WO2008073179A1 - Tensor rod - Google Patents

Tensor rod Download PDF

Info

Publication number
WO2008073179A1
WO2008073179A1 PCT/US2007/020532 US2007020532W WO2008073179A1 WO 2008073179 A1 WO2008073179 A1 WO 2008073179A1 US 2007020532 W US2007020532 W US 2007020532W WO 2008073179 A1 WO2008073179 A1 WO 2008073179A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
molten metal
tensor
pump
graphite
Prior art date
Application number
PCT/US2007/020532
Other languages
French (fr)
Inventor
George S. Mordue
Original Assignee
Pyrotek, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pyrotek, Inc. filed Critical Pyrotek, Inc.
Priority to US12/442,413 priority Critical patent/US8187528B2/en
Publication of WO2008073179A1 publication Critical patent/WO2008073179A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/06Constructional features of mixers for pig-iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D27/005Pumps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the present invention relates generally to an apparatus for degassing, submerging, agitating and pumping molten metal. More particularly, the present invention relates to a mechanical apparatus for moving or pumping molten metal such as aluminum, zinc or magnesium. Specifically, the present invention is related to a drive for such an apparatus in which a motor is positioned above a molten metal bath and rotates a vertical shaft. The lower end of the shaft drives an impeller or a rotor to impart motion to the molten metal.
  • a so-called transfer pump is used.
  • a so-called circulation pump is used.
  • a so-called gas injection pump is used.
  • a rotatable impeller is submerged, typically within a pumping chamber, in the molten metal bath contained in the vessel. Additionally, the motor is suspended on a superstructure over the bath by posts connected to the base.
  • a rotatable impeller in another embodiment of these pumps, can be submerged in the molten metal bath by a shaft affixed to a suspended motor, where the motor is not supported over the bath by any posts. Rotation of the impeller within the pumping chamber forces the molten metal as desired in a direction permitted by the pumping chamber design.
  • Mechanical pumps for moving molten metal in a bath historically have a relatively short life because of the destructive effects of the molten metal environment on the material used to construct the pump. Moreover, most materials capable of long term operation in a molten metal bath have relatively poor strength which can result in mechanical failure.
  • the shaft connecting the impeller and the motor is constructed of graphite.
  • this shaft component experiences significant stress when occluding matter in the metal bath is encountered and sometimes trapped against the housing. Since graphite does not possess as high a strength as would be desired, it would be helpful to reinforce the leg and shaft components of the pump. A shaft or post assembly made entirely of ceramic would be brittle and subject to an unexpected failure. Furthermore, exposed metal components residing in the molten metal bath can dissolve.
  • graphite can be difficult to work with because graphite has different thermal expansion rates in its two grain orientations. This may result in a post and base having divergent and conflicting thermal expansion rates in the molten metal environment. This problem is compounded by the fact that pump construction has historically required cementing the graphite post into a hole in the graphite base. This design provides no tolerance between the components to accommodate this divergent thermal expansion. Unfortunately, this can lead to cracking of the base or the post. Accordingly, it would be desirable to have a molten metal pump wherein the mating of a post and a base is achieved in a manner which accommodates divergent thermal expansion tendencies.
  • Tensor pumps combine ceramic and steel with an improved design to increase reliability of molten metal pumps.
  • Traditional graphite pumps must be rebuilt about three times per year when the graphite posts become oxidized or broken. By replacing the posts with a stronger material that will not oxidize, the life of the pump has been extended to up to a year. Fewer rebuilds mean lower costs and less labor to maintain pumps.
  • Tensor pumps are centered around a high temperature alloy steel rod loaded in tension.
  • the tensor rods hold the ceramic posts in compression to maximize their strength.
  • Fragile ceramic sleeves are no longer needed to protect graphite posts from oxidation and abrasion. Ceramic sleeves can also hide post oxidation which could result in unexpected failures. Not only are the ceramic posts stronger than graphite, if they do break, the base is still supported by the steel rods.
  • tensor pump bases are very strong.
  • the holes in the base are much smaller which means that less material needs to be removed during manufacturing.
  • the base like the posts, is also loaded in compression for maximum strength, which can last up to a year between rebuilds and which replaces graphite posts with ceramic and steel.
  • Tensor pumps are also the most economical molten metal pumps available. With a reasonable initial cost, predictable parts usage, and low energy requirements, tensor pumps cost less to operate than other mechanical pumps. And when a pump does need maintenance, it can be pulled out of service and replaced with another pump quickly, minimizing the impact on production. When the pump finally does need to be rebuilt there are no structural cement joints, which is another advantage of tensor pumps. The pump is completely bolted together and it can actually be used right after assembly. Tensor pumps can be made as transfer, circulation, and gas injection pumps. Flows range from a minimum of 100 pounds (45 kg.) aluminum per minute to a maximum of 30,000 pounds (13.6 tons) per minute.
  • a rod assembly for use with a molten metal pump where the rod assembly includes a tensor rod, a keeper pair, and a retainer cup.
  • FIGURE 1 is a front elevation view, partially in cross-section, of a molten metal pump
  • FIGURE 2 is a perspective view of a tensor rod, retainer cup and keeper pair prior to assembly
  • FIGURE 3 is a perspective view of a rod assembly;
  • FIGURE 4 is a perspective view of a tensor rod retainer cup;
  • FIGURE 5 is a top view of the tensor rod retainer cup;
  • FIGURE 6 is a sectional view taken along lines A-A of FIGURE 4;
  • FIGURE 7 is a perspective view of one half of a tensor rod keeper pair;
  • FIGURE 8 is a top view of one half of the tensor rod keeper pair;
  • FIGURE 9 is a side view of one half of the tensor rod keeper pair;
  • FIGURE 10 is side view of a tensor rod;
  • FIGURE 11 is a top view of a tensor rod.
  • the molten metal pump 10 includes a base assembly 12 having a pumping chamber 14 with an impeller 16 disposed therein. Bearing rings 18 provide mating surfaces between the impeller 16 and the base assembly 12. Rotation of the impeller 16 forces molten metal 20 through outlet 22 and up riser tube 24 for transport to another location. Rotation of impeller 16 is achieved when motor 26 rotates shaft 28 by turning shaft coupling 30 provided therebetween.
  • the motor 26 is positioned above the base assembly 12 on a platform assembly 32 having an insulation layer 34, a motor mount bracket 36 and a motor mount plate 38.
  • two post assemblies 40 are shown. However, any number of post assemblies could be used in the present invention, preferably one, two or four. Most preferably, two post assemblies 40, comprised of a rod 42 constructed of a heat resistant alloy material disposed within an inner member 44 and an outer sheath 46 suspend the base assembly 12 below the platform 32.
  • the inner member 44 is disposed between the rod 42 and the outer sheath 46.
  • the inner member can be a material to wet out molten metal that may penetrate the outer sheath.
  • the inner member can comprise fiberfrax, graphoil or other similar material, including but not limited to compressible ceramics.
  • the rod will be constructed of an alloy available from Metaullics Systems Co., L. P. 31935 Aurora Road, Solon, Ohio, 44139.
  • the outer sheath 46 includes a ceramic shield for additional protection against oxidation, erosion, corrosion, etc.
  • the lower end of rod 42 includes cap 48.
  • Cap 48 is disposed within a cavity 50 in base assembly 12.
  • a graphite or refractory plug 52 is cemented into the lowermost portion of the cavity 50 to seal the area from molten metal. Plug 52 is such that its diameter is sufficiently large to include the rod 42 and both the inner member 44 and outer sheath 46, while still sealing the connection within the housing.
  • the upper end of the rod 42 extends through the insulation layer 34 and is secured with nut 54 to motor mount plate 36.
  • a disc spring 56 or other compression spring is disposed between the motor mount platform 38 and insulation layer 34.
  • an insulating washer (not shown) will be positioned between motor mount plate 36 and spring 56. Tightening of nut 54 results in compression of the spring 56 and a bias on the rod 42 and inner 44 and outer 46 sheaths.
  • This assembly provides a high strength alloy rod connection between the base and motor mount.
  • the alloy rod 42 is further supported by steel alloy sleeve, which surrounds the alloy rod 42. In addition to the steel alloy sleeve, the assembly protects the otherwise degradable rod from the molten metal environment by surrounding the alloy rod and steel alloy sleeve with a ceramic post.
  • a further advantage is that the thermal expansion mismatch resulting from divergent grain orientations in a graphite post and a graphite base is eliminated because a graphite post is not rigidly cemented into a hole in the base. Furthermore, the strength of the graphite sheath is increased because it is retained under compression as a result of being squeezed between socket 58 and the upper surface of base assembly 12.
  • the rod assembly 60 includes a rod 42, which passes through a retainer cup 70 and is kept in contact with the retainer cup 70 by the keeper pair 80, 82. As can be seen in FIGS.
  • the retainer cup 70 has a recess 78 on a second side 74 of the cup 70. On a first side 72 of the cup 70 is an approximately concave indentation 76.
  • the retainer cup 70 also includes an opening 68 extending through approximately the center of the retainer cup 70.
  • the keeper pair 80, 82 is illustrated.
  • the keeper pair 80, 82 includes two halves, a first half 80 and a second half 82.
  • the first 80 and second 82 halves are approximately mirror images of one another.
  • the keeper pair 80, 82 includes a first side 84a, 84b and a second side 86a, 86b.
  • the tensor rod 42 is shown.
  • the tensor rod 42 includes a first end 62 and a second end 64.
  • a groove 66 in the rod 42 is disposed approximately towards the first end 62.
  • the retainer cup 70 slides down the tensor rod 42, where the first half 80 and the second half 82, i.e., the keeper pair 80, 82, come together around the tensor rod 42, essentially forming an approximate ring shape around the tensor rod 42.
  • the keeper pair come 80, 82 together at the groove 66 located toward the first end 62 of the tensor rod 42.
  • the retainer cup 70 continues to slide down the tensor rod 42 until the recess 78 on a second side of the retainer cup 70 comes into contact with the first side 84a, 84b of the keeper pair 80, 82.
  • the recess 78 in the retainer cup 70 then mates with the first side 84a, 84b of the keeper pair 80, 82 forming a friction fit. Now that the rod 42 is assembled 60 by having the retainer cup 70 slide onto the keeper pair 80, 82, the rod assembly 60 may be pulled in an upward direction and rotated, where the rod assembly 60 will engaged the molten metal base 12.

Abstract

The present invention relates generally to an apparatus for degassing, submerging, agitating and pumping molten metal. More particularly, the present invention relates to a mechanical apparatus for moving or pumping molten metal such as aluminum, zinc or magnesium. Specifically, the present invention is related to a drive for such an apparatus in which a motor is positioned above a molten metal bath and rotates a vertical shaft. The lower end of the shaft drives an impeller or a rotor to impart motion to the molten metal.

Description

TENSOR ROD
BACKGROUND
[0001] The present invention relates generally to an apparatus for degassing, submerging, agitating and pumping molten metal. More particularly, the present invention relates to a mechanical apparatus for moving or pumping molten metal such as aluminum, zinc or magnesium. Specifically, the present invention is related to a drive for such an apparatus in which a motor is positioned above a molten metal bath and rotates a vertical shaft. The lower end of the shaft drives an impeller or a rotor to impart motion to the molten metal.
[0002] In the processing of molten metals, it is often necessary to pump molten metal from one place to another. When it is desired to remove metal from a vessel, a so-called transfer pump is used. When it is desired to circulate molten metal within a vessel, a so-called circulation pump is used. When it is desired to purify molten metal disposed within a vessel, a so-called gas injection pump is used. In each of these pumps, a rotatable impeller is submerged, typically within a pumping chamber, in the molten metal bath contained in the vessel. Additionally, the motor is suspended on a superstructure over the bath by posts connected to the base. In another embodiment of these pumps, a rotatable impeller can be submerged in the molten metal bath by a shaft affixed to a suspended motor, where the motor is not supported over the bath by any posts. Rotation of the impeller within the pumping chamber forces the molten metal as desired in a direction permitted by the pumping chamber design. [0003] Mechanical pumps for moving molten metal in a bath historically have a relatively short life because of the destructive effects of the molten metal environment on the material used to construct the pump. Moreover, most materials capable of long term operation in a molten metal bath have relatively poor strength which can result in mechanical failure. In this regard, the industry has typically relied on graphite, a material with adequate strength, temperature resistance and chemical resistance, to function for an acceptable period of time in the harsh molten metal environment. [0004] While graphite is currently the most commonly used material, it presents certain difficulties to pump manufacturers. Particularly, mechanical pumps usually require a graphite pump housing submerged in the molten metal. However, the housing is somewhat buoyant in the metal bath because the graphite has a lower density than the metal. In order to prevent the pump housing from rising in the metal and to prevent unwanted lateral movement of the base, a series of vertical legs are positioned between the pump housing and an overhead structure which acts simultaneously to support the drive motor and locate the base. In addition to functioning as the intermediate member in the above roles, the legs, or posts as they are also called, must be strong enough to withstand the tensile stress created during installation and removal of the pump in the molten metal bath.
[0005] Similarly, the shaft connecting the impeller and the motor is constructed of graphite. Often, this shaft component experiences significant stress when occluding matter in the metal bath is encountered and sometimes trapped against the housing. Since graphite does not possess as high a strength as would be desired, it would be helpful to reinforce the leg and shaft components of the pump. A shaft or post assembly made entirely of ceramic would be brittle and subject to an unexpected failure. Furthermore, exposed metal components residing in the molten metal bath can dissolve.
[0006] In addition, graphite can be difficult to work with because graphite has different thermal expansion rates in its two grain orientations. This may result in a post and base having divergent and conflicting thermal expansion rates in the molten metal environment. This problem is compounded by the fact that pump construction has historically required cementing the graphite post into a hole in the graphite base. This design provides no tolerance between the components to accommodate this divergent thermal expansion. Unfortunately, this can lead to cracking of the base or the post. Accordingly, it would be desirable to have a molten metal pump wherein the mating of a post and a base is achieved in a manner which accommodates divergent thermal expansion tendencies.
[0007] Tensor pumps combine ceramic and steel with an improved design to increase reliability of molten metal pumps. Traditional graphite pumps must be rebuilt about three times per year when the graphite posts become oxidized or broken. By replacing the posts with a stronger material that will not oxidize, the life of the pump has been extended to up to a year. Fewer rebuilds mean lower costs and less labor to maintain pumps.
[0008] Tensor pumps are centered around a high temperature alloy steel rod loaded in tension. The tensor rods hold the ceramic posts in compression to maximize their strength. Fragile ceramic sleeves are no longer needed to protect graphite posts from oxidation and abrasion. Ceramic sleeves can also hide post oxidation which could result in unexpected failures. Not only are the ceramic posts stronger than graphite, if they do break, the base is still supported by the steel rods.
[0009] In addition, tensor pump bases are very strong. The holes in the base are much smaller which means that less material needs to be removed during manufacturing. The base, like the posts, is also loaded in compression for maximum strength, which can last up to a year between rebuilds and which replaces graphite posts with ceramic and steel.
[0010] Tensor pumps are also the most economical molten metal pumps available. With a reasonable initial cost, predictable parts usage, and low energy requirements, tensor pumps cost less to operate than other mechanical pumps. And when a pump does need maintenance, it can be pulled out of service and replaced with another pump quickly, minimizing the impact on production. When the pump finally does need to be rebuilt there are no structural cement joints, which is another advantage of tensor pumps. The pump is completely bolted together and it can actually be used right after assembly. Tensor pumps can be made as transfer, circulation, and gas injection pumps. Flows range from a minimum of 100 pounds (45 kg.) aluminum per minute to a maximum of 30,000 pounds (13.6 tons) per minute. [0011] The prior art utilized a metal rod having a foot which had to be welded to the base and which would be trapped in the graphite base of the molten metal pump. In addition, there were difficulties with easily welding the foot onto the rod. The present invention, however, works like the prior art, but is far easier to assemble and manufacture. Instead of having to weld the foot onto the rod, there is now a keeper pair which is easily put into place at the groove of the rod. Then when the rod is pulled up, the two halves of the keeper pair catch and engage the retainer cup and work in the same way as the prior art. [0012] U.S. Patent No. 6,887,425 is herein incorporated by reference.
BRIEF DESCRIPTION
[0013] A rod assembly for use with a molten metal pump, where the rod assembly includes a tensor rod, a keeper pair, and a retainer cup.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] FIGURE 1 is a front elevation view, partially in cross-section, of a molten metal pump;
[0015] FIGURE 2 is a perspective view of a tensor rod, retainer cup and keeper pair prior to assembly;
[0016] FIGURE 3 is a perspective view of a rod assembly; [0017] FIGURE 4 is a perspective view of a tensor rod retainer cup; [0018] FIGURE 5 is a top view of the tensor rod retainer cup; [0019] FIGURE 6 is a sectional view taken along lines A-A of FIGURE 4; [0020] FIGURE 7 is a perspective view of one half of a tensor rod keeper pair; [0021] FIGURE 8 is a top view of one half of the tensor rod keeper pair; [0022] FIGURE 9 is a side view of one half of the tensor rod keeper pair; [0023] FIGURE 10 is side view of a tensor rod; [0024] FIGURE 11 is a top view of a tensor rod. DETAILED DESCRIPTION
[0025] Referring to FIG. 1, a molten metal transfer pump is provided. The molten metal pump 10 includes a base assembly 12 having a pumping chamber 14 with an impeller 16 disposed therein. Bearing rings 18 provide mating surfaces between the impeller 16 and the base assembly 12. Rotation of the impeller 16 forces molten metal 20 through outlet 22 and up riser tube 24 for transport to another location. Rotation of impeller 16 is achieved when motor 26 rotates shaft 28 by turning shaft coupling 30 provided therebetween. The motor 26 is positioned above the base assembly 12 on a platform assembly 32 having an insulation layer 34, a motor mount bracket 36 and a motor mount plate 38.
[0026] With further reference to FIG. 1 , two post assemblies 40 are shown. However, any number of post assemblies could be used in the present invention, preferably one, two or four. Most preferably, two post assemblies 40, comprised of a rod 42 constructed of a heat resistant alloy material disposed within an inner member 44 and an outer sheath 46 suspend the base assembly 12 below the platform 32. The inner member 44 is disposed between the rod 42 and the outer sheath 46. The inner member can be a material to wet out molten metal that may penetrate the outer sheath. The inner member can comprise fiberfrax, graphoil or other similar material, including but not limited to compressible ceramics. Preferably, the rod will be constructed of an alloy available from Metaullics Systems Co., L. P. 31935 Aurora Road, Solon, Ohio, 44139.
[0027] The outer sheath 46 includes a ceramic shield for additional protection against oxidation, erosion, corrosion, etc. The lower end of rod 42 includes cap 48. Cap 48 is disposed within a cavity 50 in base assembly 12. A graphite or refractory plug 52 is cemented into the lowermost portion of the cavity 50 to seal the area from molten metal. Plug 52 is such that its diameter is sufficiently large to include the rod 42 and both the inner member 44 and outer sheath 46, while still sealing the connection within the housing. The upper end of the rod 42 extends through the insulation layer 34 and is secured with nut 54 to motor mount plate 36. A disc spring 56 or other compression spring is disposed between the motor mount platform 38 and insulation layer 34. Preferably, an insulating washer (not shown) will be positioned between motor mount plate 36 and spring 56. Tightening of nut 54 results in compression of the spring 56 and a bias on the rod 42 and inner 44 and outer 46 sheaths. [0028] This assembly provides a high strength alloy rod connection between the base and motor mount. The alloy rod 42 is further supported by steel alloy sleeve, which surrounds the alloy rod 42. In addition to the steel alloy sleeve, the assembly protects the otherwise degradable rod from the molten metal environment by surrounding the alloy rod and steel alloy sleeve with a ceramic post. A further advantage is that the thermal expansion mismatch resulting from divergent grain orientations in a graphite post and a graphite base is eliminated because a graphite post is not rigidly cemented into a hole in the base. Furthermore, the strength of the graphite sheath is increased because it is retained under compression as a result of being squeezed between socket 58 and the upper surface of base assembly 12. [0029] Referring now to FIGS. 2 and 3, a detailed depiction of a rod assembly 60 is provided. Here, the rod assembly 60 includes a rod 42, which passes through a retainer cup 70 and is kept in contact with the retainer cup 70 by the keeper pair 80, 82. As can be seen in FIGS. 4-6, the retainer cup 70 has a recess 78 on a second side 74 of the cup 70. On a first side 72 of the cup 70 is an approximately concave indentation 76. The retainer cup 70 also includes an opening 68 extending through approximately the center of the retainer cup 70.
[0030] With reference to FIGS. 7-9, the keeper pair 80, 82 is illustrated. The keeper pair 80, 82 includes two halves, a first half 80 and a second half 82. The first 80 and second 82 halves are approximately mirror images of one another. The keeper pair 80, 82 includes a first side 84a, 84b and a second side 86a, 86b. Referring now to FIGS. 10 and 11 , the tensor rod 42 is shown. The tensor rod 42 includes a first end 62 and a second end 64. A groove 66 in the rod 42 is disposed approximately towards the first end 62. [0031] As illustrated by FIGS. 2 and 3, the retainer cup 70 slides down the tensor rod 42, where the first half 80 and the second half 82, i.e., the keeper pair 80, 82, come together around the tensor rod 42, essentially forming an approximate ring shape around the tensor rod 42. The keeper pair come 80, 82 together at the groove 66 located toward the first end 62 of the tensor rod 42. Once, the keeper pair 80, 82 comes together, the retainer cup 70 continues to slide down the tensor rod 42 until the recess 78 on a second side of the retainer cup 70 comes into contact with the first side 84a, 84b of the keeper pair 80, 82. The recess 78 in the retainer cup 70 then mates with the first side 84a, 84b of the keeper pair 80, 82 forming a friction fit. Now that the rod 42 is assembled 60 by having the retainer cup 70 slide onto the keeper pair 80, 82, the rod assembly 60 may be pulled in an upward direction and rotated, where the rod assembly 60 will engaged the molten metal base 12.
[0032] The above described tensor rod is equally applicable to a scrap submergence device as well as the above referenced molten metal transfer pump. In a scrap submergence system, a melting bowl can be held together by a tensor rod. U.S. Patent No. 6,074,455 is herein incorporated by reference.
[0033] The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims

CLAIMS What is claimed is:
1. A rod assembly for use with an associated molten metal pump, said rod assembly comprising: a tensor rod; a keeper pair; and a retainer cup.
2. A molten metal pump post comprising: an elongated rod; a first half of a keeper pair at least partially surrounding a first portion of said elongated rod; a second half of a keeper pair at least partially surrounding a second portion of said elongated rod; and a retainer cup at least partially surrounding and operatively secured to said first half and said second half of said elongated rod.
N:\MLCZ\200146\SLE0000007V001.doc
PCT/US2007/020532 2006-09-22 2007-09-21 Tensor rod WO2008073179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/442,413 US8187528B2 (en) 2006-09-22 2007-09-21 Molten metal post assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84657806P 2006-09-22 2006-09-22
US60/846,578 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008073179A1 true WO2008073179A1 (en) 2008-06-19

Family

ID=39512024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/020532 WO2008073179A1 (en) 2006-09-22 2007-09-21 Tensor rod

Country Status (2)

Country Link
US (1) US8187528B2 (en)
WO (1) WO2008073179A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828261B2 (en) * 2008-05-14 2010-11-09 Greer Karl E Post mounting assembly and method for molten metal pump
US9551091B2 (en) * 2013-12-26 2017-01-24 Hexa Nano Carbon LLC Process and equipment for the production of micro-carbonfibers
US20170175772A1 (en) * 2015-12-21 2017-06-22 Karl E. Greer Post Mounting Assembly and Method for Molten Metal Pump
KR102360759B1 (en) * 2016-06-21 2022-02-10 파이로텍, 인크. Multi-chamber molten metal pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558505A (en) * 1994-08-09 1996-09-24 Metaullics Systems Co., L.P. Molten metal pump support post and apparatus for removing it from a base
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US6451247B1 (en) * 1998-11-09 2002-09-17 Metaullics Systems Co., L.P. Shaft and post assemblies for molten metal apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887425B2 (en) * 1998-11-09 2005-05-03 Metaullics Systems Co., L.P. Shaft and post assemblies for molten metal apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558505A (en) * 1994-08-09 1996-09-24 Metaullics Systems Co., L.P. Molten metal pump support post and apparatus for removing it from a base
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US6451247B1 (en) * 1998-11-09 2002-09-17 Metaullics Systems Co., L.P. Shaft and post assemblies for molten metal apparatus

Also Published As

Publication number Publication date
US8187528B2 (en) 2012-05-29
US20100084440A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US6451247B1 (en) Shaft and post assemblies for molten metal apparatus
US6887425B2 (en) Shaft and post assemblies for molten metal apparatus
US11519414B2 (en) Tensioned rotor shaft for molten metal
US3836280A (en) Molten metal pumps
US9422942B2 (en) Tension device with internal passage
US7906068B2 (en) Support post system for molten metal pump
EP1019635B1 (en) Molten metal pump with monolithic rotor
US20230375006A1 (en) Tensioned support post and other molten metal devices
US8187528B2 (en) Molten metal post assembly
EP0894981A1 (en) Rotor bearing system for molten metal pumps
CA2168508A1 (en) Method and apparatus for inhibiting oxidation in pumps for pumping molten metal
WO2022226404A1 (en) Shaft and post assemblies for molten apparatus
EP1522735B1 (en) Shaft and post assemblies for molten metal pumping apparatus
RU2557046C2 (en) Submerged branch pipe for vacuumiser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07838684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12442413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07838684

Country of ref document: EP

Kind code of ref document: A1