WO2010019329A2 - Improved microvalve device - Google Patents

Improved microvalve device Download PDF

Info

Publication number
WO2010019329A2
WO2010019329A2 PCT/US2009/050063 US2009050063W WO2010019329A2 WO 2010019329 A2 WO2010019329 A2 WO 2010019329A2 US 2009050063 W US2009050063 W US 2009050063W WO 2010019329 A2 WO2010019329 A2 WO 2010019329A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve element
travel
boss
motion
depth
Prior art date
Application number
PCT/US2009/050063
Other languages
French (fr)
Other versions
WO2010019329A3 (en
Inventor
Harry Hunnicutt
Original Assignee
Microstaq, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstaq, Inc. filed Critical Microstaq, Inc.
Priority to JP2011522088A priority Critical patent/JP2011530683A/en
Priority to US13/058,146 priority patent/US8662468B2/en
Priority to CN200980137328.5A priority patent/CN102164846B/en
Publication of WO2010019329A2 publication Critical patent/WO2010019329A2/en
Publication of WO2010019329A3 publication Critical patent/WO2010019329A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0044Electric operating means therefor using thermo-electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/054Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making

Definitions

  • This invention relates in general to devices for MicroElectroMechanical Systems (MEMS), and in particular to a microvalve device having improved resistance to damage when subjected to external mechanical shocks.
  • MEMS MicroElectroMechanical Systems
  • MEMS MicroElectroMechanical Systems
  • micromachining is commonly understood to mean the production of three- dimensional structures and moving parts of MEMS devices. MEMS originally used modified integrated circuit (computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material) to micromachine these very small mechanical devices. Today there are many more micromachining techniques and materials available.
  • micromachined device as used in this application means a device having features with sizes in the micrometer range or smaller, and thus by definition is at least partially formed by micromachining.
  • microvalve as used in this application means a valve having features with sizes in the micrometer range or smaller, and thus by definition is at least partially formed by micromachining.
  • microvalve device as used in this application means a micromachined device that includes a microvalve, and that may include other components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be micromachined components or standard sized (larger) components. Similarly, a micromachined device may include both micromachined components and standard sized (larger) components.
  • a typical microvalve device includes a displaceable member or valve component movably supported by a body for movement between a closed position and a fully open position. When placed in the closed position, the valve component substantially blocks or closes a first fluid port that is otherwise in fluid communication with a second fluid port, thereby preventing fluid from flowing between the fluid ports. When the valve component moves from the closed position to the fully open position, fluid is increasingly allowed to flow between the fluid ports.
  • U.S. Patent Nos. 6,523,560; 6,540,203; and 6,845,962 the disclosures of which are incorporated herein by reference, describe microvalves made of multiple layers of material.
  • the multiple layers are micromachined and bonded together to form a microvalve body and the various microvalve components contained therein, including an intermediate mechanical layer containing the movable parts of the microvalve.
  • the movable parts are formed by removing material from an intermediate mechanical layer (by known micromachined device fabrication techniques, such as, but not limited to, Deep Reactive Ion Etching) to create a movable valve element that remains attached to the rest of the part by a spring-like member.
  • the material is removed by creating a pattern of slots through the material of uniform width to achieve the desired shape.
  • the movable valve element will then be able to move in one or more directions an amount roughly equal to the uniform slot width.
  • the invention relates to a microvalve device for controlling fluid flow in a fluid circuit.
  • the microvalve device includes a body having a cavity formed therein.
  • a valve element is supported by the body and movably disposed within the cavity.
  • An actuator is operatively coupled to the valve element for moving the valve element in a normal range of travel to control the flow of a fluid through the microvalve device.
  • the microvalve device further includes a travel limiting structure operatively cooperating with the valve element.
  • the travel limiting structure is effective to limit the amount of movement of the valve element outside the normal range of travel to prevent structural failure of the valve element or the actuator due to excessive stress (exceeding failure stress limits, i.e., exceeding the yield point of the material) caused by excessive travel outside the normal range of travel.
  • This invention also relates to a method of forming a microvalve with such a travel limiting structure.
  • FIG. 1 is a top view of an intermediate mechanical layer of a microvalve, illustrating a normally actuated position of the valve element.
  • FIG. 2 is a view similar to Fig. 1, except showing the valve element displaced by a mechanical shock to a stressed position.
  • FIG. 3 is a view similar to FIG. 1, showing the provision of a travel limiting structure to limit motion of the valve element in the event the microvalve is subjected to a mechanical shock.
  • FIG. 4 is an enlarged view of a portion of the valve element shown in Fig. 3.
  • FIG. 5 is a view similar to FIG. 4, but showing an even more enlarged view of a portion of the valve element shown in Fig. 3.
  • Fig. 6 is an enlarged plan view of a first side of a travel limiting structure as shown in Fig. 5
  • Fig. 7 is an enlarged plan view of a second side of a travel limiting structure as shown in Fig. 5.
  • FIG. 8 is a sectional view of the travel limiting structure taken along the line 8-8 of Fig. 7.
  • Fig. 9 is a block diagram showing a method of manufacturing a travel limiting structure as embodied in this invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 10 an exemplary embodiment of a microvalve device, including a microvalve for controlling fluid flow is shown generally at 10.
  • the microvalve 10 includes an actuator, indicated generally at 12, and a movable valve element, indicated generally at 14.
  • the actuator 12 may be of any suitable type of actuator.
  • the actuator 12 is a thermal actuator formed of a plurality of ribs 16 joined in a herringbone pattern to a central spine 18.
  • the ribs 16 are heated, such as by passing an electrical current through the ribs 16, the ribs 16 elongate.
  • Each rib 16 is fixed to the central spine 18 at one end, and to a fixed portion 21 (see Fig. 3) of the microvalve 10.
  • the ribs 16 urge the central spine 18 of the actuator 12 in the direction "A", toward the valve element 14.
  • the valve element 14 is operatively coupled to the central spine 18 at a first location along the length of the valve element 14.
  • the valve element 14 also includes a flexible hinge 20 at a second location, spaced apart from the first location.
  • the flexible hinge 20 is operatively coupled at one end to the fixed portion 21.
  • movement of the central spine 18 causes the valve element 14 to bend the hinge 20, thus causing the valve element 14 to move along a path of arcuate motion indicated at "B".
  • the actuator 12 moves the valve element 14 through a normal range of travel along the path of arcuate motion so as to selectively block and unblock one or more fluid ports 22 (see Fig. 4) in the microvalve 10, thus controlling fluid flow through the microvalve 10.
  • the actuator 12 is deenergized, the ribs 16 contract and the bending forces in the central spine 18 and the hinge 20 return the valve element 14 back toward an unactuated position.
  • the micro valve 10 may be formed of multiple layers of material bonded together to form a body.
  • the body may include a top layer (not shown), a bottom layer (not shown), and an intermediate layer adjacently located between the top and bottom layers.
  • the movable parts including the actuator 12, the valve element 14, the ribs 16, the central spine 18, the hinge 20, and any other movable parts of the micro valve 10) may be formed by removing material from the intermediate layer.
  • the material is removed from around the moving parts to separate the moving parts from the fixed portion 21 of the body. More specifically, the material may be removed by creating a pattern of slots through the material of the intermediate layer to achieve the desired shape.
  • shallow recesses (not shown) in fixed portions of the body outside of the intermediate layer that are adjacent to the moveable parts of the micro valve 10, so as to limit friction between the movable parts of the microvalve 10 and the adjacent fixed parts of the body of the microvalve 10.
  • openings 24 may be formed perpendicularly (that is, perpendicular to a plane defined by the motion within which the valve element 14 is constrained to move during normal range of travel) through various portions of the valve element 14.
  • One effect of such openings 24 is to help prevent or diminish pressure imbalances between the perpendicularly opposed surfaces of the valve element 14, so that the valve element 14 is not urged into "out of plane” movement so as to drag against the layers of material (not shown) adjacent to the intermediate layer from which the movable parts are fabricated.
  • the micro valve 10 of the illustrated embodiment has a valve element 14 actuated by the actuator 12.
  • the actuator 12 is operated by heating the ribs 16 by the application of electrical power.
  • the selective heating of the ribs 16 of the micro valve 10 causes movement due to differential thermal expansion of the material.
  • the stresses in the movable parts and the fixed portion 21 caused by this actuation are designed to be in a safe range (i.e., less than the failure stress limits - that is, the yield point - for the material or materials forming the movable parts and the fixed portion 21) that will not cause damage to the movable parts or fixed portion 21 even after repeated cycling of the power applied.
  • the movable parts of the micro valve 10 may be caused to move by forces other than those caused intentionally by the applied power.
  • a shock load due to dropping the microvalve 10 may cause the movable parts to move in an unplanned fashion outside the normal range of travel, as shown in Fig. 2.
  • the movable parts may move in one or more directions an amount equal to the uniform slot width, or more (in the case of movement toward a corner, for instance). These movements may cause the movable parts, particularly the spine 18 and the hinge 20, and the parts of the fixed portion 21 to which the movable parts are attached, or come into contact with, to be stressed in ways that do not occur during normal actuation.
  • the level of stress may approach or exceed the failure stress limits potentially causing failure of the movable parts or the fixed portion 21 of the microvalve 10.
  • the motion of the valve element 14 is limited to a normal range of travel defined by a path of arcuate motion.
  • the magnitude of movement of the valve element 14 may be limited, that is, the magnitude of travel outside the normal range of travel may be restricted to a non-zero value which, nevertheless is sufficiently restricted that the failure stress limits are not reached in the components of the micro valve 10.
  • the magnitude of movement of the other movable parts e.g., the ribs 16, the central spine 18, or the hinge 20 outside their normal range of travel during normal actuation may also be limited.
  • the illustrated microvalve 10 includes a travel limiting structure, indicated generally at 25.
  • the travel limiting structure 25 may include one or more bosses 26 extending above the general level of a surrounding surface, or may include other suitable features (not shown), that act to limit motion of the moveable parts of the microvalve 10 outside of the normal range of travel so that failure stress limits are not exceeded, so that the movable elements and the fixed portion 21 do not fail.
  • a plurality of bosses 26 may be formed on the fixed portion 21 of the body. It should be appreciated that the bosses 26 may instead, or additionally, be formed on any of the movable parts of the microvalve 10, such as the valve element 14, without departing from the scope of this invention.
  • the plurality of bosses 26 are configured to limit the magnitude of travel of the microvalve in the + and - Y directions (e.g., travel in a radial direction relative to the path of arcuate motion), and in the -X direction (e.g., uncommanded overtravel in an arcuate motion to the left of the illustrated unactuated position shown in Figs. 4 and 5), while permitting motion in the +X direction, which is the direction of normal actuation.
  • the plurality of bosses 26 which constitute the travel limiting structure 25 are effective to limit the magnitude of the travel of the movable valve element 14 outside the normal range of travel.
  • the movement of the valve element 14 can be constrained to a relatively small range of motion outside the normal range of travel so that neither the movable parts nor the fixed portion 21 reach stress levels which could cause the movable parts or the fixed portion 21, and thus the microvalve 10, to fail.
  • the exact location or locations at which it would be desirable to provide a boss 26 or other feature of the travel limiting structure 25 is dependent upon the design of a particular microvalve.
  • microvalve designs may allow uncommanded movement of a moveable valve element in a direction outside of a plane defined by the normal motion of the microvalve movable element sufficient to cause a movable element or fixed portion of the microvalve to exceed the failure stress limits of the material of which it was made, and fail.
  • a travel limiting structure 25 may therefore also be configured to limit movement of the movable parts outside the plane of motion as defined by the normal range of travel of the valve element 14.
  • a travel limiting structure 25 may include at least one boss or other feature (not shown) formed at a suitable location on the surface (not shown) of a cavity, or on another surface, of a fixed part of the body other than the intermediate layer (for example, in an adjacent layer of a multi-layer microvalve).
  • a travel limiting structure 25 could be positioned at a location to limit the magnitude of movement outside a normal range of motion of the movable elements of the microvalve to an amount which would prevent the movable elements or fixed portion 21 from failing due to exceeding failure stress limits.
  • the microvalve 10 may be provided with a travel limiting structure 25 that limits the magnitude of movement occurring outside of a normal range of movement, regardless of the direction of such movement.
  • a microvalve 10 may have improved robustness and shock resistance compared to a microvalve device which is otherwise the same in structure and performance but not provided with a travel limiting structure 25.
  • a method of manufacturing a travel limiting structure 25, as described above, may include the following steps.
  • the method includes determining a proper configuration for the travel limiting structure 25 that would be effective to limit the amount of travel of the moveable parts outside the normal range of travel.
  • the proper configuration of the travel limiting structure 25 may be based on a determination of the maximum allowable range of travel of the moving parts outside the normal range of travel so that the movable parts do not reach stress limits which could cause any portion of the microvalve 10 to fail.
  • the travel limiting structure 25 may be located on the fixed portion 21 of the intermediate layer, on the movable valve element 14, on a fixed part of the body other than the intermediate layer (for example, in an adjacent layer of a multi- layer microvalve), or any combination thereof.
  • the travel limiting structure 25 is formed in the proper configuration.
  • the bosses 26 can be formed during the process of removing material from the intermediate layer by creating slots through the intermediate layer to form the movable parts of the microvalve 10.
  • the width of the slots are made thinner in strategically selected locations, thereby forming the bosses 26 that limit the undesired motion of the movable parts.
  • the bosses 26 may be formed through the whole depth of the intermediate layer. However, if etching is the process being used to form the microvalve 10, a longer time is typically required to etch thinner sections of the slots formed to create movable parts of the microvalve 10.
  • the slot pattern may be etched from a first side of the intermediate layer of a uniform greater width Wl (for example, about 70 microns) in portions except in a location where a boss 26 is to be formed, in which location a relatively thinner width slot of a lesser width W2 (for example, about 40 microns) is formed to define an end face 27 of the boss, as shown in Fig. 6.
  • This etching process will act to form the slots part way through the depth of the material of the intermediate layer.
  • a second side of the intermediate layer is etched relatively more quickly with a pattern creating a slot uniformly of the greater width Wl (i.e., about 70 microns) part way through the intermediate layer to communicate with the slot formed from the first side, as shown in Fig. 7, so that the slot formed on the first side cooperates with the slot formed on the second side of the intermediate layer to create a combined slot that extends completely through the material of the intermediate layer, freeing the movable elements to move relative to the fixed portion 21 with a boss 26 extending into the combined slot.
  • Wl greater width
  • the resulting bosses 26 that are formed by etching the narrow portions of the slot only need to extend part way through the depth of the portion on which the bosses 26 are formed.
  • much of the material of the intermediate layer can be etched through quickly, as only a fraction of the intermediate layer must be etched through at the slower rate of etching achievable while etching the slot with narrow portions, thus reducing the amount of time required to form the bosses 26.
  • Fig. 8 there is illustrated one of the bosses 26 having a depth 28 formed on a fixed portion 21 of the body. The depth 28 of the boss 26 is less than the depth 30 of a combined slot extending completely through the fixed portion 21.
  • boss 26 Only material of the thickness of the depth 28 of the boss 26 need be etched at a relatively slow rate. The remaining material of the intermediate layer can be etched at a relatively fast rate. It should be appreciated that the boss 26 may be formed on the movable valve element 14 in similar fashion.
  • REFERENCE NUMBERS USED IN APPLICATION A direction of motion of actuated spine 18 B direction of rotary motion of valve element on actuation C direction of axial motion of valve element subjected to external shock
  • valve element 24 openings through valve element to equalize pressure, etc.

Abstract

A microvalve device includes a body, a valve element supported for movement relative to the body, and an actuator operatively coupled to the valve element for moving the valve element in a normal range of travel. A travel limiting structure operatively cooperates with at least one of the valve element and the actuator to effectively limit the magnitude of movement of the valve element or the actuator outside the normal range of travel to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits. A method of forming a microvalve with such a travel limiting structure is also disclosed.

Description

TITLE
IMPROVED MICROVALVE DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 61/087,635, filed August 09, 2008, the disclosure of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
[0002] This invention relates in general to devices for MicroElectroMechanical Systems (MEMS), and in particular to a microvalve device having improved resistance to damage when subjected to external mechanical shocks.
[0003] MEMS (MicroElectroMechanical Systems) is a class of systems that are physically small, having features with sizes in the micrometer range or smaller. These systems have both electrical and mechanical components. The term "micromachining" is commonly understood to mean the production of three- dimensional structures and moving parts of MEMS devices. MEMS originally used modified integrated circuit (computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material) to micromachine these very small mechanical devices. Today there are many more micromachining techniques and materials available. The term "micromachined device" as used in this application means a device having features with sizes in the micrometer range or smaller, and thus by definition is at least partially formed by micromachining. More particularly, the term "microvalve" as used in this application means a valve having features with sizes in the micrometer range or smaller, and thus by definition is at least partially formed by micromachining. The term "microvalve device" as used in this application means a micromachined device that includes a microvalve, and that may include other components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be micromachined components or standard sized (larger) components. Similarly, a micromachined device may include both micromachined components and standard sized (larger) components.
[0004] Various microvalve devices have been proposed for controlling fluid flow within a fluid circuit. A typical microvalve device includes a displaceable member or valve component movably supported by a body for movement between a closed position and a fully open position. When placed in the closed position, the valve component substantially blocks or closes a first fluid port that is otherwise in fluid communication with a second fluid port, thereby preventing fluid from flowing between the fluid ports. When the valve component moves from the closed position to the fully open position, fluid is increasingly allowed to flow between the fluid ports.
[0005] U.S. Patent Nos. 6,523,560; 6,540,203; and 6,845,962, the disclosures of which are incorporated herein by reference, describe microvalves made of multiple layers of material. The multiple layers are micromachined and bonded together to form a microvalve body and the various microvalve components contained therein, including an intermediate mechanical layer containing the movable parts of the microvalve. The movable parts are formed by removing material from an intermediate mechanical layer (by known micromachined device fabrication techniques, such as, but not limited to, Deep Reactive Ion Etching) to create a movable valve element that remains attached to the rest of the part by a spring-like member. Typically, the material is removed by creating a pattern of slots through the material of uniform width to achieve the desired shape. The movable valve element will then be able to move in one or more directions an amount roughly equal to the uniform slot width.
SUMMARY OF THE INVENTION
[0006] The invention relates to a microvalve device for controlling fluid flow in a fluid circuit. The microvalve device includes a body having a cavity formed therein. A valve element is supported by the body and movably disposed within the cavity. An actuator is operatively coupled to the valve element for moving the valve element in a normal range of travel to control the flow of a fluid through the microvalve device. The microvalve device further includes a travel limiting structure operatively cooperating with the valve element. The travel limiting structure is effective to limit the amount of movement of the valve element outside the normal range of travel to prevent structural failure of the valve element or the actuator due to excessive stress (exceeding failure stress limits, i.e., exceeding the yield point of the material) caused by excessive travel outside the normal range of travel. This invention also relates to a method of forming a microvalve with such a travel limiting structure.
[0007] Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 is a top view of an intermediate mechanical layer of a microvalve, illustrating a normally actuated position of the valve element.
[0009] FIG. 2 is a view similar to Fig. 1, except showing the valve element displaced by a mechanical shock to a stressed position.
[0010] FIG. 3 is a view similar to FIG. 1, showing the provision of a travel limiting structure to limit motion of the valve element in the event the microvalve is subjected to a mechanical shock.
[0011] FIG. 4 is an enlarged view of a portion of the valve element shown in Fig. 3.
[0012] FIG. 5 is a view similar to FIG. 4, but showing an even more enlarged view of a portion of the valve element shown in Fig. 3.
[0013] Fig. 6 is an enlarged plan view of a first side of a travel limiting structure as shown in Fig. 5
[0014] Fig. 7 is an enlarged plan view of a second side of a travel limiting structure as shown in Fig. 5.
[0015] FIG. 8 is a sectional view of the travel limiting structure taken along the line 8-8 of Fig. 7.
[0016] Fig. 9 is a block diagram showing a method of manufacturing a travel limiting structure as embodied in this invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0017] Referring now to Figs. 1 through 6, an exemplary embodiment of a microvalve device, including a microvalve for controlling fluid flow is shown generally at 10. The microvalve 10 includes an actuator, indicated generally at 12, and a movable valve element, indicated generally at 14.
[0018] The actuator 12 may be of any suitable type of actuator. In the illustrated embodiment, the actuator 12 is a thermal actuator formed of a plurality of ribs 16 joined in a herringbone pattern to a central spine 18. When the ribs 16 are heated, such as by passing an electrical current through the ribs 16, the ribs 16 elongate. Each rib 16 is fixed to the central spine 18 at one end, and to a fixed portion 21 (see Fig. 3) of the microvalve 10. When the opposed inclined sets of ribs 16 elongate, the ribs 16 urge the central spine 18 of the actuator 12 in the direction "A", toward the valve element 14.
[0019] The valve element 14 is operatively coupled to the central spine 18 at a first location along the length of the valve element 14. The valve element 14 also includes a flexible hinge 20 at a second location, spaced apart from the first location. The flexible hinge 20 is operatively coupled at one end to the fixed portion 21. During actuation, movement of the central spine 18 causes the valve element 14 to bend the hinge 20, thus causing the valve element 14 to move along a path of arcuate motion indicated at "B". The actuator 12 moves the valve element 14 through a normal range of travel along the path of arcuate motion so as to selectively block and unblock one or more fluid ports 22 (see Fig. 4) in the microvalve 10, thus controlling fluid flow through the microvalve 10. When the actuator 12 is deenergized, the ribs 16 contract and the bending forces in the central spine 18 and the hinge 20 return the valve element 14 back toward an unactuated position.
[0020] Typically, the micro valve 10 may be formed of multiple layers of material bonded together to form a body. The body may include a top layer (not shown), a bottom layer (not shown), and an intermediate layer adjacently located between the top and bottom layers. The movable parts (including the actuator 12, the valve element 14, the ribs 16, the central spine 18, the hinge 20, and any other movable parts of the micro valve 10) may be formed by removing material from the intermediate layer. The material is removed from around the moving parts to separate the moving parts from the fixed portion 21 of the body. More specifically, the material may be removed by creating a pattern of slots through the material of the intermediate layer to achieve the desired shape. Additionally, it may be desireable to form shallow recesses (not shown) in fixed portions of the body outside of the intermediate layer that are adjacent to the moveable parts of the micro valve 10, so as to limit friction between the movable parts of the microvalve 10 and the adjacent fixed parts of the body of the microvalve 10.
[0021] As can be seen in the figures, various openings 24 (vents, ducts, or apertures) may be formed perpendicularly (that is, perpendicular to a plane defined by the motion within which the valve element 14 is constrained to move during normal range of travel) through various portions of the valve element 14. One effect of such openings 24 is to help prevent or diminish pressure imbalances between the perpendicularly opposed surfaces of the valve element 14, so that the valve element 14 is not urged into "out of plane" movement so as to drag against the layers of material (not shown) adjacent to the intermediate layer from which the movable parts are fabricated. [0022] As indicated above, the micro valve 10 of the illustrated embodiment has a valve element 14 actuated by the actuator 12. The actuator 12 is operated by heating the ribs 16 by the application of electrical power. The selective heating of the ribs 16 of the micro valve 10 causes movement due to differential thermal expansion of the material. The stresses in the movable parts and the fixed portion 21 caused by this actuation are designed to be in a safe range (i.e., less than the failure stress limits - that is, the yield point - for the material or materials forming the movable parts and the fixed portion 21) that will not cause damage to the movable parts or fixed portion 21 even after repeated cycling of the power applied.
[0023] However, the movable parts of the micro valve 10 may be caused to move by forces other than those caused intentionally by the applied power. For example, a shock load due to dropping the microvalve 10 may cause the movable parts to move in an unplanned fashion outside the normal range of travel, as shown in Fig. 2. The movable parts may move in one or more directions an amount equal to the uniform slot width, or more (in the case of movement toward a corner, for instance). These movements may cause the movable parts, particularly the spine 18 and the hinge 20, and the parts of the fixed portion 21 to which the movable parts are attached, or come into contact with, to be stressed in ways that do not occur during normal actuation. The level of stress may approach or exceed the failure stress limits potentially causing failure of the movable parts or the fixed portion 21 of the microvalve 10.
[0024] It may therefore be desirable to limit the amount of motion of the movable parts outside of a normal range of travel, and more specifically, to limit the amount of motion of the movable elements to a small enough motion outside of the normal range of travel to prevent failure of the microvalve 10. For example, in the illustrated embodiment, the motion of the valve element 14 is limited to a normal range of travel defined by a path of arcuate motion. However, it should be appreciated that, while moving outside the normal range of travel, the magnitude of movement of the valve element 14 may be limited, that is, the magnitude of travel outside the normal range of travel may be restricted to a non-zero value which, nevertheless is sufficiently restricted that the failure stress limits are not reached in the components of the micro valve 10. Similarly, the magnitude of movement of the other movable parts (e.g., the ribs 16, the central spine 18, or the hinge 20) outside their normal range of travel during normal actuation may also be limited.
[0025] To limit the amount of movement of the movable parts of the microvalve 10 outside of the normal range of travel to an amount that is insufficient to cause the moveable parts to exceed failure stress limits and fail, the illustrated microvalve 10 includes a travel limiting structure, indicated generally at 25. The travel limiting structure 25 may include one or more bosses 26 extending above the general level of a surrounding surface, or may include other suitable features (not shown), that act to limit motion of the moveable parts of the microvalve 10 outside of the normal range of travel so that failure stress limits are not exceeded, so that the movable elements and the fixed portion 21 do not fail. As best seen in Fig. 4, a plurality of bosses 26 may be formed on the fixed portion 21 of the body. It should be appreciated that the bosses 26 may instead, or additionally, be formed on any of the movable parts of the microvalve 10, such as the valve element 14, without departing from the scope of this invention.
[0026] In the illustrated embodiment, the plurality of bosses 26 are configured to limit the magnitude of travel of the microvalve in the + and - Y directions (e.g., travel in a radial direction relative to the path of arcuate motion), and in the -X direction (e.g., uncommanded overtravel in an arcuate motion to the left of the illustrated unactuated position shown in Figs. 4 and 5), while permitting motion in the +X direction, which is the direction of normal actuation. Thus, the plurality of bosses 26 which constitute the travel limiting structure 25 are effective to limit the magnitude of the travel of the movable valve element 14 outside the normal range of travel. By thus limiting the undesired travel of the valve element 14, in the event of an external mechanical shock or other force tending to cause the valve element 14 to move in the +Y or -Y, or -X directions, the movement of the valve element 14 can be constrained to a relatively small range of motion outside the normal range of travel so that neither the movable parts nor the fixed portion 21 reach stress levels which could cause the movable parts or the fixed portion 21, and thus the microvalve 10, to fail. Of course, the exact location or locations at which it would be desirable to provide a boss 26 or other feature of the travel limiting structure 25 is dependent upon the design of a particular microvalve.
[0027] Furthermore, some microvalve designs may allow uncommanded movement of a moveable valve element in a direction outside of a plane defined by the normal motion of the microvalve movable element sufficient to cause a movable element or fixed portion of the microvalve to exceed the failure stress limits of the material of which it was made, and fail. A travel limiting structure 25 may therefore also be configured to limit movement of the movable parts outside the plane of motion as defined by the normal range of travel of the valve element 14. In such a microvalve 10, a travel limiting structure 25 may include at least one boss or other feature (not shown) formed at a suitable location on the surface (not shown) of a cavity, or on another surface, of a fixed part of the body other than the intermediate layer (for example, in an adjacent layer of a multi-layer microvalve). Such a travel limiting structure 25 could be positioned at a location to limit the magnitude of movement outside a normal range of motion of the movable elements of the microvalve to an amount which would prevent the movable elements or fixed portion 21 from failing due to exceeding failure stress limits.
[0028] Thus, the microvalve 10 may be provided with a travel limiting structure 25 that limits the magnitude of movement occurring outside of a normal range of movement, regardless of the direction of such movement. Such a microvalve 10 may have improved robustness and shock resistance compared to a microvalve device which is otherwise the same in structure and performance but not provided with a travel limiting structure 25.
[0029] A method of manufacturing a travel limiting structure 25, as described above, may include the following steps. In a first step 101, the method includes determining a proper configuration for the travel limiting structure 25 that would be effective to limit the amount of travel of the moveable parts outside the normal range of travel. The proper configuration of the travel limiting structure 25 may be based on a determination of the maximum allowable range of travel of the moving parts outside the normal range of travel so that the movable parts do not reach stress limits which could cause any portion of the microvalve 10 to fail. As described above, the travel limiting structure 25 may be located on the fixed portion 21 of the intermediate layer, on the movable valve element 14, on a fixed part of the body other than the intermediate layer (for example, in an adjacent layer of a multi- layer microvalve), or any combination thereof.
[0030] In a second step, 102, the travel limiting structure 25 is formed in the proper configuration. In the exemplary embodiment, the bosses 26 can be formed during the process of removing material from the intermediate layer by creating slots through the intermediate layer to form the movable parts of the microvalve 10. To accomplish this, the width of the slots are made thinner in strategically selected locations, thereby forming the bosses 26 that limit the undesired motion of the movable parts. The bosses 26 may be formed through the whole depth of the intermediate layer. However, if etching is the process being used to form the microvalve 10, a longer time is typically required to etch thinner sections of the slots formed to create movable parts of the microvalve 10. Therefore, to expedite manufacturing, the slot pattern may be etched from a first side of the intermediate layer of a uniform greater width Wl (for example, about 70 microns) in portions except in a location where a boss 26 is to be formed, in which location a relatively thinner width slot of a lesser width W2 (for example, about 40 microns) is formed to define an end face 27 of the boss, as shown in Fig. 6. This etching process will act to form the slots part way through the depth of the material of the intermediate layer. Then, a second side of the intermediate layer is etched relatively more quickly with a pattern creating a slot uniformly of the greater width Wl (i.e., about 70 microns) part way through the intermediate layer to communicate with the slot formed from the first side, as shown in Fig. 7, so that the slot formed on the first side cooperates with the slot formed on the second side of the intermediate layer to create a combined slot that extends completely through the material of the intermediate layer, freeing the movable elements to move relative to the fixed portion 21 with a boss 26 extending into the combined slot.
[0031] The resulting bosses 26 that are formed by etching the narrow portions of the slot only need to extend part way through the depth of the portion on which the bosses 26 are formed. With this arrangement, much of the material of the intermediate layer can be etched through quickly, as only a fraction of the intermediate layer must be etched through at the slower rate of etching achievable while etching the slot with narrow portions, thus reducing the amount of time required to form the bosses 26. For example in Fig. 8, there is illustrated one of the bosses 26 having a depth 28 formed on a fixed portion 21 of the body. The depth 28 of the boss 26 is less than the depth 30 of a combined slot extending completely through the fixed portion 21. Only material of the thickness of the depth 28 of the boss 26 need be etched at a relatively slow rate. The remaining material of the intermediate layer can be etched at a relatively fast rate. It should be appreciated that the boss 26 may be formed on the movable valve element 14 in similar fashion.
[0032] In accordance with the provisions of the patent statutes, the principle mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
REFERENCE NUMBERS USED IN APPLICATION A direction of motion of actuated spine 18 B direction of rotary motion of valve element on actuation C direction of axial motion of valve element subjected to external shock
10 micro valve 12 actuator 14 valve element 16 ribs 18 spine
20 hinge
21 fixed portion of valve body
22 microvalve ports
24 openings through valve element to equalize pressure, etc.
25 travel limiting structure
26 travel limiting boss
27 end face of boss
28 depth of travel limiting boss
30 depth of fixed portion of valve body
101 method of determining proper configuration for travel limiting structure
102 method of forming travel limiting structure

Claims

CLAIMSWhat is claimed is:
1. A micro valve device comprising: a body; a valve element supported by the body; an actuator operatively coupled to the valve element for moving the valve element in a normal range of travel; and a travel limiting structure operatively cooperating with the valve element, the travel limiting structure being effective to limit movement of the valve element outside the normal range of travel to prevent failure of the body, the valve element or the actuator due to exceeding failure stress limits.
2. The micro valve of Claim 1, wherein: the normal range of travel of the valve element defines a path of arcuate motion; and the travel limiting structure is effective to limit movement of the valve element in a radial direction relative to the path of arcuate motion to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits.
3. The micro valve of Claim 2, wherein the travel limiting structure includes a boss.
4. The micro valve of Claim 1, wherein: the normal range of travel of the valve element defines a path of arcuate motion; and the travel limiting structure is effective to limit the magnitude of arcuate movement of the valve element, beyond the normal range of travel, to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits.
5. The micro valve of Claim 4, wherein the travel limiting structure includes at least one boss.
6. The micro valve of Claim 2, wherein the travel limiting structure is effective to limit the magnitude of arcuate movement of the valve element beyond the normal range of travel to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits.
7. The micro valve of Claim 6, wherein the travel limiting structure includes at least one boss.
8. The microvalve of Claim 3, wherein the boss is formed on a fixed portion of the body.
9. The microvalve of Claim 5, wherein the boss is formed on a fixed portion of the body.
10. The microvalve of Claim 7, wherein the boss is formed on a fixed portion of the body.
11. The microvalve of Claim 8, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the fixed portion of the body having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the fixed portion.
12. The micro valve of Claim 9, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the fixed portion of the body having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the fixed portion.
13. The micro valve of Claim 10, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the fixed portion of the body having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the fixed portion.
14. The microvalve of Claim 3, wherein the boss is formed on the valve element.
15. The microvalve of Claim 5, wherein the boss is formed on the valve element.
16. The microvalve of Claim 7, wherein the boss is formed on the valve element.
17. The microvalve of Claim 14, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the valve element having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the valve element.
18. The microvalve of Claim 15, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the valve element having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the valve element.
19. The micro valve of Claim 16, wherein the normal range of travel defines a plane of motion, the boss having a depth perpendicular to the plane of motion and the valve element having a depth perpendicular to the plane of motion, wherein the depth of the boss is less than the depth of the valve element.
20. A micro valve device comprising: a body, the body having a fixed portion; a plurality of movable elements including: a valve element supported by the body; and an actuator operatively coupled to the valve element for moving the valve element in a normal range of travel, the movement of the valve element in the normal range of travel defining a plane; and a travel limiting structure operatively coupled to at least one of the body, the valve element, and the actuator, the travel limiting structure being effective to limit the magnitude of a movement, in a direction which is at least one of in the plane and out of the plane, of at least one of the movable elements outside the normal range of travel to prevent failure of at least one of the body and the movable elements due to exceeding failure stress limits.
21. A method of manufacturing a microvalve device comprising the steps of:
(a) determining a proper configuration of a travel limiting structure effective to limit movement of movable valve parts outside a normal range of travel to prevent failure of the movable valve parts; and
(b) forming the travel limiting structure.
22. The method of Claim 21, wherein step (b) includes etching a slot through a layer of material, the slot having a thinner slot width at at least one location such that the slot forms at least one boss.
23. The method of Claim 21, wherein step (b) includes the steps of: (bl) etching a first side of a layer of material to form a slot of varying width part way through the layer; and
(b2) etching the layer of material on a second side part way through the layer to form a slot of uniform width to a depth, such that the slot formed on the first side communicates with the slot formed on the second side to create a combined slot that extends through the layer of material with at least one boss extending into the combined slot.
PCT/US2009/050063 2008-08-09 2009-07-09 Improved microvalve device WO2010019329A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011522088A JP2011530683A (en) 2008-08-09 2009-07-09 Improved microvalve device
US13/058,146 US8662468B2 (en) 2008-08-09 2009-07-09 Microvalve device
CN200980137328.5A CN102164846B (en) 2008-08-09 2009-07-09 The microvalve assembly improved

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8763508P 2008-08-09 2008-08-09
US61/087,635 2008-08-09

Publications (2)

Publication Number Publication Date
WO2010019329A2 true WO2010019329A2 (en) 2010-02-18
WO2010019329A3 WO2010019329A3 (en) 2010-05-06

Family

ID=41669546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/050063 WO2010019329A2 (en) 2008-08-09 2009-07-09 Improved microvalve device

Country Status (4)

Country Link
US (1) US8662468B2 (en)
JP (1) JP2011530683A (en)
CN (1) CN102164846B (en)
WO (1) WO2010019329A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003849A (en) * 2010-11-02 2011-04-06 广东恒基金属制品实业有限公司 Micro electromechanical silicon expansion valve
US8387659B2 (en) 2007-03-31 2013-03-05 Dunan Microstaq, Inc. Pilot operated spool valve
US8393344B2 (en) 2007-03-30 2013-03-12 Dunan Microstaq, Inc. Microvalve device with pilot operated spool valve and pilot microvalve
US8540207B2 (en) 2008-12-06 2013-09-24 Dunan Microstaq, Inc. Fluid flow control assembly
US8593811B2 (en) 2009-04-05 2013-11-26 Dunan Microstaq, Inc. Method and structure for optimizing heat exchanger performance
US8662468B2 (en) 2008-08-09 2014-03-04 Dunan Microstaq, Inc. Microvalve device
US8925793B2 (en) 2012-01-05 2015-01-06 Dunan Microstaq, Inc. Method for making a solder joint
US8956884B2 (en) 2010-01-28 2015-02-17 Dunan Microstaq, Inc. Process for reconditioning semiconductor surface to facilitate bonding
US8996141B1 (en) 2010-08-26 2015-03-31 Dunan Microstaq, Inc. Adaptive predictive functional controller
US9006844B2 (en) 2010-01-28 2015-04-14 Dunan Microstaq, Inc. Process and structure for high temperature selective fusion bonding
US9140613B2 (en) 2012-03-16 2015-09-22 Zhejiang Dunan Hetian Metal Co., Ltd. Superheat sensor
US9702481B2 (en) 2009-08-17 2017-07-11 Dunan Microstaq, Inc. Pilot-operated spool valve

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8851117B2 (en) * 2012-01-30 2014-10-07 Gm Global Technology Operations, Llc MEMS valve operating profile
US9235219B2 (en) * 2012-12-27 2016-01-12 Zhejiang Dunan Hetian Metal Co., Ltd. Microvalve with integrated flow sensing capability
US20140374633A1 (en) * 2013-06-24 2014-12-25 Zhejiang Dunan Hetian Metal Co., Ltd. Microvalve Having Improved Resistance to Contamination
CN104235497B (en) * 2013-06-24 2018-11-30 浙江盾安禾田金属有限公司 Micro-valve with improved air clean ability
CN104609357B (en) * 2013-11-01 2017-11-07 浙江盾安人工环境股份有限公司 A kind of micro-valve
US9188375B2 (en) 2013-12-04 2015-11-17 Zhejiang Dunan Hetian Metal Co., Ltd. Control element and check valve assembly
EP3489557B1 (en) 2013-12-20 2020-04-22 IMI Hydronic Engineering International SA A valve and a method of operating a valve
US9512936B2 (en) 2014-08-14 2016-12-06 Dunan Microstaq, Inc. Three-port microvalve with improved sealing mechanism
US9494255B2 (en) 2014-08-14 2016-11-15 Dunan Microstaq, Inc. Plate microvalve with improved sealing mechanism
US9505608B2 (en) * 2014-08-25 2016-11-29 Dunan Microstaq, Inc. Microvalve having a reduced size and improved electrical performance
US9702426B2 (en) * 2014-09-08 2017-07-11 Dunan Microstaq, Inc. Three speed adjustable shock absorber having one or more microvalves
US9970572B2 (en) 2014-10-30 2018-05-15 Dunan Microstaq, Inc. Micro-electric mechanical system control valve and method for controlling a sensitive fluid
US9618140B2 (en) 2014-11-14 2017-04-11 Dunan Microstaq, Inc. Microvalve having improved actuator
US9885352B2 (en) * 2014-11-25 2018-02-06 Genia Technologies, Inc. Selectable valve of a delivery system
US10094490B2 (en) 2015-06-16 2018-10-09 Dunan Microstaq, Inc. Microvalve having contamination resistant features
US10196259B2 (en) 2015-12-30 2019-02-05 Mems Drive, Inc. MEMS actuator structures resistant to shock
WO2023199742A1 (en) * 2022-04-11 2023-10-19 株式会社デンソー Valve device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494804B1 (en) * 2000-06-20 2002-12-17 Kelsey-Hayes Company Microvalve for electronically controlled transmission
US6523560B1 (en) * 1998-09-03 2003-02-25 General Electric Corporation Microvalve with pressure equalization
US20050121090A1 (en) * 2000-03-22 2005-06-09 Hunnicutt Harry A. Thermally actuated microvalve device
US20080047622A1 (en) * 2003-11-24 2008-02-28 Fuller Edward N Thermally actuated microvalve with multiple fluid ports

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US668202A (en) 1900-04-30 1901-02-19 Joseph W Nethery Automatically-closing valve.
US886045A (en) * 1906-03-06 1908-04-28 Herman J Ehrlich Valve.
US1926031A (en) 1927-05-17 1933-09-12 Chas A Beatty Automatic stage lift flowing device
US1886205A (en) 1929-07-01 1932-11-01 Int Harvester Co Spring pressure contact element
US2412205A (en) 1945-05-12 1946-12-10 John A Cook Pontoon metering valve and combination
US2651325A (en) 1947-08-14 1953-09-08 Ohio Brass Co Valve control mechanism
US2504055A (en) * 1948-10-08 1950-04-11 Stewart Warner Corp High-pressure lubricant receiving fitting
US2875779A (en) * 1954-02-08 1959-03-03 John F Campbell Variable area metering valve
US2840107A (en) * 1955-01-31 1958-06-24 John F Campbell Variable area scheduling valve
US3031747A (en) * 1957-12-31 1962-05-01 Tung Sol Electric Inc Method of forming ohmic contact to silicon
GB1374626A (en) * 1970-10-30 1974-11-20 Matsushita Electronics Corp Method of making a semiconductor device
NL7102074A (en) * 1971-02-17 1972-08-21
DE2215526C3 (en) 1972-03-30 1979-02-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for producing a lock-free metal connection contact on p- or n-conducting semiconductor bodies
US3860949A (en) * 1973-09-12 1975-01-14 Rca Corp Semiconductor mounting devices made by soldering flat surfaces to each other
GB1457806A (en) * 1974-03-04 1976-12-08 Mullard Ltd Semiconductor device manufacture
DE2514922C2 (en) * 1975-04-05 1983-01-27 SEMIKRON Gesellschaft für Gleichrichterbau u. Elektronik mbH, 8500 Nürnberg Semiconductor component resistant to alternating thermal loads
US4019388A (en) * 1976-03-11 1977-04-26 Bailey Meter Company Glass to metal seal
US4100236A (en) * 1976-11-16 1978-07-11 The Continental Group, Inc. Method of preparing micron size particles of solid polymers
US4152540A (en) * 1977-05-03 1979-05-01 American Pacemaker Corporation Feedthrough connector for implantable cardiac pacer
US4181249A (en) * 1977-08-26 1980-01-01 Hughes Aircraft Company Eutectic die attachment method for integrated circuits
DE2930779C2 (en) 1978-07-28 1983-08-04 Tokyo Shibaura Denki K.K., Kawasaki, Kanagawa Semiconductor device
DE2933835A1 (en) * 1979-08-21 1981-03-26 Siemens AG, 1000 Berlin und 8000 München METHOD FOR FASTENING TARGET MATERIALS PRESENT IN DISK OR PLATE SHAPE ON COOLING PLATE FOR DUST-UP SYSTEMS
US4476893A (en) 1980-07-04 1984-10-16 Barmag Barmer Maschinenfabrik Ag Hydraulic flow control valve
US4298023A (en) 1980-09-09 1981-11-03 Mcginnis Gerald E Spring loaded exhalation valve
US4354527A (en) 1980-10-09 1982-10-19 Caterpillar Tractor Co. Control system for pilot operated valve
US4434813A (en) * 1981-11-19 1984-03-06 The United States Of America As Represented By The Secretary Of The Army Laminar proportional amplifier and laminar jet angular rate sensor with rotating splitter for null adjustment
DE3245259A1 (en) 1982-12-07 1984-06-07 Mannesmann Rexroth GmbH, 8770 Lohr ELECTROHYDRAULIC DIRECTION VALVE
DE3401404A1 (en) 1984-01-17 1985-07-25 Robert Bosch Gmbh, 7000 Stuttgart SEMICONDUCTOR COMPONENT
US4581624A (en) * 1984-03-01 1986-04-08 Allied Corporation Microminiature semiconductor valve
US4593719A (en) * 1984-11-30 1986-06-10 Leonard Willie B Spool valve
US4772935A (en) 1984-12-19 1988-09-20 Fairchild Semiconductor Corporation Die bonding process
JPH0637874B2 (en) 1984-12-28 1994-05-18 株式会社豊田自動織機製作所 Variable capacity compressor
US4628576A (en) 1985-02-21 1986-12-16 Ford Motor Company Method for fabricating a silicon valve
US4647013A (en) * 1985-02-21 1987-03-03 Ford Motor Company Silicon valve
US4821997A (en) * 1986-09-24 1989-04-18 The Board Of Trustees Of The Leland Stanford Junior University Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator
US4943032A (en) * 1986-09-24 1990-07-24 Stanford University Integrated, microminiature electric to fluidic valve and pressure/flow regulator
US4966646A (en) 1986-09-24 1990-10-30 Board Of Trustees Of Leland Stanford University Method of making an integrated, microminiature electric-to-fluidic valve
US4824073A (en) * 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
DE3738630C2 (en) 1987-11-13 1995-06-08 Rexroth Mannesmann Gmbh Electro-hydraulic pressure converter device
US4938742A (en) * 1988-02-04 1990-07-03 Smits Johannes G Piezoelectric micropump with microvalves
JP2503569B2 (en) 1988-02-24 1996-06-05 株式会社豊田自動織機製作所 Wobble type compressor drive controller
DE3814150A1 (en) * 1988-04-27 1989-11-09 Draegerwerk Ag VALVE ARRANGEMENT MADE FROM MICROSTRUCTURED COMPONENTS
US5065978A (en) 1988-04-27 1991-11-19 Dragerwerk Aktiengesellschaft Valve arrangement of microstructured components
US4828184A (en) * 1988-08-12 1989-05-09 Ford Motor Company Silicon micromachined compound nozzle
US4826131A (en) * 1988-08-22 1989-05-02 Ford Motor Company Electrically controllable valve etched from silicon substrates
US5074629A (en) 1988-10-26 1991-12-24 Stanford University Integrated variable focal length lens and its applications
US4869282A (en) 1988-12-09 1989-09-26 Rosemount Inc. Micromachined valve with polyimide film diaphragm
US5209118A (en) * 1989-04-07 1993-05-11 Ic Sensors Semiconductor transducer or actuator utilizing corrugated supports
US5116457A (en) * 1989-04-07 1992-05-26 I C Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5177579A (en) * 1989-04-07 1993-01-05 Ic Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5064165A (en) 1989-04-07 1991-11-12 Ic Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5037778A (en) 1989-05-12 1991-08-06 Intel Corporation Die attach using gold ribbon with gold/silicon eutectic alloy cladding
DE3917396A1 (en) 1989-05-29 1990-12-06 Buerkert Gmbh MICRO VALVE
DE3917423C1 (en) * 1989-05-29 1990-05-31 Buerkert Gmbh & Co Werk Ingelfingen, 7118 Ingelfingen, De
DE3919876A1 (en) 1989-06-19 1990-12-20 Bosch Gmbh Robert MICRO VALVE
US5069419A (en) 1989-06-23 1991-12-03 Ic Sensors Inc. Semiconductor microactuator
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5066533A (en) 1989-07-11 1991-11-19 The Perkin-Elmer Corporation Boron nitride membrane in wafer structure and process of forming the same
US5238223A (en) 1989-08-11 1993-08-24 Robert Bosch Gmbh Method of making a microvalve
DE3926647A1 (en) 1989-08-11 1991-02-14 Bosch Gmbh Robert METHOD FOR PRODUCING A MICROVALVE
GB2238267A (en) 1989-11-01 1991-05-29 Stc Plc Brazing process
DE3940427A1 (en) * 1989-12-07 1991-06-13 Bosch Gmbh Robert VEHICLE BRAKE SYSTEM WITH ANTI-BLOCKING DEVICE
US5244537A (en) 1989-12-27 1993-09-14 Honeywell, Inc. Fabrication of an electronic microvalve apparatus
US5180623A (en) * 1989-12-27 1993-01-19 Honeywell Inc. Electronic microvalve apparatus and fabrication
US5082242A (en) * 1989-12-27 1992-01-21 Ulrich Bonne Electronic microvalve apparatus and fabrication
US5133379A (en) * 1990-01-31 1992-07-28 University Of Utah Research Foundation Servovalve apparatus for use in fluid systems
DE4003619A1 (en) 1990-02-07 1991-08-14 Bosch Gmbh Robert Two=stage multilayer micro-valve - has central flexible tongue in first stage for direction of fluid into two chambers with outlet and return ports, respectively
DE4006152A1 (en) 1990-02-27 1991-08-29 Fraunhofer Ges Forschung MICROMINIATURIZED PUMP
DE4009090A1 (en) 1990-03-21 1991-09-26 Bosch Gmbh Robert METHOD FOR PRODUCING MULTILAYER SILICON STRUCTURES
US5050838A (en) 1990-07-31 1991-09-24 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
DE4035852A1 (en) * 1990-11-10 1992-05-14 Bosch Gmbh Robert MULTI-LAYER MICROVALVE
DE4041579A1 (en) * 1990-12-22 1992-06-25 Bosch Gmbh Robert MICRO VALVE
GB2251703B (en) * 1991-01-11 1994-08-03 Marconi Gec Ltd Valve devices
US5400824A (en) * 1991-01-21 1995-03-28 Robert Bosch Gmbh Microvalve
DE4101575A1 (en) 1991-01-21 1992-07-23 Bosch Gmbh Robert MICRO VALVE
DE4107660C2 (en) * 1991-03-09 1995-05-04 Bosch Gmbh Robert Process for mounting silicon wafers on metallic mounting surfaces
US5058856A (en) 1991-05-08 1991-10-22 Hewlett-Packard Company Thermally-actuated microminiature valve
US5176358A (en) * 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
US5355712A (en) 1991-09-13 1994-10-18 Lucas Novasensor Method and apparatus for thermally actuated self testing of silicon structures
US5217283A (en) * 1991-09-25 1993-06-08 Ford Motor Company Integral anti-lock brake/traction control system
US5179499A (en) * 1992-04-14 1993-01-12 Cornell Research Foundation, Inc. Multi-dimensional precision micro-actuator
US5222521A (en) * 1992-05-08 1993-06-29 Moog Controls, Inc. Hydraulic valve
US5271597A (en) 1992-05-29 1993-12-21 Ic Sensors, Inc. Bimetallic diaphragm with split hinge for microactuator
JPH0656014A (en) 1992-08-07 1994-03-01 Nisshinbo Ind Inc Anti-skid control method
US5309943A (en) * 1992-12-07 1994-05-10 Ford Motor Company Micro-valve and method of manufacturing
US5589422A (en) 1993-01-15 1996-12-31 Intel Corporation Controlled, gas phase process for removal of trace metal contamination and for removal of a semiconductor layer
US5300461A (en) * 1993-01-25 1994-04-05 Intel Corporation Process for fabricating sealed semiconductor chip using silicon nitride passivation film
US5333831A (en) 1993-02-19 1994-08-02 Hewlett-Packard Company High performance micromachined valve orifice and seat
JPH06286600A (en) 1993-03-31 1994-10-11 Toyota Motor Corp Brake pressure control device for vehicle
US5267589A (en) 1993-04-05 1993-12-07 Ford Motor Company Piezoelectric pressure control valve
US5445185A (en) 1993-04-05 1995-08-29 Ford Motor Company Piezoelectric fluid control valve
US5325880A (en) * 1993-04-19 1994-07-05 Tini Alloy Company Shape memory alloy film actuated microvalve
US5417235A (en) * 1993-07-28 1995-05-23 Regents Of The University Of Michigan Integrated microvalve structures with monolithic microflow controller
US5368704A (en) 1993-08-06 1994-11-29 Teknekron Corporation Micro-electrochemical valves and method
DE4331851A1 (en) 1993-09-20 1995-03-23 Bosch Gmbh Robert Perforated body and valve with a perforated body
DE4417251A1 (en) 1994-05-17 1995-11-23 Bosch Gmbh Robert Pressure balancing micro=valve
DE4422942B4 (en) 1994-06-30 2004-07-08 Robert Bosch Gmbh Device for driving a microvalve
US5467068A (en) * 1994-07-07 1995-11-14 Hewlett-Packard Company Micromachined bi-material signal switch
US5611214A (en) * 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
US5473944A (en) 1994-08-18 1995-12-12 Kulite Semi Conductor Products, Inc. Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
US5577533A (en) 1994-09-13 1996-11-26 Cook, Jr.; Joseph S. Flexured shaft poppet
DE19526897A1 (en) * 1995-07-22 1997-01-23 Bosch Gmbh Robert Micro-valve operating with high precision
US5838351A (en) 1995-10-26 1998-11-17 Hewlett-Packard Company Valve assembly for controlling fluid flow within an ink-jet pen
US5941608A (en) 1996-03-07 1999-08-24 Kelsey-Hayes Company Electronic brake management system with manual fail safe
US5954079A (en) 1996-04-30 1999-09-21 Hewlett-Packard Co. Asymmetrical thermal actuation in a microactuator
US6019437A (en) * 1996-05-29 2000-02-01 Kelsey-Hayes Company Vehicle hydraulic braking systems incorporating micro-machined technology
US6533366B1 (en) * 1996-05-29 2003-03-18 Kelsey-Hayes Company Vehicle hydraulic braking systems incorporating micro-machined technology
US6105737A (en) 1996-06-05 2000-08-22 Varity Kelsey-Hayes Gmbh Programmable electronic pedal simulator
EP0904594B9 (en) * 1996-06-12 2003-09-10 Ushio International Technologies, Inc. Monolithic anode adapted for inclusion in an actinic radiation source and method of manufacturing the same
JP3329663B2 (en) * 1996-06-21 2002-09-30 株式会社日立製作所 Cooling device for electronic devices
US5810325A (en) 1996-06-25 1998-09-22 Bcam International, Inc. Microvalve
US5785295A (en) * 1996-08-27 1998-07-28 Industrial Technology Research Institute Thermally buckling control microvalve
DE69729753T2 (en) * 1996-10-07 2005-08-04 Lucas Novasensor Inc., Fremont 5 micron deep pointed channel cavity by oxidizing fusion bonding of silicon substrates and stop etching
US6123316A (en) 1996-11-27 2000-09-26 Xerox Corporation Conduit system for a valve array
US5909078A (en) * 1996-12-16 1999-06-01 Mcnc Thermal arched beam microelectromechanical actuators
US6124663A (en) 1996-12-16 2000-09-26 The Boeing Company Fiber optic connector having a microelectromechanical positioning apparatus and an associated fabrication method
US5994816A (en) * 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
US6096149A (en) 1997-04-21 2000-08-01 Ford Global Technologies, Inc. Method for fabricating adhesion-resistant micromachined devices
US6116863A (en) * 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
US5873385A (en) * 1997-07-21 1999-02-23 Emhart Inc. Check valve
US6041650A (en) * 1997-08-26 2000-03-28 Rochester Gauges, Inc. Liquid level gauge
US5848605A (en) 1997-11-12 1998-12-15 Cybor Corporation Check valve
US5970998A (en) 1998-02-27 1999-10-26 The Regents Of The University Of California Microfabricated cantilever ratchet valve, and method for using same
US6171972B1 (en) * 1998-03-17 2001-01-09 Rosemount Aerospace Inc. Fracture-resistant micromachined devices
US7011378B2 (en) * 1998-09-03 2006-03-14 Ge Novasensor, Inc. Proportional micromechanical valve
CN1322282A (en) 1998-09-03 2001-11-14 卢卡斯新星传感器公司 Proportional micromechanical device
KR100413954B1 (en) * 1998-12-01 2004-01-07 히다치 겡키 가부시키 가이샤 Control valve
JP2000220763A (en) 1999-01-29 2000-08-08 Toyota Autom Loom Works Ltd Capacity control valve for variable displacement compressor
US6540203B1 (en) 1999-03-22 2003-04-01 Kelsey-Hayes Company Pilot operated microvalve device
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
FR2797714B1 (en) * 1999-08-20 2001-10-26 Soitec Silicon On Insulator PROCESS FOR PROCESSING SUBSTRATES FOR MICROELECTRONICS AND SUBSTRATES OBTAINED BY THIS PROCESS
JP4020233B2 (en) * 1999-08-25 2007-12-12 セイコーインスツル株式会社 Near-field optical head and manufacturing method thereof
US6255757B1 (en) * 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6279606B1 (en) 1999-10-18 2001-08-28 Kelsey-Hayes Company Microvalve device having a check valve
US6477901B1 (en) * 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
US6283441B1 (en) 2000-02-10 2001-09-04 Caterpillar Inc. Pilot actuator and spool valve assembly
US7264617B2 (en) 2000-02-29 2007-09-04 Alex Freeman Integrally manufactured micro-electrofluidic cables
US6390782B1 (en) * 2000-03-21 2002-05-21 Alumina Micro Llc Control valve for a variable displacement compressor
US6694998B1 (en) * 2000-03-22 2004-02-24 Kelsey-Hayes Company Micromachined structure usable in pressure regulating microvalve and proportional microvalve
US6520197B2 (en) * 2000-06-02 2003-02-18 The Regents Of The University Of California Continuous laminar fluid mixing in micro-electromechanical systems
US6505811B1 (en) * 2000-06-27 2003-01-14 Kelsey-Hayes Company High-pressure fluid control valve assembly having a microvalve device attached to fluid distributing substrate
US6701774B2 (en) * 2000-08-02 2004-03-09 Symyx Technologies, Inc. Parallel gas chromatograph with microdetector array
US6581640B1 (en) * 2000-08-16 2003-06-24 Kelsey-Hayes Company Laminated manifold for microvalve
US20020096421A1 (en) * 2000-11-29 2002-07-25 Cohn Michael B. MEMS device with integral packaging
JP3943871B2 (en) 2001-07-25 2007-07-11 株式会社テージーケー Variable capacity compressor and capacity control valve for variable capacity compressor
JP2003049933A (en) 2001-08-06 2003-02-21 Denso Corp Fluid pressure control device
US6715733B2 (en) * 2001-08-08 2004-04-06 Agilent Technologies, Inc. High temperature micro-machined valve
US6647930B2 (en) 2002-02-11 2003-11-18 L'Air Liquide-Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude Ammonia vapor generation
US20030206832A1 (en) 2002-05-02 2003-11-06 Pierre Thiebaud Stacked microfluidic device
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US6774337B2 (en) * 2002-10-21 2004-08-10 Lockheed Martin Corporation Method for protecting the diaphragm and extending the life of SiC and/or Si MEMS microvalves
US6966329B2 (en) 2003-01-27 2005-11-22 Hydraforce, Inc. Proportional pilot-operated flow control valve
US7063100B2 (en) * 2003-03-06 2006-06-20 Hydraforce Inc. Flow regulator with pressure relief combination valve
US20070251586A1 (en) 2003-11-24 2007-11-01 Fuller Edward N Electro-pneumatic control valve with microvalve pilot
KR20060109959A (en) * 2003-11-24 2006-10-23 알루미나 마이크로 엘엘씨 Microvalve device suitable for controlling a variable displacement compressor
US7528075B2 (en) 2004-02-25 2009-05-05 Hrl Laboratories, Llc Self-masking defect removing method
JP2007525630A (en) 2004-02-27 2007-09-06 アルーマナ、マイクロウ、エルエルシー Hybrid micro / macro plate valve
WO2005091820A2 (en) 2004-03-05 2005-10-06 Alumina Micro Llc Selective bonding for forming a microvalve
US7414843B2 (en) 2004-03-10 2008-08-19 Intel Corporation Method and apparatus for a layered thermal management arrangement
KR100599115B1 (en) * 2004-07-20 2006-07-12 삼성전자주식회사 Vibration type MEMS switch and fabricating method thereof
CN101002040A (en) * 2004-07-23 2007-07-18 阿法控制装置有限责任公司 Methods of operating microvalve assemblies and related structures and related devices
JP2006080194A (en) 2004-09-08 2006-03-23 Nikon Corp Temperature controller, exposure device and manufacturing method therefor
US7630119B2 (en) * 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
JP4441386B2 (en) 2004-11-08 2010-03-31 株式会社豊田自動織機 Flow switching type flow divider
KR20070092328A (en) 2005-01-14 2007-09-12 알루미나 마이크로 엘엘씨 System and method for controlling a variable displacement compressor
JP2006307828A (en) 2005-03-31 2006-11-09 Tgk Co Ltd Control valve for variable displacement compressor
US7372074B2 (en) * 2005-10-11 2008-05-13 Honeywell International, Inc. Surface preparation for selective silicon fusion bonding
US7449413B1 (en) 2006-04-11 2008-11-11 Advanced Micro Devices, Inc. Method for effectively removing polysilicon nodule defects
US20080072977A1 (en) * 2006-09-27 2008-03-27 Curtiss-Wright Flow Control Corporation Pilot-operated valves and manifold assemblies
DE112007003035T5 (en) * 2006-12-15 2009-11-05 Microstaq, Inc., Austin Microvalve device
WO2008121369A1 (en) 2007-03-30 2008-10-09 Microstaq, Inc. Pilot operated micro spool valve
CN101668973B (en) 2007-03-31 2013-03-13 盾安美斯泰克公司(美国) Pilot operated spool valve
WO2010019329A2 (en) 2008-08-09 2010-02-18 Microstaq, Inc. Improved microvalve device
US8113482B2 (en) 2008-08-12 2012-02-14 DunAn Microstaq Microvalve device with improved fluid routing
CN102308131B (en) * 2008-12-06 2014-01-08 盾安美斯泰克有限公司 Fluid flow control assembly
US9138994B2 (en) 2009-03-03 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods of fabrication thereof
US8113448B2 (en) * 2009-04-22 2012-02-14 Keating Joseph Z Methods of recycling carpet components and carpet components formed thereform
CN102575782B (en) 2009-08-17 2014-04-09 盾安美斯泰克股份有限公司 Micromachined device and control method
US8956884B2 (en) 2010-01-28 2015-02-17 Dunan Microstaq, Inc. Process for reconditioning semiconductor surface to facilitate bonding
WO2011094300A2 (en) 2010-01-28 2011-08-04 Microstaq, Inc. Process and structure for high temperature selective fusion bonding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6523560B1 (en) * 1998-09-03 2003-02-25 General Electric Corporation Microvalve with pressure equalization
US20050121090A1 (en) * 2000-03-22 2005-06-09 Hunnicutt Harry A. Thermally actuated microvalve device
US6494804B1 (en) * 2000-06-20 2002-12-17 Kelsey-Hayes Company Microvalve for electronically controlled transmission
US20080047622A1 (en) * 2003-11-24 2008-02-28 Fuller Edward N Thermally actuated microvalve with multiple fluid ports

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8393344B2 (en) 2007-03-30 2013-03-12 Dunan Microstaq, Inc. Microvalve device with pilot operated spool valve and pilot microvalve
US8387659B2 (en) 2007-03-31 2013-03-05 Dunan Microstaq, Inc. Pilot operated spool valve
US8662468B2 (en) 2008-08-09 2014-03-04 Dunan Microstaq, Inc. Microvalve device
US8540207B2 (en) 2008-12-06 2013-09-24 Dunan Microstaq, Inc. Fluid flow control assembly
US8593811B2 (en) 2009-04-05 2013-11-26 Dunan Microstaq, Inc. Method and structure for optimizing heat exchanger performance
US9702481B2 (en) 2009-08-17 2017-07-11 Dunan Microstaq, Inc. Pilot-operated spool valve
US9006844B2 (en) 2010-01-28 2015-04-14 Dunan Microstaq, Inc. Process and structure for high temperature selective fusion bonding
US8956884B2 (en) 2010-01-28 2015-02-17 Dunan Microstaq, Inc. Process for reconditioning semiconductor surface to facilitate bonding
US8996141B1 (en) 2010-08-26 2015-03-31 Dunan Microstaq, Inc. Adaptive predictive functional controller
CN102003849A (en) * 2010-11-02 2011-04-06 广东恒基金属制品实业有限公司 Micro electromechanical silicon expansion valve
US8925793B2 (en) 2012-01-05 2015-01-06 Dunan Microstaq, Inc. Method for making a solder joint
US9140613B2 (en) 2012-03-16 2015-09-22 Zhejiang Dunan Hetian Metal Co., Ltd. Superheat sensor
US9404815B2 (en) 2012-03-16 2016-08-02 Zhejiang Dunan Hetian Metal Co., Ltd. Superheat sensor having external temperature sensor
US9772235B2 (en) 2012-03-16 2017-09-26 Zhejiang Dunan Hetian Metal Co., Ltd. Method of sensing superheat

Also Published As

Publication number Publication date
CN102164846A (en) 2011-08-24
WO2010019329A3 (en) 2010-05-06
US8662468B2 (en) 2014-03-04
JP2011530683A (en) 2011-12-22
CN102164846B (en) 2016-03-30
US20110127455A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
US8662468B2 (en) Microvalve device
JP5196422B2 (en) Selective bonding for microvalve formation
US6523560B1 (en) Microvalve with pressure equalization
EP1117937B1 (en) Proportional micromechanical device
US7928522B2 (en) Arrangements for and fabrication of mechanical suspension of a movable structure
WO2003052081A2 (en) Proportional micromechanical valve
EP3295068B1 (en) Fluid flow device, comprising a valve unit, as well as method of manufacturing the same
US6884732B2 (en) Method of fabricating a device having a desired non-planar surface or profile and device produced thereby
Gradin et al. SMA microvalves for very large gas flow control manufactured using wafer-level eutectic bonding
US6935608B2 (en) Method for protecting the diaphragm and extending the life of SiC and/or Si MEMS microvalves
US6166478A (en) Method for assembly of microelectromechanical systems using magnetic actuation
US20160053916A1 (en) Microvalve having a reduced size and improved electrical performance
Henneken et al. In-package MEMS-based thermal actuators for micro-assembly
US11353140B2 (en) Two port mems silicon flow control valve
Clements Kemeny et al. Using compliant mechanisms to improve manufacturability in MEMS
WO2008113112A1 (en) Stop structure for microfluidic device
Knospe Capillary force actuation: a mechatronic perspective
Wilcox et al. The stacked amplified thermomechanical in-plane microactuator (StATIM)
Braun et al. Small footprint knife gate microvalves for large flow control
Swyt Generic technology, measurement, and standards issues in micromachining and microfabrication
Raum et al. Optical fibre alignment using micromachines
Böhm et al. A Silicon Micromachined Valve Driven by a Bi-Stable Electromagnetic Actuator
Mamiya et al. A Research of Actuators for Micromirror Control

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137328.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807022

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011522088

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13058146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807022

Country of ref document: EP

Kind code of ref document: A2