the width of each projection area in the non-scanning direction is set to 1/3 or more of the short side of the substrate.
[26] 請求項 20〜25の!/、ずれか一項に記載の露光装置にお!/、て、 [26] Claims 20 to 25 in the exposure apparatus according to claim 20!
前記各投影光学系は、等倍系もしくは拡大系である露光装置。  Each of the projection optical systems is an exposure apparatus that is an equal magnification system or an enlargement system.
[27] 請求項 24〜26の何れか一項に記載の露光装置におレ、て、 [27] The exposure apparatus according to any one of claims 24 to 26,
前記複数の投影光学系のそれぞれは、複数の投影光学ユニットを備え、 前記複数の投影光学ユニットで照射された部分投射領域を重複させて合成し、前 記投射領域が形成される露光装置。  Each of the plurality of projection optical systems includes a plurality of projection optical units, and overlaps and synthesizes the partial projection areas irradiated by the plurality of projection optical units to form the projection area.
[28] 基板上に m行 n歹 IJ (m≥n)のマトリクス状の配置で、 m X n個のパターン領域を形成 する露光装置であって、 [28] An exposure apparatus that forms m X n pattern regions on a substrate in a matrix arrangement of m rows n 歹 IJ (m≥n),
前記マトリクスの列方向に平行な方向に関して離れた 2つの領域を一度に露光して 前記パターン領域を形成可能なパターン生成装置と;  A pattern generating device capable of forming the pattern region by exposing two regions apart from each other in a direction parallel to the column direction of the matrix at a time;
前記基板上に形成されたマークをそれぞれ検出するとともに、前記マトリクスの列方 向に平行な方向に関して離間して配置された少なくとも 2m個のマーク検出系と;を 備え、  Each detecting a mark formed on the substrate, and at least 2m mark detection systems arranged apart from each other in a direction parallel to the column direction of the matrix;
前記 2m個のうちの少なくとも一部のマーク検出系により、前記基板上の同時に露 光対象となる各 2つの領域それぞれの内部の両端部近傍に形成された各 2つのマー クの同時検出が可能となるように、前記少なくとも 2m個のマーク検出系の間隔が設 定されている露光装置。  By using at least some of the 2m mark detection systems, it is possible to simultaneously detect each of the two marks formed near both ends of each of the two regions on the substrate that are simultaneously exposed. An exposure apparatus in which an interval between the at least 2 m mark detection systems is set so that
[29] 請求項 28に記載の露光装置において、 [29] The exposure apparatus according to claim 28,
前記基板は、矩形の基板であり、  The substrate is a rectangular substrate;
該矩形の基板を 90度回転させ露光する際には、前記少なくとも 2m個のマーク検 出系のうち(2m— 2)個のマーク検出系を用いて、 90度回転させた際に用いるマーク を検出する露光装置。  When the rectangular substrate is rotated 90 degrees for exposure, the mark used when rotated 90 degrees using (2m-2) mark detection systems out of the at least 2 m mark detection systems. Exposure device to detect.
[30] 請求項 16〜29の何れか一項に記載の露光装置において、 [30] In the exposure apparatus according to any one of claims 16 to 29,
前記パターン領域は、前記基板に (m X nM固形成される矩形のパターン領域であ Ο露光装 。  The pattern area is a rectangular pattern area (m x nM solidly formed on the substrate).
[31] 請求項 16〜30の!/、ずれか一項に記載の露光装置にお V、て、 前記基板は、表示デバイス用の基板である露光装置。 [31] The exposure apparatus according to any one of claims 16 to 30,! The exposure apparatus is a substrate for a display device.
[32] 請求項 16〜31のいずれか一項に記載の露光装置において、 [32] In the exposure apparatus according to any one of claims 16 to 31,
前記基板は、短辺の長さが 500mmよりも大きい矩形の基板である露光装置。  The exposure apparatus, wherein the substrate is a rectangular substrate having a short side length greater than 500 mm.
[33] 請求項 16〜32のいずれか一項に記載の露光装置を用いて基板にパターンを形 成する工程と; [33] forming a pattern on the substrate using the exposure apparatus according to any one of claims 16 to 32;
ノ ターンが形成された基板を現像する工程と;  Developing the substrate on which the pattern is formed;
現像された基板を加工する工程と;を含むデバイス製造方法。  And a step of processing the developed substrate.
[34] 請求項 12、 15、 33のいずれか一項に記載のデバイス製造方法によって、基板上 に表示デバイスが形成された表示パネル。 [34] A display panel in which a display device is formed on a substrate by the device manufacturing method according to any one of claims 12, 15, and 33.
PCT/JP2007/072715 2006-11-27 2007-11-26 Exposure method, pattern forming method, exposure device, and device manufacturing method WO2008065977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006317905 2006-11-27
JP2006-317905 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065977A1 true WO2008065977A1 (en) 2008-06-05

Family

ID=39467768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072715 WO2008065977A1 (en) 2006-11-27 2007-11-26 Exposure method, pattern forming method, exposure device, and device manufacturing method

Country Status (2)

Country Link
TW (1) TWI452437B (en)
WO (1) WO2008065977A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001537A1 (en) * 2008-06-30 2010-01-07 株式会社ニコン Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus
JP2010004015A (en) * 2008-06-19 2010-01-07 Nikon Corp Exposure method and unit, and device manufacturing method
JP2012160262A (en) * 2011-01-28 2012-08-23 Ulvac Japan Ltd Vacuum deposition device, and vacuum deposition method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
CN103969958A (en) * 2013-01-25 2014-08-06 上海微电子装备有限公司 Multi-exposure visual field splicing system and method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
WO2016045432A1 (en) * 2014-09-28 2016-03-31 上海微电子装备有限公司 Exposure device and out-of-focus and tilt error compensation method
JP2018173468A (en) * 2017-03-31 2018-11-08 ウシオ電機株式会社 Exposure equipment and exposure method
CN109709775A (en) * 2019-03-13 2019-05-03 苏州微影激光技术有限公司 A kind of exposure sources and exposure method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231549A (en) * 1998-02-12 1999-08-27 Nikon Corp Scanning exposure device and exposing method
JP2001183844A (en) * 1999-12-22 2001-07-06 Sharp Corp Exposure method
JP2001249462A (en) * 2000-03-06 2001-09-14 Canon Inc Exposure device
JP2003347185A (en) * 2002-05-22 2003-12-05 Nikon Corp Exposure method, exposure device, and method of manufacturing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278722B (en) * 2002-05-22 2007-04-11 Nikon Corp Exposing method, exposing device and manufacturing method for device
TW200606601A (en) * 2004-06-17 2006-02-16 Fuji Photo Film Co Ltd A plotting device and a plotting method
JP4676205B2 (en) * 2004-07-09 2011-04-27 富士フイルム株式会社 Exposure apparatus and exposure method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231549A (en) * 1998-02-12 1999-08-27 Nikon Corp Scanning exposure device and exposing method
JP2001183844A (en) * 1999-12-22 2001-07-06 Sharp Corp Exposure method
JP2001249462A (en) * 2000-03-06 2001-09-14 Canon Inc Exposure device
JP2003347185A (en) * 2002-05-22 2003-12-05 Nikon Corp Exposure method, exposure device, and method of manufacturing device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2010004015A (en) * 2008-06-19 2010-01-07 Nikon Corp Exposure method and unit, and device manufacturing method
WO2010001537A1 (en) * 2008-06-30 2010-01-07 株式会社ニコン Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus
JPWO2010001537A1 (en) * 2008-06-30 2011-12-15 株式会社ニコン Display element manufacturing method and manufacturing apparatus, thin film transistor manufacturing method and manufacturing apparatus, and circuit forming apparatus
US8349672B2 (en) 2008-06-30 2013-01-08 Nikon Corporation Display element manufacturing method and manufacturing apparatus, thin film transistor manufacturing method and manufacturing apparatus, and circuit forming apparatus
JP2012160262A (en) * 2011-01-28 2012-08-23 Ulvac Japan Ltd Vacuum deposition device, and vacuum deposition method
CN103969958A (en) * 2013-01-25 2014-08-06 上海微电子装备有限公司 Multi-exposure visual field splicing system and method
CN103969958B (en) * 2013-01-25 2016-03-30 上海微电子装备有限公司 A kind of many exposure field splicing system and method
WO2016045432A1 (en) * 2014-09-28 2016-03-31 上海微电子装备有限公司 Exposure device and out-of-focus and tilt error compensation method
US10197923B2 (en) 2014-09-28 2019-02-05 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Exposure device and out-of-focus and tilt error compensation method
TWI584078B (en) * 2014-09-28 2017-05-21 Exposure device and defocusing tilt error compensation method
JP2018173468A (en) * 2017-03-31 2018-11-08 ウシオ電機株式会社 Exposure equipment and exposure method
CN109709775A (en) * 2019-03-13 2019-05-03 苏州微影激光技术有限公司 A kind of exposure sources and exposure method

Also Published As

Publication number Publication date
TWI452437B (en) 2014-09-11
TW200841130A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
WO2008065977A1 (en) Exposure method, pattern forming method, exposure device, and device manufacturing method
JP5218049B2 (en) Exposure apparatus and exposure method
TWI534550B (en) A pattern forming apparatus, a pattern forming method, and an element manufacturing method
KR101605567B1 (en) Exposure method, exposure apparatus, and method for producing device
WO2007100081A1 (en) Exposure method and apparatus, and device manufacturing method
JP2007108559A (en) Scanning exposure apparatus and method for manufacturing device
JP2011164430A (en) Exposing method and device, and method for manufacturing device
WO2010004900A1 (en) Position measuring method, and exposure method and device
US20100290019A1 (en) Exposure apparatus, exposure method and device fabricating method
KR102549056B1 (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
KR20170128599A (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
JP6008165B2 (en) Exposure method, exposure apparatus, and device manufacturing method
CN107430354B (en) Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
JP2007178494A (en) Exposure apparatus and method for manufacturing device
JP5158464B2 (en) Exposure apparatus and exposure method
WO2006101086A1 (en) Exposure apparatus, exposure method and method for manufacturing microdevice
JP2010004015A (en) Exposure method and unit, and device manufacturing method
JP6701597B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
JP2011248125A (en) Exposure method, exposure device, mask and device manufacturing method
JP2005026615A (en) Stage unit and exposure apparatus, and measuring method
JP2007225886A (en) Exposure apparatus and exposure method
WO2009128439A1 (en) Exposure method and device, and method for manufacturing device
JP2001217175A (en) Aligner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP