WO2009009304A1 - Measurement of radio environment quality in wireless networks - Google Patents

Measurement of radio environment quality in wireless networks Download PDF

Info

Publication number
WO2009009304A1
WO2009009304A1 PCT/US2008/068270 US2008068270W WO2009009304A1 WO 2009009304 A1 WO2009009304 A1 WO 2009009304A1 US 2008068270 W US2008068270 W US 2008068270W WO 2009009304 A1 WO2009009304 A1 WO 2009009304A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference severity
air quality
channels
interference
computed
Prior art date
Application number
PCT/US2008/068270
Other languages
French (fr)
Inventor
Brian Donald Hart
Christopher Sean Johnson
Igal Gutkin
Sanjeev Hemantkumar Desai
Original Assignee
Cisco Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cisco Technology, Inc. filed Critical Cisco Technology, Inc.
Priority to EP08771980.3A priority Critical patent/EP2165547B1/en
Priority to CN2008800235033A priority patent/CN101690300B/en
Publication of WO2009009304A1 publication Critical patent/WO2009009304A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • This disclosure relates generally to wireless networks.
  • WLAN wireless LAN
  • Non-wireless fidelity (Wi-Fi) interference affects the performance of a wireless network by degrading the ability of the wireless network to communicate reliably.
  • Interference detection technology may provide some interference metrics such as received signal strength indicator (RSSI) and duty cycle values.
  • RSSI received signal strength indicator
  • Existing interference detection systems typically provide these metrics at a local level (e.g., point metrics at an access point).
  • Some systems may also identify the type of non-Wi-Fi interference sources, such as microwave ovens, Bluetooth, cordless telephones, etc. DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates example components in a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • Figure 2 illustrates an example hardware system, which may be used to implement a WLAN management server.
  • FIG. 3 illustrates an example process flow implemented at the WLAN management server.
  • Figure 4 shows an example user interface UI in accordance with one embodiment.
  • an interference level may be computed for a given access point or group of access points in a target region.
  • a target region may be a physical area (e.g., floor or wing of a building, a building, a campus, etc.) that may experience interference from one or more interference sources (e.g., microwave ovens, Bluetooth, cordless telephones, etc.).
  • a WLAN management server computes interference severity level metrics associated with one or more access points.
  • the interference severity level metrics may include an interference severity level at a given channel of an access point, an interference severity level for all interference sources per channel at the access point, an interference severity level for the serving channel of the access point, and an air quality level at the access point.
  • the WLAN management server may compute the air quality level for a given access point by aggregating the interference severity levels of all interference sources of all of the channels in a given band.
  • the WLAN management server may aggregate air quality metrics for multiple access points to generate air quality metrics for various target areas.
  • the management server may apply one or more policies based on air quality metrics at one or more target areas.
  • the management server may display interference severity metrics including air quality metrics at these various target areas to provide a "health" indicator associated with these target areas to a user so that the user may monitor the wireless network and investigate potential problem areas.
  • FIG. 1 illustrates example components in a wireless local area network (WLAN) system.
  • the system includes a WLAN management server 20, a location server 22, and a central controller 42, a local area network (LAN) 30, a router 32, and wireless access points 50a, 50b, 50c, and 5Od.
  • LAN 30 is implemented by a switch (or an array of switches) and/or other network devices, such as a bridge.
  • Network 52 in one implementation, generally refers to a computer network, such as a LAN, a WAN, etc., that includes one or more intermediate network devices (e.g., routers, switches, etc.), which allow for the transmission of messages between WLAN management server 20 and wireless clients via wireless access points 50.
  • network 52 can include a variety of network segments, transmission technologies and components, such as terrestrial WAN links, satellite links, optical fiber links, and cellular links.
  • Network 52 could also be a campus LAN.
  • LAN 30 may be a LAN, LAN segments implemented by an Ethernet switch (not shown), or an array of switches having multiple ports to which wireless access points 50 are connected.
  • the wireless access points 50 are typically connected to switch ports via Ethernet links; however, other link layer connection protocols or communication means can be employed.
  • Figure 1 illustrates one possible network environment in which the invention may operate; however, other implementations are possible.
  • WLAN management server 20 is illustrated as being on a different LAN or LAN segment, it may be co-located with wireless access points 50.
  • the wireless access points 50 are operative to wirelessly communicate with remote wireless client devices 60a, 60b, 60c, and 6Od.
  • the wireless access points 50 implement the wireless network protocol specified in the IEEE 802.11 WLAN specification; of course, other wireless network protocols may be used.
  • the wireless access points 50 may be autonomous or so-called "fat" wireless access points or light-weight wireless access points operating in connection with a wireless switch (not illustrated).
  • the network infrastructure may also include a Wireless LAN Solution Engine (WLSE) offered by Cisco Systems, Inc. of San Jose, California or another wireless network management system.
  • the network infrastructure may also include one or more Wireless Control System (WCS) nodes operative to manage one or more wireless switches and access points.
  • WCS Wireless Control System
  • one or more of the wireless access points 50 may detect interference by periodically monitoring for interference on one or more operating channels (e.g., its active channel).
  • a wireless access point 50 may measure and collect interference data in different modes. For example, in a local mode, a wireless access point 50 may periodically monitor its active channel using a relatively small duty cycle. In a monitor mode, a wireless access point 50 may monitor all available operating channels.
  • the wireless access points 50 may collect information on various attributes of detected sources of interference to determine the type of interference (e.g., microwave, cellular phone, etc.) by comparing the attributes against a set of interference signatures.
  • a given interference signature may be based on observed radio frequency attributes such as received signals strength, duty cycle, power, on time, frequency, etc.
  • interference signatures may identify individual interference sources and optionally types and locations of individual interference sources.
  • FIG. 2 illustrates an example hardware system 200, which may be used to implement a WLAN management server 20.
  • hardware system 200 comprises a processor 202, a cache memory 204, and one or more software applications and drivers directed to the functions described herein.
  • hardware system 200 includes a high performance input/output (I/O) bus 206 and a standard I/O bus 208.
  • I/O input/output
  • a host bridge 210 couples processor 202 to high performance I/O bus 206, whereas I/O bus bridge 212 couples the two buses 206 and 208 to each other.
  • a system memory 214 and a network/communication interface 216 couple to bus 206.
  • Hardware system 200 may further include video memory (not shown) and a display device coupled to the video memory.
  • Mass storage 218 and I/O ports 220 couple to bus 208.
  • Hardware system 200 may optionally include a keyboard and pointing device (not shown) coupled to bus 208.
  • keyboard and pointing device (not shown) coupled to bus 208.
  • network interface 216 provides communication between hardware system 200 and any of a wide range of networks, such as an Ethernet (e.g., IEEE 802.3) network, etc.
  • Mass storage 218 provides permanent storage for the data and programming instructions to perform the above described functions implemented in the system controller, whereas system memory 214 (e.g., DRAM) provides temporary storage for the data and programming instructions when executed by processor 202.
  • I/O ports 220 are one or more serial and/or parallel communication ports that provide communication between additional peripheral devices, which may be coupled to hardware system 200.
  • Hardware system 200 may include a variety of system architectures; and various components of hardware system 200 may be rearranged.
  • cache 204 may be on-chip with processor 202.
  • cache 204 and processor 202 may be packed together as a "processor module," with processor 202 being referred to as the "processor core.”
  • certain implementations of the present invention may not require nor include all of the above components.
  • the peripheral devices shown coupled to standard I/O bus 208 may couple to high performance I/O bus 206.
  • only a single bus may exist, with the components of hardware system 200 being coupled to the single bus.
  • hardware system 200 may include additional components, such as additional processors, storage devices, or memories.
  • the operations of the WLAN management server 20 described herein are implemented as a series of software routines run by hardware system 200.
  • These software routines comprise a plurality or series of instructions to be executed by a processor in a hardware system, such as processor 202.
  • the series of instructions are stored on a storage device, such as mass storage 218.
  • the series of instructions can be stored on any suitable storage medium, such as a diskette, CD-ROM, ROM, EEPROM, etc.
  • the series of instructions need not be stored locally, and could be received from a remote storage device, such as a server on a network, via network/communication interface 216.
  • the instructions are copied from the storage device, such as mass storage 218, into memory 214 and then accessed and executed by processor 202.
  • An operating system manages and controls the operation of hardware system 200, including the input and output of data to and from software applications (not shown).
  • the operating system provides an interface between the software applications being executed on the system and the hardware components of the system.
  • the operating system is the Windows® 95/98/NT7XP/Vista operating system, available from Microsoft Corporation of Redmond, Wash.
  • the present invention may be used with other suitable operating systems, such as the Apple Macintosh Operating System, available from Apple Computer Inc. of Cupertino, Calif., UNIX operating systems, LINUX operating systems, and the like. C.
  • the WLAN management server 20 may characterize the air quality of a wireless network by gathering core metrics at the access point level.
  • the interference severity level, at the access point level may be characterized in a variety of ways.
  • the interference severity level may be based on duty cycle and RSSI metrics.
  • the interference severity level (S) of a given interference source (i) at a particular channel (j) of a given access point (k) may be computed according to the following equation:
  • the interference severity level may be based on a weighted RSSI function and a modified duty cycle function.
  • the interference severity level (S) may be computed according to the following equation:
  • the W(RSSI) may be represented by a value between 0 and 1.
  • the W(RSSI) value may be a monotonic non- decreasing function (linear, non-linear, ramp, step function, etc.).
  • This implementation may be considered a "soft" step, because the 802. Hag clear channel assessment (CCA) threshold for non-Wi-Fi is undefined (but often is -62 dBm). From the access point viewpoint, the interference source may be seen stronger or weaker at nearby clients.
  • CCA Hag clear channel assessment
  • the duty cycle may be defined as a percentage of the on time portion of a period or repeating time interval, where the on time is the time that the interference source is active.
  • DC2ijk modified duty cycle function of a given interference source (i) at a particular channel (j) of a given access point (k)
  • PD is the pulse duration (e.g., on time only).
  • the duty cycle and pulse duration remain the same on different channels (while the RSSI changes).
  • the "max (1, 400us/PDijk)" factor elongates any short pulses up to 400us and does not affect longer pulses.
  • the rationale is that any short pulse may corrupt a Wi-Fi packet.
  • 400us is longer than a typical length of an 802. Hag packet + ACK, and 400 is shorter than a typical 802.11b packet + ACK.
  • the WLAN management server 20 may compute a total severity for a given access point due to all interference sources according to the following equation:
  • an access point typically operates on a single operating channel (serving channel) at any given time. Accordingly, it may be desirable to compute air quality metrics, for an access point, relative to the serving channel.
  • Air Quality (AQ) can be defined as 1 - S.
  • AAQ average air quality metric
  • the WLAN Wireless Fidelity
  • FIG. 3 illustrates an example process flow implemented at the WLAN management server 20.
  • the WLAN management server 20 receives an interference severity level or air quality request (302).
  • the WLAN management server 20 determines a target area for the requested interference severity level (304).
  • interference severity level in the following may also be interpreted as relating to Air Quality, and vice versa.
  • the target region may include a single access point or a group of access points on a portion of one or more floors of a building, a building, a campus, etc.
  • the target area may be included in the request.
  • FIG 3 illustrates a set of nested loop operations that are conditionally performed depending on the target region identified in the request.
  • WLAN management server 20 may compute metrics for a single access point.
  • air quality metrics such as serving channel or average air quality metrics
  • the metrics may be displayed at various conceptual levels, such as individual access points and aggregate metrics for floors, buildings, and campuses.
  • the WLAN management server 20 computes interference severity level metrics associated with the access point (306).
  • the WLAN management server 20 identifies one or more interference sources associated with the access point.
  • the signal strength data collected at the access points may be passed to the location server 22, which may determine the location of the interference sources.
  • the computed locations may be rendered on a map of a physical space or otherwise provided to a network administrator.
  • the WLAN management server 20 may compute the air quality level at various conceptual levels corresponding to groups of access points by aggregating (e.g., averaging) the interference severity levels computed for respective access points.
  • the target area is a floor
  • the WLAN management server 20 computes interference severity level metrics for each access point on the floor, as described above, and then aggregates the interference levels associated with all of the access points on the floor (308).
  • the WLAN management server 20 may average the metrics computed for each access point.
  • the target area may include a group of access points located on multiple floors or on portions of one or more floors. As such, the WLAN management server 20 aggregates the interference levels of each of the access points on the selected floors or portion of the selected floors.
  • the WLAN management server 20 may average of all of the air qualities of the serving channels of the access points on the floors.
  • the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given floor (m) according to the following equation:
  • K is the number of access points on the floor.
  • the WLAN management server 20 may compute the average air quality (AAQ) of a given floor (m) according to the following equation:
  • AAQ (floor_m) 1/K * sum_over_ap_k on floor_m AAQ(ap_k), where K is the number of access points on the floor.
  • the WLAN management server 20 computes the air quality metrics for each floor in the building, and then aggregates the those air quality metrics for the building (310). In one implementations, the WLAN management server 20 computes air quality metrics associated with each subgroups (e.g., each floor of the building) and then averages those air quality metrics for a larger target area (e.g., the building). Alternatively, in particular implementations, the WLAN management server 20 may aggregate the air quality metrics of all of the access points in the building. [0032] In one implementation, the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given building (n) according to the following equation:
  • SCAQ service channel air quality
  • SCAQ (building_n) 1/M * sum_over_floor_m in building_n SCAQ(floor_m),
  • the WLAN management server 20 may compute the average air quality (AAQ) of a building (n) according the following equation:
  • AAQ (building_n) 1/M * sum_over_floor_m in building_n AAQ(floor_m).
  • the WLAN management server 20 aggregates the air quality metrics over the campus (312). In one implementation, the WLAN management server 20 computes air quality metrics for each building in the campus, and then aggregates those air quality metrics for the campus. Alternatively, in particular implementations, the WLAN management server 20 may aggregate the air quality metrics of all of the access points in the campus. Also could aggregate floor AQ directly to campus AQ. [0035] In one implementation, the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given campus (p) according to the following equation:
  • SCAQ service channel air quality
  • N is the number of buildings in the campus.
  • the WLAN management server 20 may compute the average air quality (AAQ) of a given campus (p) according to the following equation:
  • AAQ(campus_p) 1/N * sum_over building_n in campus_p AAQ(building_n).
  • these values computed above may be proportions that may be converted to percentages by multiplying them by 100.
  • Figure 4 shows an example user interface in accordance with one embodiment.
  • Figure 4 shows an example hierarchical tree view 402 that displays air quality levels at different target areas and an example target area view 404.
  • the tree view 402 displays the air quality level at a particular campus (e.g., San Jose Campus), building (e.g., Building 14), floor (2nd floor), and access points (e.g., API 50a and AP2 50b).
  • the particular target's area view 404 displays a floor (e.g., 2nd floor), and the access points on that floor (e.g., API 50a and AP2 50b).
  • the target area view 404 also may display some of the air quality levels corresponding to those in the tree view 402.
  • the target area view 404 may display the interference sources 406a, 406b, 406c, 406d, and 406e.
  • the WLAN management server 20 may apply one or more policies based on the resulting severity or air quality metrics. Such policies may involve manual or automatic mitigation of interference. For example, if one or more interference levels or the air quality of one or more target areas exceed or fall below a predetermined threshold, WLAN management server 20 may notify an administrator of the interference level and/or air quality (e.g., air quality is below 60%). In one implementation, the notification may be a contained in an email. In another implementation, the notification may be an indication (e.g., color-coded indicator) on a user interface such as that of Figure 4. Based on the notification, the administrator may investigate the potential problem areas and respond accordingly. In some implementations, the WLAN management server 20 may automatically reconfigure aspects of the wireless network.
  • air quality e.g., air quality is below 60%
  • the notification may be a contained in an email.
  • the notification may be an indication (e.g., color-coded indicator) on a user interface such as that of Figure 4. Based on the notification, the administrator may investigate the potential problem areas and respond accordingly
  • trigger severity levels may be based on any one or more of the interference severity metrics described above.
  • a trigger level may be based on a threshold air quality level.
  • a trigger level may be based on a threshold air quality level at a particular target area (e.g., floor or wing of a building) or at a serving channel at a particular access point. For example, if the serving channel air quality metric for a floor falls below a threshold level, this could trigger WLAN management server 20 to automatically recompute channel assignments for the access points on the floor, or to transmit messages to the access points causing them to re-initialize a channel assignment algorithm performed locally relative to the access points.
  • Various notification and other policies may be useful in private as well as public Wi-Fi deployments.

Abstract

A system for measuring radio-environment quality in wireless networks. In particular implementations, a method includes computing an interference severity level for a plurality of interference sources detected at an access point; aggregating one or more of the computed interference severity levels relative to the access point; and computing an air quality metric for the access point, wherein the air quality metric based at least in part on an equation: 1 - aggregated interference severity level.

Description

MEASUREMENT OF RADIO ENVIRONMENT QUALITY IN WIRELESS NETWORKS
TECHNICAL FIELD [0001] This disclosure relates generally to wireless networks.
BACKGROUND
[0002] Market adoption of wireless LAN (WLAN) technology has exploded, as users from a wide range of backgrounds and vertical industries have brought this technology into their homes, offices, and increasingly into the public air space. This inflection point has highlighted not only the limitations of earlier-generation systems, but also the changing role that WLAN technology now plays in people's work and lifestyles across the globe. Indeed, WLANs are rapidly changing from convenience networks to business-critical networks. Increasingly users are depending on WLANs to improve the timeliness and productivity of their communications and applications, and in doing so, require greater visibility, security, management, and performance from their network. [0003] Many wireless networks utilize a contention-based media access scheme (such as the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), and Enhanced Distributed Controlled Access (EDCA)). Accordingly, radio interference may adversely affect throughput. Non-wireless fidelity (Wi-Fi) interference affects the performance of a wireless network by degrading the ability of the wireless network to communicate reliably. Interference detection technology may provide some interference metrics such as received signal strength indicator (RSSI) and duty cycle values. Existing interference detection systems typically provide these metrics at a local level (e.g., point metrics at an access point). Some systems may also identify the type of non-Wi-Fi interference sources, such as microwave ovens, Bluetooth, cordless telephones, etc. DESCRIPTION OF THE DRAWINGS
[0004] Figure 1 illustrates example components in a wireless local area network (WLAN) system.
[0005] Figure 2 illustrates an example hardware system, which may be used to implement a WLAN management server.
[0006] Figure 3 illustrates an example process flow implemented at the WLAN management server.
[0007] Figure 4 shows an example user interface UI in accordance with one embodiment.
DESCRIPTION OF EXAMPLE EMBODIMENTS A. Overview
[0008] Particular implementations facilitate characterization of the effect of interference in wireless network deployments by aggregating the effects of interference at different conceptual levels of a wireless network. According to one implementation, an interference level may be computed for a given access point or group of access points in a target region. In one implementation, a target region may be a physical area (e.g., floor or wing of a building, a building, a campus, etc.) that may experience interference from one or more interference sources (e.g., microwave ovens, Bluetooth, cordless telephones, etc.). A WLAN management server computes interference severity level metrics associated with one or more access points. The interference severity level metrics may include an interference severity level at a given channel of an access point, an interference severity level for all interference sources per channel at the access point, an interference severity level for the serving channel of the access point, and an air quality level at the access point. In one implementation, the WLAN management server may compute the air quality level for a given access point by aggregating the interference severity levels of all interference sources of all of the channels in a given band. In one implementation, the WLAN management server may aggregate air quality metrics for multiple access points to generate air quality metrics for various target areas. In one implementation, the management server may apply one or more policies based on air quality metrics at one or more target areas. In one implementation, the management server may display interference severity metrics including air quality metrics at these various target areas to provide a "health" indicator associated with these target areas to a user so that the user may monitor the wireless network and investigate potential problem areas. B. Example Wireless Network System Architecture
B.I. Network Topology
[0009] Figure 1 illustrates example components in a wireless local area network (WLAN) system. In a specific embodiment of the present invention, the system includes a WLAN management server 20, a location server 22, and a central controller 42, a local area network (LAN) 30, a router 32, and wireless access points 50a, 50b, 50c, and 5Od. LAN 30 is implemented by a switch (or an array of switches) and/or other network devices, such as a bridge.
[0010] As Figure 1 illustrates, these network elements are operably connected to a network 52. Network 52, in one implementation, generally refers to a computer network, such as a LAN, a WAN, etc., that includes one or more intermediate network devices (e.g., routers, switches, etc.), which allow for the transmission of messages between WLAN management server 20 and wireless clients via wireless access points 50. Of course, network 52 can include a variety of network segments, transmission technologies and components, such as terrestrial WAN links, satellite links, optical fiber links, and cellular links. Network 52 could also be a campus LAN. LAN 30 may be a LAN, LAN segments implemented by an Ethernet switch (not shown), or an array of switches having multiple ports to which wireless access points 50 are connected. The wireless access points 50 are typically connected to switch ports via Ethernet links; however, other link layer connection protocols or communication means can be employed. Figure 1 illustrates one possible network environment in which the invention may operate; however, other implementations are possible. For example, although WLAN management server 20 is illustrated as being on a different LAN or LAN segment, it may be co-located with wireless access points 50.
[0011] The wireless access points 50 are operative to wirelessly communicate with remote wireless client devices 60a, 60b, 60c, and 6Od. In one implementation, the wireless access points 50 implement the wireless network protocol specified in the IEEE 802.11 WLAN specification; of course, other wireless network protocols may be used. The wireless access points 50 may be autonomous or so-called "fat" wireless access points or light-weight wireless access points operating in connection with a wireless switch (not illustrated). In addition, the network infrastructure may also include a Wireless LAN Solution Engine (WLSE) offered by Cisco Systems, Inc. of San Jose, California or another wireless network management system. In some implementations, the network infrastructure may also include one or more Wireless Control System (WCS) nodes operative to manage one or more wireless switches and access points.
[0012]In particular implementations, one or more of the wireless access points 50 may detect interference by periodically monitoring for interference on one or more operating channels (e.g., its active channel). A wireless access point 50 may measure and collect interference data in different modes. For example, in a local mode, a wireless access point 50 may periodically monitor its active channel using a relatively small duty cycle. In a monitor mode, a wireless access point 50 may monitor all available operating channels. In some implementations, the wireless access points 50 may collect information on various attributes of detected sources of interference to determine the type of interference (e.g., microwave, cellular phone, etc.) by comparing the attributes against a set of interference signatures. In one implementation, a given interference signature may be based on observed radio frequency attributes such as received signals strength, duty cycle, power, on time, frequency, etc. In particular implementations, interference signatures may identify individual interference sources and optionally types and locations of individual interference sources.
B.2. WLAN Management Server
[0013] Figure 2 illustrates an example hardware system 200, which may be used to implement a WLAN management server 20. In one implementation, hardware system 200 comprises a processor 202, a cache memory 204, and one or more software applications and drivers directed to the functions described herein. Additionally, hardware system 200 includes a high performance input/output (I/O) bus 206 and a standard I/O bus 208. A host bridge 210 couples processor 202 to high performance I/O bus 206, whereas I/O bus bridge 212 couples the two buses 206 and 208 to each other. A system memory 214 and a network/communication interface 216 couple to bus 206. Hardware system 200 may further include video memory (not shown) and a display device coupled to the video memory. Mass storage 218 and I/O ports 220 couple to bus 208. Hardware system 200 may optionally include a keyboard and pointing device (not shown) coupled to bus 208. Collectively, these elements are intended to represent a broad category of computer hardware systems, including but not limited to general purpose computer systems based on the Pentium® processor manufactured by Intel Corporation of Santa Clara, Calif., as well as any other suitable processor.
[0014]The elements of hardware system 200 are described in greater detail below. In particular, network interface 216 provides communication between hardware system 200 and any of a wide range of networks, such as an Ethernet (e.g., IEEE 802.3) network, etc. Mass storage 218 provides permanent storage for the data and programming instructions to perform the above described functions implemented in the system controller, whereas system memory 214 (e.g., DRAM) provides temporary storage for the data and programming instructions when executed by processor 202. I/O ports 220 are one or more serial and/or parallel communication ports that provide communication between additional peripheral devices, which may be coupled to hardware system 200.
[0015] Hardware system 200 may include a variety of system architectures; and various components of hardware system 200 may be rearranged. For example, cache 204 may be on-chip with processor 202. Alternatively, cache 204 and processor 202 may be packed together as a "processor module," with processor 202 being referred to as the "processor core." Furthermore, certain implementations of the present invention may not require nor include all of the above components. For example, the peripheral devices shown coupled to standard I/O bus 208 may couple to high performance I/O bus 206. In addition, in some implementations only a single bus may exist, with the components of hardware system 200 being coupled to the single bus. Furthermore, hardware system 200 may include additional components, such as additional processors, storage devices, or memories. [0016] As discussed above, in one embodiment, the operations of the WLAN management server 20 described herein are implemented as a series of software routines run by hardware system 200. These software routines comprise a plurality or series of instructions to be executed by a processor in a hardware system, such as processor 202. Initially, the series of instructions are stored on a storage device, such as mass storage 218. However, the series of instructions can be stored on any suitable storage medium, such as a diskette, CD-ROM, ROM, EEPROM, etc. Furthermore, the series of instructions need not be stored locally, and could be received from a remote storage device, such as a server on a network, via network/communication interface 216. The instructions are copied from the storage device, such as mass storage 218, into memory 214 and then accessed and executed by processor 202.
[0017] An operating system manages and controls the operation of hardware system 200, including the input and output of data to and from software applications (not shown). The operating system provides an interface between the software applications being executed on the system and the hardware components of the system. According to one embodiment of the present invention, the operating system is the Windows® 95/98/NT7XP/Vista operating system, available from Microsoft Corporation of Redmond, Wash. However, the present invention may be used with other suitable operating systems, such as the Apple Macintosh Operating System, available from Apple Computer Inc. of Cupertino, Calif., UNIX operating systems, LINUX operating systems, and the like. C. Core Metrics Used for Characterizing Interference Severity Levels [0018]The WLAN management server 20 may characterize the air quality of a wireless network by gathering core metrics at the access point level. The interference severity level, at the access point level, may be characterized in a variety of ways.
[0019] In one implementation, the interference severity level may be based on duty cycle and RSSI metrics. For example, in one implementation, the interference severity level (S) of a given interference source (i) at a particular channel (j) of a given access point (k) may be computed according to the following equation:
S (interferer_i,channelj,ap_k) = Duty Cycle (interferer_i,channelj,ap_k) * RSSI (interferer_i,channelj,ap_k) > thresh, where thresh = -82 or -85 dBm. If RSSI < thresh, S = O.
[002O]In another implementation, the interference severity level may be based on a weighted RSSI function and a modified duty cycle function. For example, in one implementation, the interference severity level (S) may be computed according to the following equation:
S (interferer_i,channelj,ap_k) = W(RSSIijk) * DC2ijk,
where RSSIijk is a shorthand notation for RSSI (interferer_i, channelj, ap_k). [002I]In one implementation, the W(RSSI) may be represented by a value between 0 and 1. For example, in one implementation, W(RSSIijk) = 1/32 if RSSIijk <= -93 dBm. In one implementation, if the received signal strength is between the lower (- 93 dBm) and an upper (-62 dBm) threshold dB values, the W(RSSI) value may be a monotonic non- decreasing function (linear, non-linear, ramp, step function, etc.). For example, in one implementation, W (RSSIijk) = 1/32 + 1/32 * (RSSIijk+93) if - 93 dBm <= RSSIijk <= -62 dBm. If the received signal strength is above the higher threshold dB, the W(RSSI) value = 1. For example, W (RSSIijk) = 1 if RSSIijk >= - 62 dBm. This implementation may be considered a "soft" step, because the 802. Hag clear channel assessment (CCA) threshold for non-Wi-Fi is undefined (but often is -62 dBm). From the access point viewpoint, the interference source may be seen stronger or weaker at nearby clients.
[0022] In one implementation, the duty cycle may be defined as a percentage of the on time portion of a period or repeating time interval, where the on time is the time that the interference source is active. For example, in one implementation, the modified duty cycle function (DC2ijk) of a given interference source (i) at a particular channel (j) of a given access point (k) may be computed according to the following equation:
DC2ijk = min ( DCijk * max (1, 400us/PDijk), 1),
where DCijk = Duty Cycle (interferer_i,channelj,ap_k), and PDijk = average pulse duration of ith interferer on jth channel at the kth access point. In one implementation, PD is the pulse duration (e.g., on time only). In one implementation, the duty cycle and pulse duration remain the same on different channels (while the RSSI changes).
[0023] In one implementation, the "max (1, 400us/PDijk)" factor elongates any short pulses up to 400us and does not affect longer pulses. The rationale is that any short pulse may corrupt a Wi-Fi packet. In one implementation, 400us is longer than a typical length of an 802. Hag packet + ACK, and 400 is shorter than a typical 802.11b packet + ACK. In one implementation, there may be different definitions by band.
[0024] In particular implementations, the WLAN management server 20 may compute a total severity for a given access point due to all interference sources according to the following equation:
S(channelj,ap_k) = ∑S(interferer _i, channel _j,ap _k) , where I equals the number
of detected interference sources relative to a given access point (k) and operating channel (j). In addition, WLAN management server 20 may compute air quality metrics, such as serving channel and average channel air quality according to the equation: AQ = 1 - S. For example, an access point typically operates on a single operating channel (serving channel) at any given time. Accordingly, it may be desirable to compute air quality metrics, for an access point, relative to the serving channel. As discussed above, Air Quality (AQ) can be defined as 1 - S. Accordingly, an AQ metric for the serving channel (SCAQ) can be defined as: SCAQ(ap_k) = 1 - χ^S '(channel j ,ap _k) * delta(channel j ', channel ap _k) , where
J=I delta_(a,b) is defined to be the indicator function (i.e., delta(a,b) equals 1 if a=b and 0 if a does not equal b). Thus the sum is really just a selection of the AQ on the AP's serving channel. Still further, an average air quality metric (AAQ) for all available operating channels can be computed as follows:
[0025] As well, an AP could be on any channel, so we have average AQ: AAQ(ap_k) = 1 - 1 -1/ J *∑S(channel j,ap k) . In one implementation, the WLAN
J=I management server 20 may perform these calculations per band. [0026] Figure 3 illustrates an example process flow implemented at the WLAN management server 20. As Figure 3 shows, the WLAN management server 20 receives an interference severity level or air quality request (302). The WLAN management server 20 then determines a target area for the requested interference severity level (304). In the following, since interference severity level and air quality are opposite terms relating to the same underlying issue, "interference severity level" in the following may also be interpreted as relating to Air Quality, and vice versa. For example, in particular implementations, the target region may include a single access point or a group of access points on a portion of one or more floors of a building, a building, a campus, etc. In one implementation, the target area may be included in the request. Figure 3 illustrates a set of nested loop operations that are conditionally performed depending on the target region identified in the request. For example, as Figure 3 illustrates, WLAN management server 20 may compute metrics for a single access point. In addition, to compute metrics on a floor or building level, air quality metrics (such as serving channel or average air quality metrics) may be individually computed for each access point and then aggregated (e.g., averaged) for a plurality of access points that correspond to the designated target region. As Figure 4 illustrates, the metrics may be displayed at various conceptual levels, such as individual access points and aggregate metrics for floors, buildings, and campuses.
[0027] In one implementation, if the target area is associated with a single access point, the WLAN management server 20 computes interference severity level metrics associated with the access point (306). The WLAN management server 20 identifies one or more interference sources associated with the access point. In one implementation, if interference profiling is employed to identify interference sources, the signal strength data collected at the access points may be passed to the location server 22, which may determine the location of the interference sources. The computed locations may be rendered on a map of a physical space or otherwise provided to a network administrator.
[0028] As Figure 3 provided, the WLAN management server 20 may compute the air quality level at various conceptual levels corresponding to groups of access points by aggregating (e.g., averaging) the interference severity levels computed for respective access points. In one implementation, if the target area is a floor, the WLAN management server 20 computes interference severity level metrics for each access point on the floor, as described above, and then aggregates the interference levels associated with all of the access points on the floor (308). To aggregate the metrics, the WLAN management server 20 may average the metrics computed for each access point. In one implementation, the target area may include a group of access points located on multiple floors or on portions of one or more floors. As such, the WLAN management server 20 aggregates the interference levels of each of the access points on the selected floors or portion of the selected floors. In one implementation, the WLAN management server 20 may average of all of the air qualities of the serving channels of the access points on the floors.
[0029] In one implementation, the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given floor (m) according to the following equation:
SCAQ (floor_m) = 1/K * sum_over_ap_k on floor_m SCAQ (ap_k),
where K is the number of access points on the floor.
[003O]In one implementation, the WLAN management server 20 may compute the average air quality (AAQ) of a given floor (m) according to the following equation:
AAQ (floor_m) = 1/K * sum_over_ap_k on floor_m AAQ(ap_k), where K is the number of access points on the floor.
[0031] Similarly, in particular implementations, if the target area is a building, the WLAN management server 20 computes the air quality metrics for each floor in the building, and then aggregates the those air quality metrics for the building (310). In one implementations, the WLAN management server 20 computes air quality metrics associated with each subgroups (e.g., each floor of the building) and then averages those air quality metrics for a larger target area (e.g., the building). Alternatively, in particular implementations, the WLAN management server 20 may aggregate the air quality metrics of all of the access points in the building. [0032] In one implementation, the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given building (n) according to the following equation:
SCAQ (building_n) = 1/M * sum_over_floor_m in building_n SCAQ(floor_m),
where M is the number of floors in the building. [0033] In one implementation, the WLAN management server 20 may compute the average air quality (AAQ) of a building (n) according the following equation:
AAQ (building_n) = 1/M * sum_over_floor_m in building_n AAQ(floor_m).
[0034] In one implementation, if the target area is a campus, the WLAN management server 20 aggregates the air quality metrics over the campus (312). In one implementation, the WLAN management server 20 computes air quality metrics for each building in the campus, and then aggregates those air quality metrics for the campus. Alternatively, in particular implementations, the WLAN management server 20 may aggregate the air quality metrics of all of the access points in the campus. Also could aggregate floor AQ directly to campus AQ. [0035] In one implementation, the WLAN management server 20 may compute the service channel air quality (SCAQ) of a given campus (p) according to the following equation:
SCAQ(campus_p) = 1/N * sum_over building_n in campus_p SCAQ(building_n),
where N is the number of buildings in the campus.
[0036] In one implementation, the WLAN management server 20 may compute the average air quality (AAQ) of a given campus (p) according to the following equation:
AAQ(campus_p) = 1/N * sum_over building_n in campus_p AAQ(building_n).
[0037] In one implementation, these values computed above may be proportions that may be converted to percentages by multiplying them by 100. D. User Interface for Displaying Air Quality Levels
[0038] Figure 4 shows an example user interface in accordance with one embodiment. Figure 4 shows an example hierarchical tree view 402 that displays air quality levels at different target areas and an example target area view 404. In this particular example, the tree view 402 displays the air quality level at a particular campus (e.g., San Jose Campus), building (e.g., Building 14), floor (2nd floor), and access points (e.g., API 50a and AP2 50b). In this particular example, the particular target's area view 404 displays a floor (e.g., 2nd floor), and the access points on that floor (e.g., API 50a and AP2 50b). In one implementation, the target area view 404 also may display some of the air quality levels corresponding to those in the tree view 402. In one implementation, the target area view 404 may display the interference sources 406a, 406b, 406c, 406d, and 406e.
E. Policies
[0039] In one implementation, the WLAN management server 20 may apply one or more policies based on the resulting severity or air quality metrics. Such policies may involve manual or automatic mitigation of interference. For example, if one or more interference levels or the air quality of one or more target areas exceed or fall below a predetermined threshold, WLAN management server 20 may notify an administrator of the interference level and/or air quality (e.g., air quality is below 60%). In one implementation, the notification may be a contained in an email. In another implementation, the notification may be an indication (e.g., color-coded indicator) on a user interface such as that of Figure 4. Based on the notification, the administrator may investigate the potential problem areas and respond accordingly. In some implementations, the WLAN management server 20 may automatically reconfigure aspects of the wireless network.
[004O]In particular implementations trigger severity levels may be based on any one or more of the interference severity metrics described above. For example, in one implementation, a trigger level may be based on a threshold air quality level. In one implementation, a trigger level may be based on a threshold air quality level at a particular target area (e.g., floor or wing of a building) or at a serving channel at a particular access point. For example, if the serving channel air quality metric for a floor falls below a threshold level, this could trigger WLAN management server 20 to automatically recompute channel assignments for the access points on the floor, or to transmit messages to the access points causing them to re-initialize a channel assignment algorithm performed locally relative to the access points. Various notification and other policies may be useful in private as well as public Wi-Fi deployments.
[0041] The present invention has been explained with reference to specific embodiments. For example, while embodiments of the present invention have been described as operating in connection with IEEE 802.11 networks, the present invention can be used in connection with any suitable wireless network environment. Other embodiments will be evident to those of ordinary skill in the art. It is therefore not intended that the present invention be limited by the embodiments described above.

Claims

CLAIMS What is claimed is:
1. Logic encoded in one or more tangible media for execution and when executed operable to: compute an interference severity level for a plurality of interference sources detected at an access point; aggregate one or more of the computed interference severity levels relative to the access point; and compute an air quality metric for the access point, wherein the air quality metric is based at least in part on an equation: 1 - aggregated interference severity level.
2. The logic of claim 1 wherein the logic is further operable to compute an interference severity level of an operating channel relative to the access point.
3. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; and compute an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
4. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; aggregate, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; and compute an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
5. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; aggregate, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; aggregate, across one or more campuses, the computed aggregation interference severity levels of the operating channels across the one or more buildings; and compute an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
6. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of each channel of a plurality of channels relative to the access point; and aggregate the computed interference severity levels of the plurality of channels relative to the access point.
7. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; and compute an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
8. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; aggregate, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; and compute an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
9. The logic of claim 1 wherein the logic is further operable to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; aggregate, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; aggregate, across one or more campuses, the computed aggregation interference severity levels of the plurality of channels across the one or more buildings; and compute an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
10. Logic encoded in one or more tangible media for execution and when executed operable to: determine a target area for computing a target air quality metric; compute an interference severity level for a plurality of interference sources detected at an access point; aggregate two or more of the computed interference severity levels relative to the access point; compute an air quality metric for each access point in the target area, wherein the air quality metric is based on an aggregation of the computed interference severity levels; and aggregate the computed air quality metrics relative to the access points, wherein the target air quality metric is based on an aggregation of the computed air quality metrics.
11. The logic of claim 10 wherein the target area is defined by one or more floors.
12. The logic of claim 10 wherein the target area is defined by one or more buildings.
13. The logic of claim 10 wherein the target area is defined by one or more campuses.
14. A method comprising: computing an interference severity level for a plurality of interference sources detected at an access point; aggregating one or more of the computed interference severity levels relative to the access point; and computing an air quality metric for the access point, wherein the air quality metric based at least in part on an equation: 1 - aggregated interference severity level.
15. The method of claim 14 further comprising computing an interference severity level of an operating channel relative to the access point.
16. The method of claim 14 further comprising: computing an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregating, across one or more floors, the computed interference severity levels of the operating channels; and computing an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
17. The method of claim 14 further comprising: computing an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregating, across one or more floors, the computed interference severity levels of the operating channels; aggregating, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; and computing an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
18. The method of claim 14 further comprising: computing an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregating, across one or more floors, the computed interference severity levels of the operating channels; aggregating, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; aggregating, across one or more campuses, the computed aggregation interference severity levels of the operating channels across the one or more buildings; and computing an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
19. The method of claim 14 further comprising: computing an interference severity level of each channel of a plurality of channels relative to the access point; and aggregating the computed interference severity levels of the plurality of channels relative to the access point.
20. The method of claim 14 further comprising: computing an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregating, across one or more floors, the computed interference severity levels of the plurality of channels; and computing an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
21. The method of claim 14 further comprising: computing an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregating, across one or more floors, the computed interference severity levels of the plurality of channels; aggregating, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; and computing an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
22. The method of claim 14 further comprising: computing an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregating, across one or more floors, the computed interference severity levels of the plurality of channels; aggregating, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; aggregating, across one or more campuses, the computed aggregation interference severity levels of the plurality of channels across the one or more buildings; and computing an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
23. An apparatus comprising: one or more processors; a memory; a network interface; and a management application, physically stored in the memory, comprising instructions operable to cause the one or more processors and the apparatus to: computing an interference severity level for a plurality of interference sources detected at an access point; aggregating one or more of the computed interference severity levels relative to the access point; and computing an air quality metric for the access point, wherein the air quality metric based at least in part on an equation: 1 - aggregated interference severity level.
24. The apparatus of claim 23 wherein management application is further operable to cause the one or more processors and the apparatus to compute an interference severity level of an operating channel relative to the access point.
25. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; and compute an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
26. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; aggregate, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; and compute an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
27. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of an operating channel relative to each access point of a plurality of access points; aggregate, across one or more floors, the computed interference severity levels of the operating channels; aggregate, across one or more buildings, the computed aggregation interference severity levels of the operating channels across the one or more floors; aggregate, across one or more campuses, the computed aggregation interference severity levels of the operating channels across the one or more buildings; and compute an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
28. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of each channel of a plurality of channels relative to the access point; and aggregate the computed interference severity levels of the plurality of channels relative to the access point.
29. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; and compute an air quality metric for the one or more floors, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
30. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; aggregate, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; and compute an air quality metric for the one or more buildings, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
31. The apparatus of claim 23 wherein the management application is further operable to cause the one or more processors and the apparatus to: compute an interference severity level of each channel of a plurality of channels relative to a plurality of access point; aggregate, across one or more floors, the computed interference severity levels of the plurality of channels; aggregate, across a one or more buildings, the computed aggregation interference severity levels of the plurality of channels across the one or more floors; aggregate, across one or more campuses, the computed aggregation interference severity levels of the plurality of channels across the one or more buildings; and compute an air quality metric for the one or more campuses, wherein the air quality metric is based at least in part on the equation: 1 - aggregated interference severity level.
PCT/US2008/068270 2007-07-06 2008-06-26 Measurement of radio environment quality in wireless networks WO2009009304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08771980.3A EP2165547B1 (en) 2007-07-06 2008-06-26 Measurement of radio environment quality in wireless networks
CN2008800235033A CN101690300B (en) 2007-07-06 2008-06-26 Measurement of radio environment quality in wireless networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/774,362 2007-07-06
US11/774,362 US7596461B2 (en) 2007-07-06 2007-07-06 Measurement of air quality in wireless networks

Publications (1)

Publication Number Publication Date
WO2009009304A1 true WO2009009304A1 (en) 2009-01-15

Family

ID=39768505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/068270 WO2009009304A1 (en) 2007-07-06 2008-06-26 Measurement of radio environment quality in wireless networks

Country Status (4)

Country Link
US (1) US7596461B2 (en)
EP (1) EP2165547B1 (en)
CN (1) CN101690300B (en)
WO (1) WO2009009304A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI331864B (en) * 2006-12-01 2010-10-11 Cameo Communications Inc Method and device of automatic channel assign for wireless network system
US8699360B2 (en) * 2008-03-31 2014-04-15 Motorola Solutions, Inc. Communications system for exchanging spectrum sensing measurements through a drop box and method of using same
US8289901B2 (en) * 2009-03-17 2012-10-16 Cisco Technology, Inc. Pinning and cascading avoidance in dynamic channel assignment for wireless LANS
US8660498B2 (en) * 2009-06-29 2014-02-25 Motorola Solutions, Inc. Method for database driven channel quality estimation in a cognitive radio network
US8737244B2 (en) 2010-11-29 2014-05-27 Rosemount Inc. Wireless sensor network access point and device RF spectrum analysis system and method
US8873526B2 (en) 2010-12-17 2014-10-28 Cisco Technology, Inc. Collision avoidance for wireless networks
US8666319B2 (en) 2011-07-15 2014-03-04 Cisco Technology, Inc. Mitigating effects of identified interference with adaptive CCA threshold
US9072100B2 (en) 2011-07-20 2015-06-30 Cisco Technology, Inc. Sub-slotting to improve packet success rate in carrier sense multiple access networks
US8818437B2 (en) 2011-08-02 2014-08-26 Cisco Technology, Inc. Narrowband interference avoidance for dynamic channel assignment
US10169119B1 (en) * 2011-08-28 2019-01-01 Ross Daniel Snyder Method and apparatus for improving reliability of digital communications
US20130298664A1 (en) * 2012-05-08 2013-11-14 Logimesh IP, LLC Pipe with vibrational analytics
US9596702B2 (en) * 2013-06-19 2017-03-14 Dsp Group Ltd. Dynamic sensitivity control for wireless devices
US10375711B2 (en) 2013-11-12 2019-08-06 Qualcomm Incorporated Methods for LTE channel selection in unlicensed bands
WO2021050294A1 (en) 2019-09-10 2021-03-18 Integrated Energy Services Corporation System and method for assuring building air quality
US11622384B2 (en) * 2019-11-07 2023-04-04 Mitsubishi Electric Research Laboratories, Inc. Hybrid carrier sense multiple access system with collision avoidance for IEEE 802.15.4 to achieve better coexistence with IEEE 802.11
US11166315B2 (en) * 2019-11-07 2021-11-02 Mitsubishi Electric Research Laboratories, Inc. Hybrid carrier sense multiple access system with collision avoidance for IEEE 802.15.4 to achieve better coexistence with IEEE 802.11
US20220124803A1 (en) * 2020-10-16 2022-04-21 Mitsubishi Electric Research Laboratories, Inc. Hybrid Carrier Sense Multiple Access System with Collision Avoidance for IEEE 802.15.4 to Achieve Better Coexistence with IEEE 802.11
JP2022182441A (en) * 2021-05-28 2022-12-08 日本電気株式会社 Interference detection device, interference detection method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057658A1 (en) * 1999-03-24 2000-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates
US6693884B1 (en) * 1998-11-19 2004-02-17 Scoreboard, Inc. Method of quantifying the quality of service in a CDMA cellular telephone system
US20060291401A1 (en) * 2005-06-23 2006-12-28 Autocell Laboratories, Inc. Co-channel congestion method and apparatus
US20070049319A1 (en) * 2005-09-01 2007-03-01 Brian Hart Radio planning for WLANS

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694142A (en) * 1949-11-10 1954-11-09 Bell Telephone Labor Inc Signal-to-noise energy detection unit
US2996613A (en) * 1956-03-06 1961-08-15 Itt Detector circuit
US3176070A (en) * 1961-12-29 1965-03-30 Ibm Noise analyzer
US3435345A (en) * 1965-06-24 1969-03-25 Willis L Ashby System for detecting coherent energy in the presence of saturating noise
US4839582A (en) 1987-07-01 1989-06-13 Anritsu Corporation Signal analyzer apparatus with automatic frequency measuring function
US5093927A (en) 1989-10-20 1992-03-03 Motorola, Inc. Two-way communication system
US5023900A (en) 1989-12-07 1991-06-11 Tayloe Daniel R Cellular radiotelephone diagnostic system
US5125108A (en) * 1990-02-22 1992-06-23 American Nucleonics Corporation Interference cancellation system for interference signals received with differing phases
US5077753A (en) 1990-04-09 1991-12-31 Proxim, Inc. Radio communication system using spread spectrum techniques
GB9019490D0 (en) 1990-09-06 1990-10-24 Ncr Co Transmission control for a wireless local area network station
GB9112898D0 (en) 1991-06-14 1991-07-31 Digital Equipment Int Communication networks
US5210771A (en) 1991-08-01 1993-05-11 Motorola, Inc. Multiple user spread-spectrum communication system
US5668828A (en) 1992-05-08 1997-09-16 Sanconix, Inc. Enhanced frequency agile radio
IT1264320B (en) 1992-12-01 1996-09-23 SYSTEM FOR AUTOMATICALLY DISTRIBUTING CALLS TO RADIOTAXI
US5452319A (en) 1993-06-17 1995-09-19 Itt Corporation Method and system for increasing the reliability of multiple frequency communication systems
US5412687A (en) 1993-10-15 1995-05-02 Proxim Incorporated Digital communications equipment using differential quaternary frequency shift keying
CA2118273C (en) 1993-11-23 2000-04-25 Pi-Hui Chao Method and apparatus for dynamic channel allocation for wireless communication
JPH07147553A (en) 1993-11-24 1995-06-06 Sanyo Electric Co Ltd Frequency hopping communication method and device therefor
US5469471A (en) * 1994-02-01 1995-11-21 Qualcomm Incorporated Method and apparatus for providing a communication link quality indication
AU2595595A (en) 1994-05-19 1995-12-18 Airnet Communications Corporation System for dynamically allocating channels among base stations in a wireless communication system
JP2885267B2 (en) 1994-07-15 1999-04-19 日本電気株式会社 Digitally modulated signal receiver
FI943609A (en) 1994-08-03 1996-02-04 Nokia Telecommunications Oy Method of allocating a channel in a cellular radio system
US5621767A (en) 1994-09-30 1997-04-15 Hughes Electronics Method and device for locking on a carrier signal by dividing frequency band into segments for segment signal quality determination and selecting better signal quality segment
US5603088A (en) * 1995-02-28 1997-02-11 Motorola, Inc. Method and apparatus for determining a quality level of an analog signal in a radio communication system
US5592480A (en) 1995-03-13 1997-01-07 Carney; Ronald R. Wideband wireless basestation making use of time division multiple-access bus having selectable number of time slots and frame synchronization to support different modulation standards
US5697056A (en) * 1995-05-08 1997-12-09 Motorola, Inc. Communication system in which radio subscriber units mitigate interference
US5950124A (en) 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
FR2742896B1 (en) 1995-12-22 1998-03-20 Centre Nat Etd Spatiales METHOD AND DEVICE FOR INTERFERENCE SIGNAL ELIMINATION IN A DIRECT SEQUENCE SPREAD SPECTRUM LINK
USD375297S (en) 1996-02-23 1996-11-05 Proxim, Inc. Local area network wireless device
US5933420A (en) 1996-04-30 1999-08-03 3Com Corporation Method and apparatus for assigning spectrum of a wireless local area network
US5774785A (en) * 1996-06-20 1998-06-30 Telefonaktiebolaget Lm Ericsson Adaptive quality adjustment
JPH1013324A (en) 1996-06-25 1998-01-16 Sony Corp Radio telephone system
JP2910678B2 (en) 1996-06-27 1999-06-23 日本電気株式会社 Base station frequency allocation system
GB2316834B (en) 1996-08-24 2001-05-16 Ico Services Ltd Earth station acquisition system for satellite communications
US5889768A (en) 1996-08-30 1999-03-30 Motorola, Inc. Method of and apparatus for pilot channel acquisition
US5809059A (en) 1996-11-21 1998-09-15 Motorola, Inc. Method and apparatus for spread spectrum channel assignment
US6223028B1 (en) 1997-03-17 2001-04-24 Nortel Networks Ltd Enhanced method and system for programming a mobile telephone over the air within a mobile telephone communication network
US5884936A (en) * 1997-03-27 1999-03-23 Breed Automotive Technology, Inc. Steering wheel assembly with self-docking connector
ID24678A (en) 1997-06-06 2000-07-27 Salbu Res & Dev Pty Ltd OPERATION METHOD OF A MULTI STATION NETWORK
US6069871A (en) 1997-07-21 2000-05-30 Nortel Networks Corporation Traffic allocation and dynamic load balancing in a multiple carrier cellular wireless communication system
US6104928A (en) 1997-10-07 2000-08-15 Nortel Dasa Network System Gmbh & Co. Kg Dual network integration scheme
US6097956A (en) 1997-10-24 2000-08-01 Nortel Networks Corporation Accurate calculation of the probability of outage for the CDMA reverse link
US6243413B1 (en) 1998-04-03 2001-06-05 International Business Machines Corporation Modular home-networking communication system and method using disparate communication channels
US6137994A (en) * 1998-05-29 2000-10-24 Motorola, Inc. Radio communication system and method for setting an output power of a base site therein
US6240077B1 (en) 1998-07-09 2001-05-29 Golden Gate Tele Systems Inc. Dynamic wireless multiplexing — switching hub for providing two-way communications with subscriber units
US6286038B1 (en) 1998-08-03 2001-09-04 Nortel Networks Limited Method and apparatus for remotely configuring a network device
US6195554B1 (en) 1999-02-16 2001-02-27 Ericsson Inc. Channel assignment based on uplink interference level and channel quality measurements with a forward and backward reassignment step
US6799047B1 (en) 1999-02-25 2004-09-28 Microsoft Corporation Locating and tracking a user in a wireless network through environmentally profiled data
US6418317B1 (en) 1999-12-01 2002-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for managing frequencies allocated to a base station
DE10053809A1 (en) 2000-10-30 2002-05-08 Philips Corp Intellectual Pty Ad hoc network with several terminals for determining terminals as controllers of sub-networks
US6473038B2 (en) 2001-01-05 2002-10-29 Motorola, Inc. Method and apparatus for location estimation
WO2002062121A2 (en) * 2001-02-07 2002-08-15 Dynamic Telecommunications Inc. Apparatus and method for providing signal quality measurements in drive test systems for wireless networks
EP1248477A1 (en) 2001-04-03 2002-10-09 Telefonaktiebolaget L M Ericsson (Publ) Method and device for controlling dynamic frequency selection within a wireless communication system
US7206840B2 (en) 2001-05-11 2007-04-17 Koninklike Philips Electronics N.V. Dynamic frequency selection scheme for IEEE 802.11 WLANs
US20030023746A1 (en) 2001-07-26 2003-01-30 Koninklijke Philips Electronics N.V. Method for reliable and efficient support of congestion control in nack-based protocols
ATE334531T1 (en) 2001-11-28 2006-08-15 Freescale Semiconductor Inc SYSTEM AND METHOD FOR COMMUNICATION BETWEEN MULTIPLE POINT-COORDINATED WIRELESS NETWORKS
US6697013B2 (en) 2001-12-06 2004-02-24 Atheros Communications, Inc. Radar detection and dynamic frequency selection for wireless local area networks
US6917819B2 (en) 2001-12-31 2005-07-12 Samsung Electronics Co., Ltd. System and method for providing a subscriber database using group services in a telecommunication system
US6788658B1 (en) 2002-01-11 2004-09-07 Airflow Networks Wireless communication system architecture having split MAC layer
US7028097B2 (en) 2002-03-28 2006-04-11 Intel Corporation Wireless LAN with dynamic channel access management
US6925069B2 (en) 2002-04-19 2005-08-02 Meshnetworks, Inc. Data network having a wireless local area network with a packet hopping wireless backbone
US6891496B2 (en) 2002-05-03 2005-05-10 Atheros Communications, Inc. Method and apparatus for physical layer radar pulse detection and estimation
US7318155B2 (en) 2002-12-06 2008-01-08 International Business Machines Corporation Method and system for configuring highly available online certificate status protocol responders
US7107032B2 (en) 2003-01-08 2006-09-12 Mediatek Inc. Radar detection method for radio local area networks
DE60328078D1 (en) 2003-01-28 2009-08-06 Sony Deutschland Gmbh Method for operating a RLAN device
US6870815B2 (en) 2003-01-30 2005-03-22 Atheros Communications, Inc. Methods for implementing a dynamic frequency selection (DFS) and a temporary channel selection feature for WLAN devices
US7606193B2 (en) 2003-01-30 2009-10-20 Atheros Communications, Inc. Methods for implementing a dynamic frequency selection (DFS) feature for WLAN devices
US7024162B2 (en) * 2003-03-27 2006-04-04 Motorola, Inc. Communication system with call quality indication and method of operation therein
US7702291B2 (en) 2003-09-15 2010-04-20 Broadcom Corporation Radar detection from pulse record with interference
US7593692B2 (en) 2003-09-15 2009-09-22 Broadcom Corporation Radar detection circuit for a WLAN transceiver
US7110756B2 (en) 2003-10-03 2006-09-19 Cognio, Inc. Automated real-time site survey in a shared frequency band environment
CN100574501C (en) * 2004-07-27 2009-12-23 日本电气株式会社 Controlling uplink radio resource, base station equipment and radio network controller
US7392017B2 (en) 2005-06-30 2008-06-24 Google Inc. Assessing wireless network quality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693884B1 (en) * 1998-11-19 2004-02-17 Scoreboard, Inc. Method of quantifying the quality of service in a CDMA cellular telephone system
WO2000057658A1 (en) * 1999-03-24 2000-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates
US20060291401A1 (en) * 2005-06-23 2006-12-28 Autocell Laboratories, Inc. Co-channel congestion method and apparatus
US20070049319A1 (en) * 2005-09-01 2007-03-01 Brian Hart Radio planning for WLANS

Also Published As

Publication number Publication date
EP2165547A1 (en) 2010-03-24
US20090012738A1 (en) 2009-01-08
CN101690300A (en) 2010-03-31
CN101690300B (en) 2013-08-14
US7596461B2 (en) 2009-09-29
EP2165547B1 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
EP2165547B1 (en) Measurement of radio environment quality in wireless networks
US9497700B2 (en) Dynamic channel selection algorithms for interference management in Wi-Fi networks
EP3430831B1 (en) Data gathering to enable the optimization of distributed wi-fi networks
US9167457B2 (en) Measuring and displaying wireless network quality
EP3050342B1 (en) Method for testing a wireless link of a wi-fi node, and circuit performing the method
US10701627B2 (en) Receiver start of packet optimization for wireless networks
EP3053372B1 (en) Dynamically adjusting wireless station connections in a co-located access point system
TWI691232B (en) Wireless communication system and wireless communication method
WO2008086082A1 (en) System and method for automatic channel selection
WO2013122591A1 (en) Radio resource management
EP3721665B1 (en) Automatic channel selection in a wlan
Ong et al. Radio resource management of composite wireless networks: Predictive and reactive approaches
JP6891733B2 (en) Wireless communication system, wireless communication method, wireless base station and control station
JP6474712B2 (en) Wireless communication system and wireless communication method
Abusubaih et al. A framework for interference mitigation in multi-BSS 802.11 wireless LANs
EP4038837B1 (en) Quality of experience measurements for control of wi-fi networks
JP6449188B2 (en) Wireless communication system and wireless communication method
Zhao et al. Adaptive channel allocation for ieee 802.11 wireless lan
JP7209292B2 (en) Wireless communication system and wireless communication method
JP2017224949A (en) Radio communication system and radio communication method
Zhang et al. Balancing download throughput in densely deployed IEEE802. 11 multi-cell WLANs
Eisenblätter et al. A two-stage approach to WLAN planning: Detailed performance evaluation along the Pareto frontier
Demirci et al. Gap-free load balancing algorithms in wireless LANs using cell breathing technique
JP2005252608A (en) Method and apparatus for selecting transmission system, based on wireless characteristics information, its program and recording medium
Symington et al. A hardware test bed for measuring ieee 802.11 g distribution coordination function performance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023503.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08771980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008771980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE