WO2009092330A1 - Method of determing liquid level and apparatus uning the same - Google Patents

Method of determing liquid level and apparatus uning the same Download PDF

Info

Publication number
WO2009092330A1
WO2009092330A1 PCT/CN2009/070189 CN2009070189W WO2009092330A1 WO 2009092330 A1 WO2009092330 A1 WO 2009092330A1 CN 2009070189 W CN2009070189 W CN 2009070189W WO 2009092330 A1 WO2009092330 A1 WO 2009092330A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
sense
container
liquid
sense electrode
Prior art date
Application number
PCT/CN2009/070189
Other languages
French (fr)
Inventor
Kin-Wah Ho
Yat Man Almond Lee
Original Assignee
Computime, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computime, Ltd. filed Critical Computime, Ltd.
Publication of WO2009092330A1 publication Critical patent/WO2009092330A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Definitions

  • the present invention relates to a method of determining liquid level and an apparatus using the same.
  • the present invention provides methods and apparatuses for determining a liquid level inside a container by using a variation of the capacitance between sense electrodes that are located inside the container.
  • Embodiments of the invention support different types of liquids, including water, and support different electrical appliances, including electric kettles, coffee makers, and water treatment appliances having a non-transparency housing such as stainless steel and black color Lucite or glass that cannot directly indicate the water level.
  • a value of capacitance characteristic associated with a sensing electrode is determined.
  • the water level is determined from the determined capacitance value.
  • the water level may be displayed to the user on any kind of electronic panel, e.g., liquid crystal display (LCD), light emitting diode (LED) display, or vacuum fluorescent display (VFD).
  • LCD liquid crystal display
  • LED light emitting diode
  • VFD vacuum fluorescent display
  • a correction factor may be applied to a determined capacitance associated with a sensing electrode to compensate for the operating temperature of the sensor electrode and the liquid.
  • the compensation may be provided by mathematical computation or by a lookup table
  • a plurality of sensing electrodes may be situated inside a container.
  • the liquid level is determined by the capacitance variance among the plurality of sensing electrodes.
  • Figure 1 shows a container with a sense electrode for determining a liquid level in accordance with an embodiment of the invention.
  • Figure 2 shows a circuit with a sense electrode for providing a level sense voltage in accordance with an embodiment of the invention.
  • Figure 3 shows a circuit with a sense electrode for providing a level sense voltage in accordance with an embodiment of the invention.
  • Figure 4 shows experimental results of a resulting waveform corresponding to a low level of water in accordance with an embodiment of the invention.
  • Figure 5 shows experimental results of a resulting waveform corresponding to a high level of water in accordance with an embodiment of the invention.
  • Figure 6 shows experimental results of a resulting waveform corresponding to a low level of water in accordance with an embodiment of the invention.
  • Figure 7 shows experimental results of a resulting waveform corresponding to a high level of water in accordance with an embodiment of the invention.
  • Figure 8 shows an operational diagram of a system for determining a liquid level in accordance with an embodiment of the invention.
  • Figure 9 shows a system for determining a liquid level in accordance with an embodiment of the invention.
  • Figure 10 shows a flow diagram for determining a liquid level in accordance with an embodiment of the invention.
  • Figure 11 shows a container with a plurality of sense electrodes for determining a liquid level in accordance with an embodiment of the invention.
  • Figure 1 shows container 101 with a sensor containing sense electrode 103 for determining liquid level 105 in accordance with an embodiment of the invention. As will be discussed, the value of the equivalent capacitance of sense electrode 103 is measured and consequently the liquid level can be determined. Even though the sensor shown in Figure 1 contains only one sense electrode, one or more sense electrodes may be contained in the sensor, in which metal components (where each metal component corresponds to a sense electrode) are molded in an innocuous non-metallic material. For example, a printed circuit board or wire may be molded in a plastic. If the sensor has only one electrode then the capacitor's other plate (electrode) is circuit ground (GND).
  • GND circuit ground
  • container 101 can serve as one plate (electrode) and connect to ground or in series with a capacitor (e.g., 100 pf to 0.1 uF) to ground. While the following discussion refers to water, embodiments of the invention support different types of liquids. With an embodiment of the invention, the sensor mounts on the wall of container 101. Different materials are characterized by different dielectric constants. The dielectric constant of the material affects the value of the equivalent capacitance. The following Table provides approximate dielectric constants for exemplary materials.
  • Container 101 may assume different forms and include electric kettles, coffer makers, and water treatment appliances with a non-transparent housing such as stainless steel.
  • Cw equivalent capacitance
  • the equivalent capacitor corresponds to the electrode with GND or metallic container.
  • the equivalent capacitor corresponds to two electrodes.
  • the equivalent capacitance Cw may be determined by the following mathematical relationship:
  • A is the area of the plates in square meters (m )
  • B is the coefficient of temperature variation (which may be determined by experiment and varied with different hardware and electronic design)
  • Cw is the water equivalent capacitance of in Farads (F)
  • D is the distance between the electrode plates in meters (m)
  • K is the dielectric constant of the material separating the plates
  • E is the permittivity of free space (8.85 x 10 "12 F/m)
  • T is the dielectric and electrode temperature.
  • V corresponds to a DC signal and is measured by a processor (e.g., a microcontroller) through an analog-to-digital (AfD) converter. From EQs. 1 and 2, the resulting voltage is given by:
  • V ⁇ EQ. 3
  • the dielectric constant K can then be determined from EQ. 3 by:
  • water level 105 can be determined from EQ. 4 through calculations or from a lookup table.
  • K 7.5 dielectric constant of the material separating the plates, e.g., glass
  • V 2.637 volts
  • Vl kD/((l + B ⁇ T) ⁇ A ⁇ EeqxK)
  • Vl 2.369 volts
  • a level indicator may be displayed on any kind of electronic panel e.g., liquid crystal display (LCD), light emitting diode (LED) display, or vacuum fluorescent display (VFD).
  • LCD liquid crystal display
  • LED light emitting diode
  • VFD vacuum fluorescent display
  • an associated processor may use the determined water level to control the heating of the water. For example, if the water is too low and damage to container 101 may consequently occur, the processor may terminate heating the water. On the other hand, if the water level is too high, the processor may terminate heating the water so that the water does not overflow when heating the water.
  • FIG. 2 shows equivalent circuit 200 with sense electrode 103 for providing level sense voltage 253 in accordance with an embodiment of the invention.
  • Capacitance (Cw) 201 is affected by a change of the dielectric constant resulting from water level 105.
  • Excitation signal 251 point A
  • Excitation signal 251 comprises a 500-5000 KHz sinusoidal or square wave waveform having a zero DC component.
  • V level sense voltage
  • FIG. 3 shows circuit 300 with sense electrode 103 for providing a level sense voltage 353 in accordance with an embodiment of the invention.
  • FIG. 4 shows experimental results of resulting waveform 400 corresponding to a low level of water (where no water is present in container 101) in accordance with an embodiment of the invention.
  • Waveforms 400, 500 (as shown in Figure 5), 600 (as shown in Figure 6), and 700 (as shown in Figure 7) are obtained from circuit 200; however, similar results are obtained from circuit 300.
  • Waveform 400 is obtained at point B 355 (circuit 200) or point B 355 (circuit 300).
  • the amplitude of waveform 400 is affected by the permittivity of the liquid (water) in proximity to sense electrode 103.
  • a virtual capacitor effect (equivalent to capacitance (Cw)) occurs between sense electrode 103 and the liquid, in which a charge is held on sense electrode 103.
  • FIG. 5 shows experimental results of resulting waveform 500 corresponding to a high level of water (where electrode 103 is covered with water in container 101) in accordance with an embodiment of the invention.
  • Waveform 500 is obtained at point 355 (point B in circuit 200) or point 355 (circuit 300). Comparing waveforms 400 and 500, one observes that the amplitude of waveform 500 is less (when the water level is high) relative to waveform 400 (when the water level is low) in accordance with EQ. 2.
  • FIG. 4 shows experimental results of resulting waveform 600 corresponding to a low level of water (when no water is present in container 101) in accordance with an embodiment of the invention.
  • Waveform 600 is obtained at point C (circuit 200) or point C (circuit 300).
  • the DC value of waveform 600 is affected by the permittivity of the liquid (water) in proximity to sense electrode 103.
  • FIG. 7 shows experimental results of resulting waveform 700 corresponding to a high level of water (where electrode 103 is covered with water in container 101) in accordance with an embodiment of the invention.
  • Waveform 700 is obtained at point C (circuit 200) or point C (circuit 300). Comparing waveforms 600 and 700, one observes that the DC value of waveform 700 is less (when the water level is high) relative to waveform 600 (when the water level is low) in accordance with EQ. 2.
  • the DC value of waveform 600 is approximately 4.313 volts and the DC value of waveform 500 is approximately 3.313 volts.
  • the DC change of waveform 600 and 700 results from different permittivity characteristics (water and air) surrounding sense electrode 103.
  • FIG. 8 shows operational diagram 800 of system 900 (as shown in Figure 9) for determining a liquid level in accordance with an embodiment of the invention.
  • Signal driver 801 provides an excitation signal 251 (point A) at sensor electrode 803.
  • Excitation signal 251 is injected at Dl/Rl (point A) with circuit 200 and at Cl (point A) with circuit 300.
  • Level sense voltage 253 is converted into a digital format by A/D converter 805 and read by processor 807.
  • Processor 807 processes level sense voltage 253 to obtain the water level as discussed previously. (With other embodiments of the invention, a comparator may be used in lieu of A/D converter 805 and processor 807. The comparator may be used to sense one level.)
  • the determined water level may be further compensated by the operating temperature as provided by temperature sensor 811.
  • Processor 807 subsequently displays a water level indication on display 809.
  • FIG. 9 shows system 900 for determining a liquid level in accordance with an embodiment of the invention.
  • Processor 901 provides an excitation signal (e.g., 1 KHz square wave signal) to detection circuit 905.
  • Sense electrode(s) 903 in conjunction with detection circuit 905 (corresponding to circuit 200 or circuit 300) provides a level sense voltage to processor 901 through A/D converter 909.
  • A/D converter 909 is connected to point C of circuit 200 or 300.
  • circuit 200 or circuit 300
  • the printed circuit board may be placed on the handle, lid, or bottom of a kettle (container).
  • the Processor 901 determines the water level from the level sense voltage from EQ.
  • FIG. 10 shows flow diagram 1000 for determining a liquid level as performed by system 900 in accordance with an embodiment of the invention.
  • excitation signal 251 is injected into circuit 200.
  • Resulting level sense voltage 253 is measured by A/D converter 909 and provided to processor 901 in step 1003.
  • the measured temperature of sense electrode 903 and the liquid are provided to processor 901 by temperature sensor 911.
  • Processor 901 compensates for the temperature when determining the water level using EQ. 4 in step 1007.
  • Processor 901 displays the water level in step 1009.
  • Figure 11 shows container 1101 with a sensor having a plurality of sense electrodes (L1-L5) 1103 a- 1103 e for determining a liquid level in accordance with an embodiment of the invention.
  • the sensor may have one or more electrodes that can be molded in PC plastic.
  • the sensor may be mounted on the wall of container 1101.
  • Detection circuitry (circuit 200 or 300) is applied to each sense electrode.
  • the detection circuitry may be assigned to each sense electrode or may be shared by the sense electrodes by switching the detection circuitry to a specific sense electrode when needed. Rather than using one sensor electrode as shown in Figure 1, system 1100 incorporates five sense electrodes to determine water level 1105.
  • System 1100 determines the capacitance variance among electrodes 1103a- 1103 e for the indication of the water level corresponding to Ll, L2, L3, L4, and L5. However, additional sense electrodes may be incorporated in order to obtain a greater accuracy of the water level.
  • the equivalent capacitance (Cw) is determined for each sense electrode 1103a-l 103e. Because of the different dielectric characteristics of water relative to air, the equivalent capacitance of sensor electrodes below water are significantly different from the equivalent capacitance of sensor electrodes above water. In the exemplary embodiment shown in Figure 11, the equivalent capacitances of Ll, L2, and L3 is larger than the equivalent capacitances of L4 and L5 by applying EQ. 1. Consequently, a processor (not shown) determines that water level 1105 is near the bottom surface of sense electrode 1103b. The processor may subsequently display an indication "L3" on a display.
  • a computer system with an associated computer-readable medium containing instructions for controlling the computer system can be utilized to implement the exemplary embodiments that are disclosed herein.
  • the computer system may include at least one computer such as a microprocessor, digital signal processor, and associated peripheral electronic circuitry.

Abstract

An apparatus for determining liquid level inside a container by using an effective capacitance associated with one or more sense electrodes that are located inside the container is provided. The apparatus comprises a container (101) configured to contain liquid, a sense electrode (103) configured to be positioned in the container, and a detection circuitry configured to be electrically coupled to the sense electrode through an equivalent capacitance, wherein the equivalent capacitance is dependent on level of the liquid in the container, configured to receive excitation signal, and configured to obtain level signal from the excitation signal based on the equivalent capacitor, wherein the level sense level is corresponding to a level sense voltage provided by the sense electrode.

Description

METHOD OF DETERMINING LIQUID LEVEL AND APPARATUS USING THE
SAME
Related Applications [01 ] This application claims the benefit of priorities to U.S. Provisional Patent Application No. 61/021,948, filed on January 18, 2008, and U.S. Patent Application No. 12/329,176, filed on December 05, 2008, the entire contents of both of which are incorporated by reference herein in their entirety.
Technical Field
[02] The present invention relates to a method of determining liquid level and an apparatus using the same.
Background of the Invention [03] Electrical appliances, e.g., electric kettles, coffee makers, and water treatment appliances often use Lucite or glass tubing to indicate the water level or use a magnetic ball to sense the water level indirectly. However, with these approaches a stain or deposit inside the tube may result. The stain or deposit typically detrimentally affects the accuracy of the reading and is often difficult to clean. [04] There is a real market need to provide apparatuses and methods that facilitate the reading of a liquid level inside a container. Moreover, it is desirable that the apparatuses and methods reduce the user's effort in maintaining the equipment in order to insure the accuracy of the reading.
Summary of the Invention
[05] The present invention provides methods and apparatuses for determining a liquid level inside a container by using a variation of the capacitance between sense electrodes that are located inside the container. Embodiments of the invention support different types of liquids, including water, and support different electrical appliances, including electric kettles, coffee makers, and water treatment appliances having a non-transparency housing such as stainless steel and black color Lucite or glass that cannot directly indicate the water level. [06] With an aspect of the invention, a value of capacitance characteristic associated with a sensing electrode is determined. The water level is determined from the determined capacitance value. The water level may be displayed to the user on any kind of electronic panel, e.g., liquid crystal display (LCD), light emitting diode (LED) display, or vacuum fluorescent display (VFD).
[07] With another aspect of the invention, a correction factor may be applied to a determined capacitance associated with a sensing electrode to compensate for the operating temperature of the sensor electrode and the liquid. The compensation may be provided by mathematical computation or by a lookup table
[08] With another aspect of the invention, a plurality of sensing electrodes may be situated inside a container. The liquid level is determined by the capacitance variance among the plurality of sensing electrodes.
Brief Description of the Drawings
[09] The foregoing summary of the invention, as well as the following detailed description of exemplary embodiments of the invention, is better understood when read in conjunction with the accompanying drawings, which are included by way of example, and not by way of limitation with regard to the claimed invention.
[10] Figure 1 shows a container with a sense electrode for determining a liquid level in accordance with an embodiment of the invention.
[1 1 ] Figure 2 shows a circuit with a sense electrode for providing a level sense voltage in accordance with an embodiment of the invention.
[12] Figure 3 shows a circuit with a sense electrode for providing a level sense voltage in accordance with an embodiment of the invention.
[13] Figure 4 shows experimental results of a resulting waveform corresponding to a low level of water in accordance with an embodiment of the invention. [14] Figure 5 shows experimental results of a resulting waveform corresponding to a high level of water in accordance with an embodiment of the invention.
[15] Figure 6 shows experimental results of a resulting waveform corresponding to a low level of water in accordance with an embodiment of the invention.
[16] Figure 7 shows experimental results of a resulting waveform corresponding to a high level of water in accordance with an embodiment of the invention.
[17] Figure 8 shows an operational diagram of a system for determining a liquid level in accordance with an embodiment of the invention. [18] Figure 9 shows a system for determining a liquid level in accordance with an embodiment of the invention.
[19] Figure 10 shows a flow diagram for determining a liquid level in accordance with an embodiment of the invention.
[20] Figure 11 shows a container with a plurality of sense electrodes for determining a liquid level in accordance with an embodiment of the invention.
Detailed Description
[21 ] Figure 1 shows container 101 with a sensor containing sense electrode 103 for determining liquid level 105 in accordance with an embodiment of the invention. As will be discussed, the value of the equivalent capacitance of sense electrode 103 is measured and consequently the liquid level can be determined. Even though the sensor shown in Figure 1 contains only one sense electrode, one or more sense electrodes may be contained in the sensor, in which metal components (where each metal component corresponds to a sense electrode) are molded in an innocuous non-metallic material. For example, a printed circuit board or wire may be molded in a plastic. If the sensor has only one electrode then the capacitor's other plate (electrode) is circuit ground (GND). With container 101 comprising a metallic material, container 101 can serve as one plate (electrode) and connect to ground or in series with a capacitor (e.g., 100 pf to 0.1 uF) to ground. While the following discussion refers to water, embodiments of the invention support different types of liquids. With an embodiment of the invention, the sensor mounts on the wall of container 101. Different materials are characterized by different dielectric constants. The dielectric constant of the material affects the value of the equivalent capacitance. The following Table provides approximate dielectric constants for exemplary materials.
Figure imgf000005_0001
Figure imgf000006_0001
[22] Container 101 may assume different forms and include electric kettles, coffer makers, and water treatment appliances with a non-transparent housing such as stainless steel. [23] The equivalent capacitance (Cw) of sense electrode 103 is characterized by the following relationships:
• Directly proportional to the area of sense electrode 103
• Directly proportional to the dielectric constant of the material (liquid) surrounding sense electrode 103
Inversely proportional to the distance between the objects (between sense electrodes when there is a plurality of sense electrodes or between the sense electrode and the equivalent capacitor plate) - With a single-electrode-sensor, the equivalent capacitor corresponds to the electrode with GND or metallic container. With a two electrode sensor, the equivalent capacitor corresponds to two electrodes.
[24] The equivalent capacitance Cw may be determined by the following mathematical relationship:
(1 + BT)AEK
Cw = EQ. 1
D where A is the area of the plates in square meters (m ), B is the coefficient of temperature variation (which may be determined by experiment and varied with different hardware and electronic design), Cw is the water equivalent capacitance of in Farads (F), D is the distance between the electrode plates in meters (m), K is the dielectric constant of the material separating the plates, E is the permittivity of free space (8.85 x 10"12 F/m), and T is the dielectric and electrode temperature.
[25] Because the resulting voltage (corresponding to circuits 200 and 300 as shown in Figures 2 and 3) is an inverse function of the capacitance, the resulting voltage V is given by: V = - EQ. 2
Cw V where k is a constant based on the characteristics of apparatus 100. Constant k may be determined experimentally. As will be discussed, V corresponds to a DC signal and is measured by a processor (e.g., a microcontroller) through an analog-to-digital (AfD) converter. From EQs. 1 and 2, the resulting voltage is given by:
V = ∞ EQ. 3
(1 + BT)AEK
[26] The dielectric constant K can then be determined from EQ. 3 by:
K = kD EQ 4
(1 + BT)AEV
[27] From the known effect of the water level (which can obtained through experiment) on the dielectric constant K, water level 105 can be determined from EQ. 4 through calculations or from a lookup table. The following example utilizes the above equations: A = 0.01 area of the plates in square meters
B = 0.01 coefficient of temperature variation
K = 7.5 dielectric constant of the material separating the plates, e.g., glass
E = 8.85 10" 12 permittivity of free space
D = 0.01 distance between the electrode plates in meters
T = 300 dielectric and electrode temperature k = 7- 10" 9 characteristic of apparatus which is a experimental value V = kD/((l + BχT)χAχEχK)
V = 2.637 volts where V is the output signal without water
With the present of water, the equivalent of permittivity (Eeq) is changed EEll == 11-- 1100 ,"- u12 as an example Eeq = E + El Eeq = 9.85 10" u
Vl = kD/((l + BχT)χAχEeqxK)
Vl = 2.369 volts where Vl is the output signal with certain level of water
[28] When water level 105 has been determined, a level indicator may be displayed on any kind of electronic panel e.g., liquid crystal display (LCD), light emitting diode (LED) display, or vacuum fluorescent display (VFD). Also, an associated processor (not shown) may use the determined water level to control the heating of the water. For example, if the water is too low and damage to container 101 may consequently occur, the processor may terminate heating the water. On the other hand, if the water level is too high, the processor may terminate heating the water so that the water does not overflow when heating the water.
[29] Figure 2 shows equivalent circuit 200 with sense electrode 103 for providing level sense voltage 253 in accordance with an embodiment of the invention. Capacitance (Cw) 201 is affected by a change of the dielectric constant resulting from water level 105. Excitation signal 251 (point A) comprises a 500-5000 KHz sinusoidal or square wave waveform having a zero DC component. (Embodiments of the invention may use a higher frequency range if the electromagnetic compatibility is not adversely impacted.) From level sense voltage (V) 253, the effective dielectric constant is determined (based on EQ. 4) and consequently the water level can be obtained. [30] Figure 3 shows circuit 300 with sense electrode 103 for providing a level sense voltage 353 in accordance with an embodiment of the invention. As with circuit 200, the water level is determined from level sense voltage 353 in order to determine equivalent capacitance 301. [31 ] Figure 4 shows experimental results of resulting waveform 400 corresponding to a low level of water (where no water is present in container 101) in accordance with an embodiment of the invention. Waveforms 400, 500 (as shown in Figure 5), 600 (as shown in Figure 6), and 700 (as shown in Figure 7) are obtained from circuit 200; however, similar results are obtained from circuit 300. Waveform 400 is obtained at point B 355 (circuit 200) or point B 355 (circuit 300). The amplitude of waveform 400 is affected by the permittivity of the liquid (water) in proximity to sense electrode 103. A virtual capacitor effect (equivalent to capacitance (Cw)) occurs between sense electrode 103 and the liquid, in which a charge is held on sense electrode 103.
[32] Figure 5 shows experimental results of resulting waveform 500 corresponding to a high level of water (where electrode 103 is covered with water in container 101) in accordance with an embodiment of the invention. Waveform 500 is obtained at point 355 (point B in circuit 200) or point 355 (circuit 300). Comparing waveforms 400 and 500, one observes that the amplitude of waveform 500 is less (when the water level is high) relative to waveform 400 (when the water level is low) in accordance with EQ. 2. (In the example shown in Figures 4 and 5, the amplitude of waveform 400 is approximately 2.359 volts and the amplitude of waveform 500 is approximately 2.094 volts.) The amplitude change of waveform 400 and 500 results from different permittivity characteristics (water and air) surrounding sense electrode 103. [33] Figure 6 shows experimental results of resulting waveform 600 corresponding to a low level of water (when no water is present in container 101) in accordance with an embodiment of the invention. Waveform 600 is obtained at point C (circuit 200) or point C (circuit 300). The DC value of waveform 600 is affected by the permittivity of the liquid (water) in proximity to sense electrode 103.
[34] Figure 7 shows experimental results of resulting waveform 700 corresponding to a high level of water (where electrode 103 is covered with water in container 101) in accordance with an embodiment of the invention. Waveform 700 is obtained at point C (circuit 200) or point C (circuit 300). Comparing waveforms 600 and 700, one observes that the DC value of waveform 700 is less (when the water level is high) relative to waveform 600 (when the water level is low) in accordance with EQ. 2. (In the example shown in Figures 6 and 7, the DC value of waveform 600 is approximately 4.313 volts and the DC value of waveform 500 is approximately 3.313 volts.) The DC change of waveform 600 and 700 results from different permittivity characteristics (water and air) surrounding sense electrode 103.
[35] Figure 8 shows operational diagram 800 of system 900 (as shown in Figure 9) for determining a liquid level in accordance with an embodiment of the invention. Signal driver 801 provides an excitation signal 251 (point A) at sensor electrode 803. (Excitation signal 251 is injected at Dl/Rl (point A) with circuit 200 and at Cl (point A) with circuit 300.) Level sense voltage 253 is converted into a digital format by A/D converter 805 and read by processor 807. Processor 807 processes level sense voltage 253 to obtain the water level as discussed previously. (With other embodiments of the invention, a comparator may be used in lieu of A/D converter 805 and processor 807. The comparator may be used to sense one level.) The determined water level may be further compensated by the operating temperature as provided by temperature sensor 811. Processor 807 subsequently displays a water level indication on display 809.
[36] Figure 9 shows system 900 for determining a liquid level in accordance with an embodiment of the invention. Processor 901 provides an excitation signal (e.g., 1 KHz square wave signal) to detection circuit 905. Sense electrode(s) 903 in conjunction with detection circuit 905 (corresponding to circuit 200 or circuit 300) provides a level sense voltage to processor 901 through A/D converter 909. (A/D converter 909 is connected to point C of circuit 200 or 300.) With an embodiment of the invention, circuit 200 (or circuit 300) is placed on the same printed circuit board as A/D converter 909 and processor 901. The printed circuit board may be placed on the handle, lid, or bottom of a kettle (container). The Processor 901 determines the water level from the level sense voltage from EQ. 4 or from a lookup table. The determined water level may be compensated by the operating temperature provided by temperature sensor 911 and displayed on display 907. [37] Figure 10 shows flow diagram 1000 for determining a liquid level as performed by system 900 in accordance with an embodiment of the invention. In step 1001, excitation signal 251 is injected into circuit 200. Resulting level sense voltage 253 is measured by A/D converter 909 and provided to processor 901 in step 1003. In step 1005, the measured temperature of sense electrode 903 and the liquid are provided to processor 901 by temperature sensor 911. Processor 901 compensates for the temperature when determining the water level using EQ. 4 in step 1007. Processor 901 then displays the water level in step 1009. [38] Figure 11 shows container 1101 with a sensor having a plurality of sense electrodes (L1-L5) 1103 a- 1103 e for determining a liquid level in accordance with an embodiment of the invention. The sensor may have one or more electrodes that can be molded in PC plastic. The sensor may be mounted on the wall of container 1101. Detection circuitry (circuit 200 or 300) is applied to each sense electrode. The detection circuitry may be assigned to each sense electrode or may be shared by the sense electrodes by switching the detection circuitry to a specific sense electrode when needed. Rather than using one sensor electrode as shown in Figure 1, system 1100 incorporates five sense electrodes to determine water level 1105. System 1100 determines the capacitance variance among electrodes 1103a- 1103 e for the indication of the water level corresponding to Ll, L2, L3, L4, and L5. However, additional sense electrodes may be incorporated in order to obtain a greater accuracy of the water level. The equivalent capacitance (Cw) is determined for each sense electrode 1103a-l 103e. Because of the different dielectric characteristics of water relative to air, the equivalent capacitance of sensor electrodes below water are significantly different from the equivalent capacitance of sensor electrodes above water. In the exemplary embodiment shown in Figure 11, the equivalent capacitances of Ll, L2, and L3 is larger than the equivalent capacitances of L4 and L5 by applying EQ. 1. Consequently, a processor (not shown) determines that water level 1105 is near the bottom surface of sense electrode 1103b. The processor may subsequently display an indication "L3" on a display.
[39] As can be appreciated by one skilled in the art, a computer system with an associated computer-readable medium containing instructions for controlling the computer system can be utilized to implement the exemplary embodiments that are disclosed herein. The computer system may include at least one computer such as a microprocessor, digital signal processor, and associated peripheral electronic circuitry.
[40] Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims

1. An apparatus comprising: a container configured to contain a liquid; a sense electrode configured to be positioned in the container; and detection circuitry configured to: be electrically coupled to the sense electrode through an equivalent capacitance, wherein the equivalent capacitance is dependent on a level of the liquid in the container; receive an excitation signal; and obtain a level sense signal from the excitation signal based on the equivalent capacitor, wherein the level sense signal is indicative of the level without a plurality of sense electrodes.
2. The apparatus of claim 1, wherein the container comprises a metallic material.
3. The apparatus of claim 1, wherein the container comprises a non- metallic material.
4. The apparatus of claim 1, wherein the equivalent capacitance has an approximate value equal to (1+BT)AEK/D, wherein B is a coefficient of temperature variance, T is a temperature value of the sense electrode and the liquid, A is an effective area of the sense electrode, E is permittivity value of free space, K is an effective dielectric constant that surrounds the sense electrode, and D is an effective distance between the sense electrode and a circuit ground.
5. The apparatus of claim 1, further comprising: a processor configured to process the level sense signal to obtain a determined level of the liquid.
6. The apparatus of claim 5, further comprising: a temperature sensor configured to measure an operating temperature of the apparatus; and the processor configured to compensate the determined level by the operating temperature.
7. The apparatus of claim 5, wherein the processor is configured to adjust the determined level by a dielectric constant of the liquid.
8. The apparatus of claim 5, wherein the processor is configured to process a measured voltage of the level sense signal to obtain the determined level.
9. The apparatus of claim 8, wherein the processor is configured to obtain the equivalent capacitance from the measured voltage.
10. The apparatus of claim 8, further comprising: a voltage converter configured to convert the measured voltage to a digital format.
11. The apparatus of claim 5, further comprising: a level indicator; and the processor configured to instruct the level indicator to display an indication of the determined level.
12. The apparatus of claim 1, further comprising: a signal driver configured to generate the excitation signal.
13. A method comprising: containing a liquid in a container; positioning a single sense electrode in the container; electrically coupling the single sense electrode to a detection circuit through an equivalent capacitance, wherein the equivalent capacitance is dependent on a level of the liquid in the container; generating an excitation signal through the detection circuit; and obtaining a level sense signal from the detection circuit based on the equivalent capacitor, wherein the level sense signal is indicative of the level without a plurality of sense electrodes.
14. The method of claim 13, wherein the equivalent capacitance has an approximate value equal to (1+BT)AEKTD, wherein B is a coefficient of temperature variance, T is a temperature value of the sense electrode and the liquid, A is an effective area of the sense electrode, E is permittivity value of free space, K is an effective dielectric constant that surrounds the sense electrode, and D is an effective distance between the sense electrode and a circuit ground.
15. The method of claim 13, further comprising: processing the level sense signal to obtain a determined level of the liquid.
16. The method of claim 15, further comprising: measuring an operating temperature; and compensating the determined level by the operating temperature.
17. The method of claim 15, further comprising: adjusting the determined level by a dielectric constant of the liquid.
18. The method of claim 15, further comprising: processing a measured voltage of the level sense signal to obtain the determined level.
19. The method of claim 15, further comprising: displaying an indication of the determined level.
20. An apparatus a container comprising a metallic material and configured to contain a liquid; a single sense electrode; detection circuitry configured to: be electrically coupled to the single sense electrode through an equivalent capacitance, wherein the equivalent capacitance is dependent on a level of the liquid in the container; receive an excitation signal; and obtain a level sense signal from the excitation signal based on the equivalent capacitor, wherein the level sense signal is indicative of the level without a plurality of sense electrodes; and a processor configured to process a measured voltage of the level sense signal by utilizing the equivalent capacitance.
PCT/CN2009/070189 2008-01-18 2009-01-16 Method of determing liquid level and apparatus uning the same WO2009092330A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2194808P 2008-01-18 2008-01-18
US61/021,948 2008-01-18
US12/329,176 2008-12-05
US12/329,176 US20090187357A1 (en) 2008-01-18 2008-12-05 Liquid Level Determination by Capacitive Sensing

Publications (1)

Publication Number Publication Date
WO2009092330A1 true WO2009092330A1 (en) 2009-07-30

Family

ID=40877118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070189 WO2009092330A1 (en) 2008-01-18 2009-01-16 Method of determing liquid level and apparatus uning the same

Country Status (2)

Country Link
US (1) US20090187357A1 (en)
WO (1) WO2009092330A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281655B2 (en) 2009-04-03 2012-10-09 Eaton Corporation Fuel gauging system utilizing a digital fuel gauging probe
CN105852619A (en) * 2015-08-13 2016-08-17 陈楚娇 Health care glass kettle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011073667A1 (en) * 2009-12-17 2011-06-23 Bae Systems Plc Sensors
US10564025B2 (en) 2011-01-25 2020-02-18 Hewlett-Packard Development Company, L.P. Capacitive fluid level sensing
CN102599805A (en) * 2012-01-13 2012-07-25 张永超 Control circuit of electric kettle
US9261395B2 (en) * 2012-02-13 2016-02-16 Goodrich Corporation Liquid level sensing system
US9574928B2 (en) 2012-02-13 2017-02-21 Goodrich Corporation Liquid level sensing systems
US9153119B2 (en) * 2015-04-23 2015-10-06 Scott Stapleford Scenting nebulizer with remote management and capacitive liquid level sensing
CN105222866A (en) * 2015-09-14 2016-01-06 新乡市恒冠仪表有限公司 A kind of condenser type intelligent boiler liquid level of steam drum meter
FR3044090A1 (en) * 2015-11-20 2017-05-26 Plastic Omnium Advanced Innovation & Res METHOD FOR DETECTING A LEVEL OF A FLUID IN A LIQUID AND / OR SOLID STATE IN A RESERVOIR AND ASSOCIATED SYSTEM
US11048279B2 (en) 2016-05-31 2021-06-29 Pointwatch Systems Llc Liquid handling system monitoring systems and methods
CN108272328B (en) * 2017-01-05 2020-08-04 佛山市顺德区美的电热电器制造有限公司 Electric cooking device
US11280042B2 (en) * 2017-05-03 2022-03-22 Nypro Inc. Apparatus, system, and method of providing a liquid level monitor
US10254148B2 (en) * 2017-06-16 2019-04-09 GM Global Technology Operations LLC Liquid level sensor and method
US10989427B2 (en) 2017-12-20 2021-04-27 Trane International Inc. HVAC system including smart diagnostic capabilites
US11460403B2 (en) 2018-07-05 2022-10-04 AhuraTech LLC Electroluminescent methods and devices for characterization of biological specimens
US11428656B2 (en) 2018-07-05 2022-08-30 AhuraTech LLC Electroluminescent methods and system for real-time measurements of physical properties
US11393387B2 (en) 2018-07-05 2022-07-19 AhuraTech LLC Open-circuit electroluminescence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122718A (en) * 1975-07-16 1978-10-31 Gustafson Reuben V Liquid level sensor
US5182545A (en) * 1989-01-06 1993-01-26 Standex International Corporation Fluid level sensor having capacitive sensor
CN2212780Y (en) * 1994-02-23 1995-11-15 张金池 Alarm for water level in boiler
WO1998052004A1 (en) * 1997-05-09 1998-11-19 Nanotec Solution System and method for measuring the liquid level capacity in a container
WO1998057132A1 (en) * 1997-06-12 1998-12-17 Matulek Andrew M Capacitive liquid level indicator
KR20030087765A (en) * 2002-05-09 2003-11-15 김영애 System for measuring level and distinguishing kind of mixed liquid and method for measuring level and distinguishing kind of mixed liquid using thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619723U (en) * 1979-07-23 1981-02-21
US6138508A (en) * 1993-10-27 2000-10-31 Kdi Precision Products, Inc. Digital liquid level sensing apparatus
US6237412B1 (en) * 1997-07-16 2001-05-29 Nitta Corporation Level sensor
US7127943B1 (en) * 1999-01-19 2006-10-31 Rocky Mountain Research, Inc. Method and apparatus for detection of fluid level in a container
US6539797B2 (en) * 2001-06-25 2003-04-01 Becs Technology, Inc. Auto-compensating capacitive level sensor
US6823731B1 (en) * 2003-10-10 2004-11-30 Delphi Technologies, Inc. Liquid level sensing assembly and method for measuring using same
US20050217369A1 (en) * 2004-03-31 2005-10-06 Holappa Kenneth W Vessel with integrated liquid level sensor
AU2006254863B2 (en) * 2005-06-08 2011-06-30 Lumenite Control Technology Inc. Self-calibrating liquid level transmitter
BRPI0504625A (en) * 2005-07-05 2006-05-30 Indebras Ind Eletromecanica Br device for indicating the level of a liquid stored in a tank
US7981661B2 (en) * 2006-04-17 2011-07-19 Accuri Cytometers, Inc. Flow cytometer system with sheath and waste fluid measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122718A (en) * 1975-07-16 1978-10-31 Gustafson Reuben V Liquid level sensor
US5182545A (en) * 1989-01-06 1993-01-26 Standex International Corporation Fluid level sensor having capacitive sensor
CN2212780Y (en) * 1994-02-23 1995-11-15 张金池 Alarm for water level in boiler
WO1998052004A1 (en) * 1997-05-09 1998-11-19 Nanotec Solution System and method for measuring the liquid level capacity in a container
WO1998057132A1 (en) * 1997-06-12 1998-12-17 Matulek Andrew M Capacitive liquid level indicator
KR20030087765A (en) * 2002-05-09 2003-11-15 김영애 System for measuring level and distinguishing kind of mixed liquid and method for measuring level and distinguishing kind of mixed liquid using thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281655B2 (en) 2009-04-03 2012-10-09 Eaton Corporation Fuel gauging system utilizing a digital fuel gauging probe
CN105852619A (en) * 2015-08-13 2016-08-17 陈楚娇 Health care glass kettle

Also Published As

Publication number Publication date
US20090187357A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2009092330A1 (en) Method of determing liquid level and apparatus uning the same
US6819120B2 (en) Non-contact surface conductivity measurement probe
JP3219918U (en) Flowable material level sensing with shaped electrodes
CN108111158B (en) Electronic device, electrostatic capacitance sensor, and touch panel
US7612948B2 (en) Controllable optical lens
US9476752B2 (en) Fluid level sensor
KR101763684B1 (en) Fuel system electro-static potential differential level sensor element and hardware/software configuration
CN1066121A (en) Utilize capacitive transducer to displacement or specific inductive capacity carry out dynamically and non-cpntact measurement
EP1943489A1 (en) Capacitive gauge for fuel tank
CN106662479A (en) Capacitive liquid level measurement with differential out-of-phase channel drive to counteract human body capacitance
AU735475B2 (en) Apparatus for capacitive electrical detection
KR101214955B1 (en) Inspection apparatus of circuit substrate
CN109238401B (en) Liquid level detection device and method
EP2673624A1 (en) Fuel sensor based on measuring dielectric relaxation
US11079267B2 (en) Isolated capacitive liquid level probe
US4922182A (en) Auto reactance compensated non-contacting resistivity measuring device
KR20110037503A (en) Control device and method of inversion lcd display with touch screen
KR101030342B1 (en) Electrostatic capacitance type sensor for detecting liquid level and system
Kuppusamy et al. Embedded based capacitance fuel level sensor
WO2020061297A1 (en) Level sensing for dispenser canisters
KR101021427B1 (en) Inspection apparatus of circuit substrate
JP6023301B2 (en) Electronic devices, capacitance sensors and touch panels
CN218848033U (en) Soil moisture dielectric test circuit and sensor based on MEMS programmable silicon oscillator
KR20090101345A (en) Touch screen method and apparatus using capacitance of liquid crystal in tft-lcd
Kuczyński et al. Determination of bulk values of twist elasticity coefficient in a chiral smectic C* liquid crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703878

Country of ref document: EP

Kind code of ref document: A1