WO2008107613A1 - System and method for open loop control of an active anti-roll system by characterizing the yaw rate of a vehicle based on a nonlinear two-wheel model - Google Patents

System and method for open loop control of an active anti-roll system by characterizing the yaw rate of a vehicle based on a nonlinear two-wheel model Download PDF

Info

Publication number
WO2008107613A1
WO2008107613A1 PCT/FR2008/050133 FR2008050133W WO2008107613A1 WO 2008107613 A1 WO2008107613 A1 WO 2008107613A1 FR 2008050133 W FR2008050133 W FR 2008050133W WO 2008107613 A1 WO2008107613 A1 WO 2008107613A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw rate
transfer coefficient
load transfer
vehicle
module
Prior art date
Application number
PCT/FR2008/050133
Other languages
French (fr)
Inventor
Alessandro Monti
Richard Pothin
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2008107613A1 publication Critical patent/WO2008107613A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/016Yawing condition

Definitions

  • a system and method of open loop control of an active anti-roll system by typing the yaw rate of a vehicle based on a two-wheel nonlinear model.
  • the invention relates to the field of stabilization systems of a motor vehicle and stability modeling systems of a motor vehicle.
  • EP 0 827 852 discloses a system and method for improving the stability of a vehicle with two anti-roll actuators. This paper proposes to determine the speed and steering angle of the vehicle, then to determine the theoretical rate of change of the yaw angle and to compare this theoretical rate of change in yaw angle with the rate of change of yaw. yaw angle actually perceived by the vehicle. The difference between the theoretical and actual values of the yaw rate and the value of the steering angle, as well as the value of the lateral acceleration, make it possible to determine the magnitude of the antiroll torque correction and its distribution between the nosewheel. and back. The calculation of the theoretical variation rate of the yaw angle is performed in a closed loop according to a linear model.
  • the invention relates to a system and a method for controlling an active anti-roll system, with one or two trains, for a motor vehicle making it possible to improve the control of the yaw behavior of such a vehicle.
  • the invention also relates to a control method of an active anti-roll system based on a two-wheel nonlinear model.
  • a method of controlling an active anti-roll system for a vehicle including determining the desired yaw rate and determining the antiroll torque based on the difference between the estimated yaw rate and the desired yaw rate, and the control method determines the yaw rate estimated from a two-wheel nonlinear model to determine the antiroll torque setpoint to be applied by the actuators as a function of the speed difference. of estimated yaw and desired yaw rate.
  • the desired yaw rate can be determined from a nonlinear two wheel model based on the input information.
  • the difference between the desired yaw rate and the estimated yaw rate can be estimated and a load transfer coefficient determined according to the input information.
  • the control method determines the anti - roll torques to be applied to the stabilizer bars as a function of the gap between the desired yaw rate and the estimated yaw rate.
  • the control method uses a calculation loop whose inputs are the desired yaw rate and the zero error load transfer coefficient.
  • the zero error load transfer coefficient is used to initialize the calculation loop.
  • the calculation loop is used to determine the estimated yaw rate and antiroll torque.
  • Yaw rate is estimated from a non - linear physical model, allowing for static and dynamic behaviors. The non-linearity makes it possible to take into account the influence of the load distribution between the front and rear trains on the yaw rate of the vehicle.
  • a reset signal of the calculation of the load transfer coefficient correction can be issued if the input information is outside the operating range of the vehicle in which the anti-roll correction influences the desired yaw rate. Resetting the calculation of the correction of the load transfer coefficient makes it possible to avoid calculating antiroll torque instructions which would have no effect on the current situation.
  • the anti-roll system is active only in situations where it has an effect, the system becoming passive in other cases. This also avoids applying a correction that may cause unexpected behavior of the vehicle from the driver 's point of view.
  • the value of the load transfer coefficient may be saturated with the value of a load transfer coefficient of a passive vehicle if the value of the load transfer coefficient is greater than the value of a load transfer coefficient of load. 'a passive vehicle.
  • At least one antiroll torque to be applied to a train can be determined as a function of the load transfer coefficient.
  • the estimated yaw rate can be determined from a nonlinear model for estimating the lateral forces exerted on the vehicle from the load transfer coefficient and the input information.
  • the input information may include at least one of the following quantities, vehicle speed, steering angle, total antiroll torque, longitudinal acceleration, and lateral acceleration.
  • a system for controlling an active anti-roll device for a vehicle comprising a calculation module receiving on its inputs signals coming from a measurement module capable of determining the driving parameters. of the vehicle, including vehicle speed, steering angle, total antiroll torque, longitudinal acceleration and lateral acceleration.
  • the calculation module sends on its outputs control signals to the front and rear anti-roll torque actuators.
  • the calculation module may comprise a desired yaw rate determination module, a yaw rate determination module estimated from a non-yaw rate model. linear two - wheeled vehicle, a module for estimating the correction of the load transfer coefficient, a module for limiting the operating range of the module for estimating the correction of the load transfer coefficient, a module for the saturation of the load coefficient. load report, a module for estimating antiroll couples.
  • FIG. 1 shows a control system according to an aspect of the invention
  • FIG. 2 is a block diagram of the main steps of the control method.
  • a measurement module 1 comprises a vehicle speed measuring sensor 1, a steering angle sensor Ib, a longitudinal acceleration measurement sensor Ic, a sensor I d measuring the lateral acceleration and a sensor for measuring the total antiroll torque used in particular for two - train anti - roll systems.
  • the control system comprises a desired yaw rate determination module 3 receiving at its inputs signals from the vehicle speed measuring sensor 1a through the link 9b and from the angle of the steering angle sensor 1b. the link 9a.
  • the determination module 3 of the desired yaw rate is connected by at least one of its outputs via a link 15 to a first adder 17.
  • the first adder 17 is connected by an output 17a to an estimation module 4 of the correction of the load transfer coefficient.
  • the estimation module 4 of the correction of the load transfer coefficient is connected by at least one of its outputs to a second adder 21 by a connection 18.
  • a branch 16 of the connection 15 is connected at the input of a limitation module 5 of the operating domain of the estimation module 4 of the correction of the load transfer coefficient.
  • a The tap 10 of the connection 9 is also connected to one of the inputs of the limitation module 5 of the operating domain of the estimation module 4 of the correction of the load transfer coefficient.
  • a connection 1 1 connects the limitation module 5 to the sensor Ic for measuring the longitudinal acceleration and a connection 12 connects the limitation module 5 to the sensor I d for measuring the lateral acceleration.
  • the limitation module 5 is connected by at least one of its outputs to the estimation module 4 of the correction of the load transfer coefficient by the connection 19 and by at least one of its outputs to the second adder 21 via the connection 20.
  • the second adder 21 is connected by a connection 21a to a saturation module 6 of the load transfer coefficient.
  • the saturation module 6 of the load transfer coefficient is connected by at least one of its outputs to a determination module 8 of the estimated yaw rate by the connection 22.
  • a branch 23 of the connection 22 is connected at the input of an estimation module 7 of the antiroll couples.
  • the estimation module 7 of the anti-roll torques is connected by its inputs to the sensor for measuring the total antiroll torque by the connection 13 and to the sensor I d for measuring the lateral acceleration by the branch 14 of the connection 12.
  • the module The anti-roll torque estimator 7 emits via the connection 24 an anti-roll torque setpoint for the nose gear and by connecting an antiroll torque setpoint for the rear axle.
  • the determination module 8 of the estimated yaw rate is connected to a sensor 1 for measuring the speed of the vehicle by a connection 26, to a sensor Ib for measuring the steering angle by a connection 27 and to a sensor Ic for measuring the longitudinal acceleration by a connection 27.
  • the determination module 8 of the estimated yaw rate is connected by at least one of its outputs via a connection 29 to the first adder 17.
  • the determination module 3 of the desired yaw rate receives the values of the vehicle speed v and the steering angle ⁇ . From these values, the determination module 3 of the speed of desired yaw determines the desired yaw rate based on a two - wheel model described by the following relationships:
  • I z inertia of the vehicle body around its yaw axis
  • angular yaw rate of the vehicle body
  • the limitation module 5 determines a zero error load coefficient according to the physical modeling of the vehicle. This coefficient reflects both the behavior of the vehicle predicted by the physics and makes it possible to initialize the feedback loop formed by the estimation modulus 4 of the correction of the load transfer coefficient, the saturation module 6 of the coefficient charge transfer and the determination module 8 of the estimated yaw rate while the first adder 17 upstream of the estimation module 4 of the correction of the load transfer coefficient can not perform a signal default calculation on its negative entry.
  • the feedback loop works from a value of a load transfer coefficient already close to reality, minimizing calculation times, response times and the risk of error.
  • the limitation module 5 receives the values of the vehicle speed, lateral acceleration, longitudinal acceleration and the desired yaw rate calculated by the desired yaw rate determination module 3. From these values, the limitation module 5 determines whether the vehicle is in a field where the antiroll system can have an influence. If this is not the case, the limitation module 5 issues a reset command to the estimation module 4 of the load transfer coefficient correction in order to stop the calculation of the correction of the load coefficient. load report.
  • the first adder 17 subtracts the estimated yaw rate from the desired yaw rate, and sends the result at the input of the estimation module 4 of the correction of the load transfer coefficient.
  • the correction of the load transfer coefficient and the zero error load transfer coefficient are summed and sent as input load factor of the saturation module 6 of the load transfer coefficient.
  • the saturation module 6 of the load transfer coefficient verifies that the load coefficient sent to the input of the determination module 8 of the estimated yaw rate is less than the load transfer coefficient of a passive vehicle.
  • Passive vehicle means a vehicle without anti-roll stabilization system. Thus, a vehicle equipped with an anti-roll system is guaranteed to be more stable than a vehicle which would be deprived of it, regardless of the result of the calculation.
  • the saturated load transfer coefficient k s is transmitted to the estimation module 7 of the anti-roll torques and to the determination module 8 of the estimated yaw rate.
  • the determination module 8 of the estimated yaw rate calculates the load on each wheel. m,,, s mh ⁇ , IT e 2 m,,, s mh ⁇ , IL e 2
  • the estimated yaw rate is then sent to the input of the first adder 17.
  • the antiroll torque estimation module 7 receives the values of the total antiroll torque Ct and of the transverse acceleration ⁇ t in addition to the load transfer coefficient. saturated k s and deduces the torques to be applied to the front axle Ca l and to the rear axle Ca2 by the following equations If active anti-roll bars equip the front and rear trains, we have:
  • FIG. 2 shows the main steps of the control method.
  • the method begins in step 30 by acquiring the input data.
  • the control system estimates the desired yaw rate based on the input data.
  • the control system estimates the area of validity of the PID calculation and the control system calculates a load transfer coefficient for a zero error distribution value.
  • step 33 the control system estimates a correction of the load transfer coefficient, in particular by a PID method with saturation of the integral term, also known by the term "anti-windup" device, according to the speed of desired yaw and estimated yaw rate.
  • a signal from step 32 stops the calculation if the input data is outside the range of effect of the antiroll correction.
  • step 34 the control system saturates the load transfer coefficient, the result of the sum of the load transfer coefficient for a zero error distribution value which is the value a load transfer coefficient for the same passive vehicle, and the correction of the load transfer coefficient
  • step 35 the control system uses the saturated load transfer coefficient to estimate the estimated yaw rate from a nonlinear mathematical model. The speed obtained is compared with the desired yaw rate in step 33. The control system also estimates the correction of the load transfer coefficient.
  • step 36 the control system determines the antiroll torque instructions based on the saturated load transfer coefficient.
  • the forward and reverse torque instructions are then sent to the concerned organs.
  • the system and method of controlling an anti-roll system makes it possible to determine the torque controls of a roll stabilization system based on a limited number of measurements.
  • the determination of the torque controls of the anti - roll system is based on the estimation of the yaw rate according to a nonlinear model.
  • the control method is of open loop type which allows a greater reactivity of the calculation.
  • the limited number of sensors required for input measurements combined with the ease of access of these measurements makes it possible to reconcile cost and performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The invention relates to a method for controlling an active anti-roll system for a vehicle, characterized in that the control method comprises a determination of the desired yaw rate and a determination of the anti-roll torque as a function of the difference between the estimated yaw rate and the desired yaw rate, and in that the control method determines the estimated yaw rate from a nonlinear two-wheel model in order to determine the anti-roll torque value to be applied by the actuators as a function of the difference between the estimated yaw rate and the desired yaw rate.

Description

Système et procédé de commande en boucle ouverte d'un système antiroulis actif par typage de la vitesse en lacet d'un véhicule basé sur un modèle non linéaire deux roues. A system and method of open loop control of an active anti-roll system by typing the yaw rate of a vehicle based on a two-wheel nonlinear model.
L'invention concerne le domaine des systèmes de stabilisation d'un véhicule automobile et les systèmes de modélisation de la stabilité d'un véhicule automobile.The invention relates to the field of stabilization systems of a motor vehicle and stability modeling systems of a motor vehicle.
Les véhicules automobiles actuels sont équipés de système d' aide à la conduite agissant à la fois sur la sécurité du véhicule et de ses occupants et sur le confort de conduite. Les systèmes antiroulis actifs permettent de contrôler le comportement en lacet du véhicule, participant à améliorer le confort de conduite et la précision de la trajectoire dans des situations impliquant de brusques variations de la vitesse de lacet.Current motor vehicles are equipped with a driver assistance system that acts both on the safety of the vehicle and its occupants and on driving comfort. Active anti-roll systems control the yaw behavior of the vehicle, helping to improve ride comfort and trajectory accuracy in situations involving abrupt changes in yaw rate.
Le document EP 0 827 852 décrit un système et un procédé pour améliorer la stabilité d'un véhicule muni de deux actionneurs anti-roulis . Ce document propose de déterminer la vitesse et l' angle de braquage du véhicule, puis de déterminer le taux de variation théorique de l' angle de lacet et de comparer ce taux de variation théorique de l' angle de lacet au taux de variation de l' angle de lacet effectivement perçu par le véhicule. L' écart entre les valeurs théoriques et effectives du taux de lacet et la valeur de l' angle de braquage ainsi que la valeur de l' accélération latérale permettent de déterminer l' ampleur de la correction du couple antiroulis et sa répartition entre le train avant et arrière. Le calcul du taux de variation théorique de l' angle de lacet est réalisé en boucle fermée d' après un modèle linéaire. Un système utilisant un tel calcul ne peut contrôler simultanément le roulis et la vitesse de lacet du véhicule. L'invention a pour objet un système et un procédé de commande d'un système antiroulis actif, à un ou deux trains, pour un véhicule automobile permettant d' améliorer le contrôle du comportement en lacet d'un tel véhicule. L' invention a également pour objet un procédé de commande d'un système antiroulis actif basé sur un modèle non linéaire deux roues .EP 0 827 852 discloses a system and method for improving the stability of a vehicle with two anti-roll actuators. This paper proposes to determine the speed and steering angle of the vehicle, then to determine the theoretical rate of change of the yaw angle and to compare this theoretical rate of change in yaw angle with the rate of change of yaw. yaw angle actually perceived by the vehicle. The difference between the theoretical and actual values of the yaw rate and the value of the steering angle, as well as the value of the lateral acceleration, make it possible to determine the magnitude of the antiroll torque correction and its distribution between the nosewheel. and back. The calculation of the theoretical variation rate of the yaw angle is performed in a closed loop according to a linear model. A system using such a calculation can not simultaneously control the roll and the yaw rate of the vehicle. The invention relates to a system and a method for controlling an active anti-roll system, with one or two trains, for a motor vehicle making it possible to improve the control of the yaw behavior of such a vehicle. The invention also relates to a control method of an active anti-roll system based on a two-wheel nonlinear model.
Dans un mode de réalisation, on définit un procédé de commande d'un système antiroulis actif pour un véhicule, comprenant une détermination de la vitesse de lacet désirée et une détermination du couple antiroulis en fonction de l'écart entre la vitesse de lacet estimée et la vitesse de lacet désirée, et le procédé de commande détermine la vitesse de lacet estimée à partir d'un modèle non linéaire à deux roues afin de déterminer la consigne de couple antiroulis à appliquer par les actionneurs en fonction de l'écart entre la vitesse de lacet estimée et la vitesse de lacet désirée.In one embodiment, a method of controlling an active anti-roll system for a vehicle is defined, including determining the desired yaw rate and determining the antiroll torque based on the difference between the estimated yaw rate and the desired yaw rate, and the control method determines the yaw rate estimated from a two-wheel nonlinear model to determine the antiroll torque setpoint to be applied by the actuators as a function of the speed difference. of estimated yaw and desired yaw rate.
La vitesse de lacet désirée peut être déterminée à partir d'un modèle deux roues non linéaire en fonction des informations d' entrée. On peut estimer la différence entre la vitesse de lacet désirée et la vitesse de lacet estimée et on détermine un coefficient de report de charge en fonction des informations d'entrée.The desired yaw rate can be determined from a nonlinear two wheel model based on the input information. The difference between the desired yaw rate and the estimated yaw rate can be estimated and a load transfer coefficient determined according to the input information.
Le procédé de commande détermine les couples antiroulis à appliquer aux barres de stabilisation en fonction de l' écart entre la vitesse de lacet désirée et la vitesse de lacet estimée. Le procédé de commande utilise une boucle de calcul, dont les entrées sont la vitesse de lacet désirée et le coefficient de report de charge à erreur nulle. Le coefficient de report de charge à erreur nulle permet d' initialiser la boucle de calcul. La boucle de calcul permet de déterminer la vitesse de lacet estimée et les couples antiroulis . La vitesse de lacet est estimée d' après un modèle physique non linéaire, permettant de tenir compte des comportements statiques et dynamiques . La non linéarité permet de prendre en compte l'influence de la répartition de charge entre les trains avant et arrière sur la vitesse de lacet du véhicule. Un signal de remise à zéro du calcul de la correction du coefficient de report de charge peut être émis si les informations d' entrée se situent hors du domaine de fonctionnement du véhicule dans lequel la correction antiroulis influence la vitesse de lacet désirée. La remise à zéro du calcul de la correction du coefficient de report de charge permet d' éviter de calculer des consignes couples antiroulis qui n' auraient pas d' effet sur la situation en cours . Ainsi, le système antiroulis n' est actif que dans les situations où il a un effet, le système redevenant passif dans les autres cas . Cela permet également d' éviter d' appliquer une correction pouvant engendrer un comportement inattendu du véhicule du point de vue du conducteur.The control method determines the anti - roll torques to be applied to the stabilizer bars as a function of the gap between the desired yaw rate and the estimated yaw rate. The control method uses a calculation loop whose inputs are the desired yaw rate and the zero error load transfer coefficient. The zero error load transfer coefficient is used to initialize the calculation loop. The calculation loop is used to determine the estimated yaw rate and antiroll torque. Yaw rate is estimated from a non - linear physical model, allowing for static and dynamic behaviors. The non-linearity makes it possible to take into account the influence of the load distribution between the front and rear trains on the yaw rate of the vehicle. A reset signal of the calculation of the load transfer coefficient correction can be issued if the input information is outside the operating range of the vehicle in which the anti-roll correction influences the desired yaw rate. Resetting the calculation of the correction of the load transfer coefficient makes it possible to avoid calculating antiroll torque instructions which would have no effect on the current situation. Thus, the anti-roll system is active only in situations where it has an effect, the system becoming passive in other cases. This also avoids applying a correction that may cause unexpected behavior of the vehicle from the driver 's point of view.
La valeur du coefficient de report de charge peut être saturée à la valeur d'un coefficient de report de charge d'un véhicule passif si la valeur du coefficient de report de charge est supérieure à la valeur d'un coefficient de report de charge d'un véhicule passif.The value of the load transfer coefficient may be saturated with the value of a load transfer coefficient of a passive vehicle if the value of the load transfer coefficient is greater than the value of a load transfer coefficient of load. 'a passive vehicle.
Dans un tel procédé, au moins un couple antiroulis à appliquer à un train peut être déterminé en fonction du coefficient de report de charge. La vitesse de lacet estimée peut être déterminée d' après un modèle non linéaire permettant d' estimer les forces latérales exercées sur le véhicule à partir du coefficient de report de charge et des informations d' entrée.In such a method, at least one antiroll torque to be applied to a train can be determined as a function of the load transfer coefficient. The estimated yaw rate can be determined from a nonlinear model for estimating the lateral forces exerted on the vehicle from the load transfer coefficient and the input information.
Les informations d' entrée peuvent comprendre au moins l'une des grandeurs suivantes, la vitesse du véhicule, l' angle de braquage, le couple antiroulis total, l' accélération longitudinale et l' accélération latéraleThe input information may include at least one of the following quantities, vehicle speed, steering angle, total antiroll torque, longitudinal acceleration, and lateral acceleration.
Selon un autre aspect de l' invention, on définit un système de commande d'un organe antiroulis actif pour un véhicule, comprenant un module de calcul recevant sur ses entrées des signaux provenant d'un module de mesure capable de déterminer les paramètres de roulage du véhicule, notamment la vitesse du véhicule, l' angle de braquage, le couple antiroulis total, l' accélération longitudinale et l' accélération latérale. Le module de calcul émet sur ses sorties des signaux de commande à destination des actionneurs de couple antiroulis avant et arrière.According to another aspect of the invention, a system for controlling an active anti-roll device for a vehicle is defined, comprising a calculation module receiving on its inputs signals coming from a measurement module capable of determining the driving parameters. of the vehicle, including vehicle speed, steering angle, total antiroll torque, longitudinal acceleration and lateral acceleration. The calculation module sends on its outputs control signals to the front and rear anti-roll torque actuators.
Le module de calcul peut comprendre un module de détermination de la vitesse de lacet désirée, un module de détermination de la vitesse de lacet estimée à partir d'un modèle non linéaire à deux roues, un module d' estimation de la correction du coefficient de report de charge, un module de limitation du domaine de fonctionnement du module d' estimation de la correction du coefficient de report de charge, un module de saturation du coefficient de report de charge, un module d' estimation des couples antiroulis .The calculation module may comprise a desired yaw rate determination module, a yaw rate determination module estimated from a non-yaw rate model. linear two - wheeled vehicle, a module for estimating the correction of the load transfer coefficient, a module for limiting the operating range of the module for estimating the correction of the load transfer coefficient, a module for the saturation of the load coefficient. load report, a module for estimating antiroll couples.
D' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif et faite en référence aux dessins annexés sur lesquels : - la figure 1 montre un système de commande selon un aspect de l' invention ; etOther objects, features and advantages of the invention will become apparent on reading the following description, given solely by way of nonlimiting example and with reference to the appended drawings, in which: FIG. 1 shows a control system according to an aspect of the invention; and
- la figure 2 est un schéma synoptique des principales étapes du procédé de commande.- Figure 2 is a block diagram of the main steps of the control method.
Sur la figure 1 , un module 1 de mesure comprend un capteur l a de mesure de la vitesse du véhicule, un capteur Ib de mesure de l' angle de braquage, un capteur Ic de mesure de l' accélération longitudinale, un capteur I d de mesure de l' accélération latérale et un capteur le de mesure du couple antiroulis total utilisé notamment pour des systèmes antiroulis à deux trains. Le système de commande comprend un module de détermination 3 de la vitesse de lacet désirée recevant sur ses entrées des signaux provenant du capteur l a de mesure de la vitesse du véhicule par la liaison 9b et du capteur Ib de mesure de l' angle de braquage par la liaison 9a. Le module de détermination 3 de la vitesse de lacet désirée est connecté par au moins une de ses sorties par l' intermédiaire d'une liaison 15 à un premier additionneur 17.In FIG. 1, a measurement module 1 comprises a vehicle speed measuring sensor 1, a steering angle sensor Ib, a longitudinal acceleration measurement sensor Ic, a sensor I d measuring the lateral acceleration and a sensor for measuring the total antiroll torque used in particular for two - train anti - roll systems. The control system comprises a desired yaw rate determination module 3 receiving at its inputs signals from the vehicle speed measuring sensor 1a through the link 9b and from the angle of the steering angle sensor 1b. the link 9a. The determination module 3 of the desired yaw rate is connected by at least one of its outputs via a link 15 to a first adder 17.
Le premier additionneur 17 est relié par une sortie 17a à un module d' estimation 4 de la correction du coefficient de report de charge. Le module d' estimation 4 de la correction du coefficient de report de charge est relié par au moins une de ses sorties à un deuxième additionneur 21 par une connexion 18.The first adder 17 is connected by an output 17a to an estimation module 4 of the correction of the load transfer coefficient. The estimation module 4 of the correction of the load transfer coefficient is connected by at least one of its outputs to a second adder 21 by a connection 18.
Une dérivation 16 de la connexion 15 est connectée en entrée d'un module de limitation 5 du domaine de fonctionnement du module d' estimation 4 de la correction du coefficient de report de charge. Une dérivation 10 de la connexion 9 est également connectée à une des entrées du module de limitation 5 du domaine de fonctionnement du module d' estimation 4 de la correction du coefficient de report de charge. Une connexion 1 1 relie le module de limitation 5 au capteur Ic de mesure de l' accélération longitudinale et une connexion 12 relie le module de limitation 5 au capteur I d de mesure de l' accélération latérale. Le module de limitation 5 est relié par au moins une de ses sorties au module d' estimation 4 de la correction du coefficient de report de charge par la connexion 19 et par au moins une de ses sorties au deuxième additionneur 21 par la connexion 20.A branch 16 of the connection 15 is connected at the input of a limitation module 5 of the operating domain of the estimation module 4 of the correction of the load transfer coefficient. A The tap 10 of the connection 9 is also connected to one of the inputs of the limitation module 5 of the operating domain of the estimation module 4 of the correction of the load transfer coefficient. A connection 1 1 connects the limitation module 5 to the sensor Ic for measuring the longitudinal acceleration and a connection 12 connects the limitation module 5 to the sensor I d for measuring the lateral acceleration. The limitation module 5 is connected by at least one of its outputs to the estimation module 4 of the correction of the load transfer coefficient by the connection 19 and by at least one of its outputs to the second adder 21 via the connection 20.
Le deuxième additionneur 21 est relié par une connexion 21 a à un module de saturation 6 du coefficient de report de charge. Le module de saturation 6 du coefficient de report de charge est connecté par au moins une de ses sorties à un module de détermination 8 de la vitesse de lacet estimée par la connexion 22.The second adder 21 is connected by a connection 21a to a saturation module 6 of the load transfer coefficient. The saturation module 6 of the load transfer coefficient is connected by at least one of its outputs to a determination module 8 of the estimated yaw rate by the connection 22.
Une dérivation 23 de la connexion 22 est reliée en entrée d'un module d' estimation 7 des couples antiroulis. Le module d' estimation 7 des couples antiroulis est connecté par ses entrées au capteur le de mesure du couple antiroulis total par la connexion 13 et au capteur I d de mesure de l' accélération latérale par la dérivation 14 de la connexion 12. Le module d' estimation 7 des couples antiroulis émet par la connexion 24 une consigne de couple antiroulis pour le train avant et par la connexion 25 une consigne de couple antiroulis pour le train arrière. Le module de détermination 8 de la vitesse de lacet estimée est connecté à un capteur l a de mesure de la vitesse du véhicule par une connexion 26, à un capteur Ib de mesure de l' angle de braquage par une connexion 27 et à un capteur Ic de mesure de l' accélération longitudinale par une connexion 27. Le module de détermination 8 de la vitesse de lacet estimée est connecté par au moins une de ses sorties par l' intermédiaire d'une connexion 29 au premier additionneur 17.A branch 23 of the connection 22 is connected at the input of an estimation module 7 of the antiroll couples. The estimation module 7 of the anti-roll torques is connected by its inputs to the sensor for measuring the total antiroll torque by the connection 13 and to the sensor I d for measuring the lateral acceleration by the branch 14 of the connection 12. The module The anti-roll torque estimator 7 emits via the connection 24 an anti-roll torque setpoint for the nose gear and by connecting an antiroll torque setpoint for the rear axle. The determination module 8 of the estimated yaw rate is connected to a sensor 1 for measuring the speed of the vehicle by a connection 26, to a sensor Ib for measuring the steering angle by a connection 27 and to a sensor Ic for measuring the longitudinal acceleration by a connection 27. The determination module 8 of the estimated yaw rate is connected by at least one of its outputs via a connection 29 to the first adder 17.
Le module de détermination 3 de la vitesse de lacet désirée reçoit les valeurs de la vitesse du véhicule v et de l' angle de braquage α. A partir de ces valeurs, le module de détermination 3 de la vitesse de lacet désirée détermine la vitesse de lacet désirée d' après un modèle deux roues décrit par les relations suivantes :The determination module 3 of the desired yaw rate receives the values of the vehicle speed v and the steering angle α. From these values, the determination module 3 of the speed of desired yaw determines the desired yaw rate based on a two - wheel model described by the following relationships:
Figure imgf000008_0001
Figure imgf000008_0001
AvecWith
Di= rigidité de dérive des pneus avantDi = drift stiffness of front tires
D2= rigidité de dérive des pneus arrièreD 2 = rigidity of rear tire drift
11 = distance du centre de gravité de l'essieu avant1 1 = distance from the center of gravity of the front axle
12 = distance du centre de gravité de l'essieu arrière m = masse du véhicule v = vitesse du véhicule δ = angle de dérive du véhicule α = angle de braquage des roues avant1 2 = distance of the center of gravity of the rear axle m = mass of the vehicle v = speed of the vehicle δ = angle of drift of the vehicle α = steering angle of the front wheels
Iz = inertie de la caisse du véhicule autour de son axe de lacet ψ = vitesse angulaire de lacet de la caisse du véhiculeI z = inertia of the vehicle body around its yaw axis ψ = angular yaw rate of the vehicle body
II est possible de considérer une relation quasi statique en prenant δ = 0.It is possible to consider a quasi-static relation by taking δ = 0.
Le module de limitation 5 détermine un coefficient de charge à erreur nulle d' après la modélisation physique du véhicule. Ce coefficient reflète à la fois le comportement du véhicule prédit par la physique et permet d' initialiser la boucle de contre-réaction formée par le module d' estimation 4 de la correction du coefficient de report de charge, le module de saturation 6 du coefficient de report de charge et le module de détermination 8 de la vitesse de lacet estimée alors que le premier additionneur 17 en amont du module d' estimation 4 de la correction du coefficient de report de charge ne peut réaliser de calcul par défaut de signal sur son entrée négative. Ainsi, la boucle de contre-réaction travaille à partir d'une valeur d'un coefficient de report de charge déj à proche de la réalité, minimisant les temps de calcul, les temps de réponse et les risques d' erreur. Simultanément le module de limitation 5 reçoit les valeurs de la vitesse du véhicule, de l' accélération latérale, de l' accélération longitudinale et de la vitesse de lacet désirée calculée par le module de détermination 3 de la vitesse de lacet désirée. A partir de ces valeurs, le module de limitation 5 détermine si le véhicule se situe dans un domaine où le système antiroulis peut avoir une influence. Si ce n' est pas le cas, le module de limitation 5 émet une commande de remise à zéro en direction du module d' estimation 4 de la correction du coefficient de report de charge afin d' arrêter le calcul de la correction du coefficient de report de charge.The limitation module 5 determines a zero error load coefficient according to the physical modeling of the vehicle. This coefficient reflects both the behavior of the vehicle predicted by the physics and makes it possible to initialize the feedback loop formed by the estimation modulus 4 of the correction of the load transfer coefficient, the saturation module 6 of the coefficient charge transfer and the determination module 8 of the estimated yaw rate while the first adder 17 upstream of the estimation module 4 of the correction of the load transfer coefficient can not perform a signal default calculation on its negative entry. Thus, the feedback loop works from a value of a load transfer coefficient already close to reality, minimizing calculation times, response times and the risk of error. Simultaneously, the limitation module 5 receives the values of the vehicle speed, lateral acceleration, longitudinal acceleration and the desired yaw rate calculated by the desired yaw rate determination module 3. From these values, the limitation module 5 determines whether the vehicle is in a field where the antiroll system can have an influence. If this is not the case, the limitation module 5 issues a reset command to the estimation module 4 of the load transfer coefficient correction in order to stop the calculation of the correction of the load coefficient. load report.
En parallèle, le premier additionneur 17 retranche la vitesse de lacet estimée de la vitesse de lacet désirée, et envoie le résultat en entrée du module d'estimation 4 de la correction du coefficient de report de charge. La correction du coefficient de report de charge et le coefficient de report de charge à erreur nulle sont sommés et envoyés en tant que coefficient de report de charge en entrée du module de saturation 6 du coefficient de report de charge. Le module de saturation 6 du coefficient de report de charge vérifie que le coefficient de charge envoyé en entrée du module de détermination 8 de la vitesse de lacet estimée est inférieur au coefficient de report de charge d'un véhicule passif. Par véhicule passif, on entend un véhicule sans système de stabilisation antiroulis. Ainsi, un véhicule pourvu d'un système antiroulis est assuré d' être plus stable qu'un véhicule qui en serait dépourvu, quel que soit le résultat du calcul. Le coefficient de report de charge saturé ks est transmis au module d'estimation 7 des couples antiroulis et au module de détermination 8 de la vitesse de lacet estimée.In parallel, the first adder 17 subtracts the estimated yaw rate from the desired yaw rate, and sends the result at the input of the estimation module 4 of the correction of the load transfer coefficient. The correction of the load transfer coefficient and the zero error load transfer coefficient are summed and sent as input load factor of the saturation module 6 of the load transfer coefficient. The saturation module 6 of the load transfer coefficient verifies that the load coefficient sent to the input of the determination module 8 of the estimated yaw rate is less than the load transfer coefficient of a passive vehicle. Passive vehicle means a vehicle without anti-roll stabilization system. Thus, a vehicle equipped with an anti-roll system is guaranteed to be more stable than a vehicle which would be deprived of it, regardless of the result of the calculation. The saturated load transfer coefficient k s is transmitted to the estimation module 7 of the anti-roll torques and to the determination module 8 of the estimated yaw rate.
Le module de détermination 8 de la vitesse de lacet estimée calcule la charge sur chaque roue.
Figure imgf000010_0001
m , , , s mhγ, IL e2 m , , , s mhγ, IL e2
The determination module 8 of the estimated yaw rate calculates the load on each wheel.
Figure imgf000010_0001
m,,, s mhγ, IT e 2 m,,, s mhγ, IL e 2
Et en déduit les forces latérales :And deduces the lateral forces:
F = -γ(P4 (Fzl ) + P4 (Fz2))F = -γ (P 4 (F zl ) + P 4 (F z 2 ))
Avec L = empattement du véhicule g = constante de gravitation γt = accélération latérale γi = accélération longitudinale h = hauteur du centre de gravité du véhicule par rapport au sol ei = distance entre les deux roues avant e2 = distance entre les deux roues arrière ks = report de charge du véhicule actif après saturation O1 = angle de dérive de la roue P4 = polynôme d' ordre 4 Par injection dans le modèle suivant, le module de détermination 8 de la vitesse de lacet estimée peut estimer ψe . mv(δ + ψ) = Fyl + Fy2 Izψ = hFyi - l2Fy2 With L = vehicle wheelbase g = gravitational constant γ t = lateral acceleration γi = longitudinal acceleration h = height of the center of gravity of the vehicle relative to the ground ei = distance between the two front wheels e 2 = distance between the two rear wheels k s = load report of the active vehicle after saturation O 1 = drift angle of the wheel P 4 = order 4 polynomial By injection into the following model, the determination module 8 of the estimated yaw rate can estimate ψ e . mv (δ + ψ) = F yl + F y2 I z ψ = hF yi - l 2 F y2
La vitesse de lacet estimée est alors envoyée en entrée du premier additionneur 17. Parallèlement, le module d' estimation 7 des couples antiroulis reçoit les valeurs du couple antiroulis total Ct et de l' accélération transversale γt en plus du coefficient de report de charge saturé ks et en déduit les couples à appliquer au train avant Ca l et au train arrière Ca2 par les équations suivantes Si des barres antiroulis actives équipent les trains avant et arrière, on a :The estimated yaw rate is then sent to the input of the first adder 17. At the same time, the antiroll torque estimation module 7 receives the values of the total antiroll torque Ct and of the transverse acceleration γ t in addition to the load transfer coefficient. saturated k s and deduces the torques to be applied to the front axle Ca l and to the rear axle Ca2 by the following equations If active anti-roll bars equip the front and rear trains, we have:
Cai = ( l -kp)*Ct + (ks-kp)*m*h*γt Cai = (l -k p ) * Ct + (k s -k p ) * m * h * γ t
Ca2 = kp*Ct - (ks-kp)*m*h*γt Ca 2 = k p * Ct - (k s -k p ) * m * h * γ t
Si des barres antiroulis actives équipent le train avant seul, on a :If active anti-roll bars equip the front axle alone, we have:
Cal = (ks-kp)*m*h*γt/kp Cal = (k s -k p ) * m * h * γ t / k p
Si des barres antiroulis actives équipent le train arrière seul, on a :If active anti-roll bars equip the rear axle alone, we have:
Ca2 = (ks-kp)*m*h*γt/( l -kp)Ca 2 = (k s -k p ) * m * h * γ t / (l -k p )
Avec kp= coefficient de rapport de charge d'un véhicule passifWith k p = coefficient of load ratio of a passive vehicle
La figure 2 montre les principales étapes du procédé de commande. Le procédé commence à l'étape 30 par une acquisition des données d' entrée. A l'étape 31 , le système de commande estime la vitesse de lacet désirée d' après les données d' entrée. Parallèlement à l' étape 32, le système de commande estime le domaine de validité du calcul PID et le système de commande calcule un coefficient de report de charge pour une valeur de distribution à erreur nulle.Figure 2 shows the main steps of the control method. The method begins in step 30 by acquiring the input data. In step 31, the control system estimates the desired yaw rate based on the input data. In parallel with step 32, the control system estimates the area of validity of the PID calculation and the control system calculates a load transfer coefficient for a zero error distribution value.
A l' étape 33, le système de commande estime une correction du coefficient de report de charge, notamment par une méthode PID avec une saturation du terme intégral, connu également sous le terme de dispositif « anti-windup », d' après la vitesse de lacet désirée et la vitesse de lacet estimée. Un signal provenant de l'étape 32 stoppe le calcul si les données d' entrée sont hors du domaine d' effet de la correction antiroulis.In step 33, the control system estimates a correction of the load transfer coefficient, in particular by a PID method with saturation of the integral term, also known by the term "anti-windup" device, according to the speed of desired yaw and estimated yaw rate. A signal from step 32 stops the calculation if the input data is outside the range of effect of the antiroll correction.
A l' étape 34, le système de commande sature le coefficient de report de charge, résultat de la somme du coefficient de report de charge pour une valeur de distribution à erreur nulle qui est la valeur d'un coefficient de report de charge pour un même véhicule passif, et de la correction du coefficient de report de chargeIn step 34, the control system saturates the load transfer coefficient, the result of the sum of the load transfer coefficient for a zero error distribution value which is the value a load transfer coefficient for the same passive vehicle, and the correction of the load transfer coefficient
A l' étape 35, le système de commande utilise le coefficient de report de charge saturé pour estimer la vitesse de lacet estimée d' après un modèle mathématique non linéaire. La vitesse obtenue est comparée avec la vitesse de lacet désirée à l'étape 33. Le système de commande estime également la correction du coefficient de report de charge.In step 35, the control system uses the saturated load transfer coefficient to estimate the estimated yaw rate from a nonlinear mathematical model. The speed obtained is compared with the desired yaw rate in step 33. The control system also estimates the correction of the load transfer coefficient.
Parallèlement, à l' étape 36, le système de commande détermine les consignes de couple antiroulis d' après le coefficient de report de charge saturé. Les consignes de couple avant et arrière sont alors émises vers les organes concernés.In parallel, in step 36, the control system determines the antiroll torque instructions based on the saturated load transfer coefficient. The forward and reverse torque instructions are then sent to the concerned organs.
Le système et le procédé de commande d'un système antiroulis permettent de déterminer les commandes de couple d'un système de stabilisation antiroulis d' après un nombre limité de mesures. La détermination des commandes de couple du système antiroulis est basée sur l' estimation de la vitesse de lacet d' après un modèle non linéaire. Le procédé de commande est de type boucle ouverte ce qui permet une plus grande réactivité du calcul. Le nombre limité de capteurs nécessaires aux mesures d' entrée combiné à la facilité d' accès de ces mesures permettent de concilier coût et performances. The system and method of controlling an anti-roll system makes it possible to determine the torque controls of a roll stabilization system based on a limited number of measurements. The determination of the torque controls of the anti - roll system is based on the estimation of the yaw rate according to a nonlinear model. The control method is of open loop type which allows a greater reactivity of the calculation. The limited number of sensors required for input measurements combined with the ease of access of these measurements makes it possible to reconcile cost and performance.

Claims

REVENDICATIONS
1. Procédé de commande d'un système antiroulis actif pour un véhicule caractérisé par le fait que le procédé de commande comprend une détermination de la vitesse de lacet désirée et une détermination du couple antiroulis en fonction de l' écart entre la vitesse de lacet estimée et la vitesse de lacet désirée, et une détermination de la vitesse de lacet estimée à partir d'un modèle non linéaire à deux roues afin de déterminer la consigne de couple antiroulis à appliquer par les actionneurs en fonction de l' écart entre la vitesse de lacet estimée et la vitesse de lacet désirée.A method of controlling an active anti-roll system for a vehicle characterized in that the control method comprises a determination of the desired yaw rate and a determination of the anti-roll torque as a function of the difference between the estimated yaw rate. and the desired yaw rate, and a determination of the yaw rate estimated from a two-wheel nonlinear model to determine the anti-roll torque setpoint to be applied by the actuators as a function of the difference in speed between estimated yaw and desired yaw rate.
2. Procédé selon la revendication 1 dans lequel la vitesse de lacet désirée est déterminée à partir d'un modèle deux roues non linéaire en fonction des informations d' entrée. The method of claim 1 wherein the desired yaw rate is determined from a nonlinear two wheel model based on the input information.
3. Procédé selon la revendication 2 dans lequel le système de commande estime la différence entre la vitesse de lacet désirée et la vitesse de lacet estimée et le système de commande détermine une correction du coefficient de report de charge en fonction des informations d' entrée. The method of claim 2 wherein the control system estimates the difference between the desired yaw rate and the estimated yaw rate, and the control system determines a correction of the load transfer coefficient based on the input information.
4. Procédé selon la revendication 3 dans lequel un signal de remise à zéro du calcul de la correction du coefficient de report de charge est émis si les informations d' entrée se situent hors du domaine de fonctionnement du véhicule dans lequel la correction antiroulis influence la vitesse de lacet désirée. The method according to claim 3, wherein a reset signal of the calculation of the correction of the load transfer coefficient is issued if the input information is outside the operating range of the vehicle in which the anti-roll correction influences the desired yaw rate.
5. Procédé selon la revendication 4 dans lequel la valeur du coefficient de report de charge est limitée à la valeur d'un coefficient de report de charge d'un véhicule passif si la valeur du coefficient de report de charge est supérieure à la valeur d'un coefficient de report de charge d'un véhicule passif. 5. The method according to claim 4, wherein the value of the load transfer coefficient is limited to the value of a load transfer coefficient of a passive vehicle if the value of the load transfer coefficient is greater than the value of the load transfer coefficient. a load transfer coefficient of a passive vehicle.
6. Procédé selon la revendication 5 dans lequel au moins un couple antiroulis à appliquer à un train est déterminé en fonction du coefficient de report de charge. 6. The method of claim 5 wherein at least one antiroll torque to be applied to a train is determined according to the load transfer coefficient.
7. Procédé selon la revendication 5 dans lequel la vitesse de lacet estimée est déterminée d' après un modèle non linéaire permettant d' estimer les forces latérales exercées sur le véhicule à partir du coefficient de report de charge et des informations d'entrée. The method of claim 5 wherein the estimated yaw rate is determined from a nonlinear model for estimating lateral forces exerted on the vehicle from the load transfer coefficient and input information.
8. Procédé dans lequel les informations d'entrée comprennent au moins l'une des grandeurs suivantes, la vitesse du véhicule, l' angle de braquage, le couple antiroulis total, l' accélération longitudinale et l' accélération latéraleA method in which the input information comprises at least one of the following quantities, vehicle speed, steering angle, total antiroll torque, longitudinal acceleration, and lateral acceleration.
9. Système de commande d'un organe antiroulis actif pour un véhicule, caractérisé par le fait qu' il comprend un module de calcul9. Control system of an active anti-roll device for a vehicle, characterized in that it comprises a calculation module
(2) comprenant un module de détermination (3) de la vitesse de lacet désirée, et un module de détermination (8) de la vitesse de lacet estimée à partir d'un modèle non linéaire à deux roues, le module de calcul (2) recevant sur ses entrées des signaux provenant d'un module ( 1 ) de mesure capable de déterminer des paramètres de roulage du véhicule, le module de calcul (2) étant capable de déterminer la consigne de couple antiroulis à appliquer par les actionneurs en fonction de l' écart entre la vitesse de lacet estimée et la vitesse de lacet désirée, et d' émettre sur ses sorties des signaux de commande à destination des actionneurs de couple antiroulis avant et arrière.(2) comprising a determination module (3) of the desired yaw rate, and a determination module (8) of the yaw rate estimated from a non-linear two-wheel model, the calculation module (2 ) receiving on its inputs signals from a measurement module (1) capable of determining vehicle running parameters, the calculation module (2) being able to determine the anti-roll torque setpoint to be applied by the actuators in function the difference between the estimated yaw rate and the desired yaw rate, and outputting control signals to the front and rear anti - roll torque actuators at its outputs.
10. Système de commande selon la revendication 9 dans lequel le module de calcul (2) comprend notamment un module d' estimation (4) de la correction du coefficient de report de charge, un module de limitation (5) du domaine de fonctionnement du module d' estimation (4) de la correction du coefficient de report de charge, un module de saturation (6) du coefficient de report de charge, un module d' estimation (7) des couples antiroulis. 10. Control system according to claim 9 wherein the calculation module (2) comprises in particular an estimation module (4) of the correction of the load transfer coefficient, a limitation module (5) of the operating range of the estimation module (4) for the correction of the load transfer coefficient, a saturation module (6) for the load transfer coefficient, an estimation module (7) for the antiroll couples.
PCT/FR2008/050133 2007-02-01 2008-01-29 System and method for open loop control of an active anti-roll system by characterizing the yaw rate of a vehicle based on a nonlinear two-wheel model WO2008107613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753014A FR2912083B1 (en) 2007-02-01 2007-02-01 SYSTEM AND METHOD FOR OPEN LOOP CONTROL OF AN ACTIVE ROTATING SYSTEM BY TYPING THE LACQUER SPEED OF A VEHICLE BASED ON A NON-LINEAR MODEL TWO WHEELS
FR0753014 2007-02-01

Publications (1)

Publication Number Publication Date
WO2008107613A1 true WO2008107613A1 (en) 2008-09-12

Family

ID=38421547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050133 WO2008107613A1 (en) 2007-02-01 2008-01-29 System and method for open loop control of an active anti-roll system by characterizing the yaw rate of a vehicle based on a nonlinear two-wheel model

Country Status (2)

Country Link
FR (1) FR2912083B1 (en)
WO (1) WO2008107613A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934814B1 (en) * 2008-08-06 2010-09-10 Renault Sas METHOD AND SYSTEM FOR CONTROLLING ACTUATORS OF A BI-TRAIN ANTI-ROLL DEVICE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243717A1 (en) * 1992-12-23 1994-06-30 Bosch Gmbh Robert Procedure for regulating vehicle stability
JPH09142280A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Vehicle condition estimating device
EP0827852A2 (en) * 1996-09-06 1998-03-11 Ford Global Technologies, Inc. Method for enhancing vehicle stability
US6161905A (en) * 1998-11-19 2000-12-19 General Motors Corporation Active brake control including estimation of yaw rate and slip angle
DE10011779A1 (en) * 1999-09-10 2001-06-21 Continental Teves Ag & Co Ohg Yaw moment regulation involves estimating actual yaw angular rate by taking into account actual forces on tyres, steering angle in integrating angular acceleration
EP1362720A2 (en) * 2002-05-16 2003-11-19 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle, especially passenger car, with a device for roll-stabilization
US20060173597A1 (en) * 2005-01-31 2006-08-03 Christoph Pelchen Method for determining a control standard of an active vehicle steering device controllable by a control device
EP1719643A1 (en) * 2004-02-26 2006-11-08 Aisin Seiki Kabushiki Kaisha Stabilizer controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243717A1 (en) * 1992-12-23 1994-06-30 Bosch Gmbh Robert Procedure for regulating vehicle stability
JPH09142280A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Vehicle condition estimating device
EP0827852A2 (en) * 1996-09-06 1998-03-11 Ford Global Technologies, Inc. Method for enhancing vehicle stability
US6161905A (en) * 1998-11-19 2000-12-19 General Motors Corporation Active brake control including estimation of yaw rate and slip angle
DE10011779A1 (en) * 1999-09-10 2001-06-21 Continental Teves Ag & Co Ohg Yaw moment regulation involves estimating actual yaw angular rate by taking into account actual forces on tyres, steering angle in integrating angular acceleration
EP1362720A2 (en) * 2002-05-16 2003-11-19 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle, especially passenger car, with a device for roll-stabilization
EP1719643A1 (en) * 2004-02-26 2006-11-08 Aisin Seiki Kabushiki Kaisha Stabilizer controller
US20060173597A1 (en) * 2005-01-31 2006-08-03 Christoph Pelchen Method for determining a control standard of an active vehicle steering device controllable by a control device

Also Published As

Publication number Publication date
FR2912083A1 (en) 2008-08-08
FR2912083B1 (en) 2009-03-20

Similar Documents

Publication Publication Date Title
EP3938260B1 (en) Method for generating a setpoint for the combined control of a wheel-steering system and of a differential braking system of a motor vehicle
EP3947076A1 (en) Anticipating module, associated device and method for controlling path in real time
EP4031427B1 (en) Method for controlling the lateral position of a motor vehicle
EP2043901B1 (en) Device and method for monitoring the turn command to a steered rear wheel
EP1901933B1 (en) Anti-rolling method and system for a vehicle and corresponding vehicle
EP1907260B1 (en) Method for controlling the steering orientation of a vehicle
WO2021110423A1 (en) Training module, and associated real-time path monitoring device and method
EP1544080B1 (en) Rear wheel steering angle control system and method and corresponding vehicle
EP1901932B1 (en) Anti-rolling method and system for a vehicle and corresponding vehicle
WO2008107613A1 (en) System and method for open loop control of an active anti-roll system by characterizing the yaw rate of a vehicle based on a nonlinear two-wheel model
EP1804041A1 (en) Method for real-time estimation of front force and rear force applied by the ground to a vehicle
EP3990324A1 (en) Method for regulating the lateral position of a vehicle
EP4037947A1 (en) Control device for a self-driving motor vehicle
WO2021079004A1 (en) Method for controlling a wheeled vehicle in low-grip conditions
WO2011077050A1 (en) Method for identifying a phase of loss of grip of the steered wheels of a vehicle
EP2027004B1 (en) Process and control system for vehicle steering wheel
EP1883549B1 (en) Method of controlling at least one anti-roll bar actuator on board a vehicle
EP3080565B1 (en) Device and method for estimating the total mass of a motor vehicle with onboard calibration of suspension displacement sensors
WO2007071854A1 (en) Anti-roll device for vehicles
EP1036727A1 (en) Process and system for compensating the variation of the steering wheel return torque and the damping of the steering wheel speed
WO2023285502A1 (en) Method and device for controlling the path of a motor vehicle travelling in a traffic lane and associated vehicle
FR3092914A1 (en) Method for determining the trajectory of a vehicle comprising four steered wheels
FR2933941A1 (en) METHOD FOR CONTROLLING THE UNDERGROUND OF A MOTOR VEHICLE
FR2875461A1 (en) Motor vehicle`s e.g. commercial vehicle, dynamic magnitude controlling device, has sensors measuring information about occupants and luggage to send values of load and inertia to observation and yaw control units, to update load and inertia
WO2008132403A2 (en) System and method for controlling a braking device uncoupled from an automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08761994

Country of ref document: EP

Kind code of ref document: A1