WO2009016207A1 - Magnet coil system for exerting force on an endoscopy capsule - Google Patents

Magnet coil system for exerting force on an endoscopy capsule Download PDF

Info

Publication number
WO2009016207A1
WO2009016207A1 PCT/EP2008/060006 EP2008060006W WO2009016207A1 WO 2009016207 A1 WO2009016207 A1 WO 2009016207A1 EP 2008060006 W EP2008060006 W EP 2008060006W WO 2009016207 A1 WO2009016207 A1 WO 2009016207A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil system
magnetic
imaging
coil
capsule
Prior art date
Application number
PCT/EP2008/060006
Other languages
German (de)
French (fr)
Inventor
Rainer Graumann
Rainer Kuth
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009016207A1 publication Critical patent/WO2009016207A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0127Magnetic means; Magnetic markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/445MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]

Definitions

  • Magnetic coil system for exerting force on an endoscopy capsule
  • the invention relates to a magnetic coil system for applying force to an endoscopy capsule.
  • Such a magnet coil system is e.g. known from DE 101 42 253 Cl. It has a work space in the one
  • Patient is at least partially recoverable.
  • a so-called capsule endoscopy Magneticically Guided Capsule Endoscopy - MGCE
  • An endocapsule usually has a camera for imaging. However, this is only an examination of the internal surfaces of the patient, e.g. the inner intestinal wall in the gastrointestinal tract possible.
  • radiology can only be used to reproduce reproducible pathologies in rare cases, eg directly under the skin or through a body orifice.
  • such X-ray devices always represent external devices which can not be fully integrated, since they operate on the X-ray basis in contrast to capsule endoscopy based on magnetic field.
  • the object of the present invention is to specify an improved magnet coil system and an improved method for magnetic capsule navigation.
  • the invention is based on the recognition that an MR imaging is also suitable for imaging the patient's interior and that this, like the MGCE, works on a magnetic field basis.
  • the idea of the invention is therefore that it would be advantageous to extend the system to MGCE so that it can be used for both capsule navigation and MR imaging, i. to combine an MR scanner and MGCE in a single system.
  • the invention is solved with respect to the magnetic coil system by such with a three-dimensional working raum, in which a patient is at least partially recoverable, with a plurality of individually controllable individual coils for generating at least one basic magnetic field for specifiable non-contact force on a magnetically navigable, a magnetic torque endoscopy capsule in the working space, such as from DE 103 40 925 known ,
  • a magnetic moment is to be understood as meaning, for example, a permanent magnet, a magnet coil or any other element which generates a magnetic field fixed at the endocapsule.
  • the magnet coil system contains a stabilization system for stabilizing and homogenizing the basic magnetic field for MR imaging of the patient in the work area, an RF coil system for generating an excitation field and for receiving a resonance field for MR imaging, and a system controller for the MR imaging MR imaging.
  • the known magnet system for capsule endoscopy consists of a series of coils which generate the magnetic fields and magnetic field gradients required to apply the force to the endocapsule.
  • those fields and gradients which are required for the MR imaging are also generated.
  • the MR magnet is hereby e.g. built from the Helmholtz coils of the navigation magnet.
  • the fields and gradients achievable with these coils are sufficient for low-end MR imaging.
  • the further components still necessary for MR imaging - RF coil system and system control are complimented according to the invention.
  • the plant control hereby includes e.g. a processing, reconstruction and visualization of a obtained MR-3D image data set with a.
  • Capsule endoscopy requires a magnet with large magnetic fluxes and very high flux density gradients.
  • an extremely homogenous magnetic flux of very high temporal constancy or with very well known temporal changes is needed. Therefore, inventive according to the stabilization system, which makes the magnetic coil system suitable for MR imaging.
  • a system with improved power amplifiers for the coils of the magnetic coil system in comparison with pure capsule navigation is conceivable.
  • the modified magnetic coil system thus allows a combination of capsule endoscopy and MR imaging.
  • the RF coil system can be designed such that it uses the coils of the magnet coil system that are present for the MGCE or that they are suitably modified.
  • the RF coil system can also contain a separate, ie additional excitation coil for generating the MR excitation field in the working space.
  • the excitation field does not have to be generated by the coils of the magnet coil system used for the application of force, which allows an optimal design of both coil types.
  • the excitation coil may be a whole body coil. Such coils are already available, optimized for MR imaging and can be easily integrated into the coil system.
  • the RF coil system may include an MR receiver coil for the resonance field. This results in the same advantages as stated above for the additional excitation coil.
  • the MR receiver coil can be a surface coil that can be applied to the patient. This results in the same advantages as outlined above for the whole body coil.
  • the stabilization system may contain additional coils, eg Helmholtz variants for generating the basic magnetic field.
  • these coils are not present in a known system for pure MGCE and are specially supplemented for MR imaging.
  • the stabilization system may include iron hovering for the magnet coil system. The magnetic coils used for the MGCE are then qualitatively improved by the iron soiling, so that they can also produce fields of better quality, which are sufficiently homogeneous for MR imaging.
  • At least some of the coils involved in MR imaging ie the MR magnets, can also be HTS coils.
  • High-temperature superconductors (HTS) are available for this purpose in a known manner.
  • the capsule If the capsule is in the patient at the time of passing through the static field gradient, the direction of force and amplitude are virtually uncontrollable. If the patient is in the center of the magnet and the capsule is then to be supplied, the capsule must be transported through the static gradient, which is technically complicated. On the other hand, if the capsule is in the range of homogeneity, i. On the other hand, in the following it must always be ensured that the body region in which the capsule is located is in the homogeneity region of the magnet so that it does not reach the gradient region again.
  • MR magnets ie MR coil systems
  • a homogeneity volume typically 20 cm to 50 cm diameter or edge length, which is generally smaller than the gastrointestinal tract of the patient.
  • the B 0 basic field is active, and the navigational gradient fields are turned off an ideal capsule magnet no force but only a torque, as long as its moment is not parallel to the Bo magnetic field. So you can use the MR gradient coils to apply forces in any direction, but the capsule direction always stays parallel to the B 0 -FeId.
  • the strong B 0 -FeId necessary for MR imaging of the coil system for the MGCE can be switched off. If only the MGCE basic field or no longer exists, the introduction of the capsule magnet into the working space is facilitated. Namely, no or only a small BO gradient at the edge of the homogeneity range must be traversed by the magnetic moment.
  • the solenoid system may then include a flux pump for ramping at least a portion of the MR imaging coils.
  • the field which is stronger than the MGCE and which is necessary for MR imaging is then built up after insertion or removal of the capsule into the working space, ie rambled, and degraded again before the capsule is removed or inserted.
  • the flux pump can remain active during MR imaging, whereby the resonance frequency is tracked analogously.
  • the magnetic moment of the capsule may alternatively or additionally be removable, at least during the MR.
  • the magnet coil system may therefore comprise a working capsule with a, e.g. for MR imaging, deactivatable magnetic moment included.
  • the magnet coil system can contain an endocapsule, as is known, for example, from DE 10 2005 032 368 A1. This is also called Endoratte and is equipped with an out-patient extension or tail. The magnetic moment is then movable over the extension between working capsule located in the patient and the outside space outside the patient.
  • the appendage is a hollow or non-hollow cord that pulls the endocapsule behind it as it moves. Along or in this string, the magnetic moment of the capsule can be quickly and safely transported between the capsule and a patient's body opening through which the cord protrudes.
  • the endocapsule can have a tissue anchor known from DE 103 36 734 A1.
  • the capsule is fixable in a place in the patient and remains there, even if the magnetic moment is removed.
  • the material of the magnetic moment in the endocapsule may be liquid, e.g. be made of a ferrofluid, be. Such a moment can at the o.g. Endoratte be filled or sucked through the tube-shaped extension into the capsule.
  • the object of the invention is achieved by a method for magnetic capsule navigation in a patient who works with the aid of a magnetic coil system according to one of the claims 1 to 9 MR imaging based, in the MR imaging and force on the work capsule in temporal Change takes place.
  • the quality-reduced MR imaging described with reference to the magnetic coil system according to the invention can generally not be used simultaneously with the capsule endoscopy, especially if the capsule has a permanent magnet, since this would be changed in position by the MR imaging and which also interferes with MR imaging.
  • MR imaging for example, a review of the diagnostic assumptions or a study of critical areas or identification and marking of pathological areas before inserting the capsule.
  • the regions concerned may then, on the basis of the subsequent capsule navigation.
  • An MR-based confirmation or result check can also take place after a successful diagnosis or therapy, ie capsule navigation.
  • the magnetic moment of the endocapsule as mentioned, e.g. during MR imaging, are removed from the workspace.
  • the magnetic moment can be removed over the extension, that is, removed from the working space filled with fields of critical field strength.
  • Coordinate flags ie bookmarks
  • MGCE bookmarks can then be generated in a 3D image data record of the MR imaging. These characterize locations or regions in the MR data set which require later optical observation and / or biopsy or therapy by means of endoscopy or MGCE. These bookmarks can then be approached directly by the endoscope or the endocapsule during the subsequent endoscopy or MGCE.
  • a virtual endoscopy can be generated from a 3D MR image data record, for example along a path which a working capsule has traveled or will cover. If the above-mentioned bookmarks are transmitted for this purpose, it is possible to navigate during the MGCE by means of a combination of virtual endoscopy and real endoscopy. Conversely, during endoscopy or MGCE, target points, areas or volumes can be defined as 3D bookmarks, which can then be detected selectively by means of MR imaging, for example, after removing the capsule or the magnetic moment from the body of the patient or working space.
  • FIG. 1 a magnetic coil system for MR imaging-based magnetic capsule navigation.
  • the navigation system 4 essentially corresponds to the magnetic coil system known from DE 103 40 925 B3 comprising fourteen controllable individual coils, of which the two coils 8a, b in the form of Helmholtz coils are shown by way of example in FIG.
  • the navigation system 4 comprises with its housing 10 a working space 12, in which a patient 14 is introduced. In patient 14 there is one, e.g. from DE 101 42 253 Cl known endocapsule 16.
  • the endocapsule 16 contains as a magnetic element or moment a magnet 18 in the form of a permanent magnet.
  • the navigation system 4 With its coils 8 a, b, the navigation system 4 generates a homogeneous basic magnetic field 20 in the working space 12.
  • the basic magnetic field 20 together with a gradient field (not shown) serves to selectively apply force or torque to the magnet 18 and thus the endocapsule 16 in order to generate it to move arbitrarily specifiable direction in the patient 14 translationally and rotationally.
  • the known navigation system 4 is expanded by the MR system 6, which comprises two HTS field coils 22a, b and two HTS shield coils 24a, b.
  • the field coils 22a, b and shield coils 24a, b are each of a thermal Shield 26 surrounded and serve to stabilize the basic magnetic field 20 in order to serve as a basic magnetic field for MR imaging can. Together they form a stabilization system 28 for the basic magnetic field 20.
  • the MR system 6 further comprises an RF coil system 29, comprising an excitation coil 30 for exciting a magnetic resonance in the patient 14 by an excitation field 33; and a receiver coil 32 for receiving the magnetic resonance field 35, in the example a surface coil which can be placed on the patient 14.
  • Coil system 29, field coils 22a, b and shield coils 24a, b are connected to a system controller 34, which controls the MR imaging, as well as the signal processing, image display, etc. accomplished.
  • the navigation system 4 with respect to its coils 8a, b designed according to high quality, to produce the basic field 20 of high quality and thus suitable for MR imaging.
  • the MR system 6 then contains no field coils 22a, b and
  • Shield coils 24a, b The system control 34 is connected directly to the coils 8a, b.
  • the increase in quality in the coils 8a, b is accomplished by an iron hoof 36 attached thereto, which thus represents the stabilization system for homogenizing the basic magnetic field 20.
  • the system controller 34 comprises a flux pump 38. This feeds the field coils 22a, b and shielding coils 24a, b such that they are merely jammed for MR imaging in order to stabilize the basic magnetic field 20 for this purpose. During the MGCE, the field coils 22a, b and shielding coils 24a, b are then not latched or energized.
  • the end capsule 16 contains an extension 40, ie is an endoratte known from DE 10 2005 032 368 A1.
  • the extension 40 then extends through a body opening 42 of the patient 14 to the outside. outside space 43 and serves for transporting the magnet 18 which is removable from the endocapsule 16 in this embodiment.
  • the magnet 18 may be a hollow body which can be filled with a ferrofluid 44.
  • the ferro fluid 44 is then pumped through the tubular extension 40 for navigation or force or movement of the endocapsule 16 in this.
  • the ferrofluid 44 is removed again.
  • the magnet 18 is still a permanent magnet, but is transported along the extension 40, this time in the form of a cord, from the endocapsule to the exterior.

Abstract

A magnet coil system (2) comprises a three-dimensional working area (12) into which at least part of a patient (14) can be introduced, a plurality of single coils (8), which can be driven individually, for producing at least one basic magnetic field (20) for predeterminably exerting force without making physical contact, on an endoscopy capsule (16), which can be navigated magnetically and has a magnetic moment (18), in the working area (12), a stabilization system (22, 24, 36) for stabilization and homogenization of the basic magnetic field (20) for MR imaging of the patient (14) in the working area (12), an RF coil system (29) for producing an excitation field (33) and for receiving a resonance field (35) for the MR imaging, an installation control system (34) for the MR imaging.

Description

Beschreibungdescription
Magnetspulensystem zur Kraftausübung auf eine Endoskopiekap- selMagnetic coil system for exerting force on an endoscopy capsule
Die Erfindung betrifft ein Magnetspulensystem zur Kraftausübung auf eine Endoskopiekapsel .The invention relates to a magnetic coil system for applying force to an endoscopy capsule.
Ein derartiges Magnetspulensystem ist z.B. aus der DE 101 42 253 Cl bekannt. Es weist einen Arbeitsraum auf, in den einSuch a magnet coil system is e.g. known from DE 101 42 253 Cl. It has a work space in the one
Patient zumindest teilweise einbringbar ist. Mit einem derartigen System kann auf eine z.B. ebenfalls aus der DE 101 42 253 Cl bekannte, im Arbeitsraum befindliche Endoskopiekapsel oder Endokapsel berührungsfrei, in vorgebbarer Richtung und Stärke eine Kraft bzw. ein Drehmoment, im folgenden stets der Einfachheit halber als Kraft bezeichnet, ausgeübt werden. Somit kann am Patienten eine sogenannte Kapselendoskopie (Magnetically Guided Capsule Endoscopy - MGCE) durchgeführt werden, bei der die Kapsel im Patienten gezielt und beliebig bewegt wird. Eine Endokapsel weist hierbei in der Regel eine Kamera zur Bildgebung auf. Allerdings ist hiermit nur eine Betrachtung der inneren Oberflächen des Patienten, z.B. der inneren Darmwand im Gastrointestinaltrakt möglich.Patient is at least partially recoverable. With such a system, it is possible to rely on e.g. also known from DE 101 42 253 Cl, located in the working space endoscopy capsule or endocapsule without contact, in a predeterminable direction and strength of a force or torque, hereinafter always referred to for the sake of simplicity as force exerted. Thus, a so-called capsule endoscopy (Magnetically Guided Capsule Endoscopy - MGCE) can be performed on the patient, in which the capsule in the patient is selectively and arbitrarily moved. An endocapsule usually has a camera for imaging. However, this is only an examination of the internal surfaces of the patient, e.g. the inner intestinal wall in the gastrointestinal tract possible.
Für die Anwendung der Kapselendoskopie ist eine zusätzliche radiologische Bildgebung vom Patienten in vielen Fällen hilfreich, um mit Hilfe einer Durchleuchtung auch Bildinformation aus dem mit der MGCE nicht sichtbaren Inneren des Patienten zu gewinnen. Dies erhöht sowohl die diagnostische als auch die therapeutische Sicherheit. Z.B. kann eine Röntgen- Bildgebung am Patienten durchgeführt werden.For the use of capsule endoscopy additional radiological imaging of the patient is helpful in many cases, using fluoroscopy to obtain image information from the inside of the patient with the MGCE invisible. This increases both diagnostic and therapeutic safety. For example, X-ray imaging can be performed on the patient.
Eine der größten Begrenzungen der Radiologie dagegen ist wiederum die fehlende unmittelbare Therapiemöglichkeit, da mit- tels Radiologie abbildbare Pathologien nur in seltenen Fällen, z.B. direkt unter der Haut oder durch eine Körperöffnung erreichbar sind. Ein direkter Zugriff durch Werkzeuge, wie z.B. Nadeln, von außerhalb des Patienten, also minimalinva- siv, ist nur in seltenen Fällen möglich.On the other hand, one of the biggest limitations of radiology is the lack of immediate therapy options, since radiology can only be used to reproduce reproducible pathologies in rare cases, eg directly under the skin or through a body orifice. A direct access through tools, like Needles, for example, from outside the patient, ie minimally invasive, are only possible in rare cases.
Es ist bekannt, eine MGCE mit einer Röntgenbildgebung zu kom- binieren. Hierdurch werden die Vorteile der vollständigenIt is known to combine an MGCE with an X-ray image. This will be the benefits of the full
Bildgebung vom Patienten und einer deutlich gesteigerten Erreichbarkeit von Pathologien durch die Endokapsel vereint.Imaging of the patient and a significantly increased availability of pathologies by the endocapsule united.
Bekannt ist, ein Röntgensystem extern an das Magnetspulensys- tem anzubinden, z.B. in Form eines an das Spulensystem angefahrenen C-Bogens.It is known to connect an X-ray system externally to the magnetic coil system, e.g. in the form of a approach to the coil system C-arm.
Bekannt ist auch, beide Systeme zu verschachteln, z.B. in das Magnetspulensystem ein hiervon unabhängiges Röntgensystem, z.B. ein CT-Gerät, zu integrieren. Röntgenquelle und - emp- fänger sind dann z.B. zwischen bzw. im Bereich der Magnetwicklungen des Spulensystems angeordnet.It is also known to nest both systems, e.g. in the magnet coil system, an independent X-ray system, e.g. a CT device, integrate. X-ray sources and receivers are then e.g. arranged between or in the region of the magnet windings of the coil system.
Derartige Röntgengeräte stellen in Bezug auf die Kapselendo- skopie immer externe, nicht vollintegrierbare Geräte dar, da diese im Gegensatz zur auf Magnetfeldbasis arbeitenden Kapselendoskopie auf Röntgenbasis arbeiten.With regard to the capsule endoscopy, such X-ray devices always represent external devices which can not be fully integrated, since they operate on the X-ray basis in contrast to capsule endoscopy based on magnetic field.
Aufgabe der vorliegenden Erfindung ist es, ein verbessertes Magnetspulensystem und ein verbessertes Verfahren zur magnetischen Kapselnavigation anzugeben.The object of the present invention is to specify an improved magnet coil system and an improved method for magnetic capsule navigation.
Die Erfindung beruht auf der Erkenntnis, dass eine sich zur Bildgebung vom Patienteninneren auch eine MR-Bildgebung eig- net und dass diese, wie die MGCE auf Magnetfeldbasis arbeitet. Idee der Erfindung ist es daher, dass es vorteilhaft wäre, das System zur MGCE so zu erweitern, dass es sowohl zur Kapselnavigation als auch zur MR-Bildgebung verwendet werden kann, d.h. in einem einzigen System einen MR-Scanner und eine MGCE zu vereinen.The invention is based on the recognition that an MR imaging is also suitable for imaging the patient's interior and that this, like the MGCE, works on a magnetic field basis. The idea of the invention is therefore that it would be advantageous to extend the system to MGCE so that it can be used for both capsule navigation and MR imaging, i. to combine an MR scanner and MGCE in a single system.
Die Erfindung wird hinsichtlich des Magnetspulensystems gelöst durch ein solches mit einem dreidimensionalen Arbeits- räum, in den ein Patient zumindest teilweise einbringbar ist, mit mehreren, einzeln ansteuerbaren Einzelspulen zur Erzeugung mindestens eines Grundmagnetfeldes zur vorgebbaren berührungsfreien Kraftausübung auf eine magnetisch navigierba- re, ein magnetisches Moment aufweisende Endoskopiekapsel im Arbeitsraum, wie z.B. aus der DE 103 40 925 bekannt. Unter einem magnetischem Moment ist hierbei z.B. ein Permanentmagnet, eine Magnetspule oder ein beliebiges anderes, ein an der Endokapsel fixiertes Magnetfeld erzeugendes Element zu ver- stehen.The invention is solved with respect to the magnetic coil system by such with a three-dimensional working raum, in which a patient is at least partially recoverable, with a plurality of individually controllable individual coils for generating at least one basic magnetic field for specifiable non-contact force on a magnetically navigable, a magnetic torque endoscopy capsule in the working space, such as from DE 103 40 925 known , In this case, a magnetic moment is to be understood as meaning, for example, a permanent magnet, a magnet coil or any other element which generates a magnetic field fixed at the endocapsule.
Erfindungsgemäß enthält das Magnetspulensystem ein Stabilisierungs-System zur Stabilisierung und Homogenisierung des Grundmagnetfeldes für eine MR-Bildgebung vom Patienten im Ar- beitsraum, ein HF-Spulensystem zur Erzeugung eines Anregungsfeldes und zum Empfang eines Resonanzfeldes für die MR- Bildgebung, und eine Anlagensteuerung für die MR-Bildgebung.According to the invention, the magnet coil system contains a stabilization system for stabilizing and homogenizing the basic magnetic field for MR imaging of the patient in the work area, an RF coil system for generating an excitation field and for receiving a resonance field for MR imaging, and a system controller for the MR imaging MR imaging.
Das bekannte Magnetsystem für die Kapsel-Endoskopie besteht aus einer Reihe von Spulen, die die für die Kraftausübung auf die Endokapsel erforderlichen Magnetfelder und Magnetfeldgradienten erzeugen. Unter anderem werden nun erfindungsgemäß auch diejenigen Felder und Gradienten erzeugt, die für die MR-Bildgebung erforderlich sind. Der MR-Magnet wird hierbei z.B. aus den Helmholtzspulen des Navigationsmagneten aufgebaut. Die mit diesen Spulen erreichbaren Felder und Gradienten reichen für eine low-end MR-Bildgebung aus. Die weiteren, zur MR-Bildgebung noch notwendigen Komponenten - HF- Spulensystem und Anlagensteuerung, sind erfindungsgemäß er- gänzt. Die Anlagensteuerung schließt hierbei z.B. eine Verarbeitung, Rekonstruktion und Visualisierung eines gewonnenen MR-3D-Bilddatensatzes mit ein.The known magnet system for capsule endoscopy consists of a series of coils which generate the magnetic fields and magnetic field gradients required to apply the force to the endocapsule. Among other things, according to the invention, those fields and gradients which are required for the MR imaging are also generated. The MR magnet is hereby e.g. built from the Helmholtz coils of the navigation magnet. The fields and gradients achievable with these coils are sufficient for low-end MR imaging. The further components still necessary for MR imaging - RF coil system and system control are complimented according to the invention. The plant control hereby includes e.g. a processing, reconstruction and visualization of a obtained MR-3D image data set with a.
Für die Kapselendoskopie ist ein Magnet mit großen magneti- sehen Flüssen und sehr hohen Flussdichtegradienten erforderlich. Für die MR wird ein extrem homogener magnetischer Fluss sehr hoher zeitlicher Konstanz oder mit sehr genau bekannten zeitlichen Änderungen benötigt. Daher ist erfindungs- gemäß das Stabilisierungssystem vorhanden, das das Magnetspulensystem für die MR-Bildgebung ertüchtigt. Denkbar ist hier z.B. ein System mit gegenüber der reinen Kapselnavigation verbesserten Leistungsverstärkern für die Spulen des Magnet- spulensystems.Capsule endoscopy requires a magnet with large magnetic fluxes and very high flux density gradients. For the MR an extremely homogenous magnetic flux of very high temporal constancy or with very well known temporal changes is needed. Therefore, inventive according to the stabilization system, which makes the magnetic coil system suitable for MR imaging. For example, a system with improved power amplifiers for the coils of the magnetic coil system in comparison with pure capsule navigation is conceivable.
Das so modifizierte Magnetspulensystem erlaubt damit eine Kombination von Kapselendoskopie und MR-Bildgebung.The modified magnetic coil system thus allows a combination of capsule endoscopy and MR imaging.
Das HF-Spulensystem kann so ausgeführt sein, dass es die zur MGCE vorhandenen Spulen des Magnetspulensystems nutzt bzw. dass diese geeignet modifiziert sind. Das HF-Spulensystem kann aber auch eine separate, also zusätzliche Anregungsspule zur Erzeugung des MR-Anregungsfeldes im Arbeitsraum enthal- ten. Somit muss das Anregungsfeld nicht von den zur Kraftausübung benutzten Spulen des Magnetspulensystems erzeugt werden, was eine optimale Auslegung beider Spulentypen erlaubt.The RF coil system can be designed such that it uses the coils of the magnet coil system that are present for the MGCE or that they are suitably modified. However, the RF coil system can also contain a separate, ie additional excitation coil for generating the MR excitation field in the working space. Thus, the excitation field does not have to be generated by the coils of the magnet coil system used for the application of force, which allows an optimal design of both coil types.
Die Anregungsspule kann hierbei eine Ganzkörperspule sein. Derartige Spulen stehen bereits zur Verfügung, sind für die MR-Bildgebung optimiert und können so einfach in das Spulensystem integriert werden.The excitation coil may be a whole body coil. Such coils are already available, optimized for MR imaging and can be easily integrated into the coil system.
Das HF-Spulensystem kann eine MR-Empfängerspule für das Reso- nanzfeld enthalten. Hierfür ergeben sich die gleichen Vorteile wie oben für die zusätzliche Anregungsspule ausgeführt.The RF coil system may include an MR receiver coil for the resonance field. This results in the same advantages as stated above for the additional excitation coil.
Die MR-Empfängerspule kann hierbei eine am Patienten anlegbare Oberflächenspule sein. Hierfür ergeben sich die gleichen Vorteile wie oben für die Ganzkörperspule ausgeführt.In this case, the MR receiver coil can be a surface coil that can be applied to the patient. This results in the same advantages as outlined above for the whole body coil.
Eine erste Alternative zur Stabilisierung des Grundmagnetfeldes ist, dass das Stabilisierungs-System zusätzliche Spulen, z.B. Helmholtz-Varianten zur Erzeugung des Grundmagnetfeldes enthalten kann. Zusätzlich heißt, dass diese Spulen in einem bekannten System zur reinen MGCE nicht vorhanden sind und speziell für die MR-Bildgebung ergänzt sind. Eine andere oder zusätzliche Maßnahme hierzu ist, dass das Stabilisierungs-System eine Eisenshimmung für das Magnetspulensystem enthalten kann. Die für die MGCE verwendeten Magnetspulen werden dann durch Ertüchtigung mit der Eisenshim- mung qualitativ derart verbessert, dass sie auch Felder besserer Qualität erzeugen können, die für die MR-Bildgebung ausreichend homogen sind.A first alternative for stabilizing the basic magnetic field is that the stabilization system may contain additional coils, eg Helmholtz variants for generating the basic magnetic field. In addition, these coils are not present in a known system for pure MGCE and are specially supplemented for MR imaging. Another or additional measure for this is that the stabilization system may include iron hovering for the magnet coil system. The magnetic coils used for the MGCE are then qualitatively improved by the iron soiling, so that they can also produce fields of better quality, which are sufficiently homogeneous for MR imaging.
Zumindest ein Teil der mit der MR-Bildgebung befassten Spu- len, also die MR-Magnete, können auch HTS-Spulen sein. Hochtemperatursupraleiter (HTS) stehen hierfür in bekannter Weise zur Verfügung.At least some of the coils involved in MR imaging, ie the MR magnets, can also be HTS coils. High-temperature superconductors (HTS) are available for this purpose in a known manner.
Bei einem MR-Scanner mit statischem und nicht abschaltbarem Grundfeld ist immer das Durchfahren einer magnetischen Endo- kapsel durch den statischen B0-Feldgradienten problematisch, weil dieser Gradient sehr steil ist und daher die Kräfte auf das magnetische Moment in der Kapsel sehr groß sind.In an MR scanner with a static and non-switchable basic field, it is always problematic to pass through a magnetic endoscope due to the static B 0 field gradient because this gradient is very steep and therefore the forces on the magnetic moment in the capsule are very high.
Wenn die Kapsel zum Zeitpunkt des Durchfahrens des statischen Feldgradienten im Patienten steckt, sind die Kraftrichtung und Amplitude praktisch nicht kontrollierbar. Wenn der Patient im Zentrum des Magneten liegt und die Kapsel dann zugeführt werden soll, muss die Kapsel durch den statischen Gradienten transportiert werden, was technisch aufwendig ist. Wenn die Kapsel dagegen in den im Homogenitätsbereich, d.h. Arbeitsbereich des Magneten liegenden Patienten eingeführt worden ist, sich also dort befindet, muss andererseits im folgenden immer sichergestellt werden, dass die Körperregion, in der sich gerade die Kapsel befindet, im Homogenitätsbereich des Magneten ist, damit sie nicht wieder den Gradientenbereich erreicht.If the capsule is in the patient at the time of passing through the static field gradient, the direction of force and amplitude are virtually uncontrollable. If the patient is in the center of the magnet and the capsule is then to be supplied, the capsule must be transported through the static gradient, which is technically complicated. On the other hand, if the capsule is in the range of homogeneity, i. On the other hand, in the following it must always be ensured that the body region in which the capsule is located is in the homogeneity region of the magnet so that it does not reach the gradient region again.
Kommerzielle MR-Magnete, also MR-Spulensysteme, haben ein Ho- mogenitätsvolumen von typisch 20cm bis 50 cm Durchmesser bzw. Kantenlänge, was i.d.R. kleiner als der Gastrointestinaltrakt des Patienten ist. Solange nur das B0-Grundfeld aktiv ist, und die Navigationsgradientenfelder ausgeschaltet sind, erfährt ein idealer Kapselmagnet keine Kraft sondern nur ein Drehmoment, solange sein Moment nicht parallel zum Bo-Magnetfeld ist. Man kann die MR-Gradientenspulen also benutzen, um Kräfte in beliebiger Richtung auszuüben, aber die Kapselrichtung bleibt immer parallel zum B0-FeId.Commercial MR magnets, ie MR coil systems, have a homogeneity volume of typically 20 cm to 50 cm diameter or edge length, which is generally smaller than the gastrointestinal tract of the patient. As long as only the B 0 basic field is active, and the navigational gradient fields are turned off an ideal capsule magnet no force but only a torque, as long as its moment is not parallel to the Bo magnetic field. So you can use the MR gradient coils to apply forces in any direction, but the capsule direction always stays parallel to the B 0 -FeId.
Daher kann das zur MR-Bildgebung nötige starke B0-FeId des Spulensystems für die MGCE abschaltbar sein. Ist dann nur noch das MGCE-Grundfeld oder gar keines mehr vorhanden, ist das Einbringen des Kapselmagneten in den Arbeitsraum erleichtert. Es muss dann nämlich kein oder nur ein kleiner BO- Gradient am Rande des Homogenitätsbereiches vom magnetischen Moment durchfahren werden.Therefore, the strong B 0 -FeId necessary for MR imaging of the coil system for the MGCE can be switched off. If only the MGCE basic field or no longer exists, the introduction of the capsule magnet into the working space is facilitated. Namely, no or only a small BO gradient at the edge of the homogeneity range must be traversed by the magnetic moment.
Das Magnetspulensystem kann dann eine Flusspumpe zum Rampen zumindest eines Teils der mit der MR-Bildgebung befassten Spulen enthalten. Das gegenüber der MGCE stärkere, zur MR- Bildgebung notwendige Feld wird dann erst nach Ein- oder Ausbringen der Kapsel in den Arbeitsraum aufgebaut, also ge- rampt, und vor Aus- oder Einbringen der Kapsel wieder abgebaut. Die Flusspumpe kann während der MR-Bildgebung aktiv bleiben, wobei die Resonanzfrequenz analog nachgeführt wird.The solenoid system may then include a flux pump for ramping at least a portion of the MR imaging coils. The field which is stronger than the MGCE and which is necessary for MR imaging is then built up after insertion or removal of the capsule into the working space, ie rambled, and degraded again before the capsule is removed or inserted. The flux pump can remain active during MR imaging, whereby the resonance frequency is tracked analogously.
Das magnetische Moment der Kapsel kann alternativ oder zu- sätzlich leicht, zumindest während der MR, entfernbar sein.The magnetic moment of the capsule may alternatively or additionally be removable, at least during the MR.
Das Magnetspulensystem kann daher eine Arbeitskapsel mit einem, z.B. zur MR-Bildgebung, deaktivierbaren magnetischen Moment enthalten.The magnet coil system may therefore comprise a working capsule with a, e.g. for MR imaging, deactivatable magnetic moment included.
Das Magnetspulensystem kann eine Endokapsel enthalten, wie sie z.B. aus der DE 10 2005 032 368 Al bekannt ist. Diese wird auch Endoratte genannt und ist mit einem nach außerhalb des Patienten reichenden Fortsatz oder Schwanz ausgerüstet. Das magnetische Moment ist dann über den Fortsatz zwischen im Patienten befindlicher Arbeitskapsel und dem Außenraum außerhalb des Patienten bewegbar. Der Fortsatz ist z.B. eine hohle oder nicht hohle Schnur, die die Endokapsel bei Bewegung hinter sich herzieht. Entlang oder in dieser Schnur kann das magnetische Moment der Kapsel schnell und sicher zwischen der Kapsel und einer Körperöff- nung des Patienten, durch die die Schnur herausragt transportiert werden.The magnet coil system can contain an endocapsule, as is known, for example, from DE 10 2005 032 368 A1. This is also called Endoratte and is equipped with an out-patient extension or tail. The magnetic moment is then movable over the extension between working capsule located in the patient and the outside space outside the patient. For example, the appendage is a hollow or non-hollow cord that pulls the endocapsule behind it as it moves. Along or in this string, the magnetic moment of the capsule can be quickly and safely transported between the capsule and a patient's body opening through which the cord protrudes.
Die Endokapsel kann hierzu einen aus der DE 103 36 734 Al bekannten Gewebeanker aufweisen. So ist die Kapsel an einem Ort im Patienten fixierbar und verharrt dort, auch wenn das magnetische Moment entfernt ist.For this purpose, the endocapsule can have a tissue anchor known from DE 103 36 734 A1. Thus, the capsule is fixable in a place in the patient and remains there, even if the magnetic moment is removed.
Das Material des magnetischen Momentes in der Endokapsel kann flüssig, z.B. aus einem Ferrofluid hergestellt, sein. Ein derartiges Moment kann bei der o.g. Endoratte über deren schlauchförmigen Fortsatz in die Kapsel gefüllt oder abgesaugt werden.The material of the magnetic moment in the endocapsule may be liquid, e.g. be made of a ferrofluid, be. Such a moment can at the o.g. Endoratte be filled or sucked through the tube-shaped extension into the capsule.
Hinsichtlich des Verfahrens wird die Aufgabe der Erfindung gelöst durch ein Verfahren zur magnetischen Kapselnavigation in einem Patienten, das mit Hilfe eines Magnetspulensystems nach einem der Patentansprüche 1 bis 9 MR-Bildgebungs-basiert arbeitet, bei dem MR-Bildgebung und Kraftausübung auf die Arbeitskapsel im zeitlichen Wechsel erfolgen.With regard to the method, the object of the invention is achieved by a method for magnetic capsule navigation in a patient who works with the aid of a magnetic coil system according to one of the claims 1 to 9 MR imaging based, in the MR imaging and force on the work capsule in temporal Change takes place.
Die anhand des erfindungsgemäßen Magnetspulensystems beschriebene, qualitätsmäßig reduzierte MR-Bildgebung kann nämlich in der Regel nicht gleichzeitig mit der Kapselendoskopie verwendet werden, vor allem wenn die Kapsel über einen Perma- nentmagneten verfügt, da dieser durch die MR-Bildgebung in seiner Position verändert werden würde und die außerdem die MR-Bildgebung stört.The quality-reduced MR imaging described with reference to the magnetic coil system according to the invention can generally not be used simultaneously with the capsule endoscopy, especially if the capsule has a permanent magnet, since this would be changed in position by the MR imaging and which also interferes with MR imaging.
Es kann daher durch MR-Bildgebung z.B. eine Überprüfung der diagnostischen Vermutungen oder eine Untersuchung von kritischen Bereichen oder eine Identifikation und Markierung von pathologischen Bereichen vor Einsetzen der Kapsel erfolgen. Die betreffenden Regionen können dann anhand der darauffol- genden Kapselnavigation näher erkundet werden. Auch kann eine MR-basierte Bestätigung oder Ergebniskontrolle nach einer erfolgten Diagnose oder Therapie, also Kapselnavigation, stattfinden .It can therefore be done by MR imaging, for example, a review of the diagnostic assumptions or a study of critical areas or identification and marking of pathological areas before inserting the capsule. The regions concerned may then, on the basis of the subsequent capsule navigation. An MR-based confirmation or result check can also take place after a successful diagnosis or therapy, ie capsule navigation.
Durch die in das Magnetspulensystem integrierte Möglichkeit zur MR-Bildgebung erfolgt außerdem eine bessere Ausnutzung und dadurch Kostenersparnis bezüglich des Magnetspulensystems, wenn dieses, z.B. im Klinikalltag, alleine zur MR- Bildgebung benutzt wird, so lange es nicht zur Kapselnavigation benötigt wird.The possibility of MR imaging integrated into the magnet coil system also results in better utilization and thereby cost savings with respect to the magnet coil system, if this, e.g. in clinical routine, is used alone for MR imaging, as long as it is not needed for capsule navigation.
Das magnetische Moment der Endokapsel kann, wie erwähnt, z.B. während der MR-Bildgebung, aus dem Arbeitsraum entfernt wer- den.The magnetic moment of the endocapsule, as mentioned, e.g. during MR imaging, are removed from the workspace.
Ist die Endokapsel, wie oben beschrieben, eine Endoratte, kann das magnetische Moment über den Fortsatz entfernt, also aus dem mit Feldern kritischer Feldstärke erfüllten Arbeits- räum entfernt, werden.If the endocapsule, as described above, is an endoratte, the magnetic moment can be removed over the extension, that is, removed from the working space filled with fields of critical field strength.
Für die beiden Betriebsarten MGCE und MR-Bildgebung des Spulensystems wird i.d.R. ein gemeinsames Koordinatensystem verwendet. In einem 3D-Bilddatensatz der MR-Bildgebung können dann Koordinatenmerker, also Bookmarks, erzeugt werden. Diese kennzeichnen Orte oder Regionen im MR-Datensatz, die einer späteren optischen Betrachtung und/oder einer Biopsie bzw. Therapie mittels Endoskopie oder MGCE bedürfen. Diese Bookmarks können dann während der anschließenden Endoskopie oder MGCE direkt vom Endoskop bzw. der Endokapsel angefahren werden .For the two modes MGCE and MR imaging of the coil system i.d.R. uses a common coordinate system. Coordinate flags, ie bookmarks, can then be generated in a 3D image data record of the MR imaging. These characterize locations or regions in the MR data set which require later optical observation and / or biopsy or therapy by means of endoscopy or MGCE. These bookmarks can then be approached directly by the endoscope or the endocapsule during the subsequent endoscopy or MGCE.
Aus einem 3D-MR-Bilddatensatz kann eine virtuelle Endoskopie erzeugt werden, z.B. entlang eines Weges, den eine Arbeits- kapsei zurückgelegt hat oder zurücklegen wird. Werden die o.g. Bookmarks hierzu übertragen, kann während der MGCE mittels einer Kombination aus virtueller Endoskopie und realer Endoskopie navigiert werden. Umgekehrt können während der Endoskopie oder MGCE Zielpunkte, -flächen oder -volumina als 3D-Bookmarks definiert werden, die z.B. nach Entfernen Kapsel bzw. des magnetischen Moments aus dem Körper des Patienten bzw. Arbeitsraum sodann gezielt mittels MR-Bildgebung erfasst werden können.A virtual endoscopy can be generated from a 3D MR image data record, for example along a path which a working capsule has traveled or will cover. If the above-mentioned bookmarks are transmitted for this purpose, it is possible to navigate during the MGCE by means of a combination of virtual endoscopy and real endoscopy. Conversely, during endoscopy or MGCE, target points, areas or volumes can be defined as 3D bookmarks, which can then be detected selectively by means of MR imaging, for example, after removing the capsule or the magnetic moment from the body of the patient or working space.
Für eine weitere Beschreibung der Erfindung wird auf die Ausführungsbeispiele der Zeichnung verwiesen. Es zeigt, in einer schematischen Prinzipskizze: Fig. 1 ein Magnetspulensystem zur MR-bildgebungsbasierten magnetischen Kapselnavigation.For a further description of the invention reference is made to the embodiments of the drawing. It shows, in a schematic schematic diagram: FIG. 1 a magnetic coil system for MR imaging-based magnetic capsule navigation.
Fig. 1 zeigt ein Magnetspulensystem 2, welches aus zwei Teilsystemen, nämlich einem Navigationssystem 4 und einem MR- System 6 zur Magnetresonanz-Bildgebung besteht. Das Navigationssystem 4 entspricht im Wesentlichen dem aus der DE 103 40 925 B3 bekannten Magnetspulensystem aus vierzehn ansteuerbaren Einzelspulen, von denen in Fig. 1 exemplarisch die beiden Spulen 8a, b in Form von Helmholtzspulen gezeigt sind. Das Navigationssystem 4 umfasst mit seinem Gehäuse 10 einen Arbeitsraum 12, in welchen ein Patient 14 eingebracht ist. Im Patienten 14 befindet sich eine, z.B. aus der DE 101 42 253 Cl bekannte Endokapsel 16. Die Endokapsel 16 enthält als magnetisches Element bzw. Moment einen Magneten 18 in Form eines Dauermagneten.1 shows a magnet coil system 2, which consists of two subsystems, namely a navigation system 4 and an MR system 6 for magnetic resonance imaging. The navigation system 4 essentially corresponds to the magnetic coil system known from DE 103 40 925 B3 comprising fourteen controllable individual coils, of which the two coils 8a, b in the form of Helmholtz coils are shown by way of example in FIG. The navigation system 4 comprises with its housing 10 a working space 12, in which a patient 14 is introduced. In patient 14 there is one, e.g. from DE 101 42 253 Cl known endocapsule 16. The endocapsule 16 contains as a magnetic element or moment a magnet 18 in the form of a permanent magnet.
Das Navigationssystem 4 erzeugt mit seinen Spulen 8a, b ein homogenes Grundmagnetfeld 20 im Arbeitsraum 12. Das Grundmagnetfeld 20 dient zusammen mit einem nicht dargestellten Gra- dientenfeld der gezielten Kraft- bzw. Drehmomentausübung auf den Magneten 18 und damit die Endokapsel 16, um diese in beliebig vorgebbarer Richtung im Patienten 14 translatorisch sowie rotatorisch zu bewegen.With its coils 8 a, b, the navigation system 4 generates a homogeneous basic magnetic field 20 in the working space 12. The basic magnetic field 20 together with a gradient field (not shown) serves to selectively apply force or torque to the magnet 18 and thus the endocapsule 16 in order to generate it to move arbitrarily specifiable direction in the patient 14 translationally and rotationally.
Das bekannte Navigationssystem 4 ist erfindungsgemäß um das MR-System 6 erweitert, welches zwei HTS-Feldspulen 22a, b sowie zwei HTS-Schirmspulen 24a, b umfasst. Die Feldspulen 22a, b und Schirmspulen 24a, b sind jeweils von einer thermischen Schirmung 26 umgeben und dienen der Stabilisierung des Grundmagnetfeldes 20, um als Grundmagnetfeld für eine MR- Bildgebung dienen zu können. Sie bilden zusammen also ein Stabilisierungssystem 28 für das Grundmagnetfeld 20.According to the invention, the known navigation system 4 is expanded by the MR system 6, which comprises two HTS field coils 22a, b and two HTS shield coils 24a, b. The field coils 22a, b and shield coils 24a, b are each of a thermal Shield 26 surrounded and serve to stabilize the basic magnetic field 20 in order to serve as a basic magnetic field for MR imaging can. Together they form a stabilization system 28 for the basic magnetic field 20.
Das MR-System 6 umfasst weiterhin ein HF-Spulensystem 29, bestehend aus einer Anregungsspule 30 zur Anregung einer Magnetresonanz im Patienten 14 durch ein Anregungsfeld 33; sowie einer Empfängerspule 32 zum Empfang des Magnetresonanzfel- des 35, im Beispiel eine auf den Patienten 14 auflegbare Oberflächenspule. Spulensystem 29, Feldspulen 22a, b und Schirmspulen 24a, b sind mit einer Anlagensteuerung 34 verbunden, welche die MR-Bildgebung steuert, sowie die Signalverarbeitung, Bilddarstellung usw. bewerkstelligt.The MR system 6 further comprises an RF coil system 29, comprising an excitation coil 30 for exciting a magnetic resonance in the patient 14 by an excitation field 33; and a receiver coil 32 for receiving the magnetic resonance field 35, in the example a surface coil which can be placed on the patient 14. Coil system 29, field coils 22a, b and shield coils 24a, b are connected to a system controller 34, which controls the MR imaging, as well as the signal processing, image display, etc. accomplished.
In einer alternativen Ausgestaltung ist das Navigationssystem 4 bezüglich seiner Spulen 8a, b entsprechend qualitativ hochwertig ausgestaltet, um das Grundfeld 20 qualitativ hochwertig und damit tauglich für die MR-Bildgebung zu erzeugen. Das MR-System 6 enthält dann keine Feldspulen 22a, b undIn an alternative embodiment, the navigation system 4 with respect to its coils 8a, b designed according to high quality, to produce the basic field 20 of high quality and thus suitable for MR imaging. The MR system 6 then contains no field coils 22a, b and
Schirmspulen 24a, b. Die Anlagensteuerung 34 ist direkt mit den Spulen 8a, b verbunden. Die Qualitätssteigerung in den Spulen 8a, b ist durch eine an diesen angebrachte Eisenshim- mung 36 bewerkstelligt, welche damit das Stabilisierungssys- tem zur Homogenisierung des Grundmagnetfeldes 20 darstellt.Shield coils 24a, b. The system control 34 is connected directly to the coils 8a, b. The increase in quality in the coils 8a, b is accomplished by an iron hoof 36 attached thereto, which thus represents the stabilization system for homogenizing the basic magnetic field 20.
In einer alternativen Ausführungsform umfasst die Anlagensteuerung 34 eine Flusspumpe 38. Diese bestromt die Feldspulen 22a, b und Schirmspulen 24a, b derart, dass diese lediglich zur MR-Bildgebung gerampt werden, um hierfür das Grundmagnetfeld 20 zu stabilisieren. Während der MGCE sind die Feldspulen 22a, b und Schirmspulen 24a, b dann nicht gerampt bzw. nicht bestromt.In an alternative embodiment, the system controller 34 comprises a flux pump 38. This feeds the field coils 22a, b and shielding coils 24a, b such that they are merely jammed for MR imaging in order to stabilize the basic magnetic field 20 for this purpose. During the MGCE, the field coils 22a, b and shielding coils 24a, b are then not latched or energized.
In einer alternativen Ausführungsform enthält die Endo- kapsel 16 ein Fortsatz 40, ist also eine aus der DE 10 2005 032 368 Al bekannte Endoratte. Der Fortsatz 40 reicht dann durch eine Körperöffnung 42 des Patienten 14 nach in den Au- ßenraum 43 und dient zum Transport des in dieser Ausführungsform aus der Endokapsel 16 entfernbaren Magneten 18.In an alternative embodiment, the end capsule 16 contains an extension 40, ie is an endoratte known from DE 10 2005 032 368 A1. The extension 40 then extends through a body opening 42 of the patient 14 to the outside. outside space 43 and serves for transporting the magnet 18 which is removable from the endocapsule 16 in this embodiment.
Hierzu kann der Magnet 18 in einer ersten Ausführungsform ein mit einem Ferrofluid 44 befüllbarer Hohlkörper sein. Das Fer- rofluid 44 wird dann über den schlauchförmigen Fortsatz 40 zur Navigation bzw. Kraftausübung bzw. Bewegung der Endokapsel 16 in diese gepumpt. Zur Magnetresonanzbildgebung wird das Ferrofluid 44 wieder entfernt.For this purpose, in a first embodiment, the magnet 18 may be a hollow body which can be filled with a ferrofluid 44. The ferro fluid 44 is then pumped through the tubular extension 40 for navigation or force or movement of the endocapsule 16 in this. For magnetic resonance imaging, the ferrofluid 44 is removed again.
In einer zweiten Ausführungsform ist der Magnet 18 weiterhin ein Dauermagnet, der aber entlang des Fortsatzes 40, diesmal in Form einer Schnur, von der Endokapsel zum Außenraum transportiert wird. In a second embodiment, the magnet 18 is still a permanent magnet, but is transported along the extension 40, this time in the form of a cord, from the endocapsule to the exterior.

Claims

Patentansprüche claims
1. Magnetspulensystem (2) mit einem dreidimensionalen Arbeitsraum (12), in den ein Patient (14) zumindest teilweise einbringbar ist, mit mehreren, einzeln ansteuerbaren Einzelspulen (8) zur Erzeugung mindestens eines Grundmagnetfeldes (20) zur vorgebbaren berührungsfreien Kraftausübung auf eine magnetisch navigierbare, ein magnetisches Moment (18) aufweisende Endoskopiekapsel (16) im Arbeitsraum (12), gekennzeichnet durch1. Magnetic coil system (2) with a three-dimensional working space (12), in which a patient (14) is at least partially introduced, with a plurality of individually controllable individual coils (8) for generating at least one basic magnetic field (20) for the predetermined non-contact force on a magnetic navigable, a magnetic moment (18) having endoscopy capsule (16) in the working space (12), characterized by
- ein Stabilisierungs-System (22,24,36) zur Stabilisierung und Homogenisierung des Grundmagnetfeldes (20) für eine MR- Bildgebung vom Patienten (14) im Arbeitsraum (12),a stabilization system (22, 24, 36) for stabilizing and homogenizing the basic magnetic field (20) for MR imaging of the patient (14) in the working space (12),
- ein HF-Spulensystem (29) zur Erzeugung eines Anregungsfel- des (33) und zum Empfang eines Resonanzfeldes (35) für die- An RF coil system (29) for generating an excitation field (33) and for receiving a resonance field (35) for the
MR-Bildgebung,MR imaging,
- eine Anlagensteuerung (34) für die MR-Bildgebung.- An installation control (34) for MR imaging.
2. Magnetspulensystem (2) nach Anspruch 1, bei dem das HF- Spulensystem (29) eine Anregungsspule (30) zur Erzeugung eines MR-Anregungsfeldes (33) im Arbeitsraum (12) enthält.2. magnet coil system (2) according to claim 1, wherein the RF coil system (29) includes an excitation coil (30) for generating an MR excitation field (33) in the working space (12).
3. Magnetspulensystem (2) nach Anspruch 2, bei dem die Anregungsspule (30) eine Ganzkörperspule ist.The magnet coil system (2) of claim 2, wherein the excitation coil (30) is a whole body coil.
4. Magnetspulensystem (2) nach einem der vorhergehenden Ansprüche, bei dem das HF-Spulensystem (29) eine MR-4. magnet coil system (2) according to any one of the preceding claims, wherein the RF coil system (29) has an MR
Empfängerspule (32) zum Empfang des Resonanzfeldes (35) enthält.Receiver coil (32) for receiving the resonant field (35).
5. Magnetspulensystem (2) nach Anspruch 4, bei dem die MR- Empfängerspule (32) eine am Patienten (14) anlegbare Oberflächenspule ist.5. Magnetic coil system (2) according to claim 4, wherein the MR receiver coil (32) is a patient on the (14) can be applied surface coil.
6. Magnetspulensystem (2) nach einem der vorhergehenden Ansprüche, bei dem das Stabilisierungs-System (22,24,36) zusätzliche Spulen (22,24) zur Erzeugung des Grundmagnetfeldes (20) enthält. 6. magnet coil system (2) according to any one of the preceding claims, wherein the stabilization system (22,24,36) additional coils (22,24) for generating the basic magnetic field (20).
7. Magnetspulensystem (2) nach einem der vorhergehenden Ansprüche, bei dem das Stabilisierungs-System (22,24,36) eine Eisenshimmung (36) für das Magnetspulensystem (2) enthält.7. Magnetic coil system (2) according to any one of the preceding claims, wherein the stabilization system (22,24,36) includes an iron hoof (36) for the magnetic coil system (2).
8. Magnetspulensystem (2) nach einem der vorhergehenden Ansprüche, bei dem zumindest ein Teil der mit der MR-Bildgebung befassten Spulen (8,22,24) HTS-Spulen sind.8. Magnetic coil system (2) according to one of the preceding claims, in which at least part of the coils (8, 22, 24) involved in MR imaging are HTS coils.
9. Magnetspulensystem (2) nach einem der vorhergehenden Ansprüche, mit einer Flusspumpe (38) zum Rampen zumindest eines Teils der mit der MR-Bildgebung befassten Spulen (8,22,24).Magnetic coil system (2) according to one of the preceding claims, comprising a flow pump (38) for ramping at least part of the MR imaging coils (8, 22, 24).
10. Magnetspulensystem (2) nach einem der vorhergehenden An- Sprüche, mit einer Endoskopiekapsel (16) mit einem deaktivierbaren magnetischen Moment (18) .10. Magnetic coil system (2) according to one of the preceding claims, with an endoscopy capsule (16) with a deactivatable magnetic moment (18).
11. Magnetspulensystem (2) nach Anspruch 10, bei dem die Endoskopiekapsel (16) eine Endoratte mit einem in den Außen- räum (43) reichenden Fortsatz (40) ist, wobei das magnetische Moment (18) über den Fortsatz (40) zwischen Endoskopiekapsel (16) und Außenraum (43) bewegbar ist.11. The magnet coil system (2) according to claim 10, wherein the endoscopy capsule (16) is an endoratte with an outer cavity (43) reaching extension (40), wherein the magnetic moment (18) over the extension (40) between Endoscopy capsule (16) and outer space (43) is movable.
12. Magnetspulensystem (2) nach Anspruch 11, mit einem über den Fortsatz (40) transportierbaren, das magnetische Moment (18) erzeugenden Ferrofluid (44) .12. magnet coil system (2) according to claim 11, with a via the extension (40) transportable, the magnetic moment (18) generating ferrofluid (44).
13. Verfahren zur magnetischen Kapselnavigation in einem Patienten (14) mit Hilfe eines Magnetspulensystems (2) nach ei- nem der Patentansprüche 1 bis 9, das MR-Bildgebungs-basiert durchgeführt wird, und bei dem MR-Bildgebung und Kraftausübung auf die Endoskopiekapsel (16) im zeitlichen Wechsel erfolgen .13. A method for magnetic capsule navigation in a patient (14) with the aid of a magnet coil system (2) according to one of the claims 1 to 9, which is performed MR imaging-based, and in the MR imaging and force application to the endoscopy capsule ( 16) in temporal change.
14. Verfahren nach Anspruch 13, bei dem das magnetische Moment (18) der Endoskopiekapsel (16) während der MR-Bildgebung aus dem Arbeitsraum (12) entfernt wird. 14. The method of claim 13, wherein the magnetic moment (18) of the endoscopy capsule (16) during MR imaging from the working space (12) is removed.
15. Verfahren nach Anspruch 14, wobei die Endoskopiekap- sel (16) eine Endoratte mit Fortsatz (40) ist, bei dem das magnetische Moment (18) über den Fortsatz (40) entfernt wird. 15. The method of claim 14, wherein the endoscopy capsule (16) is an endo-mat with extension (40), wherein the magnetic moment (18) is removed via the extension (40).
PCT/EP2008/060006 2007-08-02 2008-07-30 Magnet coil system for exerting force on an endoscopy capsule WO2009016207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007036242.2 2007-08-02
DE102007036242.2A DE102007036242B4 (en) 2007-08-02 2007-08-02 Magnetic coil system for applying force to an endoscopy capsule together with the associated method

Publications (1)

Publication Number Publication Date
WO2009016207A1 true WO2009016207A1 (en) 2009-02-05

Family

ID=40032646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060006 WO2009016207A1 (en) 2007-08-02 2008-07-30 Magnet coil system for exerting force on an endoscopy capsule

Country Status (2)

Country Link
DE (1) DE102007036242B4 (en)
WO (1) WO2009016207A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011017591A1 (en) 2011-04-27 2012-10-31 Siemens Aktiengesellschaft Endoscopy capsule for examination and / or treatment in a hollow organ of a body and examination and / or treatment device with an endoscopy capsule
US8452377B2 (en) 2009-03-16 2013-05-28 Siemens Aktiengesellshaft Coil assembly for guiding a magnetic object in a workspace
CN112837887A (en) * 2019-11-25 2021-05-25 北京华航无线电测量研究所 Local alternating magnetic field generating device of time division multiplexing system
CN113749597A (en) * 2021-09-08 2021-12-07 北京善行医疗科技有限公司 Magnetic resonance imaging system and magnetic resonance apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043729A1 (en) 2007-09-13 2009-04-02 Siemens Ag Medical system for e.g. endoscopic surgery, has X-ray window arranged in magnetic coil system, and X-ray diagnostic system with X-ray emitter emitting X-ray radiation that is irradiated into three-dimensional work space through window
DE102009010286B3 (en) * 2009-02-24 2010-11-25 Siemens Aktiengesellschaft Device for contactless guiding of endoscopic capsule into operating space in body of patient for imaging internal organ, has magnetic body, where field strength is adjusted so that body is stably positioned in different positions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167059A2 (en) * 1984-07-02 1986-01-08 Siemens Aktiengesellschaft Nuclear-spin magnetic resonance apparatus
WO1999060370A2 (en) * 1998-05-15 1999-11-25 Robin Medical, Inc. Method and apparatus for generating controlled torques
US6304769B1 (en) * 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
WO2003092496A1 (en) * 2002-04-30 2003-11-13 Oxford Instruments Superconductivity Limited Method and assembly for magnetic resonance imaging and catheter sterring
US20050182315A1 (en) * 2003-11-07 2005-08-18 Ritter Rogers C. Magnetic resonance imaging and magnetic navigation systems and methods
DE102005032368A1 (en) * 2005-07-08 2007-01-11 Siemens Ag endoscopy capsule

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0029158D0 (en) * 2000-11-29 2001-01-17 Oxford Instr Plc Catheter steering apparatus and method
DE10142253C1 (en) 2001-08-29 2003-04-24 Siemens Ag endorobot
EP1496798A1 (en) * 2002-04-10 2005-01-19 Stereotaxis, Inc. Systems and methods for interventional medicine
DE10336734A1 (en) * 2003-08-11 2005-03-10 Siemens Ag Tissue anchor for endorobots
DE10340925B3 (en) * 2003-09-05 2005-06-30 Siemens Ag Magnetic coil system for non-contact movement of a magnetic body in a working space
US7307420B2 (en) * 2005-10-12 2007-12-11 General Electric Company MRI method for simultaneous phase contrast angiography and invasive device tracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167059A2 (en) * 1984-07-02 1986-01-08 Siemens Aktiengesellschaft Nuclear-spin magnetic resonance apparatus
US6304769B1 (en) * 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
WO1999060370A2 (en) * 1998-05-15 1999-11-25 Robin Medical, Inc. Method and apparatus for generating controlled torques
WO2003092496A1 (en) * 2002-04-30 2003-11-13 Oxford Instruments Superconductivity Limited Method and assembly for magnetic resonance imaging and catheter sterring
US20050182315A1 (en) * 2003-11-07 2005-08-18 Ritter Rogers C. Magnetic resonance imaging and magnetic navigation systems and methods
DE102005032368A1 (en) * 2005-07-08 2007-01-11 Siemens Ag endoscopy capsule

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452377B2 (en) 2009-03-16 2013-05-28 Siemens Aktiengesellshaft Coil assembly for guiding a magnetic object in a workspace
DE102011017591A1 (en) 2011-04-27 2012-10-31 Siemens Aktiengesellschaft Endoscopy capsule for examination and / or treatment in a hollow organ of a body and examination and / or treatment device with an endoscopy capsule
US20120277529A1 (en) * 2011-04-27 2012-11-01 Stefan Popescu Endoscopy capsule that emits a remotely variable, magnetic field, and examination apparatus with such an endoscopy capsule
CN112837887A (en) * 2019-11-25 2021-05-25 北京华航无线电测量研究所 Local alternating magnetic field generating device of time division multiplexing system
CN113749597A (en) * 2021-09-08 2021-12-07 北京善行医疗科技有限公司 Magnetic resonance imaging system and magnetic resonance apparatus

Also Published As

Publication number Publication date
DE102007036242A1 (en) 2009-02-05
DE102007036242B4 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
DE102005010489B4 (en) Coil system for non-contact magnetic navigation of a magnetic body in a patient located in a working space
DE10341092B4 (en) Installation for non-contact movement and / or fixation of a magnetic body in a working space using a magnetic coil system
DE10340925B3 (en) Magnetic coil system for non-contact movement of a magnetic body in a working space
DE69433204T2 (en) MARKING AS A POINT OF REFERENCE
DE102005030646B4 (en) A method of contour visualization of at least one region of interest in 2D fluoroscopic images
DE69434240T2 (en) MAGNETIC DETERMINATION OF LOCATION AND ORIENTATION
DE102005053759B4 (en) Method and device for the wireless transmission of energy from a magnetic coil system to a working capsule
DE102007036242B4 (en) Magnetic coil system for applying force to an endoscopy capsule together with the associated method
EP1021730A1 (en) Mr imaging method and medical device for use in method
EP3641621B1 (en) Endoscope device
DE10240727A1 (en) Imaging system and method for optimizing an x-ray image
DE102011017591A1 (en) Endoscopy capsule for examination and / or treatment in a hollow organ of a body and examination and / or treatment device with an endoscopy capsule
DE19543785A1 (en) MR method and arrangement for carrying out the method
DE102008004871A1 (en) Coil arrangement for guiding a magnetic element in a working space
DE102011055240A1 (en) Apparatus and method for providing electrical cables within a magnetic resonance imaging system
DE10160530B4 (en) Method and apparatus for magnetic resonance imaging
DE10207736A1 (en) Determination of the position of local antennae in a magnetic resonance system using an approximation function matched to the sensitivity profile of the antennae with their positions taken as the function maximums
DE102009013352B4 (en) Coil arrangements for guiding a magnetic object in a working space
DE60320376T2 (en) COIL SYSTEM FOR AN MR DEVICE AND MR SYSTEM EQUIPPED WITH SUCH A REEL SYSTEM
DE19926491A1 (en) Forming magnetic resonance image of range of object in determined magnetic resonance system
DE102006014045B4 (en) Method and device for the wireless remote control of the capsule functions of a locating coils having working capsule
WO2007110278A1 (en) Method and device for remote control of a work capsule of a magnetic coil system
DE102005046077A1 (en) Magnetic resonance tomograph for carrying out a biopsy or for therapy comprises a motor consisting of non-magnetic parts which do not produce a magnetic field during motor operation
EP0239773A1 (en) Apparatus for nuclear spin tomography
WO2010091926A1 (en) Method and device for determining a path traveled by an endoscopic capsule in a patient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08775374

Country of ref document: EP

Kind code of ref document: A1