WO2009155067A3 - Method for forming fine pitch structures - Google Patents

Method for forming fine pitch structures Download PDF

Info

Publication number
WO2009155067A3
WO2009155067A3 PCT/US2009/045515 US2009045515W WO2009155067A3 WO 2009155067 A3 WO2009155067 A3 WO 2009155067A3 US 2009045515 W US2009045515 W US 2009045515W WO 2009155067 A3 WO2009155067 A3 WO 2009155067A3
Authority
WO
WIPO (PCT)
Prior art keywords
rows
mold
deposited
materials
interior volume
Prior art date
Application number
PCT/US2009/045515
Other languages
French (fr)
Other versions
WO2009155067A2 (en
Inventor
Gurtej Sandhu
Original Assignee
Micron Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology, Inc. filed Critical Micron Technology, Inc.
Priority to EP09767378A priority Critical patent/EP2304771A2/en
Priority to CN200980122694.3A priority patent/CN102067282B/en
Publication of WO2009155067A2 publication Critical patent/WO2009155067A2/en
Publication of WO2009155067A3 publication Critical patent/WO2009155067A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Abstract

A mold having an open interior volume is used to define patterns. The mold has a ceiling, floor and sidewalls that define the interior volume and inhibit deposition. One end of the mold is open and an opposite end has a sidewall that acts as a seed sidewall. A first material is deposited on the seed sidewall. A second material is deposited on the deposited first material. The deposition of the first and second materials is alternated, thereby forming alternating rows of the first and second materials in the interior volume. The mold and seed layer are subsequently selectively removed. In addition, one of the first or second materials is selectively removed, thereby forming a pattern including free-standing rows of the remaining material. The free-standing rows can be utilized as structures in a final product, e.g., an integrated circuit, or can be used as hard mask structures to pattern an underlying substrate. The mold and rows of material can be formed on multiple levels. The rows on different levels can crisscross one another. Selectively removing material from some of the rows can from openings to form, e.g., contact vias.
PCT/US2009/045515 2008-06-17 2009-05-28 Method for forming fine pitch structures WO2009155067A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09767378A EP2304771A2 (en) 2008-06-17 2009-05-28 Method for forming fine pitch structures
CN200980122694.3A CN102067282B (en) 2008-06-17 2009-05-28 Method for forming fine pitch structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/140,928 2008-06-17
US12/140,928 US8404600B2 (en) 2008-06-17 2008-06-17 Method for forming fine pitch structures

Publications (2)

Publication Number Publication Date
WO2009155067A2 WO2009155067A2 (en) 2009-12-23
WO2009155067A3 true WO2009155067A3 (en) 2010-02-25

Family

ID=41415184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/045515 WO2009155067A2 (en) 2008-06-17 2009-05-28 Method for forming fine pitch structures

Country Status (6)

Country Link
US (3) US8404600B2 (en)
EP (1) EP2304771A2 (en)
KR (1) KR20110030599A (en)
CN (1) CN102067282B (en)
TW (1) TWI518740B (en)
WO (1) WO2009155067A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942738B1 (en) * 2009-03-03 2016-04-15 Commissariat A L'energie Atomique METHOD FOR MANUFACTURING A MOLD FOR NANO-PRINTING LITHOGRAPHY
KR20130002527A (en) * 2011-06-29 2013-01-08 엘지이노텍 주식회사 Method of manufacturing a nanowire
US8791023B2 (en) * 2012-08-31 2014-07-29 Eastman Kodak Company Patterned thin film dielectric layer formation
US20140065838A1 (en) * 2012-08-31 2014-03-06 Carolyn R. Ellinger Thin film dielectric layer formation
US8927434B2 (en) * 2012-08-31 2015-01-06 Eastman Kodak Company Patterned thin film dielectric stack formation
EP3050086A4 (en) * 2013-09-27 2017-05-03 Intel Corporation Previous layer self-aligned via and plug patterning for back end of line (beol) interconnects
CN110060972B (en) 2013-09-27 2024-02-23 英特尔公司 Self-aligned via and plug patterning for back end of line (BEOL) interconnects
CN105493250B (en) 2013-09-27 2018-12-18 英特尔公司 Subtractive method self-aligned via hole and plug patterning for back segment (BEOL) interconnection
KR102171263B1 (en) * 2014-08-21 2020-10-28 삼성전자 주식회사 Integrated circuit device having single crystal silicon thin film and method of manufacturing the same
US10043672B2 (en) * 2016-03-29 2018-08-07 Lam Research Corporation Selective self-aligned patterning of silicon germanium, germanium and type III/V materials using a sulfur-containing mask
US9607886B1 (en) * 2016-06-30 2017-03-28 International Business Machines Corporation Self aligned conductive lines with relaxed overlay
US9941118B2 (en) * 2016-08-22 2018-04-10 International Business Machines Corporation Dense vertical nanosheet
US10083842B2 (en) * 2016-11-16 2018-09-25 Tokyo Electron Limited Methods of sub-resolution substrate patterning
US10515896B2 (en) * 2017-08-31 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure for semiconductor device and methods of fabrication thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143527A (en) * 1988-11-25 1990-06-01 Sony Corp Wiring formation
JPH033375A (en) * 1989-05-31 1991-01-09 Fujitsu Ltd Manufacture of oxide superconducting device
US20080057687A1 (en) * 2006-09-01 2008-03-06 Ngimat Co., A Georgia Corporation Selective area deposition and devices formed therefrom

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328810A (en) 1990-05-07 1994-07-12 Micron Technology, Inc. Method for reducing, by a factor or 2-N, the minimum masking pitch of a photolithographic process
US6518189B1 (en) 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US5772905A (en) 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP3189773B2 (en) 1998-01-09 2001-07-16 三菱電機株式会社 Method of forming resist pattern, method of manufacturing semiconductor device using the same, and semiconductor device
IL131037A (en) * 1999-07-22 2004-06-20 Israel Atomic Energy Comm Method for making threedimensional photonic band-gap crystals
US6667237B1 (en) 2000-10-12 2003-12-23 Vram Technologies, Llc Method and apparatus for patterning fine dimensions
US6746825B2 (en) 2001-10-05 2004-06-08 Wisconsin Alumni Research Foundation Guided self-assembly of block copolymer films on interferometrically nanopatterned substrates
JP3967114B2 (en) 2001-11-22 2007-08-29 株式会社東芝 Processing method
US20080105646A1 (en) * 2002-05-07 2008-05-08 Microfabrica Inc. Multi-step Release Method for Electrochemically Fabricated Structures
US20050032375A1 (en) * 2003-05-07 2005-02-10 Microfabrica Inc. Methods for electrochemically fabricating structures using adhered masks, incorporating dielectric sheets, and/or seed layers that are partially removed via planarization
US6638879B2 (en) * 2001-12-06 2003-10-28 Macronix International Co., Ltd. Method for forming nitride spacer by using atomic layer deposition
TW576864B (en) 2001-12-28 2004-02-21 Toshiba Corp Method for manufacturing a light-emitting device
AU2003234397A1 (en) * 2002-05-07 2003-11-11 Memgen Corporation Methods of and apparatus for electrochemically fabricating structures
US6911400B2 (en) 2002-11-05 2005-06-28 International Business Machines Corporation Nonlithographic method to produce self-aligned mask, articles produced by same and compositions for same
US20080283405A1 (en) * 2003-05-01 2008-11-20 Johns Hopkins University Method for Producing Patterned Structures by Printing a Surfactant Resist on a Substrate for Electrodeposition
US7258895B2 (en) * 2003-08-06 2007-08-21 Micron Technology, Inc. Methods of forming material on a substrate, and a method of forming a field effect transistor gate oxide on a substrate
US7018917B2 (en) * 2003-11-20 2006-03-28 Asm International N.V. Multilayer metallization
US7141866B1 (en) * 2004-04-16 2006-11-28 Hewlett-Packard Development Company, L.P. Apparatus for imprinting lithography and fabrication thereof
US7268065B2 (en) 2004-06-18 2007-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of manufacturing metal-silicide features
US7115525B2 (en) 2004-09-02 2006-10-03 Micron Technology, Inc. Method for integrated circuit fabrication using pitch multiplication
US7208379B2 (en) 2004-11-29 2007-04-24 Texas Instruments Incorporated Pitch multiplication process
US7253118B2 (en) 2005-03-15 2007-08-07 Micron Technology, Inc. Pitch reduced patterns relative to photolithography features
US7611944B2 (en) 2005-03-28 2009-11-03 Micron Technology, Inc. Integrated circuit fabrication
KR100674970B1 (en) * 2005-04-21 2007-01-26 삼성전자주식회사 Method for fabricating small pitch patterns by using double spacers
US7396781B2 (en) 2005-06-09 2008-07-08 Micron Technology, Inc. Method and apparatus for adjusting feature size and position
US7776744B2 (en) 2005-09-01 2010-08-17 Micron Technology, Inc. Pitch multiplication spacers and methods of forming the same
US7488685B2 (en) 2006-04-25 2009-02-10 Micron Technology, Inc. Process for improving critical dimension uniformity of integrated circuit arrays
US7795149B2 (en) 2006-06-01 2010-09-14 Micron Technology, Inc. Masking techniques and contact imprint reticles for dense semiconductor fabrication
WO2008136882A2 (en) * 2007-02-14 2008-11-13 The Board Of Trustees Of The Leland Stanford Junior University Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
US8215074B2 (en) * 2008-02-05 2012-07-10 International Business Machines Corporation Pattern formation employing self-assembled material
US8262916B1 (en) * 2009-06-30 2012-09-11 Microfabrica Inc. Enhanced methods for at least partial in situ release of sacrificial material from cavities or channels and/or sealing of etching holes during fabrication of multi-layer microscale or millimeter-scale complex three-dimensional structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143527A (en) * 1988-11-25 1990-06-01 Sony Corp Wiring formation
JPH033375A (en) * 1989-05-31 1991-01-09 Fujitsu Ltd Manufacture of oxide superconducting device
US20080057687A1 (en) * 2006-09-01 2008-03-06 Ngimat Co., A Georgia Corporation Selective area deposition and devices formed therefrom

Also Published As

Publication number Publication date
WO2009155067A2 (en) 2009-12-23
TWI518740B (en) 2016-01-21
CN102067282A (en) 2011-05-18
CN102067282B (en) 2013-08-14
EP2304771A2 (en) 2011-04-06
KR20110030599A (en) 2011-03-23
TW201003739A (en) 2010-01-16
US8404600B2 (en) 2013-03-26
US20150011085A1 (en) 2015-01-08
US20130252420A1 (en) 2013-09-26
US20090311867A1 (en) 2009-12-17
US8846537B2 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
WO2009155067A3 (en) Method for forming fine pitch structures
WO2010059441A3 (en) Methods of forming a masking pattern for integrated circuits
WO2010110987A3 (en) Methods of forming patterns on substrates
WO2008022097A3 (en) Methods for forming patterned structures
EP2207050A3 (en) Optical element and method for making the same, master and method for making the same, and display apparatus
WO2005117085A3 (en) Gap-type conductive interconnect structures in semiconductor device
WO2008040760A3 (en) Method of an apparatus for manufacturing a panel and produced panel
TW200802713A (en) Manufacturing method of semiconductor device
WO2006072871A3 (en) Method for producing mixed stacked structures, different insulating areas and/or localised vertical electrical conducting areas
TW200627074A (en) Eliminating printability of sub-resolution defects in imprint lithography
WO2012039932A3 (en) Methods for forming layers on a substrate
WO2010070485A3 (en) Methods for manufacturing panels
WO2011149616A3 (en) Planarizing etch hardmask to increase pattern density and aspect ratio
WO2006028705B1 (en) Mask material conversion
WO2008141158A3 (en) Substrate surface structures and processes for forming the same
EP1696477A3 (en) Process of fabrication of sub-lithographic structures
WO2009122373A3 (en) Patterned artificial marble slab
WO2014051511A3 (en) Electroless metal through silicon via
TW201713184A (en) Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
JP2008520444A5 (en)
WO2009008407A1 (en) Process for producing organic semiconductor element, organic semiconductor element, and organic semiconductor device
WO2018112392A8 (en) Plaster boards and methods for making them
JP2010267681A5 (en) Method for manufacturing photoelectric conversion device
WO2014016147A3 (en) Method for producing a capacitor
JP2017517142A5 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122694.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09767378

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117001126

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009767378

Country of ref document: EP