WO2009089973A1 - Led module having lens - Google Patents

Led module having lens Download PDF

Info

Publication number
WO2009089973A1
WO2009089973A1 PCT/EP2008/067512 EP2008067512W WO2009089973A1 WO 2009089973 A1 WO2009089973 A1 WO 2009089973A1 EP 2008067512 W EP2008067512 W EP 2008067512W WO 2009089973 A1 WO2009089973 A1 WO 2009089973A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
lens
led module
reflector
radiation
Prior art date
Application number
PCT/EP2008/067512
Other languages
German (de)
French (fr)
Inventor
Thomas Reiners
Katrin Schroll
Original Assignee
Osram Gesellschaft mit beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gesellschaft mit beschränkter Haftung filed Critical Osram Gesellschaft mit beschränkter Haftung
Publication of WO2009089973A1 publication Critical patent/WO2009089973A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/16Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting
    • F21V17/164Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting the parts being subjected to bending, e.g. snap joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the invention relates to an LED module, comprising Minim ⁇ least one support element, at least one on the support element arranged ⁇ light emitting diode (LED) and at least one is arranged in the beam path of the radiation emitted by the LED lens.
  • LED light emitting diode
  • LED chips usually emit the generated radiation relatively undirected. Therefore exhibit LED modules are arranged in element de ⁇ NEN one or more light emitting diode chips on a carrier, usually an optical system in order to adjust a defined radiation, as is desired for illumination purposes.
  • this optical system consists of a lens, which is usually arranged on the LED chip. Frequently, this lens is made of a polymer material ⁇ because so by simple means cost ⁇ low even complex geometries can be realized Kings ⁇ nen.
  • the optical system consists only of a reflector which performs the beam shaping.
  • a complicated reflector geometry is necessary and the reflector has a very high overall height, which is why lens systems are preferred.
  • lenses arranged directly on the LED chip are exposed to high temperatures. This may be especially for poly ⁇ merlinsen to deterioration of optical properties Shafts and lead to a limitation of the life. With blue and white LEDs, there is still a relatively high concentration of UV radiation at the lens, which further reduces the thermal stability of most polymers and accelerates the aging of the lens.
  • the object of the present invention is to provide an LED module comprising at least one carrier element, at least one light-emitting diode (LED) arranged on the carrier element and at least one lens arranged in the beam path of the light emanating from the light-emitting diode, which method is simple and inexpensive can be produced and in which the thermal load of the lens and LED chip is reduced.
  • LED light-emitting diode
  • the LED module comprising at least one reflector and one of the LED facing radiation entrance surface of the lens is spaced from the surface of the LED.
  • the lens is thus no longer in direct contact with the LED and the thermal stress on the components is reduced sufficiently without unduly reducing the luminous efficacy over the conventional lens assembly.
  • a reflector without a lens is a much lent more compact design allows, since the height of the reflector can be significantly reduced.
  • a light mixture can be made via the reflector, which can also be used in the color inhomogeneities can occur on white LEDs by areas with slightly differing ⁇ cher color temperature or color, is reduced.
  • At least two LEDs are combined in a preferably rectangular group of LEDs.
  • the distance affordein ⁇ other is less than the maximum linear dimension of the individual LED.
  • the maximum linear dimension is the maximum distance between two points located on the outer contour of the LED.
  • a surface facing the LED radiative flat enters the lens at a distance of min ⁇ least 2.5 mm, preferably is disposed at least 5 mm, to the surface of the LED.
  • one of the LED facing radiation entrance surface of the lens is at a distance to the surface of the LED angeord ⁇ net, the at least the maximum linear dimension, preferably at least twice the maximum linear dimension of the LED and / or a group of LED corresponds.
  • the maximum linear dimension while the ma ⁇ ximum distance between two located on the outer contour of the LED or the group of LED points should be considered.
  • one of the LED facing ⁇ radiation inlet surface of the lens is arranged at a distance from the surface of the LED, the at least a quarter of the diameter of the radiation entrance ⁇ surface of the lens, in particular at least one third of the diameter of the radiation entrance surface of the lens equivalent. Also hereby that the thermal stress of the lens is reliably reduced regardless of their absolute size and not a hit ⁇ zestau between the LED and the lens is formed is ensured.
  • the LED facing radiation entrance surface of the lens at a distance of at most 30 mm, preferably ⁇ at least 20 mm from the surface of the LED is arranged, it is ensured that the radiation emitted by the LED radiation reaches the lens as low as possible and also a compact arrangement is achieved.
  • the LED facing radiation entrance surface of the lens is arranged at a distance from the surface of the LED, which is at most 8 times the maximum linear dimension, preferably at most 5 times the maximum linear dimension of the LED and / or the group of LEDs. This also ensures that, regardless of the absolute size of the LED or the group of LEDs, the radiation emitted by the LED is in sufficient concentration. tion arrives at the lens and a compact structure is achieved.
  • Radiation entrance surface of the lens is arranged at a distance from the surface of the LED, at most the
  • Radiation entrance surface of the lens corresponds. This also ensures a compact design with good light yield.
  • the lens consisting essentially of egg ⁇ nem polymeric material is formed.
  • Polymer Materials ermögli ⁇ chen a simple and inexpensive design, even with complex shapes, with the advantages of the invention in these lenses particularly significant impact.
  • the reflector surrounds the at ⁇ order of LED and the lens perpendicular to the main direction of radiation on all sides is. As a result, a particularly good light output and a homogeneous radiation behavior is achieved.
  • the lens is designed as a plano-convex lens. This makes it advantageous to realize a relatively narrow beam angle of 10 ° to 30 °.
  • the lens is designed as Konkavkonvexlinse. Since ⁇ may advantageously by a relatively wide angle of 30 ° to 60 ° can be achieved.
  • At least one surface of the lens is aspherical.
  • Aspherical lenses allow a very homogeneous radiation characteristic.
  • the edge of the lens with the optical axis encloses an angle between 10 ° and 60 °, preferably between 20 ° and 50 °.
  • This chamfer prevents aberrations in the edge region of the lens, in which otherwise a deflection of the rays would take place in an unwanted direction.
  • ⁇ region as many as possible of the emanating from the LED rays pass undisturbed to the reflector for given lens dimensions.
  • the LED module comprises a plurality of LEDs. Since ⁇ by the light intensity is increased and when these are summarized in ei ⁇ ner group, a compact structure aims ER.
  • the LEDs are combined in a preferably rectangular group. Such an arrangement makes it possible to install a high light output in a small space.
  • At least one Befest Trentsele ⁇ element is provided for fixing the lens to the support member.
  • the lens can be stably fixed and defi ned ⁇ distance to the likewise fixedly connected to the Samele ⁇ ment LED.
  • at least one Fixed To ⁇ restriction member is provided for fixing the lens to the reflector.
  • the lens is also held securely and formed of lens and reflector, an optical system with defined properties, which can also be handled as such and in particular also mounted.
  • Minim ⁇ least one fastening element and the lens are integrally formed. In addition, these can then be produced and processed together, which simplifies the manufacturing process of the module.
  • the fastening element has at least one snap connection for connection to the reflector and / or the carrier element.
  • a connection can be established in a simple way, and thus the manufacturing outlay for the LED module can be reduced.
  • the reflector comprises a plurality of annular segments. While those areas of the reflector are seen in emission direction as segments be ⁇ seeks within which the direction of curvature in the optical axis of the reflector section containing ⁇ remains planar same, wherein the segments from each other by a Wech ⁇ sel the direction of curvature, or a sudden change in the curvature are delimited. Due to the segmentation, the radiation behavior can be advantageously influenced since the individual ring segments can each reflect in different directions. This is especially useful for better color homogeneity. LEDs or groups of LEDs with different color or color temperature.
  • At least one segment of the reflector has at least 6, preferably between 10 and 14, in particular 12 facets.
  • the faceting causes a further homogenization of the color distribution, since this overlaps the images of different areas of an LED chip or different LED of a group of LEDs.
  • the reflector is essentially formed of a thermally highly conductive material, in particular aluminum. This allows the reflector to be used in addition to the heat dissipation of the LED and
  • the LED module 1 essentially comprises a support plate 2, on which according to the invention a group 3 of light-emitting diodes (LED) 4, as well as a lens 5 and a reflector 6 are angeord ⁇ net.
  • the center of group 3 of LEDs 4 is located as well as the central axis of the lens 5 and the central axis of the reflector 6 on the optical axis A of the overall system.
  • the support member 2 is carried out in the present exemplary embodiment as a game board 2 on which a group 3 of a total of six light emitting diode chip 4, is befin ⁇ det. These are arranged in two rows of three rectangular individual chips 4, so that there is a rectangular overall arrangement with an edge length of about 3 mm in the longitudinal direction and about 2 mm in the transverse direction.
  • the considered LEDs 4 emit radiation in the visible light range.
  • the lens 5 is made of a transparent polymer material according to the prior art and at a distance of approximately 8 mm from the group 3 of light-emitting diodes 4 via fastening means 7 with the carrier element 2 verbun ⁇ the.
  • the distance of the lens 5 from the group 3 of LED 4 is thus more than 2 times the maximum linear dimension of the group 3 of LED 4, which in this case is the diagonal of the rectangular array of about 3.6 mm. Too large a distance of the lens 5 from the LED 4 should be avoided, since thus the thermal Be ⁇ load of the lens 5 continues to decrease, but the arrangement is then very large.
  • a maximum distance of 20 mm or approximately 5 times the maximum linear extent of group 3 of LED 4 has proven to be expedient for the components usually used.
  • the fastening means 7 have snap lugs 8 at their end facing the printed circuit board, which engage in bores 9 in the carrier element 2 and thus produce a snap connection.
  • the lens 5 has a diameter of approximately 17 mm and is designed as aspherical plano-convex lens, which allows a narrow beam angle of about 20 °.
  • the distance of the radiation entrance surface 10 of the lens 5 is thus arranged at a distance from the surface of the LED 4, which corresponds to more than one third of the diameter of the radiation entrance surface 10 of the lens 5, in the present example, even approximately half. Too large a distance from the lens 5 and LED 4 would require a very large lens diameter to an equal proportion of the emitted light with the lens 5 to he ⁇ take as in a nearer to the LED 4 lens 5. However, this increases the manufacturing effort and the LED module 1 becomes very large and unwieldy. It has proved to be advantageous to choose the distance from the radiation entrance surface 10 of the lens 5 and LED 4 smaller than the lens diameter.
  • the edge region 11 of the lens 5 is inclined relative to the optical axis A at an angle of approximately 22 °, which imaging ⁇ error is reduced in the edge region of the lens 5 or prevented by as few as possible of the radiation, the lens 5 in this for the imaging characteristics unfavorable area.
  • the LEDs 4 are perpendicular to the main ⁇ radiation, which is identical in the embodiment with the optical axis A, surrounded on all sides by the reflector 6.
  • the reflector 6 is composed of several Rings 6a, 6b, 6c together, which have a plurality of non-recognizable in this representation facets, for example between 10 and 25, have.
  • the reflector 6 extends beyond the lens 5 in order to direct the largest possible portions of the radiation into the area to be illuminated. Especially the middle and outer angular ranges of the Abstrahlcha ⁇ rakter 3,5 be covered.
  • the faceting allows mixing of light emitted from different regions of the group 3 of LED 4 light so that a ho ⁇ seamless front light radiation with uniform distribution of the color as well as the color temperature can be achieved, even if the both within the LEDs 4 as well as between the individual LEDs 4 differences exist.
  • the reflector 6 is made of an aluminum alloy, whereby it can be used for heat dissipation from the LEDs 4. On the inside it is provided with egg ⁇ ner suitable reflective coating.
  • the reflector 6 is fixed by means of suitable fasteners according to the prior art on the support element 2. It is also conceivable, for example, for the fastening elements 7 of the lens 5 to be used for this purpose. Furthermore, other embodiments of the reflector 6 are conceivable, for example, by this consists of only one ring 6a or cylindrical is executed without facets. The height can be different than insupervisedsbei ⁇ game, in particular lower, are selected. For example, it is conceivable that the reflector 6 extends only to the upper edge of the lens 5 or even only to the radiation entrance slit 10.
  • the fastening elements 7 of the lens 5 may additionally or alternatively also be fixed to the reflector 6, for example also by extending laterally from the lens 5 to the reflector 6.
  • the unit of lens 5 and reflector 6 can be mounted in the production as a common, which facilitates the production.
  • the lens 5 and reflector ⁇ gate 6 are made in one piece of a transparent polymer material and the reflector 6 is then provided on its inner side with a reflective coating.
  • lens 5 and reflector 6 depends essentially on the shape of the LED 4 and the group 3 of LED 4 and the desired radiation characteristics.
  • an approximately circular radiating ⁇ characteristic is achieved in the illustrated embodiment from a right square ⁇ light source.
  • the distance between the edge 11 of the lens 5 and the reflector 6 can be selected depending on the application, in order to determine the distribution between the proportion of the light passing through the lens 5 and the light passing therethrough . Under certain circumstances, this distance can also be important for the cooling of the LED and, depending on the application, should therefore not be less than a minimum dimension .
  • Konkavkonvexlinsen are suitable if a relatively wide beam angle of about 30 ° to 60 ° to be achieved.

Abstract

The invention relates to an LED module (1) comprising at least one carrier element (2), at least one light emitting diode (LED) (4) that is disposed on the carrier element (2), and at least one lens (5) that is disposed in the optical path of the radiation emitted by the LED. The LED module comprises at least one reflector (6), and a radiation incidence surface (10) of the lens (5) facing the LED (4) is disposed at a distance from the surface of the LED (4).

Description

Be s ehre ibung Confession
LED-Modul mit einer LinseLED module with a lens
Technisches GebietTechnical area
Die Erfindung betrifft ein LED-Modul, umfassend mindes¬ tens ein Trägerelement, mindestens eine auf dem Träger¬ element angeordnete Leuchtdiode (LED) und mindestens eine im Strahlengang der von der LED ausgehenden Strahlung angeordnete Linse.The invention relates to an LED module, comprising Minim ¬ least one support element, at least one on the support element arranged ¬ light emitting diode (LED) and at least one is arranged in the beam path of the radiation emitted by the LED lens.
Leuchtdiodenchips senden die erzeugte Strahlung zumeist relativ ungerichtet aus. Daher weisen LED-Module, bei de¬ nen ein oder mehrere Leuchtdiodenchips auf einem Träger- element angeordnet sind, zumeist ein optisches System auf, um ein definiertes Abstrahlverhalten, wie es für Beleuchtungszwecke gewünscht ist, einzustellen.LED chips usually emit the generated radiation relatively undirected. Therefore exhibit LED modules are arranged in element de ¬ NEN one or more light emitting diode chips on a carrier, usually an optical system in order to adjust a defined radiation, as is desired for illumination purposes.
In seiner einfachsten Form besteht dieses optische System aus einer Linse, die üblicherweise auf dem LED-Chip ange- ordnet ist. Häufig wird diese Linse aus einem Polymer¬ werkstoff gefertigt, da so mit einfachen Mitteln kosten¬ günstig auch komplexe Geometrien verwirklicht werden kön¬ nen .In its simplest form, this optical system consists of a lens, which is usually arranged on the LED chip. Frequently, this lens is made of a polymer material ¬ because so by simple means cost ¬ low even complex geometries can be realized Kings ¬ nen.
Es sind auch Lösungen bekannt, bei denen das optische System nur aus einem Reflektor besteht, der die Strahlformung vornimmt. Um einen hinreichend engen Abstrahlwinkel zu erzielen, ist jedoch eine komplizierte Reflektorgeometrie nötig und der Reflektor besitzt eine sehr große Bauhöhe, weshalb Linsensysteme bevorzugt werden.There are also known solutions in which the optical system consists only of a reflector which performs the beam shaping. In order to achieve a sufficiently narrow beam angle, however, a complicated reflector geometry is necessary and the reflector has a very high overall height, which is why lens systems are preferred.
Direkt am LED-Chip angeordnete Linsen sind jedoch hohen Temperaturen ausgesetzt. Dies kann insbesondere für Poly¬ merlinsen zu einer Verschlechterung der optischen Eigen- Schäften und zu einer Begrenzung der Lebensdauer führen. Bei blauen und weißen LEDs kommt dazu noch eine relativ hohe Konzentration von UV-Strahlung an der Linse, wodurch die Wärmebeständigkeit der meisten Polymere weiter redu- ziert und die Alterung der Linse beschleunigt wird.However, lenses arranged directly on the LED chip are exposed to high temperatures. This may be especially for poly ¬ merlinsen to deterioration of optical properties Shafts and lead to a limitation of the life. With blue and white LEDs, there is still a relatively high concentration of UV radiation at the lens, which further reduces the thermal stability of most polymers and accelerates the aging of the lens.
Zudem wird durch die Anbringung der Linse am LED-Chip die Wärmeabfuhr von diesem behindert.In addition, the attachment of the lens to the LED chip, the heat dissipation is hindered by this.
Darstellung der ErfindungPresentation of the invention
Die Aufgabe der vorliegenden Erfindung ist es, ein LED- Modul umfassend mindestens ein Trägerelement, mindestens eine auf dem Trägerelement angeordnete Leuchtdiode (LED) und mindestens eine im Strahlengang der von der Leuchtdi¬ ode ausgehenden Strahlung angeordneten Linse, zu schaffen, das einfach und kostengünstig herstellbar ist und bei der die thermische Belastung von Linse und LED-Chip reduziert wird.The object of the present invention is to provide an LED module comprising at least one carrier element, at least one light-emitting diode (LED) arranged on the carrier element and at least one lens arranged in the beam path of the light emanating from the light-emitting diode, which method is simple and inexpensive can be produced and in which the thermal load of the lens and LED chip is reduced.
Diese Aufgabe wird gelöst, indem das LED-Modul mindestens einen Reflektor umfasst und eine der LED zugewandte Strahlungseintrittsfläche der Linse von der Oberfläche der LED beabstandet angeordnet ist. Die Linse ist somit nicht mehr in direktem Kontakt mit der LED und die thermische Belastung der Komponenten wird hinreichend verringert, ohne die Lichtausbeute gegenüber der herkömmlichen Linsenanordnung übermäßig zu reduzieren. Gegenüber der Verwendung eines Reflektors ohne Linse wird eine wesent- lieh kompaktere Bauweise ermöglicht, da die Bauhöhe des Reflektors deutlich reduziert werden kann. Zudem kann ü- ber den Reflektor eine Lichtmischung vorgenommen werden, die die Farbinhomogenitäten, die auch bei der Verwendung von weißen LEDs durch Bereiche mit leicht unterschiedli¬ cher Farbtemperatur oder Farbe entstehen können, verringert .This object is achieved by the LED module comprising at least one reflector and one of the LED facing radiation entrance surface of the lens is spaced from the surface of the LED. The lens is thus no longer in direct contact with the LED and the thermal stress on the components is reduced sufficiently without unduly reducing the luminous efficacy over the conventional lens assembly. Compared to the use of a reflector without a lens is a much lent more compact design allows, since the height of the reflector can be significantly reduced. In addition, a light mixture can be made via the reflector, which can also be used in the color inhomogeneities can occur on white LEDs by areas with slightly differing ¬ cher color temperature or color, is reduced.
Vorteilhafterweise sind mindestens zwei LED in einer vor- zugsweise rechteckigen Gruppe von LED zusammengefasst . Als Gruppe von LED werden im Rahmen dieser Anmeldung mindestens zwei LED-Chips angesehen, deren Abstand unterein¬ ander kleiner ist als die maximale lineare Abmessung der einzelnen LED. Als maximale lineare Abmessung ist dabei der maximale Abstand zwischen zwei auf der Außenkontur der LED befindlichen Punkten anzusehen. Die Anordnung von LED in Gruppen ermöglicht es, große Lichtleistungen auf kleinem zu realisieren.Advantageously, at least two LEDs are combined in a preferably rectangular group of LEDs. As a group of LED in the context of this application, at least two LED chips are considered, the distance unterein ¬ other is less than the maximum linear dimension of the individual LED. The maximum linear dimension is the maximum distance between two points located on the outer contour of the LED. The arrangement of LEDs in groups makes it possible to realize large light outputs on a small scale.
Es ist zweckmäßig, wenn eine der LED zugewandte Strah- lungseintrittsflache der Linse in einem Abstand von min¬ destens 2,5 mm, vorzugsweise von mindestens 5 mm, zu der Oberfläche der LED angeordnet ist. Mit zunehmendem Ab¬ stand verringert sich die thermische Belastung weiter, weshalb ein Abstand von mehr als 5 mm gegenüber geringe- ren Abständen zu bevorzugen ist.It is desirable if a surface facing the LED radiative flat enters the lens at a distance of min ¬ least 2.5 mm, preferably is disposed at least 5 mm, to the surface of the LED. With increasing from ¬ stand the thermal load reduced further, which is why to prefer a distance of more than 5 mm from geringe- ren intervals.
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist eine der LED zugewandte Strahlungseintrittsfläche der Linse in einem Abstand zu der Oberfläche der LED angeord¬ net, der mindestens der maximalen linearen Abmessung, vorzugsweise mindestens der 2-fachen maximalen linearen Abmessung der LED und/oder einer Gruppe von LED entspricht. Als maximale lineare Abmessung ist dabei der ma¬ ximale Abstand zwischen zwei auf der Außenkontur der LED beziehungsweise der Gruppe von LED befindlichen Punkten anzusehen. Durch die erfindungsgemäße Anordnung wird un- abhängig von der absoluten Größe der LED ebenfalls ein ausreichender Abstand zwischen Linse und LED erreicht, um die Funktion der Linse auch im Langzeitbetrieb sicherzu¬ stellen .According to an advantageous development of the invention, one of the LED facing radiation entrance surface of the lens is at a distance to the surface of the LED angeord ¬ net, the at least the maximum linear dimension, preferably at least twice the maximum linear dimension of the LED and / or a group of LED corresponds. The maximum linear dimension while the ma ¬ ximum distance between two located on the outer contour of the LED or the group of LED points should be considered. The arrangement according to the invention depending also obtained from the absolute size of the LED, a sufficient distance between the lens and LED to represent the function of the lens even in long-term operation sicherzu ¬.
Weiterhin ist es von Vorteil, wenn eine der LED zugewand¬ te Strahlungseintrittsfläche der Linse in einem Abstand zu der Oberfläche der LED angeordnet ist, der mindestens einem Viertel des Durchmessers der Strahlungseintritts¬ fläche der Linse, insbesondere mindestens einem Drittel des Durchmessers der Strahlungseintrittsfläche der Linse entspricht. Auch hiermit wird sichergestellt, dass die thermische Beanspruchung der Linse unabhängig von deren absoluter Größe zuverlässig verringert wird und kein Hit¬ zestau zwischen LED und Linse entsteht.Furthermore, it is advantageous if one of the LED facing ¬ radiation inlet surface of the lens is arranged at a distance from the surface of the LED, the at least a quarter of the diameter of the radiation entrance ¬ surface of the lens, in particular at least one third of the diameter of the radiation entrance surface of the lens equivalent. Also hereby that the thermal stress of the lens is reliably reduced regardless of their absolute size and not a hit ¬ zestau between the LED and the lens is formed is ensured.
Indem die der LED zugewandte Strahlungseintrittsfläche der Linse in einem Abstand von höchstens 30 mm, vor¬ zugsweise von höchstens 20 mm von der Oberfläche der LED angeordnet ist, wird sichergestellt, dass die von der LED ausgesandte Strahlung die Linse möglichst verlustarm er- reicht und zudem eine kompakte Anordnung erzielt wird.By the LED facing radiation entrance surface of the lens at a distance of at most 30 mm, preferably ¬ at least 20 mm from the surface of the LED is arranged, it is ensured that the radiation emitted by the LED radiation reaches the lens as low as possible and also a compact arrangement is achieved.
Es ist ebenfalls von Vorteil, wenn die der LED zugewandte Strahlungseintrittsfläche der Linse in einem Abstand zu der Oberfläche der LED angeordnet ist, der höchstens dem 8-fachen der maximalen linearen Abmessung, vorzugsweise höchstens dem 5-fachen der maximalen linearen Abmessung der LED und/oder der Gruppe von LEDs entspricht. Auch dies stellt sicher, dass, unabhängig von der absoluten Größe der LED beziehungsweise der Gruppe von LEDs die von der LED ausgesandte Strahlung in ausreichender Konzentra- tion an der Linse ankommt und ein kompakter Aufbau erzielt wird.It is also advantageous if the LED facing radiation entrance surface of the lens is arranged at a distance from the surface of the LED, which is at most 8 times the maximum linear dimension, preferably at most 5 times the maximum linear dimension of the LED and / or the group of LEDs. This also ensures that, regardless of the absolute size of the LED or the group of LEDs, the radiation emitted by the LED is in sufficient concentration. tion arrives at the lens and a compact structure is achieved.
Weiterhin ist es zweckmäßig, wenn die der LED zugewandteFurthermore, it is expedient if the LED facing
Strahlungseintrittsfläche der Linse in einem Abstand zu der Oberfläche der LED angeordnet ist, der höchstens demRadiation entrance surface of the lens is arranged at a distance from the surface of the LED, at most the
1,5-fachen des Durchmessers der Strahlungseintrittsfläche der Linse, insbesondere höchstens dem Durchmesser der1.5 times the diameter of the radiation entrance surface of the lens, in particular at most the diameter of
Strahlungseintrittsfläche der Linse entspricht. Auch hiermit wird eine kompakte Bauweise mit guter Lichtaus- beute sichergestellt.Radiation entrance surface of the lens corresponds. This also ensures a compact design with good light yield.
Vorteilhafterweise ist die Linse im Wesentlichen aus ei¬ nem Polymerwerkstoff gebildet. Polymerwerkstoffe ermögli¬ chen eine einfache und kostengünstige Formgebung auch bei komplexen Formen, wobei sich die Vorteile der Erfindung bei diesen Linsen besonders deutlich auswirken.Advantageously, the lens consisting essentially of egg ¬ nem polymeric material is formed. Polymer Materials ermögli ¬ chen a simple and inexpensive design, even with complex shapes, with the advantages of the invention in these lenses particularly significant impact.
Es ist ebenso von Vorteil, wenn der Reflektor die LED senkrecht zur Hauptabstrahlrichtung allseitig umgibt. Da¬ durch wird die Lichtausbeute und der Wirkungsgrad erhöht, da alles zur Seite abgestrahlte Licht in Richtung der Linse oder der Abstrahlrichtung konzentriert werden kann.It is also advantageous if the reflector surrounding the LED perpendicular to the main emission on all sides. Since ¬ by the light yield and the efficiency is increased because all radiated light to the side in the direction of the lens or the emission can be concentrated.
Besonders vorteilhaft ist es, wenn der Reflektor die An¬ ordnung aus LED und Linse senkrecht zur Hauptabstrahlrichtung allseitig umgibt. Dadurch wird eine besonders gute Lichtausbeute und ein homogenes Abstrahlverhalten erzielt.It is particularly advantageous if the reflector surrounds the at ¬ order of LED and the lens perpendicular to the main direction of radiation on all sides is. As a result, a particularly good light output and a homogeneous radiation behavior is achieved.
In einer zweckmäßigen Weiterbildung der Erfindung ist die Linse als Plankonvexlinse ausgebildet. Damit lässt sich vorteilhaft ein relativ enger Abstrahlwinkel von 10° bis 30° realisieren. In einer weiteren zweckmäßigen Weiterbildung der Erfindung ist die Linse als Konkavkonvexlinse ausgebildet. Da¬ durch kann vorteilhaft ein relativ weiter Abstrahlwinkel von 30° bis 60° erreicht werden.In an expedient development of the invention, the lens is designed as a plano-convex lens. This makes it advantageous to realize a relatively narrow beam angle of 10 ° to 30 °. In a further expedient development of the invention, the lens is designed as Konkavkonvexlinse. Since ¬ may advantageously by a relatively wide angle of 30 ° to 60 ° can be achieved.
Weiterhin ist es von Vorteil, wenn mindestens eine Fläche der Linse asphärisch ausgebildet ist. Asphärische Linsen ermöglichen eine sehr homogene Abstrahlcharakteristik.Furthermore, it is advantageous if at least one surface of the lens is aspherical. Aspherical lenses allow a very homogeneous radiation characteristic.
Vorteilhafterweise schließt der Rand der Linse mit der optischen Achse einen Winkel zwischen 10° und 60°, vor- zugsweise zwischen 20° und 50° ein. Diese Anschrägung verhindert Abbildungsfehler im Randbereich der Linse, in dem ansonsten eine Ablenkung der Strahlen in eine nicht gewollte Richtung erfolgen würde. Bei dem bevorzugt aus¬ gewählten Bereich laufen bei gegebenen Linsenabmessungen möglichst viele der von der LED ausgehenden Strahlen ungestört zum Reflektor.Advantageously, the edge of the lens with the optical axis encloses an angle between 10 ° and 60 °, preferably between 20 ° and 50 °. This chamfer prevents aberrations in the edge region of the lens, in which otherwise a deflection of the rays would take place in an unwanted direction. In the preferred selected from ¬ region as many as possible of the emanating from the LED rays pass undisturbed to the reflector for given lens dimensions.
Zweckmäßigerweise umfasst das LED-Modul mehrere LED. Da¬ durch wird die Leuchtstärke erhöht und, wenn diese in ei¬ ner Gruppe zusammengefasst sind, ein kompakter Aufbau er- zielt.Conveniently, the LED module comprises a plurality of LEDs. Since ¬ by the light intensity is increased and when these are summarized in ei ¬ ner group, a compact structure aims ER.
Es ist zweckmäßig, wenn die LED in einer vorzugsweise rechteckigen Gruppe zusammengefasst sind. Eine derartige Anordnung ermöglicht, eine hohe Lichtleistung auf engem Raum zu installieren.It is expedient if the LEDs are combined in a preferably rectangular group. Such an arrangement makes it possible to install a high light output in a small space.
Es ist von Vorteil, wenn mindestens ein Befestigungsele¬ ment zur Befestigung der Linse an dem Trägerelement vorgesehen ist. Dadurch kann die Linse stabil und mit defi¬ niertem Abstand zu der ebenfalls fest mit dem Trägerele¬ ment verbundenen LED befestigt werden. Weiterhin ist es zweckmäßig, wenn mindestens ein Befesti¬ gungselement zur Befestigung der Linse an dem Reflektor vorgesehen ist. Dadurch wird die Linse ebenfalls sicher gehalten und aus Linse und Reflektor ein optisches System mit definierten Eigenschaften gebildet, das ggf. auch als solches gehandhabt und insbesondere montiert werden kann.It is advantageous if at least one Befestigungsele ¬ element is provided for fixing the lens to the support member. Thus the lens can be stably fixed and defi ned ¬ distance to the likewise fixedly connected to the Trägerele ¬ ment LED. Furthermore, it is expedient if at least one Fixed To ¬ restriction member is provided for fixing the lens to the reflector. As a result, the lens is also held securely and formed of lens and reflector, an optical system with defined properties, which can also be handled as such and in particular also mounted.
Ein besonders einfacher Aufbau wird erzielt, wenn mindes¬ tens ein Befestigungselement und die Linse einstückig ausgebildet sind. Zudem können diese dann gemeinsam her- gestellt und verarbeitet werden, was den Herstellungspro- zess des Moduls vereinfacht.A particularly simple construction is obtained when Minim ¬ least one fastening element and the lens are integrally formed. In addition, these can then be produced and processed together, which simplifies the manufacturing process of the module.
Weiterhin ist es zweckmäßig, wenn das Befestigungselement mindestens eine Schnappverbindung zur Verbindung mit dem Reflektor und/oder dem Trägerelement aufweist. Dadurch kann auf einfachem Weg eine Verbindung hergestellt und somit der Herstellaufwand für das LED-Modul reduziert werden .Furthermore, it is expedient if the fastening element has at least one snap connection for connection to the reflector and / or the carrier element. As a result, a connection can be established in a simple way, and thus the manufacturing outlay for the LED module can be reduced.
Es ist von Vorteil, wenn der Reflektor mehrere ringförmige Segmente umfasst. Als Segmente werden dabei diejenigen Bereiche des Reflektors in Abstrahlrichtung gesehen be¬ trachtet, innerhalb derer die Krümmungsrichtung in einer die optische Achse des Reflektors enthaltenden Schnitt¬ ebene gleich bleibt, wobei die Segmente durch einen Wech¬ sel der Krümmungsrichtung oder eine sprunghafte Änderung der Krümmung voneinander abgegrenzt sind. Durch die Segmentierung kann das Abstrahlverhalten vorteilhaft beein- flusst werden, da die einzelnen Ringsegmente jeweils in unterschiedliche Richtungen reflektieren können. Dies ist insbesondere auch nützlich, um eine bessere Farbhomogeni- tät bei LED oder Gruppen von LED mit Breichen unterschiedlicher Farbe oder Farbtemperatur.It is advantageous if the reflector comprises a plurality of annular segments. While those areas of the reflector are seen in emission direction as segments be ¬ seeks within which the direction of curvature in the optical axis of the reflector section containing ¬ remains planar same, wherein the segments from each other by a Wech ¬ sel the direction of curvature, or a sudden change in the curvature are delimited. Due to the segmentation, the radiation behavior can be advantageously influenced since the individual ring segments can each reflect in different directions. This is especially useful for better color homogeneity. LEDs or groups of LEDs with different color or color temperature.
Es ist ebenfalls von Vorteil, wenn mindestens ein Segment des Reflektors mindestens 6, vorzugsweise zwischen 10 und 14, insbesondere 12 Facetten aufweist. Die Facettierung bewirkt eine weitere Homogenisierung der Farbverteilung, da sich so die Abbildungen von unterschiedlichen Bereichen eines LED-Chips bzw. unterschiedlichen LED einer Gruppe von LED überschneiden.It is also advantageous if at least one segment of the reflector has at least 6, preferably between 10 and 14, in particular 12 facets. The faceting causes a further homogenization of the color distribution, since this overlaps the images of different areas of an LED chip or different LED of a group of LEDs.
Weiterhin ist es zweckmäßig, wenn der Reflektor im Wesentlichen aus einem thermisch gut leitenden Werkstoff, insbesondere Aluminium, gebildet ist. Dadurch kann der Reflektor zusätzlich zur Wärmeabfuhr der LED verwendet werden undFurthermore, it is expedient if the reflector is essentially formed of a thermally highly conductive material, in particular aluminum. This allows the reflector to be used in addition to the heat dissipation of the LED and
Kurze Beschreibung der Zeichnung (en)Short description of the drawing (s)
Im Folgenden soll die Erfindung anhand eines Ausführungs¬ beispiels näher erläutert werden. Die Figur zeigt ein er¬ findungsgemäßes LED-Modul in einer seitlichen Schnitt- bilddarsteilung.In the following, the invention will be explained in more detail with reference to an embodiment ¬ example. The figure shows a he ¬ inventive LED module in a side sectional Bilddarsteilung.
Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention
Das LED-Modul 1 umfasst im Wesentlichen eine Trägerplatte 2, auf der erfindungsgemäß eine Gruppe 3 von Leuchtdioden (LED) 4, sowie eine Linse 5 und ein Reflektor 6 angeord¬ net sind. Der Mittelpunkt der Gruppe 3 von Leuchtdioden 4 befindet sich ebenso wie die Mittelachse der Linse 5 und die Mittelachse des Reflektors 6 auf der optischen Achse A des Gesamtsystems.The LED module 1 essentially comprises a support plate 2, on which according to the invention a group 3 of light-emitting diodes (LED) 4, as well as a lens 5 and a reflector 6 are angeord ¬ net. The center of group 3 of LEDs 4 is located as well as the central axis of the lens 5 and the central axis of the reflector 6 on the optical axis A of the overall system.
Das Trägerelement 2 ist im vorliegenden Ausführungsbei- spiel als Leiterplatte 2 ausgeführt, auf der sich eine Gruppe 3 von insgesamt sechs Leuchtdiodenchips 4 befin¬ det ist. Diese sind in zwei Reihen aus jeweils drei rechteckigen Einzelchips 4 angeordnet, so dass sich eine rechteckige Gesamtanordnung mit einer Kantenlänge von ca. 3 mm in Längsrichtung sowie ca. 2 mm in Querrichtung ergibt. Die betrachteten Leuchtdioden 4 geben Strahlung im Bereich des sichtbaren Lichts ab.The support member 2 is carried out in the present exemplary embodiment as a game board 2 on which a group 3 of a total of six light emitting diode chip 4, is befin ¬ det. These are arranged in two rows of three rectangular individual chips 4, so that there is a rectangular overall arrangement with an edge length of about 3 mm in the longitudinal direction and about 2 mm in the transverse direction. The considered LEDs 4 emit radiation in the visible light range.
Die Linse 5 ist aus einem durchsichtigen Polymerwerkstoff nach dem Stand der Technik gefertigt und in einem Abstand von annähernd 8 mm von der Gruppe 3 von Leuchtdioden 4 über Befestigungsmittel 7 mit dem Trägerelement 2 verbun¬ den. Der Abstand der Linse 5 von der Gruppe 3 von LED 4 beträgt somit mehr als das 2-fache der maximalen linearen Abmessung der Gruppe 3 von LED 4, die in diesem Fall die Diagonale der rechteckförmigen Anordnung mit ca. 3,6 mm ist. Eine zu große Entfernung der Linse 5 von den LED 4 sollte vermieden werden, da damit zwar die thermische Be¬ lastung der Linse 5 weiter sinkt, aber die Anordnung dann sehr groß wird. Ein maximaler Abstand von 20 mm bezie- hungsweise annähernd der 5-fachen maximalen linearen Ausdehnung der Gruppe 3 von LED 4 hat sich bei den üblicherweise verwendeten Komponenten als sinnvoll erwiesen. Die Befestigungsmittel 7 weisen an ihrem leiterplattenseiti- gen Ende Schnappnasen 8 auf, die in Bohrungen 9 in dem Trägerelement 2 eingreifen und so eine Schnappverbindung herstellen . Die Linse 5 weist einen Durchmesser von annähernd 17 mm auf und ist als asphärische Plankonvex-Linse ausgeführt, was einen engen Abstrahlwinkel von ca. 20 ° ermöglicht. Der Abstand der Strahlungseintrittsfläche 10 der Linse 5 ist damit in einem Abstand zu der Oberfläche der LED 4 angeordnet, der mehr als ein Drittel des Durchmessers der Strahlungseintrittsfläche 10 der Linse 5, im vorliegenden Beispiel sogar annähernd der Hälfte entspricht. Ein zu großer Abstand von Linse 5 und LED 4 würde einen sehr großen Linsendurchmesser erfordern, um einen gleich großen Anteil des emittierten Lichts mit der Linse 5 zu er¬ fassen wie bei einer näher an den LED 4 befindlichen Linse 5. Dadurch steigt jedoch der Herstellaufwand und das LED-Modul 1 wird sehr groß und unhandlich. Es hat sich als vorteilhaft erwiesen, den Abstand von Strahlungseintrittsfläche 10 der Linse 5 und LED 4 kleiner als den Linsendurchmesser zu wählen.The lens 5 is made of a transparent polymer material according to the prior art and at a distance of approximately 8 mm from the group 3 of light-emitting diodes 4 via fastening means 7 with the carrier element 2 verbun ¬ the. The distance of the lens 5 from the group 3 of LED 4 is thus more than 2 times the maximum linear dimension of the group 3 of LED 4, which in this case is the diagonal of the rectangular array of about 3.6 mm. Too large a distance of the lens 5 from the LED 4 should be avoided, since thus the thermal Be ¬ load of the lens 5 continues to decrease, but the arrangement is then very large. A maximum distance of 20 mm or approximately 5 times the maximum linear extent of group 3 of LED 4 has proven to be expedient for the components usually used. The fastening means 7 have snap lugs 8 at their end facing the printed circuit board, which engage in bores 9 in the carrier element 2 and thus produce a snap connection. The lens 5 has a diameter of approximately 17 mm and is designed as aspherical plano-convex lens, which allows a narrow beam angle of about 20 °. The distance of the radiation entrance surface 10 of the lens 5 is thus arranged at a distance from the surface of the LED 4, which corresponds to more than one third of the diameter of the radiation entrance surface 10 of the lens 5, in the present example, even approximately half. Too large a distance from the lens 5 and LED 4 would require a very large lens diameter to an equal proportion of the emitted light with the lens 5 to he ¬ take as in a nearer to the LED 4 lens 5. However, this increases the manufacturing effort and the LED module 1 becomes very large and unwieldy. It has proved to be advantageous to choose the distance from the radiation entrance surface 10 of the lens 5 and LED 4 smaller than the lens diameter.
Durch die asphärische Form der Linse 5 wird eine sehr ho¬ mogene Abstrahlcharakteristik erzielt. Zusätzlich ist der Randbereich 11 der Linse 5 gegenüber der optischen Achse A unter einem Winkel von ca. 22° geneigt, was Abbildungs¬ fehler im Randbereich der Linse 5 verringert bzw. verhindert, indem möglichst wenige der Strahlen die Linse 5 in diesem für die Abbildungseigenschaften ungünstigen Be- reich treffen.By the aspherical shape of the lens 5 is a very ho ¬ mogenous emission is achieved. In addition, the edge region 11 of the lens 5 is inclined relative to the optical axis A at an angle of approximately 22 °, which imaging ¬ error is reduced in the edge region of the lens 5 or prevented by as few as possible of the radiation, the lens 5 in this for the imaging characteristics unfavorable area.
Um auch die seitlich von der Linse 5 austretenden Lichtstrahlen für die Beleuchtung des auszuleuchtenden Gebiets ausnutzen zu können, sind die LEDs 4 senkrecht zur Haupt¬ abstrahlrichtung, die im Ausführungsbeispiel identisch mit der optischen Achse A ist, allseitig von dem Reflektor 6 umgeben. Der Reflektor 6 setzt sich aus mehreren Ringen 6a, 6b, 6c zusammen, die eine Vielzahl von in dieser Darstellung nicht erkennbaren Facetten, beispielsweise zwischen 10 und 25, aufweisen. In der Hauptabstrahlrichtung erstreckt sich der Reflektor 6 über die Linse 5 hinaus, um möglichst große Anteile der Strahlung in das zu beleuchtende Gebiet zu lenken. Dabei werden besonders die mittleren und äußeren Winkelbereiche der Abstrahlcha¬ rakteristik abgedeckt. Die Facettierung ermöglicht eine Durchmischung des von unterschiedlichen Bereichen der Gruppe 3 von LED 4 abgestrahlten Lichts, so dass ein ho¬ mogenes Abstrahlverhalten mit gleichmäßiger Verteilung der Farbe wie auch der Farbtemperatur erzielt werden, auch wenn die sowohl innerhalb der LEDs 4 wie auch zwischen den einzelnen LEDs 4 Unterschiede bestehen.In order to be able to exploit the light rays emerging laterally from the lens 5 for the illumination of the area to be illuminated, the LEDs 4 are perpendicular to the main ¬ radiation, which is identical in the embodiment with the optical axis A, surrounded on all sides by the reflector 6. The reflector 6 is composed of several Rings 6a, 6b, 6c together, which have a plurality of non-recognizable in this representation facets, for example between 10 and 25, have. In the main emission direction, the reflector 6 extends beyond the lens 5 in order to direct the largest possible portions of the radiation into the area to be illuminated. Especially the middle and outer angular ranges of the Abstrahlcha ¬ rakteristik be covered. The faceting allows mixing of light emitted from different regions of the group 3 of LED 4 light so that a ho ¬ seamless front light radiation with uniform distribution of the color as well as the color temperature can be achieved, even if the both within the LEDs 4 as well as between the individual LEDs 4 differences exist.
Der Reflektor 6 ist aus einer Aluminiumlegierung gefertigt, wodurch er zur Wärmeabfuhr von den Leuchtdioden 4 verwendet werden kann. Auf der Innenseite ist er mit ei¬ ner geeigneten reflektierenden Beschichtung versehen.The reflector 6 is made of an aluminum alloy, whereby it can be used for heat dissipation from the LEDs 4. On the inside it is provided with egg ¬ ner suitable reflective coating.
Der Reflektor 6 wird mittels geeigneter Befestigungen nach dem Stand der Technik auf dem Trägerelement 2 fixiert. Es ist beispielsweise auch denkbar, dass die Be¬ festigungselemente 7 der Linse 5 dazu verwendet werden. Weiterhin sind auch andere Ausführungsformen des Reflektors 6 denkbar, beispielsweise indem dieser aus nur einem Ring 6a besteht oder zylindrisch ohne Facetten ausgeführt ist. Auch die Bauhöhe kann anders als im Ausführungsbei¬ spiel, insbesondere niedriger, gewählt werden. So ist es beispielsweise denkbar, dass der Reflektor 6 nur bis zur Oberkante der Linse 5 oder sogar nur bis zur Strahlungs- eintrittstlache 10 reicht. Die Befestigungselemente 7 der Linse 5 können zusätzlich oder alternativ auch an dem Reflektor 6 fixiert sein, beispielsweise auch, indem diese seitlich von der Linse 5 zum Reflektor 6 reichen. Damit kann die Einheit aus Linse 5 und Reflektor 6 in der Herstellung als gemeinsam montiert werden, was die Herstellung erleichtert. Je nach Gegebenheit ist es auch denkbar, dass Linse 5 und Reflek¬ tor 6 einstückig aus einem durchsichtigen Polymerwerkstoff gefertigt werden und der Reflektor 6 dann auf sei- ner Innenseite mit einer reflektierenden Beschichtung versehen wird.The reflector 6 is fixed by means of suitable fasteners according to the prior art on the support element 2. It is also conceivable, for example, for the fastening elements 7 of the lens 5 to be used for this purpose. Furthermore, other embodiments of the reflector 6 are conceivable, for example, by this consists of only one ring 6a or cylindrical is executed without facets. The height can be different than in Ausführungsbei ¬ game, in particular lower, are selected. For example, it is conceivable that the reflector 6 extends only to the upper edge of the lens 5 or even only to the radiation entrance slit 10. The fastening elements 7 of the lens 5 may additionally or alternatively also be fixed to the reflector 6, for example also by extending laterally from the lens 5 to the reflector 6. Thus, the unit of lens 5 and reflector 6 can be mounted in the production as a common, which facilitates the production. Depending on the circumstances, it is also conceivable that the lens 5 and reflector ¬ gate 6 are made in one piece of a transparent polymer material and the reflector 6 is then provided on its inner side with a reflective coating.
Die Formgebung von Linse 5 und Reflektor 6 richtet sich im Wesentlichen nach der Form der LED 4 bzw. der Gruppe 3 von LED 4 und der gewünschten Abstrahlcharakteristik. So wird im gezeigten Ausführungsbeispiel aus einer recht¬ eckigen Lichtquelle eine annähernd kreisförmige Abstrahl¬ charakteristik erzielt. Ebenso ist der Abstand zwischen dem Rand 11 der Linse 5 und dem Reflektor 6 je nach Anwendungsfall wählbar, um die Verteilung zwischen dem An- teil des durch die Linse 5 gehenden und des daran vorbei¬ geführten Lichts festzulegen. Dieser Abstand kann unter Umständen auch für die Kühlung der LED von Bedeutung sein und sollte je nach Anwendungsfall darum auch ein Mindest¬ maß nicht unterschreiten.The shape of lens 5 and reflector 6 depends essentially on the shape of the LED 4 and the group 3 of LED 4 and the desired radiation characteristics. Thus, an approximately circular radiating ¬ characteristic is achieved in the illustrated embodiment from a right square ¬ light source. Likewise, the distance between the edge 11 of the lens 5 and the reflector 6 can be selected depending on the application, in order to determine the distribution between the proportion of the light passing through the lens 5 and the light passing therethrough . Under certain circumstances, this distance can also be important for the cooling of the LED and, depending on the application, should therefore not be less than a minimum dimension .
Je nach gewünschter Charakteristik kann anstelle der Plankonvexlinse 5 selbstverständlich auch eine andere Linse 5 oder sogar eine Kombination von Linsen verwendet werden. Insbesondere Konkavkonvexlinsen eignen sich, wenn ein relativ weiter Abstrahlwinkel von etwa 30° bis 60° erzielt werden soll. Depending on the desired characteristic, it is of course also possible to use another lens 5 or even a combination of lenses instead of the plano-convex lens 5. In particular Konkavkonvexlinsen are suitable if a relatively wide beam angle of about 30 ° to 60 ° to be achieved.

Claims

Ansprüche claims
1. LED-Modul (1) umfassend mindestens ein Trägerelement (2), mindestens eine auf dem Trägerelement (2) ange¬ ordnete Leuchtdiode (LED) (4) und mindestens eine im Strahlengang der von der LED ausgehenden Strahlung angeordneten Linse (5) , dadurch gekennzeichnet, dass das LED-Modul mindestens einen Reflektor (6) umfasst und eine der LED (4) zugewandte Strahlungseintritts¬ fläche (10) der Linse (5) von der Oberfläche der LED (4) beabstandet angeordnet ist.1. LED module (1) comprising at least one carrier element (2), at least one on the carrier element (2), ¬ arranged light-emitting diode (LED) (4) and at least one arranged in the beam path emanating from the LED radiation lens (5) , characterized in that the LED module comprises at least one reflector (6) and one of the LED (4) facing the radiation entrance surface ¬ (10) of the lens (5) from the surface of the LED (4) is arranged spaced.
2. LED-Modul (1) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei LED (4) in einer vorzugs¬ weise rechteckigen Gruppe (3) von LED (4) zusammenge- fasst sind.2. LED module (1) according to claim 1, characterized in that at least two LED (4) in a preferential ¬ rectangular group (3) of LED (4) are summarized summarized.
3. LED-Modul (1) nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass die der LED (4) zugewandte Strahlungs¬ eintrittsfläche (10) der Linse (5) in einem Abstand von mindestens 2,5 mm, vorzugsweise von mindestens 5 mm, zu der Oberfläche der LED (4) angeordnet ist.3. LED module (1) according to claim 1 or 2, characterized in that the LED (4) facing the radiation ¬ entry surface (10) of the lens (5) at a distance of at least 2.5 mm, preferably from at least 5 mm, to the surface of the LED (4) is arranged.
4. LED-Modul (1) nach einem der Ansprüche 1 bis 3, da- durch gekennzeichnet, dass die der LED (4) zugewandte4. LED module (1) according to one of claims 1 to 3, character- ized in that the LED (4) facing
Strahlungseintrittsfläche (10) der Linse (5) in einem Abstand zu der Oberfläche der LED (4) angeordnet ist, der mindestens der maximalen linearen Abmessung, vorzugsweise mindestens der 2-fachen maximalen linearen Abmessung der LED (4) und/oder der Gruppe (3) von LED (4) entspricht. Radiation entrance surface (10) of the lens (5) is arranged at a distance from the surface of the LED (4), the at least the maximum linear dimension, preferably at least twice the maximum linear dimension of the LED (4) and / or the group ( 3) of LED (4).
5. LED-Modul (1) nach einem der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, dass die der LED (4) zugewandte Strahlungseintrittsfläche (10) der Linse (5) in einem Abstand zu der Oberfläche der LED (4) angeordnet ist, der mindestens einem Viertel des Durchmessers der Strahlungseintrittsfläche (10) der Linse (5), insbe¬ sondere mindestens einem Drittel des Durchmessers der Strahlungseintrittsfläche (10) der Linse (5) ent¬ spricht .5. LED module (1) according to one of claims 1 to 4, since ¬ characterized in that the LED (4) facing the radiation entrance surface (10) of the lens (5) arranged at a distance from the surface of the LED (4) is at least a quarter of the diameter of the radiation entrance surface (10) of the lens (5), in particular ¬ special at least one third of the diameter of the radiation entrance surface (10) of the lens (5) ent ¬ speaks.
6. LED-Modul (1) nach einem der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, dass die der LED (4) zugewandte Strahlungseintrittsfläche (10) der Linse (5) in einem Abstand von höchstens 30 mm, vorzugsweise von höchs¬ tens 20 mm von der Oberfläche der LED (4) angeordnet ist.6. LED module (1) according to one of claims 1 to 5, since ¬ characterized in that the LED (4) facing the radiation entrance surface (10) of the lens (5) at a distance of at most 30 mm, preferably from hochs ¬ at least 20 mm from the surface of the LED (4).
7. LED-Modul (1) nach einem der Ansprüche 1 bis 6, da¬ durch gekennzeichnet, dass die der LED (4) zugewandte Strahlungseintrittsfläche (10) der Linse (5) in einem Abstand zu der Oberfläche der LED (4) angeordnet ist, der höchstens dem 8-fachen der maximalen linearen Abmessung, vorzugsweise höchstens dem 5-fachen der ma¬ ximalen linearen Abmessung der LED (4) und/oder der Gruppe (3) von LED (4) entspricht.7. LED module (1) according to one of claims 1 to 6, since ¬ characterized in that the LED (4) facing the radiation entrance surface (10) of the lens (5) arranged at a distance from the surface of the LED (4) is equal to at most 8 times the maximum linear dimension, preferably at most 5 times the ma imum ¬ linear dimension of the LED (4) and / or the group (3) of LEDs (4).
8. LED-Modul (1) nach einem der Ansprüche 1 bis 7, da- durch gekennzeichnet, dass die der LED (4) zugewandte8. LED module (1) according to one of claims 1 to 7, character- ized in that the LED (4) facing
Strahlungseintrittsfläche (10) der Linse (5) in einem Abstand zu der Oberfläche der LED (4) angeordnet ist, der höchstens dem 1,5-fachen des Durchmessers der Strahlungseintrittsfläche (10) der Linse (5), insbe- sondere höchstens dem Durchmesser der Strahlungseintrittsfläche (10) der Linse (5) entspricht.Radiation entrance surface (10) of the lens (5) is arranged at a distance from the surface of the LED (4) which is at most 1.5 times the diameter of the radiation entrance surface (10) of the lens (5), in particular special maximum corresponds to the diameter of the radiation entrance surface (10) of the lens (5).
9. LED-Modul (1) nach einem der Ansprüche 1 bis 8, da¬ durch gekennzeichnet, dass die Linse (5) im Wesentli- chen aus einem Polymerwerkstoff gebildet ist.9. LED module (1) according to one of claims 1 to 8, since ¬ characterized in that the lens (5) is formed essentially of a polymer material.
10. LED-Modul (1) nach einem der Ansprüche 1 bis 9, da¬ durch gekennzeichnet, dass der Reflektor (6) die LED (4) senkrecht zur Hauptabstrahlrichtung allseitig umgibt.10. LED module (1) according to one of claims 1 to 9, since ¬ characterized in that the reflector (6) surrounding the LED (4) perpendicular to the main radiation on all sides.
11. LED-Modul (1) nach einem der Ansprüche 1 bis 10, da¬ durch gekennzeichnet, dass der Reflektor (6) die An¬ ordnung aus LED (4) und Linse (5) senkrecht zur Hauptabstrahlrichtung allseitig umgibt11. LED module (1) according to one of claims 1 to 10, characterized ¬ in that the reflector (6) surrounds the order ¬ of LED (4) and lens (5) perpendicular to the main radiation on all sides
12. LED-Modul (1) nach einem der Ansprüche 1 bis 11, da- durch gekennzeichnet, dass die Linse (5) als Plankon¬ vexlinse (5) ausgebildet ist.12. LED module (1) according to one of claims 1 to 11, character- ized in that the lens (5) is designed as Plankon ¬ vexlinse (5).
13. LED-Modul (1) nach einem der Ansprüche 1 bis 11, da¬ durch gekennzeichnet, dass die Linse (5) als Konkav¬ konvexlinse ausgebildet ist.13. LED module (1) according to one of claims 1 to 11, since ¬ characterized in that the lens (5) is designed as a concave ¬ convex lens.
14. LED-Modul (1) nach einem der Ansprüche 1 bis 13, da¬ durch gekennzeichnet, dass mindestens eine Fläche der Linse (5) asphärisch ausgebildet ist.14. LED module (1) according to one of claims 1 to 13, since ¬ characterized in that at least one surface of the lens (5) is formed aspherical.
15. LED-Modul (1) nach einem der Ansprüche 1 bis 14, da¬ durch gekennzeichnet, dass der Rand der Linse (5) mit der optischen Achse A einen Winkel zwischen 10° und 60°, vorzugsweise zwischen 20° und 50° einschließt.15. LED module (1) according to one of claims 1 to 14, since ¬ characterized in that the edge of the lens (5) with the optical axis A includes an angle between 10 ° and 60 °, preferably between 20 ° and 50 °.
16. LED-Modul (1) nach einem der Ansprüche 1 bis 15, da¬ durch gekennzeichnet, dass das LED-Modul (1) mehrere LED (4) umfasst.16. LED module (1) according to one of claims 1 to 15, since ¬ characterized in that the LED module (1) comprises a plurality of LED (4).
17. LED-Modul (1) nach einem der Ansprüche 1 bis 16, da¬ durch gekennzeichnet, dass mindestens ein Befesti¬ gungselement (7) zur Befestigung der Linse (5) an dem Trägerelement (2) vorgesehen ist.17. LED module (1) according to one of claims 1 to 16, characterized in ¬ ¬ characterized in that at least one fastening ¬ transmission element (7) for fixing the lens (5) on the support element (2) is provided.
18. LED-Modul (1) nach einem der Ansprüche 1 bis 17, da¬ durch gekennzeichnet, dass mindestens ein Befesti¬ gungselement (7) zur Befestigung der Linse (5) an dem Reflektor (6) vorgesehen ist.18. LED module (1) according to one of claims 1 to 17, characterized in ¬ ¬ characterized in that at least one fastening ¬ transmission element (7) for fixing the lens (5) on the reflector (6) is provided.
19. LED-Modul (1) nach einem der Ansprüche 1 bis 18, da- durch gekennzeichnet, dass mindestens ein Befesti¬ gungselement (7) und die Linse (5) einstückig ausge¬ bildet sind.19. LED module (1) according to one of claims 1 to 18, character- ized in that at least one fastening ¬ tion element (7) and the lens (5) are integrally formed ¬ forms.
20. LED-Modul (1) nach einem der Ansprüche 1 bis 19, da¬ durch gekennzeichnet, dass das Befestigungselement (7) mindestens eine Schnappverbindung zur Verbindung mit dem Reflektor (6) und/oder dem Trägerelement (2) aufweist .20. LED module (1) according to one of claims 1 to 19, since ¬ characterized in that the fastening element (7) has at least one snap connection for connection to the reflector (6) and / or the carrier element (2).
21. LED-Modul (1) nach einem der Ansprüche 1 bis 20, da¬ durch gekennzeichnet, dass der Reflektor (6) mindes- tens zwei ringförmige Segmente (6a, 6b, 6c) umfasst. 21. LED module (1) according to one of claims 1 to 20, since ¬ characterized in that the reflector (6) at least two annular segments (6a, 6b, 6c).
22. LED-Modul (1) nach einem der Ansprüche 1 bis 21, da¬ durch gekennzeichnet, dass mindestens ein Segment22 LED module (1) according to one of claims 1 to 21, since ¬ characterized in that at least one segment
(6a, 6b, 6c) des Reflektors (6) mindestens 6, vor¬ zugsweise zwischen 10 und 14, insbesondere 12 Facet- ten aufweist.(6a, 6b, 6c) of the reflector (6) at least 6, before ¬ th preferably 10 to 14, in particular 12 has facets.
23. LED-Modul (1) nach einem der Ansprüche 1 bis 22, da¬ durch gekennzeichnet, dass der Reflektor (6) im We¬ sentlichen aus einem thermisch gut leitenden Werkstoff, insbesondere Aluminium, gebildet ist. 23. LED module (1) according to one of claims 1 to 22, as ¬ characterized by that the reflector (6) is formed in ¬ We sentlichen of a thermally well-conducting material, in particular aluminum.
PCT/EP2008/067512 2008-01-18 2008-12-15 Led module having lens WO2009089973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008005120A DE102008005120A1 (en) 2008-01-18 2008-01-18 LED module with a lens
DE102008005120.9 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009089973A1 true WO2009089973A1 (en) 2009-07-23

Family

ID=40474968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/067512 WO2009089973A1 (en) 2008-01-18 2008-12-15 Led module having lens

Country Status (2)

Country Link
DE (1) DE102008005120A1 (en)
WO (1) WO2009089973A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100909A1 (en) * 2010-05-20 2011-11-21 Aldabra S R L LAMP FOR INTERIORS OR EXTERIORS
EP2746645A3 (en) * 2012-12-18 2014-10-15 LG Innotek Co., Ltd. Lamp unit and vehicle lamp apparatus including the same
EP2719944A3 (en) * 2012-10-15 2015-08-19 LTS Licht & Leuchten GmbH Luminaire and illumination device for a luminaire
KR101811004B1 (en) * 2015-11-05 2017-12-20 엘지이노텍 주식회사 Lamp unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014103713U1 (en) 2014-08-11 2014-08-27 Jenoptik Polymer Systems Gmbh LED Spot Light Spotlight
DE202015102507U1 (en) 2015-05-15 2015-06-10 Bernd Beisse LED light

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US20050219840A1 (en) * 2004-03-30 2005-10-06 Holder Ronald G Apparatus and method for improved illumination area fill
US20060268555A1 (en) * 2004-02-17 2006-11-30 Kelly William M Utility lamp
US20070228392A1 (en) * 2006-04-03 2007-10-04 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
US20070257272A1 (en) * 2006-05-03 2007-11-08 Hutchins Edward L Multi-element LED lamp package
WO2008000244A2 (en) * 2006-06-30 2008-01-03 Osram Opto Semiconductors Gmbh Optoelectronic component and illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US20060268555A1 (en) * 2004-02-17 2006-11-30 Kelly William M Utility lamp
US20050219840A1 (en) * 2004-03-30 2005-10-06 Holder Ronald G Apparatus and method for improved illumination area fill
US20070228392A1 (en) * 2006-04-03 2007-10-04 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
US20070257272A1 (en) * 2006-05-03 2007-11-08 Hutchins Edward L Multi-element LED lamp package
WO2008000244A2 (en) * 2006-06-30 2008-01-03 Osram Opto Semiconductors Gmbh Optoelectronic component and illumination device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100909A1 (en) * 2010-05-20 2011-11-21 Aldabra S R L LAMP FOR INTERIORS OR EXTERIORS
EP2719944A3 (en) * 2012-10-15 2015-08-19 LTS Licht & Leuchten GmbH Luminaire and illumination device for a luminaire
EP2746645A3 (en) * 2012-12-18 2014-10-15 LG Innotek Co., Ltd. Lamp unit and vehicle lamp apparatus including the same
US9671069B2 (en) 2012-12-18 2017-06-06 Lg Innotek Co., Ltd. Lamp unit and vehicle lamp apparatus including the same
US9970627B2 (en) 2012-12-18 2018-05-15 Lg Innotek Co., Ltd. Lamp unit and vehicle lamp apparatus including the same
KR101811004B1 (en) * 2015-11-05 2017-12-20 엘지이노텍 주식회사 Lamp unit

Also Published As

Publication number Publication date
DE102008005120A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
AT505107B1 (en) MIKROLINSENARRAY, OPTICAL MODULE AND HEADLIGHTS
EP2250428B1 (en) Lighting module, lamp and lighting method
DE102004001312B4 (en) Chip light-emitting diode and method for its production
DE102012223854A1 (en) Remote phosphor converter device
DE102011107895B4 (en) Optoelectronic module with lens system
DE102005057446B4 (en) Light-emitting panel
DE102005061431B4 (en) Side emission type LED unit
WO2009089973A1 (en) Led module having lens
EP2070117A1 (en) Optical element for a light-emitting diode, light-emitting diode, led arrangement and method for producing an led arrangement
EP3258164B1 (en) Optics for a headlamp, optics assembly and headlamp
DE102007002403A1 (en) Illuminating arrangement for e.g. dome light of vehicle, has light decoupling surface turned away from semiconductor components, and side surfaces running perpendicular or transverse to light outlet surface
DE102009047487A1 (en) light module
DE102015107443B4 (en) Lens and optoelectronic lighting device
WO2009033454A1 (en) Light-emitting diode module
EP1612869A2 (en) Light emitting diode with beam-shaping optical element
WO2010094617A1 (en) Optoelectronic module
DE102004004778A1 (en) LED lighting module for use as reading light on piece of furniture has three equispaced fluorescent plastics lenses molded in one piece with circular cover with cylindrical sides and fastening pegs
WO2012069312A1 (en) Linear lighting device comprising leds
DE102016109647A1 (en) Lens and lamp with such a lens
DE102018207840A1 (en) OPTICAL ARRANGEMENT AND HEADLIGHTS
EP3293557B1 (en) Optics and optical system
DE102016216624A1 (en) MODULE AND LIGHTING SYSTEM
DE102008031930A1 (en) Lighting device has lens array and high speed light emitting diode chip with multiple microlight emitting diodes, where microlens array is attached on light emitting diode chip
DE10245932B3 (en) Light-emitting diode illumination device has spaces provided between side edges of adjacent light-emitting diodes for output of emitted light
DE102013106948A1 (en) Optoelectronic semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870924

Country of ref document: EP

Kind code of ref document: A1