WO2009154411A1 - Process for preparing solid microstructures - Google Patents

Process for preparing solid microstructures Download PDF

Info

Publication number
WO2009154411A1
WO2009154411A1 PCT/KR2009/003272 KR2009003272W WO2009154411A1 WO 2009154411 A1 WO2009154411 A1 WO 2009154411A1 KR 2009003272 W KR2009003272 W KR 2009003272W WO 2009154411 A1 WO2009154411 A1 WO 2009154411A1
Authority
WO
WIPO (PCT)
Prior art keywords
biocompatible material
fluidized
present
support
microneedle
Prior art date
Application number
PCT/KR2009/003272
Other languages
French (fr)
Korean (ko)
Inventor
정형일
이광
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2009154411A1 publication Critical patent/WO2009154411A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars

Definitions

  • the present invention relates to a method for producing a microstructure and a microstructure produced thereby. [Background technology]
  • microneedle developed to date has been mainly used for drug delivery, blood collection, and analyte detection in vivo.
  • the microneedle is characterized by painless skin penetration and no trauma, and the painless skin penetration is important for the top diameter for minimal aggression.
  • microneedles must penetrate the stratum corneum of 10-20, which is the most powerful obstacle in the skin, so it is required to have a sufficient physical hardness.
  • the proper length to increase the efficiency of drug delivery by reaching the capillaries should also be considered.
  • absorbent microneedles were proposed by Nano Devices and Systems (Japanese Patent Application Laid-Open No. 2005154321; and "Sugar Micro Needles as Transdermic Drug Delivery System Biomedical Microdevices 7, 2005, 185).
  • the needle is intended for use in drug delivery or cosmetics without removing the microneedle inserted into the skin
  • a microneedle was prepared by adding a maltose and drug to the mold and coagulating the same.
  • the Japanese patent proposes a transdermal absorption of the drug by making the microneedle absorbent, but it is accompanied by pain when penetrating the skin, and due to the technical limitation of mold making, it has an effective upper diameter with painlessness and is effective.
  • Microphones with lengths of 1 ⁇ or more, which are required for drug delivery To fabricate the needle impossible.
  • biodegradable microneedle manufactured by Prausnitz of the University of Georgia, USA polyvinylpyrrolidone (PVP) and methacrylic acid in polydimethylsiloxane (PDMS) template acid: MAA
  • PVP polyvinylpyrrolidone
  • PDMS polydimethylsiloxane
  • MAA polydimethylsiloxane template acid
  • carboxymethylcell was added to a pyramidal template to prepare microneedles (Dissolving microneedles for transdermal drug delivery, Bi materials 2007, 1).
  • the method using the mold does not solve the limitation that it is difficult to manufacture by adjusting the diameter and length of the microneedle despite the advantage that it can be quickly and easily manufactured.
  • the skin is cut from the epidermis to the stratum corneum ( ⁇ 20 im), the epidermis ( ⁇ 100), And dermis (300-2, 500). Therefore, in order to deliver drugs and skin care ingredients without pain to a specific skin layer, it is recommended to produce the microneedle upper diameter within 30, effective length 1, 000-2, 000, and have sufficient hardness for skin penetration. Effective for the delivery of skin and beauty ingredients.
  • the inventors have sought to develop an improved process for producing solid microstructures. As a result, the inventors have found that when fluidizing a biocompatible material and solidifying the three-dimensional flow of the fluid, the solid has the desired properties (e.g. effective length, top diameter and hardness) at a simpler, faster and lower cost of production. By confirming that a microstructure can be produced, the present invention has been completed.
  • the present invention provides a method for producing a solid microstructure, comprising the following steps:
  • the present invention provides a solid microstructure produced by the method of the present invention described above.
  • the inventors have sought to develop an improved process for producing solid microstructures.
  • the desired properties e.g. effective length, top diameter and hardness
  • the material used in the present invention for preparing the microstructures is a biocompatible material.
  • biocompatible material means a material that is substantially nontoxic to the human body, chemically inert and immunogenic.
  • the material used in the present invention has both biocompatible and biodegradable properties.
  • biodegradable substance refers to a substance that can be degraded by body fluids or microorganisms in vivo.
  • Materials that can be used in the present invention include all materials that are biocompatible and can be fluidized.
  • the biocompatible material used in the present invention is a carbohydrate, more preferably a tan sugar, peat sugar, tritan sugar, loli sugar, polysaccharide or an alcohol derivative thereof.
  • the biocompatible material used in the present invention is glucose, lactose, fructose galactose, mannose, maltose, lactose, maltose, sucrose, trehalose, raffinose, meljitose, melibiose, xyl lobby OSU: cellobiose, stachyose (stachyose), of a sorbitan non manni, the erythritol (erythritol), the chairs come, the Lashio (lacitol), Mali (maltitol); such as gluconic acid and gluconic lactone aldonic Aldaric acid and its lactone derivatives such as aldonic acid and its lactone derivatives, ribaraic acid
  • Tilcelose hydroxyethylcellose and alkylcellose
  • crystalline cellose heparin
  • hyaluronic acid hyaluronic acid
  • chitosan dextran
  • alginate tragacanta
  • agar agar and carrageenan.
  • the biocompatible material used in the present invention has viscosity when fluidized.
  • Such viscosity can be variously changed according to the type, concentration and temperature of the biocompatible material, and can be adjusted to suit the purpose of the present invention.
  • the biocompatible materials used in the present invention exhibit viscosities up to 200000 cSt when fluidized.
  • Fluidization of biocompatible materials can be carried out through various methods known in the art. According to a preferred embodiment of the present invention, the fluidization may be carried out by heating at a temperature above the melting point of the biocompatible material or by using a suitable solvent (eg water, anhydrous or hydrous lower alcohol, acetone). , Ethyl acetate, chloroform, 1,3-butylene glycol, nucleic acid, diethyl ether and butyl acetate) Is carried out.
  • a suitable solvent eg water, anhydrous or hydrous lower alcohol, acetone.
  • the biocompatible material used in the present invention is at least 50 ° C, more preferably at least 60 ° C, even more preferably at least 70 ° C, most preferably at least 80 ° C Has a point.
  • the upper limit is not particularly limited, but is preferably 500 ° C., more preferably 400 ° C., even more preferably 300 ° C. and most preferably 200 ° C. .
  • Plates containing biocompatible material fluids are not particularly limited and may be made, for example, of materials such as polymers, organic chemicals, metals, ceramics, semiconductors and the like.
  • the fluidized biocompatible material exhibits flowability.
  • the present invention manufactures a solid microstructure using the flowability, that is, the fluid.
  • the biocompatible material further comprises a drug.
  • One of the main uses of the microstructures of the present invention is microneedle, which is intended for transdermal administration. Therefore, in the process of preparing a fluidized biocompatible material, a drug is mixed with the biocompatible material and prepared.
  • Drugs that can be used in the present invention are not particularly limited.
  • the drug includes a chemical drug, a protein drug, a peptide drug, nucleic acid molecules and nanoparticles for gene therapy, and the like.
  • Drugs that can be used in the present invention are, for example, anti-inflammatory drugs, analgesics, anti-arthritis agents, antispasmodics, anti-inflammatory drugs, antipsychotics, neurostabilizers, anti-anxiety drugs, antagonists, anti-Parkin's disease drugs, cholinergic agonists, anticancer agents, Antiangiogenic, immunosuppressive, antiviral, antibiotic, appetite suppressant, analgesic, anticholinergic, antihistamine, antimigraine, hormone, coronary, cerebrovascular or peripheral vasodilator contraceptive, antithrombotic, diuretic, antihypertensive , Cardiovascular diseases treatment agents, cosmetic ingredients (eg, wrinkle improvement, skin aging inhibitors and skin lightening agents) and the like, but are not limited thereto.
  • cosmetic ingredients eg, wrinkle improvement, skin aging inhibitors and skin lightening agents
  • the drug used in the present invention is preferably one having thermal stability.
  • the reason for this is that when fluidizing a biocompatible material, it is generally heated at a high temperature, and thus the silver of the fluidized biocompatible material is high.
  • One of the greatest features of the present invention is the preparation of the microstructure by inducing a three-dimensional downflow of the fluidized biocompatible material.
  • Three-dimensional descending flow means that fluids of the biocompatible material flow downward without contacting the support or the substrate in all parts except the base part. That is, all sides of the descending flow of the biocompatible fluid flow in contact with air only, without contacting a solid substrate or the like.
  • Three-dimensional downflow of fluidized biocompatible materials can be induced in a variety of ways. Two representative preferred embodiments are described as follows:
  • the three-dimensional descending flow of the fluidized biocompatible material is made by a support having a contacting protrusion, and the fluidized biocompatible material is attached to the contacting protrusion. And the fluidized biocompatible material has a three-dimensional descending flow from the contact protrusion by gravity.
  • the first embodiment is illustrated in FIG. 3.
  • the support mounted in the elevator contacts the fluid of the biocompatible material on the plate through the contact protrusion
  • the fluid is attached to the contact protrusion.
  • moving the support upwards at a constant speed by an elevator to separate the contact protrusions from the biocompatible fluid induces the flow of falling of the fluid and creates the shape of the microstructure.
  • solidifying at a constant temperature eg, room temperature
  • the solidification may be completed in the process of moving the contact projection upward, or may be completed after a predetermined time elapses after moving the contact projection upward.
  • the three-dimensional descending flow of the fluidized biocompatible material is achieved by a support having a hole at the bottom, wherein the fluidized biocompatible material is formed on the bottom surface of the support. And said Fluidized biocompatible materials undergo three-dimensional down flow through the opening by gravity, atmospheric pressure, or external pressure.
  • the second embodiment is illustrated in FIGS. 4 and 5.
  • a support having an opening, not a contact protrusion is used.
  • the support mounted in the elevator is impregnated with a fluid of biocompatible material.
  • moving the support upwards at a constant speed by the elevator induces a flow of descent of the fluid and creates the shape of the microstructure.
  • solidifying at a constant temperature eg, in reality
  • the solidification may be completed in the process of moving the support upwards, or may be completed after a predetermined time after the support is moved upwards.
  • the rapid introduction of a fluid of biocompatible material into a support with an opening located at a certain space height induces a descent flow of the fluid and allows the microstructure to be produced.
  • the biocompatible material when heat is applied to a support having a solid biocompatible material, the biocompatible material is fluidized and a downward flow is induced, thereby forming the shape of the microstructure.
  • Heating can be carried out by various methods known in the art. For example, there is a method of using a laser heating or an electric conductor plate.
  • solidifying at a constant temperature eg room temperature
  • solidifying at a constant temperature produces a microstructure having a constant hardness, effective length and diameter.
  • the solidification may be completed in the course of descending flow is induced to form the microstructure, or may be completed after a certain time.
  • the opening is located at the bottom of the plate.
  • the inlet of the opening may be inclined so that fluids are introduced well.
  • the inside of the opening is also inclined, so that the opening of the opening has a nozzle shape having a smaller diameter than the opening of the opening.
  • the descent of the fluid of the biocompatible material may be by gravity, atmospheric pressure and / or negative pressure.
  • the contact projections or The opening is patterned (see FIG. 1). Such patterning is advantageous when fabricating the microneedle of the present invention as a patch (£ & 1 ⁇ 011).
  • the downflow of the biocompatible material is solidified to obtain a microstructure having a certain hardness.
  • Solidification occurs when the fluid of the biocompatible material is at a temperature below the melting point. Therefore, the solidification may be generated and completed in the falling flow process of step (b), or may be completed after the predetermined time elapses.
  • the solidification can be in the manner of natural solidification, dry solidification or blowing solidification in the atmosphere, and most preferably natural solidification, that is, natural solidification by standing at room temperature.
  • the steps (b) and (c) are 1-2000 seconds, more preferably 1-1000 seconds, even more preferably 1-400 seconds, most preferably 1-200 In seconds.
  • the present invention can provide a variety of microstructures, preferably the microstructures provided by the present invention are microneedle, microspike, microblade, microknife, microfiber, microprobe, microbarb, microarray Or a microelectrode, more preferably, a microneedle, microspike, microblade, microknife, microfiber, microprobe or microvalve, most preferably solid microneedle.
  • the microstructures of the invention are of top diameter 1-500 urn, more preferably 2-300 ⁇ «, most preferably of 5-100 /, preferably It has an effective length of 100-10,000 im, more preferably 200-10,000 im, even more preferably 300-8,000 im and most preferably 500-2,000.
  • top of a microstructure is one of the microstructures having the smallest diameter. Means a distal end.
  • effective length means the vertical length from the top of the microstructure to the support surface.
  • solid microneedles refers to microneedles made integrally without forming hollows.
  • the present invention is a method for producing a microstructure through the flow of falling of the fluid, this strategy has not been conventionally adopted.
  • solid microstructures can be produced more simply, quickly and at lower production costs.
  • Figure 1 schematically shows a specific embodiment of the support used in the present invention.
  • FIG. 2 diagrammatically shows an embodiment of an opening in a plate (support) for use in the present invention.
  • Example 1 Fabrication of Maltose Microstructures I Biodegradable microneedles, a kind of microstructures, were prepared using maltose (Maltose monohydrate, Sigma), a type of natural sugar. The maltose powder was made into maltose candy by maintaining 140 ° C. in a petri dish, and a small amount of water was added to prevent the maltose candy interface from hardening by contact with air. A contact protrusion of diameter 200 contacted the 3 ⁇ 3 patterned support (see FIG. 1) to the maltose candy solution interface, and then the support was lifted at 25 im / s for 1 minute to produce maltose microneedle of length 1500.
  • maltose Maltose monohydrate, Sigma
  • the maltose powder was made into maltose candy by maintaining 140 ° C. in a petri dish, and a small amount of water was added to prevent the maltose candy interface from hardening by contact with air.
  • a contact protrusion of diameter 200
  • Biodegradable microneedles a kind of microstructures, were prepared using maltose (Maltose monohydrate, Sigma), a type of natural sugar.
  • the maltose powder was added to the petri dish to maintain maltose candy at 140 ° C., and a small amount of water was added to prevent the maltose candy interface from hardening by contact with air.
  • a support see Fig. 1 having a diameter of 3 x 3 200 iM holes, lifted the support, and hardened as maltose candy flowed down from the patterned holes, ultimately producing maltose microneedle. It was.
  • Biodegradable microneedle a type of microstructure, Produced.
  • the maltose powder is made into maltose candy by maintaining the state of 14CTC, and the maltose candy solution is hardened by placing the maltose candy solution on a metal support having a diameter of 200 ji hole pattern of 3 X 3 (see FIG. 1), or according to the metal support pattern. Harden by dripping. As the metal support was temporarily raised to 140 ° C., the maltose candy melted down from the patterned holes and flowed downward, ultimately producing maltose microneedles.
  • Biodegradable microneedles a kind of microstructures, were prepared using sucrose standard (Sigma), a powder form of natural sugars. Sucrose powder was dissolved in a small amount of water in Patridish and water was evaporated at ioo ° C to make sucrose candy. After the contact protrusion of diameter 200 contacted the 3 ⁇ 3 patterned support at the sucrose candy solution interface, the support was lifted at a rate of 25 pm / s for 1 minute to prepare a 1,500 micron sucrose microneedle. After 30 seconds, the sucrose microstructures solidified naturally and the sucrose candy interface did not solidify until then. As a result, a sucrose microneedle having an effective length of 1, 500! M and a diameter of 10 of the top was fabricated on the patterned support. The hardness of the fabricated microneedle represents 1-2 N value, which is much greater than 0.06 N.
  • Biodegradable microneedles a kind of microstructures, were prepared using sucrose standard (Sigma), a powder form of natural sugars. Sucrose powder was dissolved in a small amount of water in a petri dish and water was evaporated from the locrc into sucrose candy. Into the sucrose candy solution was placed a support having a diameter of 200 ⁇ M hole pattern of 3 ⁇ 3, By lifting, the sucrose candy flows down from the patterned lines and hardens, ultimately producing sucrose microneedles. As a result, a sucrose microneedle having a patterned effective length of 1,500 urn and a top diameter of 10 was produced. The hardness of the fabricated microneedle represents 1-2 N value, which is much larger than 0.06 N.
  • Example 6 Preparation of Sucrose Microneedle
  • Biodegradable microneedles a kind of microstructures, were prepared using sucrose standard (Sigma), a form of natural sugar. Dissolve sucrose powder in a small amount of water
  • sucrose candy solution Water is evaporated at 100 ° C to make sucrose candy, and the sucrose candy solution is hardened by placing the sucrose candy solution on a metal support having a diameter of 200 m hole pattern of 3 x 3, or hardened by sucrose candy solution according to the metal support pattern. .
  • the silver support was temporarily raised to ioo ° C, sucrose candy melted downward from the patterned holes to harden, ultimately producing sucrose microneedles.
  • the patterned effective length As a result, the patterned effective length
  • Sucrose microneedle having a diameter of 1,500 iffli and a top 10 was made.
  • the hardness of the fabricated microneedle represents 1-2 N value, which is much greater than 0.06 N.
  • Biodegradable microneedles a kind of microstructures, were fabricated using powdered cellulose (Carboxymethylcel lulose sodium solt MC, Sigma). A 10% (W / V) cell was made into a solution of solution and coated on the substrate with 200. Then, a contact with a diameter of 200 contact projections with a 3 X 3 patterned contact (see FIG. 1) was brought into contact with the cell-coated interface and a -50 kPa vacuum. Stayed and dried for 5 minutes on 20% humidity.
  • the support is lifted at a speed of 25 m / s for 20 seconds to fabricate a 500 ⁇ m length cell initial microstructure, and dried at humidity 17-18% for 2 minutes while maintaining a vacuum of ⁇ 70 kPa.
  • I was. Cells attached to the contact protrusion The microstructure was solidified because the amount of cells coated on the substrate was less than that of the Rhodes interface. The microstructure was separated from the Rhodes interface by continuous lifting at 25 / s. Finally, the resultant was dried at a humidity of 17-18% for 5 minutes while maintaining a vacuum of -70 kPa.
  • a patterned support was fabricated with an effective length of 500 [M and a diameter of 10!
  • the hardness of the fabricated microneedle represents 1-2 N value, which is much higher than 0.06 N.

Abstract

The present invention relates to a process for preparing a solid microstructure and the solid microstructure prepared thereby. The process for preparing the solid microstructure comprises: (a) preparing fluidized biocompatible materials; (b) inducing three-dimensional downward flow of the fluidized biocompatible materials wherein all surfaces in the downward flow are in contact with air; and (c) solidifying the downward flow of the fluidized biocompatible materials to form the solid microstructure.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
솔리드 마이크로구조체의 제조방법  Manufacturing method of solid microstructure
【기술 분야】 [Technical field]
본 발명은 마이크로구조체의 제조방법 및 이에 의해 제조되는 마이크로구조체에 관한 것이다. 【배경 기술】  The present invention relates to a method for producing a microstructure and a microstructure produced thereby. [Background technology]
현재까지 개발된 마이크로니들은 주로 생체 내 약물 전달, 채혈, 체내 분석물질 검출 등에 사용되어 왔다.  The microneedle developed to date has been mainly used for drug delivery, blood collection, and analyte detection in vivo.
마이크로니들은 기존의 니들과 달리 무통증의 피부 관통과 무외상올 특징으로 하며, 무통증 피부 관통은 최소 침예성을 위한 상단부 (top) 직경이 중요하다. 또한, 마이크로니들은 피부 중 가장 강력한 장애물인 10- 20 의 각질층 (stratum corneum)을 관통하여야 하므로, 층분한 물리적 경도를 가질 것이 요구된다. 또한, 모세혈관까지 도달함으로써 약물 전달의 효율성을 높이기 위한 적정 길이도 고려되어야 한다.  Unlike the conventional needle, the microneedle is characterized by painless skin penetration and no trauma, and the painless skin penetration is important for the top diameter for minimal aggression. In addition, microneedles must penetrate the stratum corneum of 10-20, which is the most powerful obstacle in the skin, so it is required to have a sufficient physical hardness. In addition, the proper length to increase the efficiency of drug delivery by reaching the capillaries should also be considered.
In- lane 타입의 마이크로니들 ( "Si 1 icon-processed Microneedles" , Journal of microelectrochemical systems 8, 1999)이 제'안 된 후, 다0ᄋ t한 유형의 마이크로니들이 개발되었다. 에칭 방법을 이용한 out-of-plane 타입의 솔리드 마이크로니들 (미국특허출원 공개 제 2002138049호 "Microneedle devices and methods of manufacture and use thereof" ) 제작 방법은 50-100 직경, 500 jum의 길이로 솔리드 실리콘 마이크로니들을 제작하여, 무통증 피부 관통을 실현하는 것이 불가능 하였으며, 목적 부위로 약물 및 미용성분을 전달하는 데 어려움이 있었다. 한편, 미국 조지아 대학의 프라우스니츠 (Prausnitz)는 유리를 에칭하거나 포토리소그래피 (photolithography)로 주형을 만들어 생분해성 폴리머 마이크로니들의 제작방법을 제안한 바 있다 (Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, Journal of Controlled Release 104, 2005, 5166). 또한, 2006년에는 After In- lane type of micro-needle ( "Si 1 icon-processed Microneedles ", Journal of microelectrochemical systems 8, 1999) is the first "eyes, and 0 t ᄋ a type of micro-needle has been developed. The fabrication method of the solid microneedle of the out-of-plane type using the etching method (US Patent Application Publication No. 2002138049 "Microneedle devices and methods of manufacture and use thereof") is a 50-100 diameter, 500 jum length solid silicon microneedle It was impossible to realize painless skin penetration by making needles, and it was difficult to deliver drugs and cosmetic ingredients to the target site. Meanwhile, Prausnitz of the University of Georgia, U.S., has proposed a method of making biodegradable polymer microneedles by etching glass or making a photolithography mold (Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery). , Journal of Controlled Release 104, 2005, 5166). In 2006,
1 대체용지 (규칙 제 26조) 포토리소그래피 방법을 통해 제작한 주형의 끝에 캡술 형태로 제작된 물질을 탑재하여 생분해성 솔리드 마이크로니들을 제작하는 방법이 제안되었다 (Polymer Microneedles for Control led-Re lease Drug Delivery, Pharmaceutical Research 23, 2006, 1008) . 이 방법을 사용하면 캡술형태로 제작 가능한 약물의 탑재가 자유롭다는 장점이 있지만 약물 탑재량이 많아지면 마이크로니들의 경도가 약해지므로 다량의 투약이 필요한 약물에는 적용의 한계가 나타났다. 1 Alternative paper (Article 26) A method of fabricating a biodegradable solid microneedle by mounting a capsular material at the end of a mold made by a photolithography method has been proposed (Polymer Microneedles for Control led-Re lease Drug Delivery, Pharmaceutical Research 23, 2006, 1008). ). This method has the advantage of free loading of drugs that can be produced in the form of capsule, but as the drug loading increases, the hardness of the microneedles is weakened.
2005년에는 흡수형 마이크로니들이 나노디바이스 앤드 시스템즈사에 의해 제안되었다 (일본특허출원공개 제 2005154321호; 및 "Sugar Micro Needles as Transdermic Drug Delivery System Biomedical Microdevices 7, 2005, 185). 이와 같은, 흡수형 마이크로니들은 피부내로 삽입된 마이크로니들을 제거하지 않고 약물전달 또는 미용에 사용하고자 하는 것이다. 이 방법에서는, 주형에 말토오스 (maltose)와 약물을 흔합한 조성물을 가하고 이를 응고시켜 마이크로니들을 제작하였다. 상기 일본특허는 마이크로니들을 흡수형으로 제작하여 약물의 경피흡수를 제안하고 있으나, 피부 관통 시 통증을 수반하였다. 또한 주형제작의 기술적 한계로 인해, 무통증을 수반하는 적절한 상단부 직경을 지니면서, 효과적인 약물전달에 요구되는 수준의 길이 즉, 1 顏 이상의 길이를 지닌 마이크로니들을 제작하는 것이 불가능하였다.  In 2005, absorbent microneedles were proposed by Nano Devices and Systems (Japanese Patent Application Laid-Open No. 2005154321; and "Sugar Micro Needles as Transdermic Drug Delivery System Biomedical Microdevices 7, 2005, 185). The needle is intended for use in drug delivery or cosmetics without removing the microneedle inserted into the skin In this method, a microneedle was prepared by adding a maltose and drug to the mold and coagulating the same. The Japanese patent proposes a transdermal absorption of the drug by making the microneedle absorbent, but it is accompanied by pain when penetrating the skin, and due to the technical limitation of mold making, it has an effective upper diameter with painlessness and is effective. Microphones with lengths of 1 顏 or more, which are required for drug delivery To fabricate the needle impossible.
최근 미국 조지아 대학의 프라우스니츠 (Prausnitz)에서 제작한 생분해성 마이크로 니들은 폴리다이메틸사일특세인 (Polydimethylsiloxane: PDMS) 주형에서 폴리바이닐파이를리돈 (Polyvinylpyrrolidone: PVP) 과 메타크릴릭 액시드 (Methacrylic acid: MAA)를 혼합한 물질을 사용하여 제작되었다 (Minimally Invasive Protein Delivery with Rapidly Dissolving Polymer Microneedles, Advanced Materials 2008, 1) . 또한 카르복시메틸셀를로오스를 피라미드 구조의 주형에 넣어 마이크로 니들을 제작하기도 하였다 (Dissolving microneedles for transdermal drug delivery, Bi materials 2007, 1). 주형을 사용한 방법은 빠르고 간편한 제작이 가능하다는 장점에도 불구하고 마이크로니들의 직경과 길이를 조절하여 제작하기 힘들다는 한계를해결하지 못하고 있다.  Recently, biodegradable microneedle manufactured by Prausnitz of the University of Georgia, USA, polyvinylpyrrolidone (PVP) and methacrylic acid in polydimethylsiloxane (PDMS) template acid: MAA) was prepared using a material mixed with (Minimally Invasive Protein Delivery with Rapidly Dissolving Polymer Microneedles, Advanced Materials 2008, 1). In addition, carboxymethylcell was added to a pyramidal template to prepare microneedles (Dissolving microneedles for transdermal drug delivery, Bi materials 2007, 1). The method using the mold does not solve the limitation that it is difficult to manufacture by adjusting the diameter and length of the microneedle despite the advantage that it can be quickly and easily manufactured.
피부는 표피로부터 각질층 (< 20 im), 외피 (epidermis) (< 100 ), 및 진피 (dermis) (300-2 , 500 )로 구성되어 있다. 따라서, 특정 피부 층에 통증 없이 약물과 피부미용성분을 전달하기 위해서는 마이크로니들 상단부 직경을 30 이내, 유효길이는 1 , 000-2 , 000 , 피부관통을 위한 층분한 경도를 갖도톡 제작하는 것이 약물과 피부미용성분의 전달에 효과적이다. The skin is cut from the epidermis to the stratum corneum (<20 im), the epidermis (<100), And dermis (300-2, 500). Therefore, in order to deliver drugs and skin care ingredients without pain to a specific skin layer, it is recommended to produce the microneedle upper diameter within 30, effective length 1, 000-2, 000, and have sufficient hardness for skin penetration. Effective for the delivery of skin and beauty ingredients.
종래 솔리드 마이크로니들은 제조방법상의 한계로 인해 실리콘, 폴리머, 금속, 유리 등의 소재로 한정되었고 , 상단부 직경이 50-100 / , 길이 500 urn 정도로 제작되어 목적하는 효과를 달성하는 것이 용이하지 않았다. 따라서, 피부 관통 시 무통증을 실현할 수 있을 정도의 가는 직경과 피부 깊숙이 침투할 수 있는 층분한 길이를 가지면서 소재에 특별한 제한 없이 층분한 경도를 구현할 수 있는 마이크로니들의 제조방법 및 이러한 마이크로니들에 대한 요구는 지속되고 있다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.  Conventional solid microneedles have been limited to materials such as silicon, polymer, metal, glass, etc. due to the limitations of the manufacturing method, and the upper end diameter of 50-100 / 500 urn in length was not easy to achieve the desired effect. Therefore, a method of manufacturing microneedles and a microneedle having a narrow diameter enough to realize painlessness when penetrating the skin and a long enough length to penetrate deeply into the skin without any particular limitation on the material and the microneedles The demand for it continues. Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
【발명의 상세한 설명】 [Detailed Description of the Invention]
본 발명자들은 솔리드형 마이크로구조체를 제조할 수 있는 개선된 공정을 개발하고자 노력하였다. 그 결과 , 본 발명자들은 생체적합성 물질을 유체화 하고 이 유체의 삼차원적인 유동을 고형화시키는 경우에는 보다 간단하고 신속하면서도 보다 저가의 생산비용으로 원하는 특성 (예컨대 유효길이, 상단부 직경 및 경도)을 갖는 솔리드 마이크로구조체를 제조할 수 있음을 확인함으로써, 본 발명을 완성하게 되었다.  The inventors have sought to develop an improved process for producing solid microstructures. As a result, the inventors have found that when fluidizing a biocompatible material and solidifying the three-dimensional flow of the fluid, the solid has the desired properties (e.g. effective length, top diameter and hardness) at a simpler, faster and lower cost of production. By confirming that a microstructure can be produced, the present invention has been completed.
따라서, 본 발명의 목적은 솔리드 마이크로구조체의 제조방법을 제공하는 데 있다.  Accordingly, it is an object of the present invention to provide a method for producing a solid microstructure.
본 발명의 다른 목적은 솔리드 마이크로구조체를 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명 청구범위 및 도면에 의해 보다 명확하게 된다. 본 발명의 일 양태에 따르면 , 본 발명은 다음의 단계를 포함하는 솔리드 마이크로구조체의 제조방법을 제공한다: Another object of the present invention is to provide a solid microstructure. Other objects and advantages of the present invention will become apparent from the following detailed description of the claims and drawings. According to one aspect of the present invention, the present invention provides a method for producing a solid microstructure, comprising the following steps:
(a) 유체화된 (f luidized) 생체적합성 물질을 준비하는 단계 ;  (a) preparing a fluidized biocompatible material;
(b) 상기 유체화된 생체적합성 물질의 삼차원적 하강흐름 (three- dimensional downward f lowing)을 유도하는 단계로서 상기 하강흐름의 모든 면은 공기와 접촉되도록 하며 ; 그리고,  (b) inducing a three-dimensional downward f lowing of the fluidized biocompatible material such that all sides of the downward flow are in contact with air; And,
(c) 상기 유체화된 생체적합성 물질의 하강흐름을 고형화 (sol idi fying)하여 솔리드 마이크로구조체를 형성시키는 단계 . 본 발명의 다른 양태에 따르면 , 본 발명은 상술한 본 발명의 방법에 의해 제조된 솔리드 마이크로구조체를 제공한다. 본 발명자들은 솔리드형 마이크로구조체를 제조할 수 있는 개선된 공정을 개발하고자 노력하였다. 그 결과, 본 발명자들은 생체적합성 물질을 유체화 하고 이 유체의 삼차원적인 유동을 고형화시키는 경우에는 보다 간단하고 신속하면서도 보다 저가의 생산비용으로 원하는 특성 (예컨대 유효길이 , 상단부 직경 및 경도)을 갖는 솔리드 마이크로구조체를 제조할 수 있음을 확인하였다. 본 발명의 방법올 각각의 단계에 따라 상세하게 설명하면 다음과 같다;  (c) solidifying (sol idi fying) the descent of the fluidized biocompatible material to form a solid microstructure. According to another aspect of the present invention, the present invention provides a solid microstructure produced by the method of the present invention described above. The inventors have sought to develop an improved process for producing solid microstructures. As a result, the inventors have found that when fluidizing a biocompatible material and solidifying the three-dimensional flow of the fluid, the solid has the desired properties (e.g. effective length, top diameter and hardness) at a simpler, faster and lower cost of production. It was confirmed that microstructures can be prepared. The method of the present invention is described in detail according to each step as follows;
단계 (a) : 유체화된 (f luidized) 생체적합성 물질의 준비 Step (a): Preparation of a f luidized biocompatible material
마이크로구조체를 제조하기 위하여 본 발명에서 이용되는 물질은 생체적합성 물질이다. 본 명세서에서 용어 "생체적합성 물질" 은 실질적으로 인체에 독성이 없고 화학적으로 불활성이며 면역원성이 없는 물질을 의미한다.  The material used in the present invention for preparing the microstructures is a biocompatible material. As used herein, the term "biocompatible material" means a material that is substantially nontoxic to the human body, chemically inert and immunogenic.
본 발명의 바람직한 구현예에 따르면 , 본 발명에서 이용되는 물질은 생체적합성 및 생분해성 특성을 모두 갖는다. 본 명세서에서 용어 "생분해성 물질" 은 생체 내에서 체액 또는 미생물 등에 의해서 분해될 수 있는 물질을 의미한다. 본 발명에서 이용될 수 있는 물질은 생체적합성을 가지며 유체화 할 수 있는물질을모두포함한다. According to a preferred embodiment of the present invention, the material used in the present invention has both biocompatible and biodegradable properties. As used herein, the term "biodegradable substance" refers to a substance that can be degraded by body fluids or microorganisms in vivo. Materials that can be used in the present invention include all materials that are biocompatible and can be fluidized.
바람직하게는, 본 발명에서 이용되는 생체적합성 물질은 탄수화물이며, 보다 바람직하게는 일탄당, 이탄당, 삼탄당, 을리고당, 폴리사카라이드 또는 이들의 알코을 유도체이다. 보다 더 바람직하게는, 본 발명에서 이용되는 생체적합성 물질은 글루코오스, 락토오스, 프럭토오스 갈락토오스, 만노오스, 말투로오스, 락투로오스, 말토오스, 수크로오스, 트레할로스, 라피노스, 멜지토오스, 멜리비오스, 자일로비오스: 셀로비오스, 스타키오스 (stachyose), 소르비를 만니를, 에리쓰리를 (erythritol), 자이리를, 라시를 (lacitol), 말리를 (maltitol); 글루콘산 및 글루콘산 락톤과 같은 알돈산 (aldonic acid) 및 그의 락톤 유도체, 리바라산 (ribaraic acid), 아라비나르산(&^1 11£11" acid) 및 갈락타르 (galactaric acid)과 같은 알다르산 (aldaric acid) 및 그의 락톤 유도체; 글루쿠론산 (glucuronic acid), 갈락쿠론산 (galaccuronic acid) 및 만뉴론산 (mannuronic acid)과 같은 유론산 (uronic acid); 전분, 식물성 검 (vegetable gums), 치환 셀를로오스 (예컨대, 카복시메틸셀를로오스, 하이드록시에틸셀를로오스 및 알킬셀를로오스), 결정셀를로오스, 헤파린, 히아루론산, 키토산, 덱스트란, 알지네이트, 트라가칸타, 아가 및 카라기난을포함한다. Preferably, the biocompatible material used in the present invention is a carbohydrate, more preferably a tan sugar, peat sugar, tritan sugar, loli sugar, polysaccharide or an alcohol derivative thereof. Even more preferably, the biocompatible material used in the present invention is glucose, lactose, fructose galactose, mannose, maltose, lactose, maltose, sucrose, trehalose, raffinose, meljitose, melibiose, xyl lobby OSU: cellobiose, stachyose (stachyose), of a sorbitan non manni, the erythritol (erythritol), the chairs come, the Lashio (lacitol), Mali (maltitol); such as gluconic acid and gluconic lactone aldonic Aldaric acid and its lactone derivatives such as aldonic acid and its lactone derivatives, ribaraic acid, arabinaric acid (& ^ 1 11 £ 11 " acid) and galactaric acid Uronic acids such as glucuronic acid, galaccuronic acid and mannuronic acid; starch, vegetable gums, substituted cellulose (e.g. Tilcelose, hydroxyethylcellose and alkylcellose), crystalline cellose, heparin, hyaluronic acid, chitosan, dextran, alginate, tragacanta, agar and carrageenan.
본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 생체적합성 물질은 유체화된 경우 점성을 갖는다. 이러한 점성은 생체적합성 물질의 종류, 농도 및 온도 등에 따라 다양하게 변화시킬 수 있으며, 본 발명의 목적에 적합하게 조절할 수 있다. 바람직하게는, 본 발명에서 이용되는 생체적합성 물질은 유체화된 경우 최대 200000 cSt 이하의 점성을나타낸다.  According to a preferred embodiment of the present invention, the biocompatible material used in the present invention has viscosity when fluidized. Such viscosity can be variously changed according to the type, concentration and temperature of the biocompatible material, and can be adjusted to suit the purpose of the present invention. Preferably, the biocompatible materials used in the present invention exhibit viscosities up to 200000 cSt when fluidized.
생체적합성 물질의 유체화는 당업계에 공지된 다양한 방법을 통해 실시할 수 있다. 본 발명의 바람직한 구현예에 따르면, 유체화는 생체적합합성 물질의 녹는점 (melting point) 이상의 온도에서 가열하여 실시하거나 또는 적합한 용매 (예컨대, 물, 탄소수 1-4의 무수 또는 함수 저급 알코을, 아세톤, 에틸 아세테이트, 클로로포름, 1,3—부틸렌글리콜, 핵산, 디에틸에테르 및 부틸아세테이트 등)에 생체적합성 물질을 용해시켜 실시된다. Fluidization of biocompatible materials can be carried out through various methods known in the art. According to a preferred embodiment of the present invention, the fluidization may be carried out by heating at a temperature above the melting point of the biocompatible material or by using a suitable solvent (eg water, anhydrous or hydrous lower alcohol, acetone). , Ethyl acetate, chloroform, 1,3-butylene glycol, nucleic acid, diethyl ether and butyl acetate) Is carried out.
본 발명의 바람직한 구현예에 따르면, 본 발명에 이용되는 생체적합성 물질은 50°C 이상, 보다 바람직하게는 60°C 이상, 보다 더 바람직하게는 70°C, 가장 바람직하게는 80°C 이상의 녹는점을 갖는다. 녹는점을 언급하는 경우 상한선 (upper limit)은 특별하게 제한되지 않지만, 바람직하게는 500°C, 보다 바람직하게는 400°C, 보다 더 바람직하게는 300°C, 가장바람직하게는 200°C이다. According to a preferred embodiment of the invention, the biocompatible material used in the present invention is at least 50 ° C, more preferably at least 60 ° C, even more preferably at least 70 ° C, most preferably at least 80 ° C Has a point. When referring to the melting point, the upper limit is not particularly limited, but is preferably 500 ° C., more preferably 400 ° C., even more preferably 300 ° C. and most preferably 200 ° C. .
생체적합성 물질 유체를 수용하는 플레이트는 특별하게 제한되지 않으며, 예를 들어 폴리머, 유기화학 물질, 금속, 세라믹 , 반도체 등의 물질로 제조될 수 있다.  Plates containing biocompatible material fluids are not particularly limited and may be made, for example, of materials such as polymers, organic chemicals, metals, ceramics, semiconductors and the like.
이렇게 유체화된 생체적합성 물질은 흐름성을 나타내몌 본 발명은 이러한흐름성 즉유동성올 이용하여 솔리드마이크로구조체를 제조한다. 본 발명의 바람직한 구현예에 따르면, 생체적합성 물질은 약물을 추가적으로 포함한다. 본 발명의 마이크로구조체의 주요한 용도 중 하나는 마이크로니들이며, 이는 경피투여를 목적으로 한다. 따라서, 유체화된 생체적합성 물질을 준비하는 과정에서 생체적합성 물질에 약물올 흔합하여 준비한다 .  The fluidized biocompatible material exhibits flowability. The present invention manufactures a solid microstructure using the flowability, that is, the fluid. According to a preferred embodiment of the invention, the biocompatible material further comprises a drug. One of the main uses of the microstructures of the present invention is microneedle, which is intended for transdermal administration. Therefore, in the process of preparing a fluidized biocompatible material, a drug is mixed with the biocompatible material and prepared.
본 발명에서 이용될 수 있는 약물은 특별하게 제한되지 않는다. 예를 들어, 상기 약물은 화학약물, 단백질 의약, 펩타이드 의약, 유전자치료용 핵산분자 및 나노입자등을포함한다.  Drugs that can be used in the present invention are not particularly limited. For example, the drug includes a chemical drug, a protein drug, a peptide drug, nucleic acid molecules and nanoparticles for gene therapy, and the like.
본 발명에 이용될 수 있는 약물은 예를 들어, 항염증제, 진통제, 항관절염제, 진경제, 항우을증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항암제, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제 피임약, 항혈전제 , 이뇨제 , 항고혈압제 , 심혈관질환 치료제, 미용성분 (예컨대, 주름개선제, 피부노화 억제제 및 피부미백제) 등을 포함하나, 이에 한정되는 것은 아니다.  Drugs that can be used in the present invention are, for example, anti-inflammatory drugs, analgesics, anti-arthritis agents, antispasmodics, anti-inflammatory drugs, antipsychotics, neurostabilizers, anti-anxiety drugs, antagonists, anti-Parkin's disease drugs, cholinergic agonists, anticancer agents, Antiangiogenic, immunosuppressive, antiviral, antibiotic, appetite suppressant, analgesic, anticholinergic, antihistamine, antimigraine, hormone, coronary, cerebrovascular or peripheral vasodilator contraceptive, antithrombotic, diuretic, antihypertensive , Cardiovascular diseases treatment agents, cosmetic ingredients (eg, wrinkle improvement, skin aging inhibitors and skin lightening agents) and the like, but are not limited thereto.
본 발명에 이용되는 약물은 바람직하게는 열적 안정성을 갖는 것이다. 그 이유는, 생체적합성 물질을 유체화 하는 경우 일반적으로 고온에서 가열하며 이에 유체화 생체적합성 물질의 은도가높기 때문이다. 단계 (b): 유체화된 생체적합성 물질의 삼차원적 하강흐롬 유도 본 발명의 가장 큰 특징 중 하나는 유체화 생체적합성 물질의 삼차원적 하강흐름을 유도하여 마이크로구조체를 제조하는 것이다. The drug used in the present invention is preferably one having thermal stability. The reason for this is that when fluidizing a biocompatible material, it is generally heated at a high temperature, and thus the silver of the fluidized biocompatible material is high. Step (b): Three-Dimensional Downflow Derivation of Fluidized Biocompatible Material One of the greatest features of the present invention is the preparation of the microstructure by inducing a three-dimensional downflow of the fluidized biocompatible material.
본 명세서에서 유체화 생체적합성 물질을 언급하면서 사용되는 용어 Terms used herein to refer to fluidized biocompatible materials
"삼차원적 하강흐름" 은 생체적합성 물질의 유체 (fluids)가 베이스 (base) 부분을 제외한 나머지 모든 부분에서 지지체 또는 기판 등에 접촉하지 않고 아래쪽으로 유동하는 것을 의미한다. 즉, 생체적합성 유체의 하강흐름의 모든 면은 고상의 기판 (sol id substrate) 등에 접촉하지 않고 단지 공기와 접촉되면서 유동한다. "Three-dimensional descending flow" means that fluids of the biocompatible material flow downward without contacting the support or the substrate in all parts except the base part. That is, all sides of the descending flow of the biocompatible fluid flow in contact with air only, without contacting a solid substrate or the like.
유체화된 생체적합성 물질의 삼차원적 하강흐름은 다양한 방식으로 유도할 수 있다. 대표적인 2가지 바람직한 구현예를 설명하면 다음과 같다:  Three-dimensional downflow of fluidized biocompatible materials can be induced in a variety of ways. Two representative preferred embodiments are described as follows:
첫 번째 구현예에 따르면, 유체화된 생체적합성 물질의 삼차원적 하강흐름은 접촉돌기 (contacting protrusion)가 있는 지지체 (support)에 의해 이루어지며, 상기 접촉돌기에는 상기 유체화된 생체적합성 물질이 부착되어 있고 상기 유체화된 생체적합성 물질은 중력에 의해 상기 접촉돌기로부터 삼차원적 하강흐름을 한다.  According to the first embodiment, the three-dimensional descending flow of the fluidized biocompatible material is made by a support having a contacting protrusion, and the fluidized biocompatible material is attached to the contacting protrusion. And the fluidized biocompatible material has a three-dimensional descending flow from the contact protrusion by gravity.
첫 번째 구현예는 도 3에 예시되어 있다. 도 3에서, 엘리베이터에 장착된 지지체를 플레이트에 있는 생체적합성 물질의 유체에 접촉돌기를 통하여 접촉시키면 상기 유체가 접촉돌기에 부착된다. 이어, 엘리베이터로 지지체를 일정한 속도로 위쪽으로 이동시켜 접촉돌기를 생체적합성 유체로부터 이격시키면 유체의 하강흐름이 유도되며 마이크로구조체의 형상이 만들어진다. 이어, 일정온도 (예컨대, 실온)에서 고형화시키면 일정한 경도, 유효길이 및 직경을 갖는 마이크로구조체가 제조된다. 이 경우, 고형화는 접촉돌기를 위쪽으로 이동하는 과정에서 모두 완료가 될 수도 있고, 접촉돌기를 위쪽으로 이동시킨 다음 일정 시간이 경과한 다음 고형화가 완료될 수도 있다.  The first embodiment is illustrated in FIG. 3. In FIG. 3, when the support mounted in the elevator contacts the fluid of the biocompatible material on the plate through the contact protrusion, the fluid is attached to the contact protrusion. Subsequently, moving the support upwards at a constant speed by an elevator to separate the contact protrusions from the biocompatible fluid induces the flow of falling of the fluid and creates the shape of the microstructure. Subsequently, solidifying at a constant temperature (eg, room temperature) produces a microstructure having a constant hardness, effective length and diameter. In this case, the solidification may be completed in the process of moving the contact projection upward, or may be completed after a predetermined time elapses after moving the contact projection upward.
두 번째 구현예에 따르면, 유체화된 생체적합성 물질의 삼차원적 하강흐름은 하부에 개구 (hole)가 있는 지지체 (support)에 의해 이루어지며, 상기 지지체의 하부 표면에는 상기 유체화된 생체적합성 물질이 있고 상기 유체화된 생체적합성 물질은 중력, 기압 또는 외부압에 의해 상기 개구를 통과하여 삼차원적 하강흐름을 한다. According to a second embodiment, the three-dimensional descending flow of the fluidized biocompatible material is achieved by a support having a hole at the bottom, wherein the fluidized biocompatible material is formed on the bottom surface of the support. And said Fluidized biocompatible materials undergo three-dimensional down flow through the opening by gravity, atmospheric pressure, or external pressure.
두 번째 구현예는 도 4 및 도 5에 예시되어 있다.  The second embodiment is illustrated in FIGS. 4 and 5.
도 4을 참조하면, 접촉돌기가 아닌 개구가 하부에 있는 지지체를 이용한다. 엘리베이터에 장착된 지지체를 생체적합성 물질의 유체에 함침시킨다. 이어, 엘리베이터로 지지체를 일정한 속도로 위쪽으로 이동시키면 유체의 하강흐름이 유도되며 마이크로구조체의 형상이 만들어진다. 이어, 일정온도 (예컨대, 실은)에서 고형화시키면 일정한 경도, 유효길이 및 직경을 갖는 마이크로구조체가 제조된다. 이 경우, 고형화는 지지체를 위쪽으로 이동하는 과정에서 모두 완료가 될 수도 있고, 지지체를 위쪽으로 이동시킨 다음 일정 시간이 경과한 다음 고형화가 완료될 수도 있다.  Referring to FIG. 4, a support having an opening, not a contact protrusion, is used. The support mounted in the elevator is impregnated with a fluid of biocompatible material. Subsequently, moving the support upwards at a constant speed by the elevator induces a flow of descent of the fluid and creates the shape of the microstructure. Subsequently, solidifying at a constant temperature (eg, in reality) produces a microstructure having a constant hardness, effective length and diameter. In this case, the solidification may be completed in the process of moving the support upwards, or may be completed after a predetermined time after the support is moved upwards.
택일적으로, 일정 공간 높이에 위치해 있는 개구가 있는 지지체에 신속하게 생체적합성 물질의 유체를 넣으면, 유체의 하강흐름이 유도되며 마이크로구조체가 제조될 수 있다.  Alternatively, the rapid introduction of a fluid of biocompatible material into a support with an opening located at a certain space height induces a descent flow of the fluid and allows the microstructure to be produced.
도 5를 참조하면, 고형의 생체적합성 물질이 있는 지지체에 열을 가하면 생체적합성 물질이 유체화 되고 하강흐름이 유도되며 결국 마이크로구조체의 형상이 만들어진다. 가열은 당업계에 공지된 다양한 방법으로 실시할 수 있다. 예를 들어, 레이저 가열 또는 전기도체인 플레이트를 이용하는 방법 등이 있다. 이어, 일정온도 (예컨대, 실온)에서 고형화시키면 일정한 경도, 유효길이 및 직경을 갖는 마이크로구조체가 제조된다. 이 경우, 고형화는 하강흐름이 유도되어 마이크로구조체의 형상이 만들어지는 과정에서 모두 완료가 될 수도 있고, 추가적으로 일정 시간이 경과한 다음 고형화가 완료될 수도 있다.  Referring to FIG. 5, when heat is applied to a support having a solid biocompatible material, the biocompatible material is fluidized and a downward flow is induced, thereby forming the shape of the microstructure. Heating can be carried out by various methods known in the art. For example, there is a method of using a laser heating or an electric conductor plate. Subsequently, solidifying at a constant temperature (eg room temperature) produces a microstructure having a constant hardness, effective length and diameter. In this case, the solidification may be completed in the course of descending flow is induced to form the microstructure, or may be completed after a certain time.
도 4 및 도 5에서, 개구는 플레이트의 하부에 위치해 있다. 도 2를 참조하면 개구의 입구는 유체들이 잘 유입되도록 경사가 있을 수 있다. 또한, 개구의 내부도 경사가 있어 개구의 입구와 비교하여 개구의 출구가 직경이 작은 노즐 형태의 개구를 만들 수 있다.  4 and 5, the opening is located at the bottom of the plate. Referring to FIG. 2, the inlet of the opening may be inclined so that fluids are introduced well. In addition, the inside of the opening is also inclined, so that the opening of the opening has a nozzle shape having a smaller diameter than the opening of the opening.
두 번째 구현예에서 생체적합성 물질의 유체의 하강흐름은 중력, 기압 및 /또는 의부압에 의해 이루어질 수 있다.  In a second embodiment the descent of the fluid of the biocompatible material may be by gravity, atmospheric pressure and / or negative pressure.
본 발명의 바람직한 구현예에 따르면, 상기 과정에서 접촉돌기 또는 개구는패터닝된 것이다 (참조: 도 1). 이러한 패터닝은 본 발명의 마이크로니들을 패치로 제작(£& &1^011)하는 경우유리하다. 단계 (c): 생체적합성 물질의 하강흐름의 고형화 According to a preferred embodiment of the present invention, the contact projections or The opening is patterned (see FIG. 1). Such patterning is advantageous when fabricating the microneedle of the present invention as a patch (£ & 1 ^ 011). Step (c): solidification of the descent of the biocompatible material
최종적으로, 생체적합성 물질의 하강흐름을 고형화하여 일정한 경도를 갖는마이크로구조체를 얻는다.  Finally, the downflow of the biocompatible material is solidified to obtain a microstructure having a certain hardness.
고형화는 생체적합성 물질의 유체가녹는점 이하의 온도에 놓여 있는 경우 발생된다. 따라서 고형화는 상기 단계 (b)의 하강흐름 과정에서 발생되어 완료될 수 있으며, 또는 추가적으로 일정 시간이 경과한 다음 고형화가완료될 수도 있다.  Solidification occurs when the fluid of the biocompatible material is at a temperature below the melting point. Therefore, the solidification may be generated and completed in the falling flow process of step (b), or may be completed after the predetermined time elapses.
본 발명의 바람직한 구현예에 따르면, 고형화는 대기 중에서의 자연 고형화, 건조 고형화 또는 송풍 고형화 방식으로 할 수 있으며, 가장 바람직하게는 자연 고형화, 즉 대기 증 실온에서의 방치에 의한 자연 고형화이다.  According to a preferred embodiment of the present invention, the solidification can be in the manner of natural solidification, dry solidification or blowing solidification in the atmosphere, and most preferably natural solidification, that is, natural solidification by standing at room temperature.
본 발명의 이점 중 하나는 매우 신속하게 마이크로구조체를 제조할 수 있다는 것이다. 본 발명의 바람직한 구현예에 따르면, 상기 단계 (b) 및 (c)는 1-2000초, 보다 바람직하게는 1-1000초, 보다 더 바람직하게는 1- 400초, 가장바람직하게는 1-200초내에 이루어진다.  One of the advantages of the present invention is that it can produce microstructures very quickly. According to a preferred embodiment of the invention, the steps (b) and (c) are 1-2000 seconds, more preferably 1-1000 seconds, even more preferably 1-400 seconds, most preferably 1-200 In seconds.
본 발명은 다양한 마이크로구조체를 제공할 수 있으며, 바람직하게는 본 발명에 의해 제공되는 마이크로구조체는 마이크로니들, 마이크로스파이크, 마이크로블레이드, 마이크로나이프, 마이크로파이버, 마이크로프로브, 마이크로발브 (microbarb), 마이크로어레이 또는 마이크로전극이고, 보다 바람직하게는, 마이크로니들, 마이크로스파이크, 마이크로블레이드, 마이크로나이프, 마이크로파이버, 마이크로프로브 또는 마이크로발브이고, 가장바람직하게는솔리드마이크로니들이다.  The present invention can provide a variety of microstructures, preferably the microstructures provided by the present invention are microneedle, microspike, microblade, microknife, microfiber, microprobe, microbarb, microarray Or a microelectrode, more preferably, a microneedle, microspike, microblade, microknife, microfiber, microprobe or microvalve, most preferably solid microneedle.
본 발명의 바람직한 구현예에 따르면, 본 발명의 마이크로구조체는 상단부 (top) 직경 1-500 urn, 보다 바람직하게는 2-300 β«ι, 가장 바람직하게는 5-100 / 의이며, 바람직하게는 유효길이 100—10,000 im, 보다 바람직하게는 200-10,000 im, 보다 더 바람직하게는 300-8,000 im, 가장 바람직하게는 500-2,000 를 갖는다. 본 명세서에서 사용되는 용어 마이크로구조체의 "상단부" 는 최소직경을 갖는 마이크로구조체의 일 말단부를 의미한다. 본 명세서에서 사용된 용어 "유효길이 " 는 마이크로구조체의 상단부로부터 지지체 표면까지의 수직 길이를 의미한다 . 본 명세서에서 사용된 용어 , "솔리드 마이크로니들" 은 중공의 형성 없이 일체형으로 제작된 마이크로니들을 의미한다 . 본 발명의 특징 및 이점을 요약하면 다음과 같다: According to a preferred embodiment of the invention, the microstructures of the invention are of top diameter 1-500 urn, more preferably 2-300 β «, most preferably of 5-100 /, preferably It has an effective length of 100-10,000 im, more preferably 200-10,000 im, even more preferably 300-8,000 im and most preferably 500-2,000. As used herein, the term "top" of a microstructure is one of the microstructures having the smallest diameter. Means a distal end. As used herein, the term “effective length” means the vertical length from the top of the microstructure to the support surface. As used herein, the term "solid microneedles" refers to microneedles made integrally without forming hollows. The features and advantages of the present invention are summarized as follows:
( i ) 본 발명은 유체의 하강흐름을 통하여 마이크로구조체를 제조하는 방법으로, 이러한 전략은 종래에 채택된 바 없다.  (i) The present invention is a method for producing a microstructure through the flow of falling of the fluid, this strategy has not been conventionally adopted.
( ii ) 본 발명에 따르면, 솔리드 마이크로구조체를 보다 간단하고 신속하면서도 보다 저가의 생산비용으로 제조할 수 있다.  (ii) According to the present invention, solid microstructures can be produced more simply, quickly and at lower production costs.
( iii ) 본 발명에 따르면, 제조 공정의 다양한 요소 (예컨대, 생체적합성 물질의 종류, 하강 흐름 속도)를 조절하여 다양한 특성을 갖는 솔리드 마이크로구조체를 제공할 수 있다. 【도면의 간단한 설명】  (iii) According to the present invention, it is possible to provide a solid microstructure having various characteristics by adjusting various elements of the manufacturing process (for example, the type of biocompatible material, the falling flow rate). [Brief Description of Drawings]
도 1 은 본 발명에서 이용되는 지지체의 구체적인 일 구현예를 도식적으로 나타낸다.  Figure 1 schematically shows a specific embodiment of the support used in the present invention.
도 2 는 본 발명에서 이용되는 플레이트 (지지체 )내 개구의 구현예를 도식적으로 나타낸다.  2 diagrammatically shows an embodiment of an opening in a plate (support) for use in the present invention.
도 3 는 본 발명의 방법의 구체적인 일 구현예를 나타낸다 .  3 shows one specific embodiment of the method of the present invention.
도 4 은 본 발명의 방법의 구체적인 다른 일 구현예를 나타낸다 .  4 illustrates another specific embodiment of the method of the present invention.
도 5 는 본 발명의 방법의 구체적인 또 다른 일 구현예를 나타낸다. 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서 , 본 발명의 요지 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 【실시 예】  5 shows another specific embodiment of the method of the present invention. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples according to the gist of the present invention to those skilled in the art to which the present invention pertains. Will be self explanatory. [Example]
실시예 1: 말토오스 마이크로구조체의 제작 I 천연당의 일종인 분말형태의 말토오스 (Maltose monohydrate , Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 패트리디쉬에서 140 °C 상태를 유지하여 말토오스 분말을 말토오스 캔디로 만들고, 말토오스 캔디 계면이 공기와의 접촉에 의하여 굳어지는 현상을 방지하기 위하여 소량의 물을 첨가시켰다. 직경 200의 접촉돌기가 3 X 3 패터닝된 지지체 (도 1 참조)를 말토오스 캔디 용액 계면에 접촉시킨 다음 , 지지체를 25 im/s 속도로 1 분간 리프트하여 , 길이 1,500 의 말토오스 마이크로니들을 제작하였다. 30 초 후, 말토오스 마이크로니들은 자연 고형화되고 말토오스 캔디 계면은 그때까지 고형화되지 않았다. 그 결과, 패터닝한 지지체에 유효길이 1 , 500 및 상단부 (top)의 직경 10 urn 말토오스 마이크로니들을 제작하였다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며 , 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시예 2: 말토오스 마이크로구조체의 제작 Π Example 1 Fabrication of Maltose Microstructures I Biodegradable microneedles, a kind of microstructures, were prepared using maltose (Maltose monohydrate, Sigma), a type of natural sugar. The maltose powder was made into maltose candy by maintaining 140 ° C. in a petri dish, and a small amount of water was added to prevent the maltose candy interface from hardening by contact with air. A contact protrusion of diameter 200 contacted the 3 × 3 patterned support (see FIG. 1) to the maltose candy solution interface, and then the support was lifted at 25 im / s for 1 minute to produce maltose microneedle of length 1500. After 30 seconds, the maltose microneedles solidified naturally and the maltose candy interface did not solidify until then. As a result, an effective length of 1, 500 and a diameter of 10 urn maltose microneedles of the top were prepared on the patterned support. The hardness of the fabricated microneedle represents 1-2 N value, which is much larger than 0.06 N. Example 2: Fabrication of Maltose Microstructures
천연당의 일종인 분말형태의 말토오스 (Maltose monohydrate, Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 패트리디쉬에 말토오스 분말올 140 °C 상태를 유지하여 말토오스 캔디로 만들고 , 말토오스 캔디 계면이 공기와의 접촉에 의하여 굳어지는 현상을 방지하기 위하여 소량의 물을 첨가시켰다. 말토오스 캔디 용액 내에 3 X 3 의 직경 200 iM 홀 패턴을 갖는 지지체 (도 1 참조)를 넣고, 지지체를 리프트하여, 패턴된 홀들로부터 말토오스 캔디가 흘러 내려가면서 굳어져 궁극:적으로 말토오스 마이크로니들을 제작하였다. 그 결과, 패턴화된 유효길이 1,500 iM 및 상단부 (top)의 직경 10 인 말토오스 마이크로니들을 얻을 수 있었다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며, 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시예 3: 말토오스 마이크로구조체의 제작 m Biodegradable microneedles, a kind of microstructures, were prepared using maltose (Maltose monohydrate, Sigma), a type of natural sugar. The maltose powder was added to the petri dish to maintain maltose candy at 140 ° C., and a small amount of water was added to prevent the maltose candy interface from hardening by contact with air. Into the maltose candy solution was placed a support (see Fig. 1) having a diameter of 3 x 3 200 iM holes, lifted the support, and hardened as maltose candy flowed down from the patterned holes, ultimately producing maltose microneedle. It was. As a result, a maltose microneedle having a patterned effective length of 1,500 iM and a diameter of 10 at the top was obtained. The hardness of the fabricated microneedle represents 1-2 N value, which is much greater than 0.06 N. Example 3: Preparation of Maltose Microstructures m
천연당의 일종인 분말형태의 말토오스 (Maltose monohydrate, Maltose in powder form, a type of natural sugar
Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 말토오스 분말을 14CTC 상태를 유지하여 말토오즈 캔디로 만들고 , 3 X 3 의 직경 200 j i 홀 패턴을 갖는 금속 지지체 (도 1 참조) 위에 말토오즈 캔디 용액를 넣고 굳히거나 , 금속 지지체 패턴에 따라 말토오즈 캔디 용액을 드톱하여 굳힌다. 금속 지지체를 140°C로 온도를 일시적으로 상승함에 따라 패턴된 홀들로부터 말토오즈 캔디가 녹아 아래로 흘러 내려가면서 굳어져 궁극적으로 말토오스 마이크로니들을 제작하였다. 그 결과, 패턴화된 유효길이 1 , 500 prn 및 상단부 (top)의 직경 10 ;皿인 말토오스 마이크로니들을 얻을 수 있었다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며 , 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시 예 4: 수크로오스 마이크로니들의 제작 I Biodegradable microneedle, a type of microstructure, Produced. The maltose powder is made into maltose candy by maintaining the state of 14CTC, and the maltose candy solution is hardened by placing the maltose candy solution on a metal support having a diameter of 200 ji hole pattern of 3 X 3 (see FIG. 1), or according to the metal support pattern. Harden by dripping. As the metal support was temporarily raised to 140 ° C., the maltose candy melted down from the patterned holes and flowed downward, ultimately producing maltose microneedles. As a result, a maltose microneedle having a patterned effective length of 1, 500 prn and a diameter of 10; The hardness of the fabricated microneedle represents 1-2 N value, which is much larger than 0.06 N. Example 4 Fabrication of Sucrose Microneedle I
천연당의 일종인 분말형태의 수크로오스 (Sucrose standard, Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 패트리디쉬에서 수크로오스 분말을 소량의 물에 녹이고 ioo°c에서 물을 증발시켜 수크로오스 캔디로 만들었다. 직경 200 의 접촉돌기가 3 X 3 패터닝된 지지체를 수크로오스 캔디 용액 계면에 접촉시킨 후, 지지체를 25 pm/s 속도로 1 분간 리프트하여, 길이 1, 500揮의 수크로오스 마이크로니들을 제작하였다. 30 초 후, 수크로오스 마이크로 구조체는 자연 고형화되고 수크로오스 캔디 계면은 그때까지 고형화되지 않았다. 그 결과, 패터닝한 지지체에 유효길이 1 , 500 !M 및 상단부 (top)의 직경 10 인 수크로오스 마이크로니들을 제작하였다 . 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며, 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시 예 5: 수크로오스 마이크로니들의 제작 Π  Biodegradable microneedles, a kind of microstructures, were prepared using sucrose standard (Sigma), a powder form of natural sugars. Sucrose powder was dissolved in a small amount of water in Patridish and water was evaporated at ioo ° C to make sucrose candy. After the contact protrusion of diameter 200 contacted the 3 × 3 patterned support at the sucrose candy solution interface, the support was lifted at a rate of 25 pm / s for 1 minute to prepare a 1,500 micron sucrose microneedle. After 30 seconds, the sucrose microstructures solidified naturally and the sucrose candy interface did not solidify until then. As a result, a sucrose microneedle having an effective length of 1, 500! M and a diameter of 10 of the top was fabricated on the patterned support. The hardness of the fabricated microneedle represents 1-2 N value, which is much greater than 0.06 N. Example 5 Fabrication of Sucrose Microneedle
천연당의 일종인 분말형태의 수크로오스 (Sucrose standard, Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 패트리디쉬에서 수크로오스 분말을 소량의 물에 녹이고 locrc에서 물을 증발시켜 수크로오스 캔디로 만들었다. 슈크로오스 캔디 용액 내에 3 X 3 의 직경 200 iM 홀 패턴을 갖는 지지체를 넣고 , 지지체를 리프트하여 , 패턴된 흘들로부터 슈크로오스 캔디가 흘러 내려가면서 굳어져 궁극적으로 슈크로오스 마이크로니들을 제작하였다. 그 결과 , 패턴화된 유효길이 1,500 urn 및 상단부 (top)의 직경 10 인 슈크로오스 마이크로니들을 제작하였다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며 , 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시 예 6 : 수크로오스 마이크로니들의 제작 ΠΙ Biodegradable microneedles, a kind of microstructures, were prepared using sucrose standard (Sigma), a powder form of natural sugars. Sucrose powder was dissolved in a small amount of water in a petri dish and water was evaporated from the locrc into sucrose candy. Into the sucrose candy solution was placed a support having a diameter of 200 × M hole pattern of 3 × 3, By lifting, the sucrose candy flows down from the patterned lines and hardens, ultimately producing sucrose microneedles. As a result, a sucrose microneedle having a patterned effective length of 1,500 urn and a top diameter of 10 was produced. The hardness of the fabricated microneedle represents 1-2 N value, which is much larger than 0.06 N. Example 6 Preparation of Sucrose Microneedle
천연당의 일종인 분말형태의 수크로오스 (Sucrose standard, Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다 . 패트리디쉬에서 수크로오스 분말을 소량의 물에 녹이고 Biodegradable microneedles, a kind of microstructures, were prepared using sucrose standard (Sigma), a form of natural sugar. Dissolve sucrose powder in a small amount of water
100°C에서 물을 증발시켜 수크로오스 캔디로 만들고, 3 X 3 의 직경 200 m 홀 패턴올 갖는 금속 지지체 위에 슈크로오스 캔디 용액를 넣고 굳히거나, 금속 지지체 패턴에 따라 슈크로오스 캔디 용액을 드톱하여 굳힌다. 금속 지지체를 ioo°c로 은도를 일시적으로 상승함에 따라 패턴된 홀들로부터 슈크로즈 캔디가 아래로 녹아 흘러 내려가면서 굳어져 궁극적으로 슈크로오스 마이크로니들을 제작하였다. 그 결과, 패턴화된 유효길이Water is evaporated at 100 ° C to make sucrose candy, and the sucrose candy solution is hardened by placing the sucrose candy solution on a metal support having a diameter of 200 m hole pattern of 3 x 3, or hardened by sucrose candy solution according to the metal support pattern. . As the silver support was temporarily raised to ioo ° C, sucrose candy melted downward from the patterned holes to harden, ultimately producing sucrose microneedles. As a result, the patterned effective length
1,500 iffli 및 상단부 (top)의 직경 10 인 슈크로오스 마이크로니들을 제작하였다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며, 이는 피부를 관통할 수 있는 경도 값이 0.06 N 보다 훨씬 큰 값이다. 실시 예 7: 셀를로오스 마이크로구조체의 제작 Sucrose microneedle having a diameter of 1,500 iffli and a top 10 was made. The hardness of the fabricated microneedle represents 1-2 N value, which is much greater than 0.06 N. Example 7 Preparation of Cellulose Microstructures
다당류의 일종인 분말형태의 셀를로오스 (Carboxymethylcel lulose sodium solt MC, Sigma)를 사용하여 마이크로구조체의 일종인 생분해성 마이크로니들을 제작하였다. 10%(W/V) 셀를로오스 용액을 만들어 기판에 200 로 코팅한 다음 직경 200 의 접촉돌기가 3 X 3 패터닝된 지지체 (도 1 참조)를 셀를로오스 코팅 계면에 접촉시키고 -50 kPa 진공상태를 유지하여 습도 20% 상에서 5 분동안 건조시켰다. 후속하여 , 지지체를 25 m/s 속도로 20 초간 리프트하여 , 길이 500 //m의 셀를로오즈 초기 마이크로구조체를 제작하고, -70 kPa 진공상태를 유지하여 습도 17-18% 상에서 2 분 동안 건조시켰다. 접촉돌기 부분에 부착된 셀를로오스 마이크로구조체는 기판에 코팅된 셀를로오스 계면보다 그 양이 적어서 고형화 되었으며, 25 /s 속도로 지속적인 리프팅하여 고형화되지 않은 셀를로오스 계면으로부터 분리가 되었다. 최종적으로 -70 kPa 진공상태를 유지하여 습도 17-18% 상에서 5 분 동안 건조한 결과, 패터닝한 지지체에 유효길이 500 [M 및 상단부 (top)의 직경 10 !M 셀를로오즈 마이크로니들을 제작하였다. 제작된 마이크로니들의 경도는 1-2 N 값을 나타내며, 이는 피부를 관통할수 있는 경도 값이 0.06 N보다 훨씬 큰 값이다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. Biodegradable microneedles, a kind of microstructures, were fabricated using powdered cellulose (Carboxymethylcel lulose sodium solt MC, Sigma). A 10% (W / V) cell was made into a solution of solution and coated on the substrate with 200. Then, a contact with a diameter of 200 contact projections with a 3 X 3 patterned contact (see FIG. 1) was brought into contact with the cell-coated interface and a -50 kPa vacuum. Stayed and dried for 5 minutes on 20% humidity. Subsequently, the support is lifted at a speed of 25 m / s for 20 seconds to fabricate a 500 μm length cell initial microstructure, and dried at humidity 17-18% for 2 minutes while maintaining a vacuum of −70 kPa. I was. Cells attached to the contact protrusion The microstructure was solidified because the amount of cells coated on the substrate was less than that of the Rhodes interface. The microstructure was separated from the Rhodes interface by continuous lifting at 25 / s. Finally, the resultant was dried at a humidity of 17-18% for 5 minutes while maintaining a vacuum of -70 kPa. Thus, a patterned support was fabricated with an effective length of 500 [M and a diameter of 10! The hardness of the fabricated microneedle represents 1-2 N value, which is much higher than 0.06 N. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims

【청구의 범위】 [Range of request]
【청구항 1]  [Claim 1]
다음의 단계를 포함하는솔리드 마이크로구조체의 제조방법 :  Method for producing a solid microstructure comprising the following steps:
(a) 유체화된 (fluidized) 생체적합성 물질을 준비하는 단계;  (a) preparing a fluidized biocompatible material;
(b) 상기 유체화된 생체적합성 물질의 삼차원적 하강흐름 (three- dimensional downward flowing)을 유도하는 단계로서 상기 하강흐름의 모든 면은 공기와 접촉되도톡 하며; 그리고,  (b) inducing a three-dimensional downward flow of the fluidized biocompatible material, wherein all sides of the downflow are in contact with air; And,
(c) 상기 유체화된 생체적합성 물질의 하강흐름을 고형화 (solidifying)하여 솔리드 마이크로구조체를 형성시키는 단계.  (c) solidifying the descent of the fluidized biocompatible material to form a solid microstructure.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 생체적합성 물질은 유체화된 경우 점성을 가지는 것올 특징으로 하는 방법 . 【청구항 3】  The method of claim 1, wherein the biocompatible material is viscous when fluidized. [Claim 3]
제 1 항에 있어서, 상기 유체화는 생체적합합성 물질의 녹는점 (melting point) 이상의 온도에서 가열을 하거나 생체적합성 물질을 용해시켜 이루어지는 것을 특징으로 하는 방법. 【청구항 4】  The method of claim 1, wherein the fluidization is accomplished by heating at a temperature above the melting point of the biocompatible material or by dissolving the biocompatible material. [Claim 4]
제 1 항에 있어서, 상기 생체적합성 물질은 50°C 이상의 녹는점올 갖는 것을 특징으로 하는 방법 . The method of claim 1, wherein the biocompatible material has a melting point of 50 ° C. or higher.
【청구항 5] [Claim 5]
제 1 항에 있어서, 상기 생체적합성 물질은 탄수화물인 것을 특징으로 하는 방법 .  The method of claim 1 wherein the biocompatible material is a carbohydrate.
【청구항 6】 [Claim 6]
제 5 항에 있어서, 상기 탄수화물은 이탄당 삼탄당, 올리고당, 폴리사카라이드 또는 이들의 알코올 유도체인 것을 특징으로 하는 방법. 【청구항 71 6. The method of claim 5, wherein the carbohydrate is peat sugar tritan sugar, oligosaccharide, polysaccharide or alcohol derivatives thereof. [Claim 71
제 1 항에 있어세 상기 유체화된 생체적합성 물질의 삼차원적 하강흐름은 접촉돌기 (contact ing protrusion)가 있는 지지체 (support )에 의해 이루어지며, 상기 접촉돌기 에는 상기 유체화된 생체적합성 물질이 부착되어 있고 상기 유체화된 생체적합성 물질은 중력에 의해 상기 접촉돌기로부터 삼차원적 하강흐름을 하는 것을 특징으로 하는 방법 .  The fluidized biocompatible material of claim 1, wherein the three-dimensional descending flow of the fluidized biocompatible material is made by a support having a contact protrusion, and the fluidized biocompatible material is attached to the contact protrusion. And the fluidized biocompatible material undergoes a three-dimensional descending flow from the contact protrusion by gravity.
【청구항 8】 [Claim 8]
제 1 항에 있어서 , 상기 유체화된 생체적합성 물질의 삼차원적 하강흐름은 하부에 개구 (hole)가 있는 지지 체 (support )에 의해 이루어지며 , 상기 지지체의 하부 표면에는 상기 유체화된 생체적합성 물질이 있고 상기 유체화된 생체적합성 물질은 중력, 기 압 또는 외부압에 의해 상기 개구를 통과하여 삼차원적 하강흐름을 하는 것을 특징으로 하는 방법 . 【청구항 9】  The fluidized biocompatible material of claim 1, wherein the three-dimensional descending flow of the fluidized biocompatible material is formed by a support having a hole at the bottom thereof, and the fluidized biocompatible material is formed on a lower surface of the support. And the fluidized biocompatible material undergoes a three-dimensional down flow through the opening by gravity, air pressure or external pressure. [Claim 9]
제 7 항 또는 제 8 항에 있어서 , 상기 접촉돌기 또는 개구는 패터닝된 것을 특징으로 하는 방법 .  9. A method according to claim 7 or 8, wherein the contact protrusion or opening is patterned.
【청구항 10】 [Claim 10]
제 1 항에 있어서 , 상기 단계 (b) 및 (C)는 시간적으로 동시 에 이루어지는 것을 특징으로 하는 방법 .  The method of claim 1, wherein steps (b) and (C) are performed simultaneously in time.
【청구항 11】 [Claim 11]
제 1 항에 있어서 , 상기 단계 (b) 및 (c)는 1-400 초 내에 이루어지는 것을 특징으로 하는 방법 .  The method of claim 1, wherein steps (b) and (c) occur within 1-400 seconds.
【청구항 12] [Claim 12]
제 1 항에 있어서, 상기 고형화는 대기 중에서의 자연 고형화, 건조고형화 또는 송풍고형화인 것을 특징으로 하는 방법 .  The method according to claim 1, wherein the solidification is natural solidification, dry solidification, or blowing solidification in the atmosphere.
【청구항 13】 제 1 항에 있어서, 상기 단계 (a)의 생체적합성 물질은 약물을 추가적으로 포함하는 것을특징으로하는방법 . [Claim 13] The method of claim 1, wherein the biocompatible material of step (a) further comprises a drug.
【청구항 14】 [Claim 14]
제 1 항에 있어서, 상기 마이크로구조체는 마이크로니들, 마이크로스파이크, 마이크로블레이드, 마이크로나이프, 마이크로파이버, 마이크로프로브, 마이크로발브 (microbarb), 마이크로어레이 또는 마이크로전극인 것을특징으로하는 방법.  The method of claim 1, wherein the microstructures are microneedles, microspikes, microblades, microknifes, microfibers, microprobes, microbarbs, microarrays or microelectrodes.
【청구항 15】 [Claim 15]
상기 제 1 항 내지 제 14 항 중 어느 한 항의 방법에 의해 제조된 솔리드마이크로구조체 .  A solid microstructure produced by the method of claim 1.
PCT/KR2009/003272 2008-06-18 2009-06-18 Process for preparing solid microstructures WO2009154411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080057469A KR100938631B1 (en) 2008-06-18 2008-06-18 Process for Preparing Solid Microstructures
KR10-2008-0057469 2008-06-18

Publications (1)

Publication Number Publication Date
WO2009154411A1 true WO2009154411A1 (en) 2009-12-23

Family

ID=41434239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003272 WO2009154411A1 (en) 2008-06-18 2009-06-18 Process for preparing solid microstructures

Country Status (2)

Country Link
KR (1) KR100938631B1 (en)
WO (1) WO2009154411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759370B1 (en) 2010-05-28 2017-07-18 히사미쓰 세이야꾸 가부시키가이샤 Array with fine protrusions
US11065428B2 (en) 2017-02-17 2021-07-20 Allergan, Inc. Microneedle array with active ingredient

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545741B2 (en) 2010-04-01 2013-10-01 Nurim Wellness Co. Ltd. Method of manufacturing microstructure
KR101254240B1 (en) * 2010-12-17 2013-04-12 주식회사 라파스 Process for preparing microstructures
KR101386442B1 (en) * 2010-04-01 2014-04-18 주식회사 라파스 Process for Preparing Solid Microstructures by Blowing and Solid Microstructures Prepared by the Same
KR101821572B1 (en) 2013-06-17 2018-01-26 주식회사 주빅 Painless and Patchless Shooting Microstructures
KR101691403B1 (en) 2014-10-30 2017-01-03 서울대학교산학협력단 Method for manufacturing electro induced microstructure and manufacturing apparatus for the same
KR101692314B1 (en) 2015-03-27 2017-01-03 주식회사 주빅 Dissolution system of lipophilic drugs into biodegradable polymer: Smart Polymer System
KR101747963B1 (en) * 2015-12-29 2017-06-27 주식회사 라파스 A method for separating microstructure of microstructure patch
KR101816922B1 (en) * 2016-05-20 2018-01-09 주식회사 라파스 Manufacturing method of micro needle
KR101698846B1 (en) * 2016-06-23 2017-01-23 이상혁 Method and apparatus for manufacturing micro needle, micro needle and computer readable recording medium
KR101716447B1 (en) * 2016-09-30 2017-03-14 이상혁 Method for manufacturing microneedles using vibration and gravity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334856B1 (en) * 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
JP2005154321A (en) * 2003-11-25 2005-06-16 Nano Device & System Research Inc Microneedle for ascorbic acid administration
WO2007080427A2 (en) * 2006-01-16 2007-07-19 Functional Microstructures Limited Method of making microneedles
KR100793615B1 (en) * 2006-07-21 2008-01-10 연세대학교 산학협력단 A biodegradable solid type microneedle and methods for preparing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334856B1 (en) * 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
JP2005154321A (en) * 2003-11-25 2005-06-16 Nano Device & System Research Inc Microneedle for ascorbic acid administration
WO2007080427A2 (en) * 2006-01-16 2007-07-19 Functional Microstructures Limited Method of making microneedles
KR100793615B1 (en) * 2006-07-21 2008-01-10 연세대학교 산학협력단 A biodegradable solid type microneedle and methods for preparing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759370B1 (en) 2010-05-28 2017-07-18 히사미쓰 세이야꾸 가부시키가이샤 Array with fine protrusions
US11065428B2 (en) 2017-02-17 2021-07-20 Allergan, Inc. Microneedle array with active ingredient

Also Published As

Publication number Publication date
KR20090131540A (en) 2009-12-29
KR100938631B1 (en) 2010-01-22

Similar Documents

Publication Publication Date Title
KR100938631B1 (en) Process for Preparing Solid Microstructures
KR101254240B1 (en) Process for preparing microstructures
Nagarkar et al. A review of recent advances in microneedle technology for transdermal drug delivery
Chu et al. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs
Elahpour et al. 3D printed microneedles for transdermal drug delivery: A brief review of two decades
WO2018157783A1 (en) Method and device for manufacturing soluble micro-needles
JP5868953B2 (en) Injection mold microneedle array and manufacturing method thereof
KR101136738B1 (en) Process for Preparing Solid Microstructures by Blowing and Solid Microstructures Prepared by the Same
AU2006287603B2 (en) Solid solution perforator containing drug particle and/or drug-adsorbed particles
KR101386442B1 (en) Process for Preparing Solid Microstructures by Blowing and Solid Microstructures Prepared by the Same
WO2008010681A1 (en) A solid type microneedle and methods for preparing it
KR101827739B1 (en) Micro-room microstrutre and method for fabricating thereof
Parhi Review of microneedle based transdermal drug delivery systems
Shravanth et al. Microneedles-based drug delivery for the treatment of psoriasis
Parhi Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases
Shaikh et al. Microneedle platform for biomedical applications
JP6691025B2 (en) Method for manufacturing needle-shaped array sheet
Moffatt et al. Microneedle technology
Babu et al. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices
CN113509636A (en) Percutaneous microneedle with spiral microchannel
Salih et al. Microneedles as A Magical Technology to Facilitate Transdermal Drug Delivery: A Review Article
Dugad et al. The Microneedle Drug Delivery System and some Recent Obstacles in its Implementation
Oliveira et al. Microneedles Patch: Design, Fabrication and Applications
JP5990913B2 (en) Manufacturing method of needle-shaped body
Korkmaz et al. Dissolvable and Coated Microneedle Arrays: Design, Fabrication, Materials and Administration Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/02/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09766836

Country of ref document: EP

Kind code of ref document: A1