WO2010024006A1 - 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法 - Google Patents

有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法 Download PDF

Info

Publication number
WO2010024006A1
WO2010024006A1 PCT/JP2009/059523 JP2009059523W WO2010024006A1 WO 2010024006 A1 WO2010024006 A1 WO 2010024006A1 JP 2009059523 W JP2009059523 W JP 2009059523W WO 2010024006 A1 WO2010024006 A1 WO 2010024006A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
spacer
sheet
organic electroluminescence
sealing
Prior art date
Application number
PCT/JP2009/059523
Other languages
English (en)
French (fr)
Inventor
太田純史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI0917178A priority Critical patent/BRPI0917178A2/pt
Priority to RU2011112400/07A priority patent/RU2476036C2/ru
Priority to EP09809661.3A priority patent/EP2352361B1/en
Priority to CN200980127596.9A priority patent/CN102100126B/zh
Priority to KR1020117004141A priority patent/KR101246656B1/ko
Priority to JP2010526599A priority patent/JP5323841B2/ja
Priority to US13/059,519 priority patent/US8410685B2/en
Publication of WO2010024006A1 publication Critical patent/WO2010024006A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED

Definitions

  • the present invention relates to an organic electroluminescence (hereinafter, also referred to as organic EL) panel, an organic EL display, organic EL lighting, and a method for manufacturing the same. More specifically, the present invention relates to an organic EL panel, an organic EL display, an organic EL illumination, and a method for manufacturing them, which can be suitably used for an organic EL display and organic EL lighting.
  • organic EL organic electroluminescence
  • a desiccant is pasted on the sealing can (digging glass), and the outside of the outer peripheral portion of the organic EL element.
  • a can sealing structure in which is sealed in a frame shape with a sealing resin has been adopted.
  • this can sealing structure it is difficult to adopt a top emission structure that extracts light from the upper surface of the panel (higher aperture ratio) and to make the panel thinner. Research is also underway.
  • an organic EL panel having a flat-plate sealing structure for example, a protective wall (sealant) is provided at a position where the light-emitting region on the panel substrate and the surrounding electrode region are shielded on the side of the sealing substrate.
  • a sealing resin (filler) is applied in an uncured state on the side of the panel substrate to which the panel substrate is attached, and the panel substrate is sealed with the protective wall and the cured sealing resin.
  • the sealing resin applied in an uncured state to the light emitting region cannot be diffused to the electrode region side by the protective wall formed around the light emitting region. It can form in each light emission area
  • an organic EL panel capable of maintaining stable light emission characteristics over a long period of time is disclosed (for example, see Patent Document 2).
  • the process can be simplified by covering each light emitting area on the panel substrate using only solid sealing resin instead of liquid sealing resin (filler) that requires a protective wall (sealant).
  • a sealing process has been proposed (see, for example, Patent Document 3).
  • Patent Document 1 it is necessary to provide an area for arranging the protective wall, and according to the technique of Patent Document 2, it is necessary to provide an area for arranging the liquid sealing material. Therefore, the techniques of Patent Documents 1 and 2 have room for improvement in that the frame area is large and the panel outer shape becomes large.
  • the technique of patent document 3 since it seals only with solid sealing resin, compared with the technique of patent documents 1 and 2, it can implement
  • peeling of the solid sealing resin occurs in the dividing step when a plurality of organic EL panels are produced by multi-chamfering, and the airtightness of the organic EL element formation region may not be ensured. .
  • the present invention has been made in view of the above-described situation, and an organic EL panel, an organic EL display, an organic EL illumination, and a plurality of high-reliability organic EL panels can be simultaneously manufactured with a frame.
  • the object is to provide a manufacturing method.
  • the inventor conducted various studies on an organic EL panel capable of simultaneously producing a plurality of high-reliability organic EL panels with a sandwiched frame.
  • the distance (interval) between the element substrate and the sealing substrate is kept constant.
  • spacers for this purpose.
  • the present inventors have arrived at the present invention by conceiving that it can be solved on a case-by-case basis.
  • the present invention includes an element substrate on which an organic EL element and a terminal region are formed, a sealing member that covers the organic EL element, and a sealing substrate that is bonded to the element substrate via the sealing member.
  • the organic EL panel is an organic EL panel including a first spacer disposed only in a region between the organic EL element and the terminal region.
  • the first spacer suppresses deformation of the organic EL panel due to external stresses such as stress concentration and environmental temperature change in the dividing process, and suppresses the occurrence of peeling of the sealing member. be able to. Thereby, the fall of the airtightness of the sealing member resulting from peeling of a sealing member can be suppressed. Moreover, since the material of the sealing member can be cured while the distance between the element substrate and the sealing substrate is kept uniform by the first spacer, the film thickness of the sealing member can be strictly controlled.
  • the covering property of the sealing member with respect to the unevenness of the routing wiring connected to the organic EL element can be improved, and the decrease in the airtightness of the sealing member due to the unevenness of the routing wiring can be suppressed.
  • the reliability of the organic EL panel can be improved.
  • the organic EL panel of the present invention an increase in the frame region of the organic EL panel can be suppressed by using the first spacer disposed only in the region between the organic EL element and the terminal region. .
  • the first spacer is arranged on the inner side (organic EL element side) than the terminal region and does not surround the organic EL element, so that one set of the element mother substrate and the sealing mother substrate is divided.
  • the number of organic EL panels obtained can be increased. Therefore, the organic EL panel of the present invention can be particularly suitably used in an embodiment in which a plurality of organic EL panels are produced by dividing a set of element mother substrate and sealing mother substrate.
  • the organic EL panel of the present invention since it is not necessary to contain a spacer in the sealing member, a top emission structure organic EL panel that takes out light emission from the sealing substrate side can be easily realized. Further, it is possible to reduce the possibility that the organic EL element is directly damaged by an external press or the like.
  • the number of organic EL elements covered by the sealing member is not particularly limited, and may be single or plural.
  • the terminal area is an area where terminals for mounting electronic components are arranged, and usually mounting pads (connection electrodes) are arranged.
  • the region between the organic EL element and the terminal region is not only a region sandwiched between the organic EL element and the terminal region, but also a region sandwiched between the organic EL element and the terminal region. Also includes a region stretched up to.
  • the organic EL panel of the present invention has a flat plate sealing structure, the organic EL panel can be made thinner and has a top emission structure, unlike the case of having a can sealing structure using a sealing can or the like. By doing so, it is possible to increase the aperture ratio.
  • the organic EL element has a structure in which at least an organic light emitting layer is sandwiched between an anode (anode) and a cathode (cathode).
  • the stacking order of the organic light emitting layer, the anode and the cathode is not particularly limited, and either the anode or the cathode may be disposed on the element substrate side.
  • the reflective electrode is disposed on the element substrate side
  • the transparent electrode is disposed on the sealing substrate side.
  • the configuration of the organic EL panel of the present invention is not particularly limited as long as such a component is formed as essential, and may or may not include other components. Absent. A preferred embodiment of the organic EL panel of the present invention will be described in detail below. In addition, you may use various forms shown below suitably combining.
  • the sealing substrate does not overlap the terminal region.
  • the electronic component can be easily mounted on the terminal region.
  • the first spacer suppresses deformation of the sealing mother substrate and the element mother substrate due to stress concentration when the bonded element substrate and sealing substrate are divided. Therefore, the occurrence of peeling of the sealing member can be suppressed.
  • the organic EL panel of the present invention can be particularly suitably used in an embodiment in which a plurality of organic EL panels are produced by dividing a set of element mother substrate and sealing mother substrate.
  • the region located on the opposite side of the organic EL element across the terminal region is not only the region facing the organic EL element across the terminal region, but also facing the organic EL element across the terminal region. It also includes a region that extends to the edge of the substrate.
  • the first spacer is preferably disposed at a position away from the sealing member. Therefore, since a space is provided between the first spacer and the sealing member, even if the organic EL panel is deformed due to stress concentration when dividing the bonded element substrate and the sealing substrate, the space is buffered. And the occurrence of peeling of the sealing member can be further suppressed.
  • the space can also be used as a buffer against deformation of the organic EL panel due to external stress such as a change in environmental temperature. As described above, the reliability of the organic EL panel can be further increased.
  • the first spacer may be a columnar spacer, but is preferably a spherical spacer having a spherical shape. Thereby, the first spacer can be uniformly dispersed in the organic material or resin.
  • the first spacer is preferably a spherical spacer arranged in a state dispersed in resin.
  • the average particle diameter of the spherical spacer is preferably 1 to 100 ⁇ m.
  • the uniform dispersibility and particle size uniformity of the spherical spacers may be reduced, thereby causing a variation in the substrate interval (interval between the element substrate and the sealing substrate). Panel thickness may be too large.
  • the average particle size of the spherical spacer is more preferably 20 ⁇ m or less.
  • Examples of the resin for dispersing the spherical spacer include epoxy resin (EP), methacrylic resin (poly (meth) acrylate), cyclic polyolefin (COP) resin, vinyl chloride resin (polyvinyl chloride, PVC), polyethylene terephthalate (PET). ) Resin, various nylons (polyamide resin), polyimide (PI) resin, polyamideimide (PAI) resin, polyarylphthalate resin, silicone resin, polysulfone (PS) resin, polyphenylene sulfide (PPS) resin, polyethersulfone (PES) Resins, polyurethane (PU) resins, acetal resins (polyacetal, POM) and the like.
  • epoxy resin EP
  • methacrylic resin poly (meth) acrylate
  • COP cyclic polyolefin
  • vinyl chloride resin polyvinyl chloride
  • PVC polyethylene terephthalate
  • PET polyethylene terephthalate
  • a photocurable resin is preferable.
  • the heat processing for hardening resin can be abbreviate
  • the organic EL element is vulnerable to heat, the reliability of the organic EL element can be improved by reducing the heat treatment.
  • the tact time required for resin hardening can be shortened.
  • the resin in which the spherical spacer is dispersed may be any resin as long as it includes a structure unique to the resin, and may be a derivative or the like.
  • the photocurable resin generally contains a photopolymerization initiator together with a photopolymerizable monomer and the like.
  • the polymerization reaction of the epoxy resin is initiated by a photocationic polymerization initiator
  • the polymerization reaction of the acrylic resin is initiated by a photoradical polymerization initiator or the like.
  • the blending amount of the photopolymerization initiator greatly depends on the selected material. If the amount of the photopolymerization initiator is too small, the reaction may not proceed sufficiently or the reaction may become too slow. If the amount of the photopolymerization initiator is excessive, the reaction may become too fast, resulting in reduced workability or non-uniform reaction.
  • the ultraviolet curable resin is excellent in workability because it does not cure unless irradiated with ultraviolet rays. Further, the ultraviolet curable resin has an advantage that there are few restrictions on the coating environment. Therefore, the resin is preferably an ultraviolet curable resin.
  • an organic material is preferable and resin is more preferable.
  • the resin include epoxy resin (EP), methacrylic resin (poly (meth) acrylate), cyclic polyolefin (COP) resin, vinyl chloride resin (polyvinyl chloride, PVC), polyethylene terephthalate (PET) resin, various nylons ( Polyamide resin), polyimide (PI) resin, polyamideimide (PAI) resin, polyaryl phthalate resin, silicone resin, polysulfone (PS) resin, polyphenylene sulfide (PPS) resin, polyethersulfone (PES) resin, polyurethane (PU) Examples thereof include resins and acetal resins (polyacetal, POM).
  • the sealing member preferably contains a thermosetting resin, and more preferably consists of a thermosetting resin.
  • the sealing member is cured by photopolymerization, the entire surface of the organic EL element is irradiated with light such as ultraviolet rays, and there is a concern about deterioration of the organic EL element. Therefore, from the viewpoint of preventing the deterioration of the organic EL element, the sealing member is preferably cured by thermal polymerization.
  • the resin listed as the constituent material of the sealing member may also be a derivative or the like as long as it includes a structure specific to the resin.
  • the sealing member preferably has a thickness of 1 to 100 ⁇ m. If the thickness of the sealing member is less than 1 ⁇ m, even if the first spacer is used, the substrate spacing may vary, and it may be difficult to make the thickness of the sealing member uniform. In addition, when the thickness of the sealing member exceeds 100 ⁇ m, the light transmittance of the sealing member decreases, and thus when the top emission structure is adopted, the light extraction amount from the organic EL element may be decreased. In addition, the thickness of a sealing member here is the average of the thickness of a sealing member. A more preferable upper limit value of the thickness of the sealing member is 20 ⁇ m.
  • the sealing member preferably has a light transmittance of 80% or more in the visible wavelength region.
  • a configuration is suitable when the organic EL panel of the present invention has an organic EL element having a top emission structure capable of obtaining a high aperture ratio.
  • the “visible wavelength range” refers to a wavelength range of 380 to 780 nm.
  • the “transmittance in the visible wavelength region” is a wavelength in accordance with JIS R 3106 “Testing method for transmittance of plate glass” using a spectrophotometer (trade name: U-4000, manufactured by Hitachi, Ltd.). The visible light transmittance was measured at 380 to 780 nm.
  • the constituent materials of the first spacer and the sealing member are preferably close in linear expansion coefficient (linear expansion coefficient), and the difference in linear expansion coefficient between the first spacer and the sealing member is 1.0 ⁇ . It is preferably 10 ⁇ 4 (K ⁇ 1 ) or less. Generally, the linear expansion coefficient (linear expansion coefficient) of the sealing resin is in the range of 2.0 ⁇ 10 ⁇ 5 to 9.0 ⁇ 10 ⁇ 5 (K ⁇ 1 ).
  • the first spacer, the sealing member, and the resin in which the first spacer is dispersed preferably have a difference in linear expansion coefficient of 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less.
  • the difference in linear expansion coefficient between the first spacer, the sealing member, and the photocurable resin in which the first spacer is dispersed is preferably 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less.
  • the first spacer, the sealing member, the element substrate, and the constituent material of the sealing substrate preferably have close linear expansion coefficients.
  • the first spacer, the sealing member, the element substrate, and the sealing substrate The difference in linear expansion coefficient is preferably 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less. Thereby, it becomes possible to make it hard to produce the clearance gap by peeling of a sealing member between a sealing member and a board
  • the first spacer, the sealing member, the element substrate, the sealing substrate, and the resin in which the first spacer is dispersed have a difference in linear expansion coefficient of 1.0 ⁇ 10 ⁇ 4 (K -1 ) The following is preferable.
  • the first spacer, the sealing member, the element substrate, the sealing substrate, and the photocurable resin in which the first spacer is dispersed have a difference in linear expansion coefficient of 1.0 ⁇ 10 ⁇ 4 (K -1 )
  • K -1 the difference in linear expansion coefficient
  • a so-called flexible substrate such as a plastic substrate has a larger linear expansion coefficient than a glass substrate, and a deformation amount due to a temperature change or an external force is larger than that of a glass substrate.
  • the linear expansion coefficient of a glass substrate (trade name: 1737, manufactured by Corning) is 3.8 ⁇ 10 ⁇ 6 (K ⁇ 1 ), whereas a substrate made of polyethersulfone (PES) resin (trade name: The coefficient of linear expansion of Sumilite FS-5300 (manufactured by Sumitomo Bakelite Co., Ltd.) is 5.4 ⁇ 10 ⁇ 5 (K ⁇ 1 ). Therefore, by using a flexible substrate as the element substrate and the sealing substrate, the linear expansion coefficients of the substrate and the sealing member can be made substantially the same.
  • the method for measuring the linear expansion coefficient include a method using a push rod dilatometer, an optical interference method and the like.
  • Examples of the form in which the linear expansion coefficients of the constituent material of the element substrate and the constituent material of the sealing substrate are close to each other include a form in which the constituent material of the element substrate and the constituent material of the sealing substrate are the same.
  • the organic EL panel may include a second spacer disposed only in a region located on the opposite side of the terminal region with the organic EL element interposed therebetween.
  • the region located on the opposite side of the terminal region with the organic EL element interposed therebetween is not only the region facing the terminal region with the organic EL element sandwiched therebetween, but also the terminal region with the organic EL element sandwiched therebetween. It also includes a region that extends to the edge of the substrate.
  • the second spacer is preferably disposed at a position away from the sealing member.
  • the second spacer is preferably a spherical spacer arranged in a state dispersed in a resin (more preferably, a photocurable resin).
  • the first spacer, the second spacer, and the sealing member preferably have a difference in linear expansion coefficient of 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less.
  • the difference in linear expansion coefficient between the second spacer, the sealing member, the element substrate, and the sealing substrate is preferably 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less. Furthermore, the first spacer, the second spacer, the sealing member, the element substrate, the sealing substrate, the resin in which the first spacer is dispersed, and the resin in which the second spacer is dispersed have a linear expansion coefficient.
  • the difference is preferably 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less, and the first spacer, the second spacer, the sealing member, the element substrate, the sealing substrate, and the first spacer
  • the difference in linear expansion coefficient between the dispersed photocurable resin and the photocurable resin in which the second spacer is dispersed is preferably 1.0 ⁇ 10 ⁇ 4 (K ⁇ 1 ) or less.
  • the first spacer and the second spacer are preferably made of the same material. Accordingly, the first spacer and the second spacer can be formed in the same process, and the process can be simplified.
  • the organic EL panel preferably has a top emission structure.
  • the top emission structure is suitable for obtaining a high aperture ratio because light emission from the organic EL element can be taken out without passing through an element substrate on which a circuit for driving the organic EL element is provided. Since the organic EL panel of the present invention includes the first spacer, it is not necessary to include a spacer in the sealing member, and thus a top emission structure can be easily realized. In the form in which the organic EL panel has a top emission structure, it is preferable that the sealing member and the sealing substrate have a light transmittance of 80% or more in the visible wavelength region from the viewpoint of obtaining a high aperture ratio.
  • the present invention is also an organic EL display or organic EL illumination comprising the organic EL panel. According to these, it is possible to provide an organic EL display or an organic EL illumination including an organic EL panel that can maintain stable light emission characteristics over a long period of time.
  • the organic EL display and the organic EL lighting of the present invention are not particularly limited by other components as long as the organic EL panel includes the organic EL panel as a component.
  • a suitable form of the organic EL display and organic EL illumination of the present invention a form provided with the organic EL panel and the driver IC can be mentioned.
  • the driver IC is not particularly limited as long as it is a circuit or IC that drives the organic EL panel, and examples thereof include a scanning driver IC and a signal driver IC.
  • the present invention further relates to a method for manufacturing an organic EL panel using an element mother substrate including a plurality of panel regions each formed with an organic EL element and a terminal region, wherein the manufacturing method does not cover the terminal region.
  • positioning process which arrange
  • positioning process which arrange
  • An organic EL panel comprising: a bonding step of bonding the element mother substrate and the sealing mother substrate; and a dividing step of dividing the element mother substrate and the sealing mother substrate together with the sheet-shaped sealing material at the same place. It is also a manufacturing method.
  • the deformation of the organic EL panel due to external stresses such as stress concentration and environmental temperature change in the cutting process is suppressed by the spacer, and the cured product of the sheet-shaped sealing material is peeled off. Can be suppressed. Thereby, it can suppress that the hardened
  • the sheet-shaped sealing material can be cured while the distance between the element mother substrate and the sealing mother substrate is kept uniform by the spacer, the thickness of the cured sheet-shaped sealing material is strictly controlled. can do.
  • the coverage of the cured product of the sheet-like encapsulant with respect to the unevenness of the routing wiring connected to the organic EL element can be improved, and the airtightness of the cured product of the sheet-like encapsulating material due to the unevenness of the routing wiring Can be suppressed.
  • the reliability of the organic EL panel can be improved.
  • the element mother substrate and the sealing mother substrate are divided together with the sheet-shaped sealing material at the same place, so that a spacer at a portion where the organic EL panel is necessary.
  • the element mother substrate and the sealing mother substrate can be divided so as to include only. Thereby, the increase in the frame area
  • the sheet-like sealing material is superior in adhesion and barrier properties as compared with the liquid sealing material, by covering the organic EL element with the sheet-like sealing material, panel formation is achieved. Later adhesive strength can be increased. Thereby, even if the element mother substrate and the sealing mother substrate are divided together with the sheet-like sealing material at the same place, the mechanical strength of the organic EL panel can be sufficiently ensured.
  • an organic EL panel having a top emission structure can be easily produced. Further, by sealing the organic EL element using the sheet-like sealing material, the tact time required for disposing the sealing material can be greatly reduced as compared with the case where the liquid sealing material is used.
  • positioning process is performed under pressure reduction or a vacuum environment.
  • the sheet-shaped sealing material arrangement step is performed under an atmospheric pressure environment such as under the outside air, the sheet-shaped sealing material absorbs moisture and the outside air enters into the sealing space.
  • a step of removing moisture from the sealing material or a step of performing deaeration for a long time may be required.
  • reduced pressure may be a state where the pressure is 10 ⁇ 6 to 10 Pa
  • vacuum may be a state where the pressure is less than 10 ⁇ 6 Pa
  • the sheet-like sealing material has adhesiveness. Moreover, after arrange
  • a ventilation hole in the portion It is possible to suppress the entry of outside air or the like by forming a ventilation hole in the portion.
  • a form of such a sheet-like sealing material for example, (1) a form made of a sheet-like sealing material having adhesiveness, (2) a form in which an adhesive component is applied to the surface of the sheet-like sealing material, (3) The form etc. which were produced by solidifying the adhesive component are mentioned.
  • the method for arranging the sheet-like sealing material include a laminate sticking method, a press method, and a roll-to-roll method.
  • the sheet-like sealing material may be disposed so as not to cover the terminal region and cover the organic EL element after the bonding process, and is disposed on the element mother substrate before the bonding process. However, from the viewpoint of suppressing the deterioration of the organic EL element, it is preferably arranged on the sealing mother substrate before the bonding step.
  • the spacer may be disposed on either the element mother substrate or the sealing mother substrate before the bonding step.
  • positioned may be arranged on any of the substrates on the side where the sheet-like sealing material is not arranged, it is preferably arranged on the substrate on the side where the sheet-like sealing material is arranged.
  • the bonding step is preferably performed in a reduced pressure or vacuum environment into which an inert gas is introduced. Thereby, deterioration of the organic EL element by the sheet
  • the manufacturing method of the organic EL panel of the present invention does not include the other steps as long as it includes the sheet-like encapsulant arranging step, the spacer arranging step, the bonding step, and the dividing step as essential steps.
  • the process sequence of the sheet-like sealing material arranging step and the spacer arranging step is not particularly limited, from the viewpoint of ensuring the alignment accuracy between the element substrate and the sealing substrate, after performing the sheet-like sealing material arranging step, It is preferable to perform a spacer arrangement process.
  • a preferred embodiment in the method for producing an organic EL panel of the present invention will be described in detail below. In addition, you may use the various aspects shown below in combination as appropriate.
  • the sealing substrate and the terminal region do not overlap so that the terminal region can easily come into contact with the electronic component.
  • the sealing mother substrate is divided at a region between the organic EL element and the terminal region, and the organic electroluminescence is sandwiched between the terminal region. It is necessary to divide the element mother substrate in a region located on the opposite side of the luminescence element.
  • the dividing step is performed under the above conditions, the cured product of the sheet-shaped sealing material is easily peeled off due to stress concentration.
  • the spacer is disposed in the region between the organic EL element and the terminal region, so that the sheet shape in the region between the organic EL element and the terminal region is formed. Since generation
  • “terminal region” and “organic electroluminescent element” in “a region located on the opposite side of the organic electroluminescent element across the terminal region” refer to those included in the same panel region. .
  • the element mother substrate and the sealing mother substrate are preferably divided so that the spacer remains only in a region between the organic EL element and the terminal region.
  • the sheet-like sealing material is suppressed while suppressing the increase in the frame region by leaving the spacer only in the region between the organic EL element and the terminal region where the cured product of the sheet-like sealing material is likely to be peeled off. Occurrence of peeling can be suppressed and the reliability of the organic EL panel can be improved.
  • the element mother substrate and the element mother substrate so that the spacer remains only in a region between the organic EL element and the terminal region, and a region located on the opposite side of the terminal region across the organic EL element.
  • the sealing mother substrate may be divided.
  • the sheet-like sealing material arranging step it is preferable that the sheet-like sealing material is arranged so as to continuously cover the adjacent organic EL elements without passing through the terminal region.
  • positioning of a sheet-like sealing material can be shortened significantly.
  • the sheet-like sealing material arranging step it is preferable that the sheet-like sealing material is arranged along the arrangement direction of the adjacent organic electroluminescent elements without passing through the terminal region.
  • a sheet-like sealing material can be easily arrange
  • the sheet-like sealing materials can be simultaneously arranged in a plurality of rows, the tact time required for the arrangement of the sheet-like sealing materials can be shortened.
  • the spacer is preferably arranged so as to surround a region where the sheet-shaped sealing material is arranged.
  • the spacer is preferably arranged at a position away from the sheet-shaped sealing material.
  • the space can be used as a buffer for stress concentration and external stress in the dividing step. Peeling of the cured product can be further suppressed, and the reliability of the organic EL panel can be further increased.
  • the spacer is a spherical spacer, and in the spacer arranging step, a liquid sealing material in which the spherical spacer is dispersed is preferably arranged so as to surround a region where the sheet-like sealing material is arranged.
  • a sheet-like sealing material and an organic EL element can be shielded from outside air using a cured product of a liquid sealing material, the sheet-like sealing material can be cured under the outside air.
  • the spacer can be uniformly dispersed in the liquid sealing material. Furthermore, since no spacer is disposed between adjacent organic EL elements without passing through the terminal region, the number of organic EL panels obtained from one set of element mother substrate and sealing mother substrate can be increased.
  • Examples of the method of arranging the liquid sealing material in which the spherical spacers are dispersed include a method of discharging the liquid sealing material using a dispenser and a screen printing method.
  • the step of arranging the liquid sealing material in which the spherical spacers are dispersed is preferably performed in a reduced pressure or vacuum environment for the same reason as the sheet-like sealing material arranging step.
  • the step of arranging the liquid sealing material in which the spherical spacers are dispersed only the liquid sealing material is arranged so as to surround the region where the sheet-like sealing material is arranged, and then the arranged liquid sealing material.
  • Spherical spacers may be dispersed.
  • the spherical spacer and the liquid sealing material are arranged at a position away from the sheet-like sealing material.
  • the liquid encapsulant may enter the organic EL element and deteriorate the organic EL element. Therefore, by disposing the liquid sealing material and the sheet-shaped sealing material at positions separated from each other, deterioration of the organic EL element due to such a liquid sealing material can be suppressed.
  • a space can be formed between the spherical spacer and the liquid sealing material and the sheet-shaped sealing material by arranging the spherical spacer and the liquid sealing material at a position away from the sheet-shaped sealing material. For this reason, the space can be used as a buffer for stress concentration and external stress in the dividing step, and the peeling of the cured product of the sheet-shaped sealing material can be further suppressed, and the reliability of the organic EL panel can be further increased. it can.
  • the liquid sealing material preferably contains a photocurable resin, and more preferably consists of a photocurable resin. According to this, the liquid sealing material can be irradiated with light and cured by photopolymerization, and since it is not necessary to perform heat treatment, a decrease in yield due to alignment misalignment or the like can be suppressed. In addition, since the organic EL element is vulnerable to heat, the reliability of the organic EL element can be improved by reducing the heat treatment. Furthermore, the tact time required for curing the liquid sealing material can be shortened as compared with the case of thermosetting.
  • the manufacturing method of the said organic electroluminescent panel includes the process to harden, after softening the said sheet-like sealing material.
  • trackability of a sheet-like sealing material can be improved by once softening before hardening a sheet-like sealing material. Therefore, for example, even when the substrate (element substrate and / or sealing substrate) is deformed when the element substrate and the sealing substrate bonded together in the manufacturing process of the organic EL panel are taken out from the reduced pressure or vacuum environment to the outside air environment, Since the sheet-like sealing material can follow the deformation of the substrate, the generation and mixing of vacuum bubbles at the interface between the substrate and the sheet-like sealing material can be suppressed.
  • the coverage of the sheet-like sealing material with respect to the unevenness of the routing wiring can be further improved.
  • the sheet-shaped sealing material has thermoplasticity (a property that softens when heated). According to this, it can soften easily by heating a sheet-like sealing material.
  • the sheet-like sealing material is preferably cured by polymerization. Since the moisture permeability of the cured product of the sheet-like sealing material can be reduced by polymerizing the molecules of the compound constituting the sheet-like sealing material and curing the sheet-like sealing material, the sheet-like sealing material The sealing performance of the hardened
  • the sheet-like sealing material when hardening a sheet-like sealing material by thermal polymerization, there exists a possibility that the alignment shift by the heat distribution of a board
  • the sheet-like sealing material is photopolymerized and cured
  • the entire surface of the organic EL element is irradiated with ultraviolet rays or the like.
  • the sheet-like sealing material is preferably cured by thermal polymerization.
  • the liquid sealing material may be cured while being uncured by shielding the sheet-shaped sealing material with a mask or the like. Further, in the step of curing the sheet-shaped sealing material, the sheet-shaped sealing material is softened (for example, the thermoplasticity of the sheet-shaped sealing material is expressed by heating the substrate), and then by light irradiation. What is necessary is just to harden a sheet-like sealing material. According to such a process, since the heating time can be reduced, the tact time required for curing the sheet-shaped sealing material can be shortened.
  • the liquid adhesive in the step of curing the liquid sealing material, can be cured without shielding the sheet-shaped sealing material with a mask or the like, thereby simplifying the process. can do.
  • heat treatment is required to thermally polymerize the sheet-shaped sealing material.
  • the fear of alignment deviation is eliminated. A long heating time for curing can be ensured.
  • the sheet-like encapsulant preferably has a light transmittance of 80% or more in the visible wavelength region after curing. According to this, it is suitable for manufacturing a top emission type organic EL element which can obtain a high aperture ratio.
  • the present invention is also a method for manufacturing an organic EL display or organic EL lighting using the method for manufacturing an organic EL panel. According to this, it is possible to provide an organic EL display or an organic EL illumination including an organic EL element that can be manufactured at a low cost with a simple manufacturing process and can maintain stable light emission characteristics over a long period of time. .
  • a microcapsule electrophoretic display can be applied to various devices such as electronic paper display (paper-like display) using polymer network type liquid crystal, light emitting diode (LED) illumination, plasma display, inorganic EL display, electronic ink (E ink), solar cell, etc. it can.
  • electronic paper display paper-like display
  • LED light emitting diode
  • plasma display plasma display
  • inorganic EL display electronic ink (E ink)
  • solar cell etc. it can.
  • organic EL panel organic EL display, organic EL illumination, and manufacturing method thereof of the present invention
  • an organic EL panel, an organic EL display, and a plurality of highly reliable organic EL panels can be simultaneously produced with a frame.
  • Organic EL illumination and a method for manufacturing the same can be provided.
  • FIG. 1 is a schematic plan view illustrating an organic EL panel according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view taken along line A1-A2 in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along B1-B2 in FIG.
  • FIGS. 3A to 3D are schematic perspective views illustrating manufacturing steps of the organic EL panel of Embodiment 1.
  • FIGS. It is a plane schematic diagram which shows the state before the cutting process of the organic electroluminescent panel of Embodiment 1.
  • FIG. (A)-(c) is a cross-sectional schematic diagram which shows the cutting process of the organic electroluminescent panel of Embodiment 1.
  • (A)-(c) is a cross-sectional schematic diagram which shows the cutting process of the organic electroluminescent panel which does not have the spacer part 5a.
  • 3 is a schematic plan view showing the vicinity of a terminal region of the organic EL panel of Embodiment 1.
  • FIG. It is a plane schematic diagram which shows the terminal area
  • 4 is a schematic plan view showing another organic EL panel of Embodiment 1.
  • Embodiments are listed below, and the organic EL panel and the manufacturing method thereof according to the present invention will be described in more detail. However, the present invention is not limited to the embodiments.
  • FIG. 1 is a schematic plan view showing the organic EL panel of Embodiment 1
  • FIG. 2 is a schematic cross-sectional view taken along line A1-A2 in FIG. 1
  • FIG. 3 is a line B1-B2 in FIG. FIG.
  • the organic EL panel of Embodiment 1 includes an element substrate 1a, a sealing substrate 2a, an element region 3, a terminal region 8, a spacer portion 5a, and a sealing member 4a, and a top emission structure.
  • the element substrate 1a is a flat substrate separated from the element mother substrate.
  • the sealing substrate 2a is a flat substrate that is separated from the sealing mother substrate.
  • a plurality of organic EL elements are arranged vertically and horizontally.
  • Mounting pads (connection electrodes) are arranged in the terminal region 8.
  • the spacer portion 5 a is disposed in a region between the element region 3 and the terminal region 8. This spacer part 5a functions as a first spacer.
  • the sealing member 4 a is disposed so as to cover the element region 3. As shown in FIG. 2, the spacer portion 5a and the sealing member 4a are arranged apart from each other on the plane passing through the terminal area 8 and passing through the line A1-A2, and there is a space between the spacer portion 5a and the sealing member 4a. 6 is formed. As shown in FIG.
  • the sealing member 4a is disposed at the end portion of the surface passing through the B1-B2 line, and the spacer portion 5a is not disposed.
  • the element substrate 1a and the sealing substrate 2a are bonded together via the sealing member 4a and the spacer portion 5a. In this way, the organic EL panel of the present embodiment is configured.
  • a glass substrate (trade name: 1737, thickness: 0.7 mm, linear expansion coefficient: 3.8 ⁇ 10 ⁇ 6 (K ⁇ 1 ), manufactured by Corning) is used as the element mother substrate.
  • a polyethersulfone (PES) resin substrate (trade name: Sumilite FS-5300, thickness: 0.2 mm, linear expansion coefficient: 5.4 ⁇ 10 ⁇ 5 (K ⁇ 1 ), Manufactured by Sumitomo Bakelite Co., Ltd.) or the like can also be used.
  • a glass substrate (trade name: 1737, thickness: 0.7 mm, linear expansion coefficient: 3.8 ⁇ 10 ⁇ 6 (K ⁇ 1 ), manufactured by Corning) is used as the sealing mother substrate.
  • a flexible substrate such as a PES resin substrate can also be used in the same manner as the element mother substrate.
  • the organic EL element disposed in the element region 3 has a structure in which an organic layer including at least a light emitting layer is sandwiched between an anode (anode) and a cathode (cathode).
  • Examples of the organic layer other than the light emitting layer include an electron injection layer, an electron transport layer, a hole transport layer, and a hole injection layer.
  • a lead wiring used for driving the organic EL element is disposed together with the organic EL element, and the organic EL element and the lead wiring are electrically connected.
  • the mounting pads disposed in the terminal region 8 and the organic EL elements disposed in the element region 3 are electrically connected via the routing wiring.
  • the sealing member 4a is a cured product of a sheet-like sealing material.
  • a sheet-like encapsulant is a encapsulant that can maintain a certain shape and volume when placed, and has the flexibility to follow irregularities such as organic EL elements and routing wiring when pressure is applied. is there.
  • the thickness of a sheet-like sealing material is not specifically limited, A sheet-like sealing material may be what is called a film-form sealing material.
  • thermoplastic thermosetting resin (linear expansion coefficient: 7 ⁇ 10 ⁇ 5 (K ⁇ 1 )) mainly composed of an epoxy resin (EP) as a sheet-like sealing material, and after curing (sealing) The light transmittance in the visible wavelength region of the member 4a): 95%) is used.
  • the sealing member 4 a is attached so as to cover the entire surface of the element region 3.
  • a photocurable resin is used for the sheet-shaped sealing material
  • the organic EL element is also exposed to ultraviolet rays or the like when the sheet-shaped sealing material is cured. Therefore, as the sheet-like sealing material, other than the epoxy resin may be used, but it is preferable to use a thermosetting resin having thermoplasticity.
  • thermosetting resin having thermoplasticity is a resin that softens and deforms when heated, but is cured by causing a chemical reaction when heated as it is.
  • the sheet-like encapsulant is a thermoplastic photo-curing resin (linear expansion coefficient: 6 ⁇ 10 ⁇ 5 (K ⁇ 1 )) having a methacrylic resin (poly (meth) acrylate) as a main component, after curing. (The light transmittance in the visible wavelength region of the sealing member 4a): 97%) may be used. Further, a desiccant may be added to the sheet-like sealing material to give a drying function to the sealing member 4a.
  • the spacer part 5a is a cured product of a liquid sealing material in which spherical spacers are dispersed.
  • the average particle diameter of the spherical spacer is preferably 1 to 100 ⁇ m, and more preferably 20 ⁇ m or less in view of sealing performance and light transmittance.
  • the material for the spherical spacer is not particularly limited, and examples thereof include plastic and silica.
  • a silica spherical spacer having a particle size of 12 ⁇ m (trade name: High Plessica, linear expansion coefficient: 5 ⁇ 10 ⁇ 7 (K ⁇ 1 ), manufactured by Ube Nitto Kasei) is used as the spherical spacer.
  • the liquid sealing material is an adhesive having fluidity.
  • a photo-curing resin (trade name: XNR5516, linear expansion coefficient: 7 ⁇ 10 ⁇ 5 (K ⁇ 1 ), mainly made of epoxy resin (EP) as a liquid sealing material, manufactured by Nagase ChemteX Corporation ) Is used.
  • the spacer portion 5 a has a planar shape along the end portion on the terminal region 8 side of the element substrate 1 a and is disposed in a region between the element region 3 and the terminal region 8.
  • a thermosetting resin other than an epoxy resin may be used, but a photocurable resin is preferably used. Thereby, the hardening time of a liquid sealing material can be shortened.
  • an ultraviolet (UV) curable resin such as an acrylic resin with less restrictions on the coating environment may be used.
  • the spacer portion 5a disposed in the region between the element region 3 and the terminal region 8 suppresses deformation of the organic EL panel and suppresses the peeling of the sealing member 4a. can do. Thereby, the fall of the airtightness of the sealing member 4a can be suppressed, and the reliability of an organic electroluminescent panel can be improved. Further, since the spacer portion 5a is disposed only in the region between the element region 3 and the terminal region 8, and the spacer portion 5a does not surround the element region 3, an increase in the frame region of the organic EL panel can be suppressed.
  • the space 6 is formed between the spacer part 5a and the sealing member 4a by disposing the spacer part 5a and the sealing member 4a at positions separated from each other.
  • this space 6 as a buffer, the deformation of the organic EL panel can be further suppressed, and the occurrence of peeling of the sealing member 4a can be further suppressed. Thereby, the fall of the airtightness of the sealing member 4a can be suppressed more, and the reliability of an organic electroluminescent panel can be improved more.
  • the spacer portion 5a it is not necessary to core the spacer in the sealing member 4a provided on the element region 3, so that a top emission structure organic EL panel can be easily realized.
  • FIG. 4A to 4D are schematic perspective views showing the manufacturing process of the organic EL panel of Embodiment 1.
  • FIG. FIG. 5 is a schematic plan view showing a state before the dividing step of the organic EL panel of the first embodiment.
  • a sealing mother substrate 2 is prepared.
  • the some sheet-like sealing material 4 is affixed on the sealing mother board
  • the sheet-like sealing material 4 is attached at a position that overlaps the element region 3 and does not overlap the terminal region 8 when the sealing mother substrate 2 and the element mother substrate 1 are bonded together in a later step.
  • the sheet-like sealing is performed as compared with the case where an independent sheet-like sealing material 4 is attached to each element region 3.
  • the tact time required for attaching the material 4 can be greatly reduced.
  • the sheet-like sealing material arranging step the sheet-like sealing material 4 is attached along the arrangement direction of the adjacent element regions 3 without passing through the terminal regions 8 (in a substantially parallel direction).
  • the sheet-like sealing material 4 can be easily arranged only in a necessary region, and the terminal region 8 can be prevented from being covered with the sheet-like sealing material 4. Moreover, since the sheet-like sealing material 4 can be attached in a plurality of rows at the same time, the tact time required for attaching the sheet-like sealing material 4 can be shortened.
  • distributed is apply
  • the liquid sealing material 5 in which the spherical spacers are mixed is used to uniformly disperse the spherical spacers in the liquid sealing material 5 and to remove volatile components contained in the liquid sealing material 5. Stirring and degassing under reduced pressure are preferred.
  • the liquid sealing material 5 in which the spherical spacers are dispersed is applied at a position away from the sheet-like sealing material 4, and the spherical spacer and the liquid sealing material 5 are combined with the sheet-like sealing material 4.
  • a space is formed in the area between them. By utilizing this space, it is possible to prevent deterioration of the organic EL element due to the liquid sealing material 5 entering the element region 3. This space can also be used as a buffer for stress concentration and external stress in the cutting process.
  • the liquid sealing material 5 is applied so as to surround the sheet-shaped sealing material 4.
  • the liquid encapsulant 5 is cured under reduced pressure or in a vacuum environment before the sheet-like encapsulant 4 is cured in a later step, and the spacer portion 5a is formed, whereby the region surrounded by the spacer portion 5a is decompressed.
  • the sheet-like sealing material 4 can be cured in an atmospheric environment.
  • the liquid sealing material 5 is not arranged in the region between the adjacent element regions 3 without the terminal region 8 interposed therebetween, so that the element mother substrate 1 and the sealing mother substrate 2 are divided in a later step.
  • the number of organic EL panels obtained can be increased.
  • an element mother substrate 1 in which an organic EL element is formed in the element region 3 by using a general method is prepared.
  • inert gas such as nitrogen (N 2 ) gas or dry air is used.
  • the element mother substrate 1 and the sealing mother substrate 2 are bonded together at room temperature via the sheet-shaped sealing material 4 and the liquid sealing material 5 in a reduced pressure or vacuum environment in which gas is introduced (bonding step).
  • bonding step By performing this process under reduced pressure or in a vacuum environment, the element mother substrate 1 is generated without generating bubbles in the liquid encapsulant 5 and on the adhesive surface between the sheet-like encapsulant 4 and the element mother substrate 1.
  • the sealing mother substrate 2 can be bonded together.
  • the liquid sealing material 5 is irradiated with ultraviolet (UV) rays and cured by photopolymerization under reduced pressure or a vacuum environment into which an inert gas such as nitrogen (N 2 ) gas or dry air is introduced (liquid sealing) Material curing process).
  • an inert gas such as nitrogen (N 2 ) gas or dry air is introduced
  • the spacer part 5a which is the hardened
  • the heat treatment is not performed when the liquid encapsulant 5 is cured, the tact time of the liquid encapsulant curing process can be greatly shortened without a decrease in yield due to poor alignment or the like.
  • the organic EL element is vulnerable to heat, the reliability of the organic EL element can be improved by reducing the heat treatment.
  • the sheet-like sealing material 4 is heated, and after the sheet-like sealing material 4 is softened, further heating is performed. Then, the sheet-shaped sealing material 4 is cured by thermal polymerization (sheet-shaped sealing material curing step). Thereby, the sealing member 4a which is the hardened
  • trackability of the sheet-like sealing material 4 can be improved by once softening the sheet-like sealing material 4 before hardening.
  • the sheet-like sealing material 4 is attached to the substrate. Since it is possible to follow the deformation, the generation and mixing of vacuum bubbles at the interface between the substrate and the sheet-like sealing material 4 can be suppressed, and the covering property of the sheet-like sealing material 4 against the unevenness of the routing wiring Can be further enhanced. Moreover, deterioration of the organic EL element by light irradiation can be prevented by hardening the sheet-like sealing material 4 by thermal polymerization. Moreover, the moisture permeability of the sealing member 4a can be reduced, and the sealing performance of the sealing member 4a can be further improved.
  • the sheet-like sealing material curing step nitrogen (N 2) gas, inert gas dry air or the like is introduced under reduced pressure or after heating the sheet-like sealing material 4 in a vacuum environment and softening the sheet-like sealing material 4, the sheet-like sealing material 4 may be cured by photopolymerization with light irradiation.
  • N 2 gas nitrogen
  • inert gas dry air or the like the sheet-like sealing material 4 may be cured by photopolymerization with light irradiation.
  • the tact time of the sheet-like sealing material curing step can be reduced.
  • the moisture permeability of the sealing member 4a can be reduced similarly to the case where a thermoplastic thermosetting resin is used for the sheet-like sealing material 4, and the sealing performance of the sealing member 4a is further improved. Can be made.
  • a dotted line in FIG. 5 indicates a dividing position (a dividing line) of the organic EL panel, and a region surrounded by the dotted line is a panel region.
  • the cutting positions of the three sides surrounding the element region 3 are set on the sealing member 4a, and the element mother substrate 1 and the sealing mother substrate 2 are located at the same position together with the sealing member 4a.
  • the sealing member 4a which is a cured product of the sheet-like sealing material 4
  • the spacer portion 5a is not disposed between the adjacent element regions 3 without the terminal region 8, the number of organic EL panels obtained from one set of the element mother substrate 1 and the sealing mother substrate 2 is reduced. Can be increased.
  • FIGS. 6A to 6C are schematic cross-sectional views showing a dividing step of the organic EL panel of Embodiment 1.
  • FIG. 6A to 6C correspond to a cross section along the vertical direction in the state shown in FIG. Accordingly, a terminal region is provided on the left side of the spacer portion 5a in FIGS. 6 (a) to 6 (c).
  • the groove 11 is formed at the dividing position using the wheel scribe 10.
  • a penet made of Samsung diamond is used as the wheel scribe 10, and the pushing amount is 100 ⁇ m.
  • a pressure (break pressure) is applied to the groove 11 formed at the dividing position, and the bonded element mother substrate 1 and sealing mother substrate 2 are divided.
  • the breaking pressure at the dividing position on the terminal region side of the element region 3 is 7 to 9 N
  • the breaking pressure at the dividing position other than the terminal region side of the element region 3 is 9 to 11 N. Since the element mother substrate 1 and the sealing mother substrate 2 are divided together with the sealing member 4a at the dividing position other than the terminal region side of the element region 3, a vertical crack such as the groove 11 is hardly formed. Therefore, it is preferable to make the break pressure higher at the dividing position other than the terminal region side of the element region 3 than at the dividing position of the element region 3 on the terminal region side. In addition, since the parting positions other than the terminal region side of the element region 3 are the same for both the element mother substrate 1 and the sealing mother substrate 2, there is a possibility that the sealing member 4a may be peeled off even if the break pressure is increased. Low.
  • the element region 3 and the terminal region are arranged so that the sealing substrate 2a obtained by dividing the sealing mother substrate 2 does not overlap the terminal region from the viewpoint of easily mounting electronic components in the terminal region. It is necessary to divide the sealing mother substrate 2 in the region between the element mother substrate 1 and the element mother substrate 1 in a region located on the opposite side of the element region 3 across the terminal region. As described above, since the dividing positions of the element mother substrate 1 and the sealing mother substrate 2 are different in the periphery of the terminal region, the element mother substrate 1 and the sealing mother substrate 2 are caused by stress concentration in the dividing step.
  • FIGS. 7A to 7C are schematic cross-sectional views showing a dividing step of an organic EL panel that does not have the spacer portion 5a.
  • FIGS. 7A to 7C when the groove 11 is formed at the same dividing position as that in FIG. 6A using the wheel scribe 10, and pressure is applied to the groove 11, as described above. In the periphery of the terminal area, the separation positions of the element mother substrate 1 and the sealing mother substrate 2 are different, so that the sealing member 4a is peeled off and the airtightness of the sealing member 4a is lowered.
  • the organic EL panel of the present embodiment can eliminate the above-mentioned concern by including the spacer portion 5a disposed in the region between the terminal region and the element region 3. In this way, an organic EL panel can be obtained as shown in FIG.
  • the space 6 formed between the spacer portion 5a and the sealing member 4a acts as a buffer, the occurrence of peeling of the sealing member 4a due to stress concentration or external stress in the breaking process is further suppressed. can do. Since the element mother substrate 1 and the sealing mother substrate 2 have the same dividing positions for the three sides other than the terminal region 8 side of the element region 3 where the spacer portion 5a is not disposed, the sealing member 4a Peeling is unlikely to occur. Therefore, like the organic EL panel of the present embodiment, by arranging the spacer portion 5a only in a necessary region, an increase in the frame region of the organic EL panel can be suppressed.
  • FIG. 8 is a schematic plan view showing the vicinity of the terminal area of the organic EL panel according to Embodiment 1
  • FIG. 9 is a schematic plan view showing the vicinity of the terminal area of the organic EL panel not having the spacer portion 5a.
  • the organic EL panel according to the present embodiment can strictly control the film thickness of the sealing member 4a using the spacer portion 5a.
  • the covering property of the sealing member 4a with respect to the surface is improved, and the unevenness of the routing wiring 9 can be completely covered with the sealing member 4a.
  • FIG. 8 is a schematic plan view showing the vicinity of the terminal area of the organic EL panel according to Embodiment 1
  • FIG. 9 is a schematic plan view showing the vicinity of the terminal area of the organic EL panel not having the spacer portion 5a.
  • the organic EL panel according to the present embodiment can strictly control the film thickness of the sealing member 4a using the spacer portion 5a.
  • the covering property of the sealing member 4a with respect to the surface is improved, and the unevenness of
  • FIG. 10 is a schematic plan view showing another organic EL panel of the first embodiment.
  • spacer portions 5 a are arranged in a region between the element region 3 and the terminal region 8 and a region facing the terminal region 8 across the element region 3. It may be.
  • the spacer portion 5a disposed in the region between the element region 3 and the terminal region 8 functions as a first spacer
  • Such an organic EL panel can be manufactured by changing the dividing position of the region facing the terminal region 8 across the element region 3 and performing a dividing step.
  • the spacer portion 5a is disposed in the region between the element region 3 and the terminal region 8 and in the region facing the terminal region 8 with the element region 3 interposed therebetween, so that an external change in environmental temperature or the like is caused. Since the deformation of the organic EL panel due to stress can be further suppressed, and the occurrence of peeling of the sealing member 4a can be further suppressed, the deterioration of the airtightness of the sealing member 4a can be further suppressed. In addition, since the film thickness of the sealing member 4a can be controlled more strictly, the coverage of the sealing member 4a with respect to the unevenness of the routing wiring connected to the organic EL element can be further increased, and the unevenness of the routing wiring can be improved. The deterioration of the airtightness of the sealing member 4a due to the above can be further suppressed. As described above, the reliability of the organic EL panel can be further increased.
  • the spacer portion 5a can be easily formed between the element region 3 and the terminal region 8 and between the element region 3 and the region facing the terminal region 8 simply by changing the dividing position. Since it can arrange
  • the organic EL panel of the present embodiment can maintain stable light emission characteristics over a long period of time, and thus can be suitably used for an organic EL display and organic EL illumination.
  • element mother substrate 1a element mother substrate 2: sealing mother substrate 2a: sealing substrate 3: element region 4: sheet-shaped sealing material 4a: sealing member (cured material of sheet-shaped sealing material) 5: Liquid sealing material 5a: Spacer part (cured product of liquid sealing material in which spherical spacers are dispersed) 6: Space 8: Terminal area 9: Routed wiring (wiring section) 10: Wheel scribe 11: Groove

Abstract

本発明は、挟額縁で、高信頼性の有機ELパネルを複数同時に作製することができる有機ELパネル、有機ELディスプレイ、有機EL照明、及び、それらの製造方法を提供する。本発明の有機ELパネルは、有機EL素子及び端子領域が形成された素子基板と、上記有機EL素子を被覆する封止部材と、上記封止部材を介して上記素子基板に貼り合わされた封止基板とを備える有機ELパネルであって、上記有機ELパネルは、上記有機EL素子及び上記端子領域の間の領域のみに配置された第一スペーサを備える有機ELパネルである。

Description

有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法
本発明は、有機エレクトロルミネセンス(以下、有機ELともいう。)パネル、有機ELディスプレイ、有機EL照明、及び、それらの製造方法に関する。より詳しくは、有機ELディスプレイや有機EL照明に好適に用いることができる有機ELパネル、有機ELディスプレイ、有機EL照明、及び、それらの製造方法に関するものである。
これまで、有機ELパネルの構造としては、外部からの酸素や水分による有機EL素子の劣化を防ぐため、封止缶(掘り込みガラス)に乾燥剤を貼り付け、有機EL素子の外周部の外側を封止樹脂で枠状にシールした缶封止構造が一般に採用されてきた。しかしながら、この缶封止構造では、光をパネル上面から取り出すトップエミッション構造の採用(高開口率化)やパネルの薄型化が困難なため、近年、平板基板を用いた封止構造(以下「平板封止構造」ともいう。)の研究が行われている。
この平板封止構造においては、接着剤を基板間に所定のパターンに無気泡状態で膜形成することが必要である。平板封止構造の有機ELパネルとしては、例えば、封止基板の貼り付け面側であって、パネル基板上の各発光領域とその周囲の電極領域とを遮る位置に防護壁(シール剤)が設けられ、パネル基板の貼り付け面側であって、上記防護壁の内側に未硬化の状態で封止樹脂(充填剤)が塗布され、防護壁及び硬化された封止樹脂によりパネル基板と封止基板とが貼り合わされた有機ELパネルが開示されている(例えば、特許文献1参照。)。特許文献1の有機ELパネルによれば、発光領域に未硬化の状態で塗布された封止樹脂は、発光領域の周囲に形成された防護壁により電極領域の側に拡散することができず、後に硬化させることで各発光領域内に形成することができる。また、有機EL素子を被覆するシート状封止材と、該シート状封止材の周囲に配置された液状封止材とを用いて素子基板及び封止基板の間を封止することにより、長期に渡って安定した発光特性を維持することができる有機ELパネルが開示されている(例えば、特許文献2参照。)。また、防護壁(シール剤)を必要とする液状の封止樹脂(充填剤)の代わりに固体状の封止樹脂のみを用いてパネル基板上の各発光領域を覆うことで、工程の簡略化を図った封止プロセスが提案されている(例えば、特許文献3参照。)。
特開2003-178866号公報 国際公開第2008/078648号パンフレット 特開2006-179352号公報
特許文献1の技術によれば、防護壁を配置する領域を設ける必要があり、特許文献2の技術によれば、液状封止材を配置する領域を設ける必要がある。したがって、特許文献1、2の技術は、額縁領域が大きく、パネル外形が大きくなるという点で改善の余地があった。これに対し、特許文献3の技術によれば、固体状封止樹脂のみで封止を行っていることから、特許文献1、2の技術と比較して、挟額縁化を実現することができる。しかしながら、特許文献3の技術では、複数の有機ELパネルを多面取りで作製する場合の分断工程で固体状封止樹脂の剥がれが発生し、有機EL素子形成領域の気密性が確保できない場合がある。この場合、外部からの水分や酸素によって有機EL素子が劣化し、有機ELパネルの信頼性が低下するという点で改善の余地があった。したがって、挟額縁で、高信頼性の有機ELパネルを複数同時に作製する技術は未だ要望されている。
本発明は、上記現状に鑑みてなされたものであり、挟額縁で、高信頼性の有機ELパネルを複数同時に作製することができる有機ELパネル、有機ELディスプレイ、有機EL照明、及び、それらの製造方法を提供することを目的とするものである。
本発明者は、挟額縁で、高信頼性の有機ELパネルを複数同時に作製することができる有機ELパネルについて種々検討したところ、素子基板及び封止基板の間の距離(間隔)を一定に保つためのスペーサを用いることに着目した。そして、このスペーサを有機EL素子と端子領域との間の領域のみに配置することにより、額縁領域の増加を抑制しながら封止部材の剥がれの発生を抑制することができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、有機EL素子及び端子領域が形成された素子基板と、上記有機EL素子を被覆する封止部材と、上記封止部材を介して上記素子基板に貼り合わされた封止基板とを備える有機ELパネルであって、上記有機ELパネルは、上記有機EL素子及び上記端子領域の間の領域のみに配置された第一スペーサを備える有機ELパネルである。
本発明の有機ELパネルによれば、第一スペーサにより、分断工程における応力集中や環境温度の変化等の外的ストレスによる有機ELパネルの変形を抑制し、封止部材の剥がれの発生を抑制することができる。これにより、封止部材の剥がれに起因する封止部材の気密性の低下を抑制することができる。また、第一スペーサによって素子基板と封止基板との間の距離を均一に保ちながら封止部材の材料を硬化することができるため、封止部材の膜厚を厳密に制御することができる。これにより、有機EL素子と接続される引き回し配線の凹凸に対する封止部材の被覆性を高めることができ、引き回し配線の凹凸に起因する封止部材の気密性の低下を抑制することができる。以上より、有機ELパネルの信頼性を高めることができる。
また、本発明の有機ELパネルによれば、有機EL素子と端子領域との間の領域のみに配置された第一スペーサを用いることにより、有機ELパネルの額縁領域の増加を抑制することができる。このように、第一スペーサが端子領域よりも内側(有機EL素子側)で、かつ有機EL素子を囲まないように配置されていることで、1組の素子マザー基板及び封止マザー基板を分断して得られる有機ELパネルの取り数を増加させることができる。したがって、本発明の有機ELパネルは、1組の素子マザー基板及び封止マザー基板を分断して複数の有機ELパネルを作製する態様に特に好適に用いることができる。
更に、本発明の有機ELパネルによれば、封止部材にスペーサを含有させる必要がないため、封止基板側から発光を取り出すトップエミッション構造の有機ELパネルを容易に実現することができる。また、外部からの押圧等によって有機EL素子が直接ダメージを受けるおそれを少なくすることができる。
上記封止部材に被覆される有機EL素子の数は特に限定されず、単数であってもよいし、複数であってもよい。また、上記端子領域は、電子部品が実装されるための端子が配置された領域であり、通常、実装用パッド(接続電極)が配置されている。
本明細書において、有機EL素子及び端子領域の間の領域とは、有機EL素子と端子領域とに挟まれた領域のみならず、有機EL素子と端子領域とに挟まれた領域を基板の端にまで延伸した領域も含む。
本発明の有機ELパネルは、平板封止構造を有するため、封止缶等を用いる缶封止構造を有する場合と異なり、有機ELパネルの薄型化を図ることができるとともに、トップエミッション構造を採用することで、高開口率化を図ることも可能である。なお、有機EL素子は、陽極(アノード)と陰極(カソード)との間に少なくとも有機発光層が挟まれた構造を有するものである。有機発光層、陽極及び陰極の積層順序は特に限定されず、陽極及び陰極のいずれが素子基板側に配置されてもよい。ただし、トップエミッション構造を採用する場合には、反射性を有する電極を素子基板側に配置し、透明性を有する電極を封止基板側に配置する。
本発明の有機ELパネルの構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の有機ELパネルにおける好ましい形態について以下に詳しく説明する。なお、以下に示す各種の形態は、適宜組み合わせて用いてもよい。
上記封止基板は、上記端子領域に重ならないことが好ましい。これにより、端子領域への電子部品の実装を容易に行うことができる。1組の素子マザー基板及び封止マザー基板を分断して複数の有機ELパネルを作製する方法を用いる場合、封止基板が端子領域に重ならない構成を有する有機ELパネルを得るためには、有機EL素子及び端子領域の間の領域で封止マザー基板を分断するとともに、端子領域を挟んで有機EL素子の反対側に位置する領域で素子マザー基板を分断することが必要となる。このように封止マザー基板及び素子マザー基板を分断すると、分断の際の応力集中によって封止マザー基板及び素子マザー基板が変形し、封止部材の剥がれが発生しやすくなる。これに対し、本発明の有機ELパネルによれば、第一スペーサにより、貼り合わせた素子基板及び封止基板を分断する際の応力集中に起因する封止マザー基板及び素子マザー基板の変形が抑制されるため、封止部材の剥がれの発生を抑制することができる。このように、本発明の有機ELパネルは、1組の素子マザー基板及び封止マザー基板を分断して複数の有機ELパネルを作製する態様に特に好適に用いることができる。
本明細書において、端子領域を挟んで有機EL素子の反対側に位置する領域とは、端子領域を挟んで有機EL素子と対向する領域のみならず、端子領域を挟んで有機EL素子と対向する領域を基板の端にまで延伸した領域も含む。
上記第一スペーサは、上記封止部材から離れた位置に配置されることが好ましい。これにより、第一スペーサと封止部材との間に空間が設けられるため、貼り合わせた素子基板及び封止基板を分断する際の応力集中によって有機ELパネルが変形しても、該空間を緩衝として用いることができ、封止部材の剥がれの発生をより抑制することができる。また、該空間は、環境温度の変化等の外的ストレスに起因する有機ELパネルの変形に対する緩衝としても用いることができる。以上より、有機ELパネルの信頼性をより高めることができる。
上記第一スペーサは、単独で配置してもよいが、有機材料とともに配置することが好ましく、樹脂とともに配置することがより好ましい。これにより、ディスペンサ等の塗布装置を用いて第一スペーサを容易に所望の位置に配置することができる。また、上記第一スペーサは、柱状スペーサと呼ばれるものであってもよいが、球状の形状を有する球状スペーサであることが好ましい。これにより、第一スペーサを有機材料や樹脂に均一に分散させることができる。このように、上記第一スペーサは、樹脂に分散した状態で配置された球状スペーサであることが好ましい。球状スペーサの平均粒径は、1~100μmであることが好ましい。1μm未満であると、球状スペーサの均一分散性や粒径の均一さが低下することにより、基板間隔(素子基板と封止基板との間隔)にばらつきが生じるおそれがあり、100μmを超えると、パネル厚みが大きくなりすぎることがある。封止性能や光線透過率を考慮した場合、球状スペーサの平均粒径は、20μm以下であることがより好ましい。
上記球状スペーサを分散させる樹脂としては、例えばエポキシ樹脂(EP)、メタアクリル樹脂(ポリ(メタ)アクリレート)、環状ポリオレフィン(COP)樹脂、塩化ビニル樹脂(ポリ塩化ビニル、PVC)、ポリエチレンテレフタレート(PET)樹脂、各種ナイロン(ポリアミド樹脂)、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリアリールフタレート樹脂、シリコーン樹脂、ポリスルホン(PS)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルスルホン(PES)樹脂、ポリウレタン(PU)樹脂、アセタール樹脂(ポリアセタール、POM)等が挙げられる。中でも、光硬化性樹脂であることが好ましい。これにより、樹脂を硬化するための加熱処理を省略することができることから、アライメントズレ等による歩留りの低下を抑制できる。また、有機EL素子は熱に弱いため、加熱処理を減らすことにより、有機EL素子の信頼性を向上することができる。更に、加熱処理で樹脂を硬化させる場合と比較して、樹脂の硬化に要するタクトタイムを短縮することができる。なお、球状スペーサを分散させる樹脂は、該樹脂に特有の構造を含むものであればよく、誘導体等であってもよい。
上記光硬化性樹脂には、一般的に光重合性モノマー等とともに光重合開始剤が配合されている。例えば、エポキシ樹脂の重合反応は光カチオン重合開始剤によって開始され、アクリル樹脂の重合反応は光ラジカル重合開始剤等によって開始される。光重合開始剤の配合量は選択材料に大きく依存する。光重合開始剤の配合量が過少であると、反応が充分に進行しなかったり反応が遅くなりすぎたりすることがある。光重合開始剤の配合量が過多であると、反応が速くなりすぎることにより、作業性が低下したり、反応が不均一になったりすることがある。上記光硬化性樹脂の中でも、紫外線硬化型樹脂は、紫外線を照射しないと硬化しないため、作業性に優れている。また、紫外線硬化型樹脂は、塗布環境の制約が少ないという利点も有している。したがって、上記樹脂は、紫外線硬化型樹脂であることが好ましい。
上記封止部材を構成する材料としては特に限定されないが、有機材料が好ましく、樹脂がより好ましい。樹脂としては、例えばエポキシ樹脂(EP)、メタアクリル樹脂(ポリ(メタ)アクリレート)、環状ポリオレフィン(COP)樹脂、塩化ビニル樹脂(ポリ塩化ビニル、PVC)、ポリエチレンテレフタレート(PET)樹脂、各種ナイロン(ポリアミド樹脂)、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリアリールフタレート樹脂、シリコーン樹脂、ポリスルホン(PS)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルスルホン(PES)樹脂、ポリウレタン(PU)樹脂、アセタール樹脂(ポリアセタール、POM)等が挙げられる。中でも、熱硬化性樹脂が特に好ましい。すなわち、上記封止部材は、熱硬化性樹脂を含むことが好ましく、熱硬化性樹脂からなることがより好ましい。光重合によって封止部材を硬化する場合、紫外線等の光が有機EL素子の全面に照射されることとなり、有機EL素子の劣化が懸念される。したがって、有機EL素子の劣化を防ぐ観点からは、封止部材は、熱重合して硬化されることが好ましい。なお、封止部材の構成材料として列挙した樹脂もまた、該樹脂に特有の構造を含むものであればよく、誘導体等であってもよい。
上記封止部材は、厚みが1~100μmであることが好ましい。封止部材の厚みが1μm未満であると、第一スペーサを用いたとしても、基板間隔にばらつきが生じて、封止部材の膜厚を均一化することが困難となるおそれがある。また、封止部材の厚みが100μmを超えると、封止部材の光透過率が低下することにより、トップエミッション構造を採用した場合に、有機EL素子からの光取り出し量が低下するおそれがある。なお、ここでいう封止部材の厚みとは、封止部材の厚みを平均したものである。封止部材の厚みのより好適な上限値は20μmである。
上記封止部材は、可視波長域での光透過率が80%以上であることが好ましい。このような構成は、本発明の有機ELパネルが、高開口率が得られるトップエミッション構造の有機EL素子を有する場合に好適である。なお、本明細書で「可視波長域」とは、380~780nmの波長域のことである。また、「可視波長域での透過率」は、分光光度計(商品名:U-4000、日立製作所社製)を用い、JIS R 3106「板ガラス類の透過率の試験方法」に準拠し、波長380~780nmの可視光透過率を測定したものである。
上記第一スペーサ及び上記封止部材の構成材料は、線膨張係数(線膨張率)が近いことが好ましく、上記第一スペーサと上記封止部材とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。一般的に、封止樹脂の線膨張係数(線膨張率)は2.0×10-5~9.0×10-5(K-1)の範囲内にある。このように第一スペーサと封止部材との線膨張係数をほぼ同一とすることにより、有機ELパネルに急激な温度変化や局所的な外力が加えられた場合にも、第一スペーサの体積変化に封止部材が追随することができるため、封止部材の剥がれの発生を抑制し、封止部材と素子基板との間、又は、封止部材と封止基板との間に隙間が生じるのを防ぐことができる。同様の観点から、上記第一スペーサと上記封止部材と上記第一スペーサが分散した樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。また、上記第一スペーサと上記封止部材と上記第一スペーサが分散した光硬化性樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。
上記第一スペーサ、上記封止部材、上記素子基板及び上記封止基板の構成材料は線膨張係数が近いことが好ましく、上記第一スペーサと上記封止部材と上記素子基板と上記封止基板とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。これにより、封止部材と基板との間に封止部材の剥れによる隙間を生じにくくすることが可能となる。同様の観点から、上記第一スペーサと上記封止部材と上記素子基板と上記封止基板と上記第一スペーサが分散した樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。また、上記第一スペーサと上記封止部材と上記素子基板と上記封止基板と上記第一スペーサが分散した光硬化性樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。通常、プラスチック基板等のいわゆるフレキシブル基板は、ガラス基板よりも線膨張係数が大きく、ガラス基板と比較して温度変化や外力による変形量が大きい。例えば、ガラス基板(商品名:1737、コーニング社製)の線膨張係数は3.8×10-6(K-1)であるのに対し、ポリエーテルスルホン(PES)樹脂製基板(商品名:スミライトFS-5300、住友ベークライト社製)の線膨張係数は、5.4×10-5(K-1)である。そのため、素子基板及び封止基板としてフレキシブル基板を用いることにより、基板と封止部材との線膨張係数をほぼ同一とすることができる。線膨張係数の測定方法としては、押し棒式膨張計による方法、光干渉法等が挙げられる。素子基板の構成材料と封止基板の構成材料との線膨張係数が近い形態としては、例えば、素子基板の構成材料と封止基板の構成材料とが同一である形態が挙げられる。
上記有機ELパネルは、上記有機EL素子を挟んで上記端子領域の反対側に位置する領域のみに配置される第二スペーサを備えてもよい。これにより、環境温度の変化等の外的ストレスによる有機ELパネルの変形をより抑制し、封止部材の剥がれの発生をより抑制することができるため、封止部材の気密性の低下をより抑制することができる。また、素子基板と封止基板との間の距離をより均一に保つことができるため、封止部材の膜厚をより厳密に制御することができる。したがって、有機EL素子と接続される引き回し配線の凹凸に対する封止部材の被覆性をより高めることができ、引き回し配線の凹凸に起因する封止部材の気密性の低下をより抑制することができる。以上により、有機ELパネルの信頼性をより高めることができる。
本明細書において、有機EL素子を挟んで端子領域の反対側に位置する領域とは、有機EL素子を挟んで端子領域と対向する領域だけでなく、有機EL素子を挟んで端子領域と対向する領域を基板の端にまで延伸した領域も含む。
第一スペーサの好ましい形態として説明した形態については、第一スペーサの場合と同様の理由から、第二スペーサの好ましい形態としても適用することができる。すなわち、上記第二スペーサは、上記封止部材から離れた位置に配置することが好ましい。また、上記第二スペーサは、樹脂(より好ましくは光硬化性樹脂)に分散した状態で配置された球状スペーサであることが好ましい。また、上記第一スペーサと上記第二スペーサと上記封止部材とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましく、上記第一スペーサと上記第二スペーサと上記封止部材と上記素子基板と上記封止基板とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。更に、上記第一スペーサと上記第二スペーサと上記封止部材と上記素子基板と上記封止基板と上記第一スペーサが分散した樹脂と上記第二スペーサが分散した樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましく、上記第一スペーサと上記第二スペーサと上記封止部材と上記素子基板と上記封止基板と上記第一スペーサが分散した光硬化性樹脂と上記第二スペーサが分散した光硬化性樹脂とは、線膨張係数の差が1.0×10-4(K-1)以下であることが好ましい。
上記第一スペーサ及び上記第二スペーサは、同一の材料で構成されることが好ましい。これにより、第一スペーサ及び第二スペーサを同じ工程で形成することが可能となり、工程を簡略化することができる。
上記有機ELパネルは、トップエミッション構造を有することが好ましい。トップエミッション構造は、有機EL素子を駆動するための回路が設けられる素子基板を透過させることなく、有機EL素子の発光を取り出すことができるので、高開口率を得るのに好適である。本発明の有機ELパネルは、第一スペーサを備えることにより、封止部材にスペーサを含有する必要がないため、トップエミッション構造を容易に実現することができる。有機ELパネルがトップエミッション構造を有する形態においては、高開口率を得る観点から、封止部材及び封止基板は、可視波長域での光透過率が80%以上であることが好ましい。
本発明はまた、上記有機ELパネルを備える有機ELディスプレイ又は有機EL照明でもある。これらによれば、長期に渡って安定した発光特性を維持することができる有機ELパネルを備える有機ELディスプレイ又は有機EL照明を提供することができる。
本発明の有機ELディスプレイ及び有機EL照明は、上記有機ELパネルを構成要素として備えるものである限り、その他の構成要素により特に限定されるものではない。本発明の有機ELディスプレイ及び有機EL照明の好適な形態としては、上記有機ELパネルとドライバICとを備える形態が挙げられる。ドライバICとしては、有機ELパネルを駆動する回路又はICであれば特に限定されず、走査ドライバIC、信号ドライバIC等が挙げられる。
本発明は更に、有機EL素子及び端子領域がそれぞれ形成された複数のパネル領域を備える素子マザー基板を用いた有機ELパネルの製造方法であって、上記製造方法は、上記端子領域を被覆せず、かつ上記有機EL素子を被覆するようにシート状封止材を配置するシート状封止材配置工程と、少なくとも上記有機EL素子及び上記端子領域の間の領域にスペーサを配置するスペーサ配置工程と、上記素子マザー基板及び封止マザー基板を貼り合わせる貼り合わせ工程と、上記素子マザー基板及び上記封止マザー基板を上記シート状封止材とともに同じ場所で分断する分断工程とを含む有機ELパネルの製造方法でもある。
本発明の有機ELパネルの製造方法によれば、分断工程における応力集中や環境温度の変化等の外的ストレスによる有機ELパネルの変形をスペーサによって抑制し、シート状封止材の硬化物の剥がれを抑制することができる。これにより、シート状封止材の硬化物が剥がれて気密性が低下することを抑制することができる。また、素子マザー基板と封止マザー基板との間の距離をスペーサによって均一に保ちながらシート状封止材を硬化することができるため、シート状封止材の硬化物の膜厚を厳密に制御することができる。これにより、有機EL素子と接続される引き回し配線の凹凸に対するシート状封止材の硬化物の被覆性を高めることができ、引き回し配線の凹凸に起因するシート状封止材の硬化物の気密性の低下を抑制することができる。以上により、有機ELパネルの信頼性を高めることができる。
また、本発明の有機ELパネルの製造方法によれば、上記素子マザー基板及び上記封止マザー基板を上記シート状封止材とともに同じ場所で分断することにより、有機ELパネルが必要な部分のスペーサだけを含むように、素子マザー基板及び封止マザー基板を分断することができる。これにより、有機ELパネルの額縁領域の増加を抑制することができる。また、シート状封止材は、液状封止材と比較して密着性及びバリア性に優れていることから、シート状封止材を用いて有機EL素子を被覆していることにより、パネル形成後の接着強度を高くすることができる。これにより、素子マザー基板及び封止マザー基板をシート状封止材とともに同じ場所で分断したとしても、有機ELパネルの機械的強度を充分に確保することができる。
更に、本発明の有機ELパネルの製造方法によれば、シート状封止材にスペーサを含有させる必要がないため、トップエミッション構造の有機ELパネルを容易に作製することができる。また、シート状封止材を用いて有機EL素子の封止を行うことで、液状封止材を用いる場合に比べて、封止材の配置に要するタクトタイムを大幅に削減することができる。
上記シート状封止材配置工程は、減圧又は真空環境下で行われることが好ましい。シート状封止材配置工程を外気下等の大気圧環境下で行うと、シート状封止材が吸湿するとともに、封止空間内に外気等が侵入するため、貼り合わせ工程の後に、シート状封止材から水分を除去する工程や、長時間脱気を行う工程が必要となるおそれがある。
なお、本明細書において、「減圧」とは、圧力が10-6~10Paの状態であればよく、「真空」とは、圧力が10-6Pa未満の状態であればよい。
上記シート状封止材は、接着性を有している。また、有機EL素子を覆うようにシート状封止材を配置した後、シート状封止材を硬化して素子基板と封止基板とを密着(接合)させることにより、有機EL素子を封止することができる。シート状封止材が有するこれらの特性を利用して、素子マザー基板に封止マザー基板を貼り合わせてからの搬送や、減圧又は真空環境下から不活性ガス雰囲気下への環境の変化等により、基板等の変形(撓み、反り等)が起こり、素子マザー基板と封止マザー基板とのアライメントズレやシート状封止材への応力集中により、シート状封止材で基板間が接合された部分に通気孔ができたりして、外気等が侵入することを抑制することができる。このようなシート状封止材の形態としては、例えば、(1)接着性を有するシート状封止材からなる形態、(2)シート状封止材の表面に接着成分が塗布された形態、(3)接着成分を固化させて作製した形態等が挙げられる。シート状封止材の配置方法としては、例えば、ラミネート貼り付け方式、プレス方式、ロールツーロール法等が挙げられる。シート状封止材は、貼り合わせ工程後に、端子領域を被覆せず、かつ有機EL素子を被覆するように配置されていればよく、貼り合わせ工程の前では、素子マザー基板上に配置されてもよく、封止マザー基板上に配置されてもよいが、有機EL素子の劣化を抑制する観点からは、貼り合わせ工程の前では、封止マザー基板上に配置されることが好ましい。
上記スペーサは、貼り合わせ工程の後で少なくとも有機EL素子及び端子領域の間の領域に配置される限り、貼り合わせ工程の前では、素子マザー基板及び封止マザー基板のいずれに配置されてもよいが、有機EL素子が形成されていない側の基板(封止マザー基板)上に配置されることが好ましい。また、上記スペーサは、貼り合わせ工程の後で少なくとも有機EL素子及び端子領域の間の領域に配置される限り、貼り合わせ工程の前では、シート状封止材が配置された側の基板及びシート状封止材が配置されていない側の基板のいずれに配置されてもよいが、シート状封止材が配置された側の基板上に配置されることが好ましい。このように、スペーサ及びシート状封止材を同一基板上に配置することにより、貼り合わせ工程でのアライメントズレを考慮する必要が無くなり、基板上に配置されたシート状封止材に対するスペーサの配置精度が高くすることができる。
上記貼り合わせ工程は、不活性ガスが導入された減圧又は真空環境下で行われることが好ましい。これにより、硬化前のシート状封止材が水分や酸素等を吸着することによる有機EL素子の劣化を防ぐことができる。また、上記貼り合わせ工程は、アライメント精度を確保する観点から、常温で行われることが好ましい。
本発明の有機ELパネルの製造方法は、シート状封止材配置工程、スペーサ配置工程、貼り合わせ工程及び分断工程を必須工程として含むものである限り、その他の工程を含んでいても含んでいなくてもよく、特に限定されるものではない。シート状封止材配置工程とスペーサ配置工程との工程順序は特に限定されないが、素子基板と封止基板とのアライメント精度を確保する観点からは、シート状封止材配置工程を行った後に、スペーサ配置工程を行うことが好ましい。
本発明の有機ELパネルの製造方法における好ましい態様について以下に詳しく説明する。なお、以下に示す各種の態様は、適宜組み合わせて用いてもよい。
有機ELパネルに電子部品を容易に実装するという観点からは、端子領域が電子部品と接触しやすいように、封止基板と端子領域とが重ならないことが好ましい。封止基板と端子領域とが重ならない形態を実現するためには、分断工程では、有機EL素子及び端子領域の間の領域で封止マザー基板が分断されるとともに、端子領域を挟んで有機エレクトロルミネセンス素子の反対側に位置する領域で素子マザー基板が分断されることが必要となる。しかしながら、上記条件で分断工程を行うと、応力集中によってシート状封止材の硬化物の剥がれが発生しやすくなる。これに対し、本発明の有機ELパネルの製造方法によれば、有機EL素子及び端子領域の間の領域にスペーサが配置されることで、有機EL素子及び端子領域の間の領域でのシート状封止材の硬化物の剥がれの発生を抑制することができるため、上記条件で分断工程を行う態様に特に有効である。すなわち、上記分断工程では、上記有機エレクトロルミネセンス素子及び上記端子領域の間の領域で上記封止マザー基板が分断されるとともに、上記端子領域を挟んで上記有機エレクトロルミネセンス素子の反対側に位置する領域で上記素子マザー基板が分断されることが好ましい。なお、「上記端子領域を挟んで上記有機エレクトロルミネセンス素子の反対側に位置する領域」における「端子領域」と「有機エレクトロルミネセンス素子」とは、同じパネル領域に含まれるものを指している。
上記分断工程では、上記有機EL素子及び上記端子領域の間の領域のみに上記スペーサが残るように上記素子マザー基板及び上記封止マザー基板が分断されることが好ましい。このように、シート状封止材の硬化物の剥がれが発生しやすい有機EL素子及び端子領域の間の領域にのみスペーサを残すことにより、額縁領域の増加を抑制しながら、シート状封止材の剥がれの発生を抑制し、有機ELパネルの信頼性を高めることができる。
上記分断工程では、上記有機EL素子及び上記端子領域の間の領域と、上記有機EL素子を挟んで上記端子領域の反対側に位置する領域とにのみ上記スペーサが残るように上記素子マザー基板及び上記封止マザー基板を分断してもよい。これにより、シート状封止材の硬化物の剥がれの発生を抑制する効果を広範囲に渡って奏することができ、有機ELパネルの信頼性をより高めることができる。
上記シート状封止材配置工程では、上記端子領域を介さずに隣接する上記有機EL素子を連続して被覆するように上記シート状封止材が配置されることが好ましい。これにより、有機EL素子ごとに独立したシート状封止材が配置される態様に比べて、シート状封止材の配置に要するタクトタイムを大幅に短縮することができる。
上記シート状封止材配置工程では、上記端子領域を介さずに隣接する前記有機エレクトロルミネセンス素子の配列方向に沿ってシート状封止材が配置されることが好ましい。これにより、必要な領域にのみシート状封止材を容易に配置することができ、端子領域がシート状封止材に被覆されることを防止することができる。また、シート状封止材を複数列で同時に配置することができるため、シート状封止材の配置に要するタクトタイムを短縮することができる。
上記スペーサ配置工程では、上記シート状封止材が配置される領域を囲むように上記スペーサが配置されることが好ましい。これにより、端子領域を介さずに隣接する有機EL素子の間にはスペーサが配置されないため、1組の素子マザー基板及び封止マザー基板から得られる有機ELパネルの取り数を増加させることができる。
上記スペーサ配置工程では、上記シート状封止材から離れた位置に上記スペーサが配置されることが好ましい。これにより、スペーサとシート状封止材との間に空間を形成することができるため、該空間を分断工程での応力集中や外的ストレスの緩衝として利用することができ、シート状封止材の硬化物の剥がれをより抑制し、有機ELパネルの信頼性をより高めることができる。
上記スペーサは、球状スペーサであり、上記スペーサ配置工程では、上記シート状封止材が配置される領域を囲むように上記球状スペーサが分散した液状封止材が配置されることが好ましい。これにより、液状封止材の硬化物を用いてシート状封止材及び有機EL素子を外気から遮断することができるため、シート状封止材の硬化を外気下で行うことが可能となる。また、球状スペーサを用いることで、液状封止材中にスペーサを均一に分散することができる。更に、端子領域を介さずに隣接する有機EL素子の間にはスペーサが配置されないため、1組の素子マザー基板及び封止マザー基板から得られる有機ELパネルの取り数を増加させることができる。球状スペーサが分散した液状封止材を配置する方法としては、ディスペンサを用いて液状封止材を吐出する方法、スクリーン印刷法が挙げられる。球状スペーサが分散した液状封止材を配置する工程は、シート状封止材配置工程と同様の理由により、減圧又は真空環境下で行われることが好ましい。なお、球状スペーサが分散した液状封止材を配置する工程では、シート状封止材が配置される領域を囲むように液状封止材のみが配置された後に、配置された液状封止材に球状スペーサが散布されてもよい。
上記スペーサ配置工程では、上記シート状封止材から離れた位置に上記球状スペーサ及び上記液状封止材が配置されることが好ましい。液状封止材は、シート状封止材に接して配置されると、液状封止材が有機EL素子に進入し、有機EL素子を劣化させてしまうおそれがある。したがって、液状封止材とシート状封止材とが離れた位置に配置されることにより、このような液状封止材に起因する有機EL素子の劣化を抑制することができる。また、シート状封止材から離れた位置に球状スペーサ及び液状封止材が配置されることで、球状スペーサ及び液状封止材とシート状封止材との間に空間を形成することができるため、該空間を分断工程での応力集中や外的ストレスの緩衝として利用することができ、シート状封止材の硬化物の剥がれをより抑制し、有機ELパネルの信頼性をより高めることができる。
上記液状封止材は、光硬化性樹脂を含むことが好ましく、光硬化性樹脂からなることがより好ましい。これによれば、液状封止材を光照射して光重合によって硬化させることができ、熱処理を行う必要がないことから、アライメントズレ等による歩留りの低下を抑制することができる。また、有機EL素子は熱に弱いため、加熱処理を減らすことにより、有機EL素子の信頼性を向上させることができる。更に、熱硬化させる場合と比較して、液状封止材の硬化に要するタクトタイムを短縮することができる。
上記有機エレクトロルミネセンスパネルの製造方法は、上記シート状封止材を軟化させた後、硬化させる工程を含むことが好ましい。このように、シート状封止材を硬化させる前に一旦軟化させることにより、シート状封止材の凹凸追従性を向上させることができる。したがって、例えば、有機ELパネルの製造工程で貼り合わされた素子基板及び封止基板を減圧又は真空環境から外気環境に取り出したときに基板(素子基板及び/又は封止基板)が変形しても、シート状封止材を基板の変形に追随させることができるため、基板とシート状封止材との界面での真空気泡の発生及び混入を抑制することができる。また、引き回し配線の凹凸に対するシート状封止材の被覆性をより高めることができる。この場合、シート状封止材は、熱可塑性(加熱すると軟化する性質)を有することがより好ましい。これによれば、シート状封止材を加熱することにより容易に軟化させることができる。
上記シート状封止材は、重合によって硬化することが好ましい。このようにシート状封止材を構成する化合物の分子を重合させてシート状封止材を硬化させることにより、シート状封止材の硬化物の透湿性を低下させることができるため、シート状封止材の硬化物の封止性能をより向上させることができる。
なお、シート状封止材を熱重合によって硬化させる場合には、基板の熱分布によるアライメントズレが発生するおそれがある。また、有機EL素子は熱に弱いため、信頼性が低下するおそれがある。更に、熱重合は、光重合に比べて硬化時間(硬化に要するタクトタイム)が長くなるおそれがある。したがって、アライメントズレの発生を抑制する観点、信頼性の低下を抑制する観点及び硬化時間を短縮する観点からは、シート状封止材は、光重合によって硬化させることが好ましい。
他方、シート状封止材を光重合して硬化させる場合には、シート状封止材を構成する化合物の分子を重合させる際に、紫外線等を有機EL素子の全面に照射することとなり、有機EL素子の劣化が懸念される。したがって、光照射による有機EL素子の劣化を防ぐ観点からは、シート状封止材は、熱重合によって硬化させることが好ましい。
すなわち、本発明の有機ELパネルの製造方法のより好ましい態様としては、(1)光硬化性樹脂を含む液状封止材を光重合によって硬化させ、シート状封止材を加熱によって軟化させた後、光重合によって硬化させる態様、(2)光硬化性樹脂を含む液状封止材を光重合によって硬化させ、シート状封止材を熱重合によって硬化させる態様が挙げられる。
上記(1)の態様においては、例えば、液状封止材を硬化する工程では、シート状封止材をマスク等で遮光することにより未硬化としつつ、液状封止材を硬化させればよい。また、シート状封止材を硬化する工程では、シート状封止材を軟化させた(例えば、基板を加熱することにより、シート状封止材の熱可塑性を発現させた)後、光照射によりシート状封止材を硬化させればよい。このようなプロセスによれば、加熱時間を少なくすることができるため、シート状封止材の硬化に要するタクトタイムを短縮することができる。
上記(2)の態様においては、例えば、液状封止材を硬化する工程では、シート状封止材をマスク等で遮光することなく、液状接着剤を硬化させることができるため、プロセスを簡略化することができる。なお、この態様では、シート状封止材を熱重合させるために加熱処理が必要となるが、液状封止材を硬化させることにより、アライメントズレの懸念が解消するため、シート状封止材を硬化させるための加熱時間を長く確保することができる。
上記シート状封止材は、硬化後の可視波長域での光透過率が80%以上であることが好ましい。これによれば、高開口率が得られるトップエミッション方式の有機EL素子を製造するのに好適である。
本発明は更には、上記有機ELパネルの製造方法を用いる有機ELディスプレイ又は有機EL照明の製造方法でもある。これによれば、製造工程が簡単で安価に作製することができ、長期に渡って安定した発光特性を維持することができる有機EL素子を備える有機ELディスプレイ又は有機EL照明を提供することができる。
なお、本発明の技術思想は、外気から遮断されることが望ましい素子を基板上に備えるものであれば有機ELパネル以外であっても適用することができ、例えば、マイクロカプセル型電気泳動ディスプレイ、ポリマーネットワーク型液晶等を用いた電子ペーパーディスプレイ(ペーパーライクディスプレイ)、発光ダイオード(LED)照明、プラズマディスプレイ、無機ELディスプレイ、電子インク(Eインク)、太陽電池等の種々のデバイスに適用することができる。
本発明の有機ELパネル、有機ELディスプレイ、有機EL照明及びそれらの製造方法によれば、挟額縁で、高信頼性の有機ELパネルを複数同時に作製することができる有機ELパネル、有機ELディスプレイ、有機EL照明、及び、それらの製造方法を提供することができる。
実施形態1の有機ELパネルを示す平面模式図である。 図1中のA1-A2線における断面模式図である。 図1中のB1-B2における断面模式図である。 (a)~(d)は、実施形態1の有機ELパネルの製造工程を示す斜視模式図である。 実施形態1の有機ELパネルの分断工程前の状態を示す平面模式図である。 (a)~(c)は、実施形態1の有機ELパネルの分断工程を示す断面模式図である。 (a)~(c)は、スペーサ部5aを有しない有機ELパネルの分断工程を示す断面模式図である。 実施形態1の有機ELパネルの端子領域近傍を示す平面模式図である。 スペーサ部5aを有しない有機ELパネルの端子領域近傍を示す平面模式図である。 実施形態1の別の有機ELパネルを示す平面模式図である。
以下に実施形態を掲げ、本発明に係る有機ELパネル及びその製造方法を更に詳細に説明するが、本発明はこの実施形態のみに限定されるものではない。
実施形態1
図1は、実施形態1の有機ELパネルを示す平面模式図であり、図2は、図1中のA1-A2線における断面模式図であり、図3は、図1中のB1-B2線における断面模式図である。
実施形態1の有機ELパネルは、図1~3に示すように、素子基板1a、封止基板2a、素子領域3、端子領域8、スペーサ部5a及び封止部材4aを備えるとともに、トップエミッション構造を有している。素子基板1aは、素子マザー基板から分断された平板状の基板である。封止基板2aは、封止マザー基板から分断された平板状の基板である。素子領域3には、複数の有機EL素子が縦横に配置されている。端子領域8には、実装用パッド(接続電極)が配置されている。スペーサ部5aは、素子領域3及び端子領域8の間の領域に配置されている。このスペーサ部5aが、第一スペーサとして機能する。封止部材4aは、素子領域3を覆うように配置されている。図2に示すように、端子領域8を通るA1-A2線を通る面では、スペーサ部5aと封止部材4aとは離れて配置され、スペーサ部5aと封止部材4aとの間には空間6が形成されている。図3に示すように、B1-B2線を通る面の端部には、封止部材4aが配置され、スペーサ部5aは配置されていない。素子基板1a及び封止基板2aは、封止部材4a及びスペーサ部5aを介して貼り合わされている。このようにして、本実施形態の有機ELパネルが構成されている。
本実施形態では、素子マザー基板として、ガラス基板(商品名:1737、厚さ:0.7mm、線膨張係数:3.8×10-6(K-1)、コーニング社製)を用いているが、これに限定されず、例えば、ポリエーテルスルホン(PES)樹脂製基板(商品名:スミライトFS-5300、厚さ:0.2mm、線膨張係数:5.4×10-5(K-1)、住友ベークライト社製)等のフレキシブル基板を用いることもできる。また、本実施形態では、封止マザー基板として、ガラス基板(商品名:1737、厚さ:0.7mm、線膨張係数:3.8×10-6(K-1)、コーニング社製)を用いているが、素子マザー基板と同様に、PES樹脂製基板等のフレキシブル基板を用いることもできる。
素子領域3に配置された有機EL素子は、少なくとも発光層を含む有機層が陽極(アノード)と陰極(カソード)とに挟まれた構造を有する。発光層以外の有機層としては、電子注入層、電子輸送層、正孔輸送層、正孔注入層等が挙げられる。素子基板1aの素子領域3には、有機EL素子とともに、有機EL素子の駆動に用いられる引き回し配線が配置されており、有機EL素子と引き回し配線とは電気的に接続されている。また、この引き回し配線を介して、端子領域8に配置された実装用パッドと素子領域3に配置された有機EL素子とが電気的に接続される。
封止部材4aは、シート状封止材の硬化物である。シート状封止材は、配置したときに一定の形状と体積とを保つことができるとともに、圧力を加えたときに有機EL素子や引き回し配線等の凹凸に追随できる柔軟性を有する封止材である。また、シート状封止材の厚みは特に限定されず、シート状封止材は、フィルム状封止材と呼ばれるものであってもよい。本実施形態では、シート状封止材としてエポキシ樹脂(EP)を主成分とする熱可塑性を有する熱硬化性樹脂(線膨張係数:7×10-5(K-1)、硬化後(封止部材4a)の可視波長域での光透過率:95%)を使用している。封止部材4aは素子領域3の全面を覆うように貼り付けられている。シート状封止材に光硬化性樹脂を用いる場合、シート状封止材を硬化させる際に有機EL素子も紫外線等に曝されるため、有機EL素子の劣化が懸念される。したがって、シート状封止材としては、エポキシ樹脂以外を用いてもよいが、熱可塑性を有する熱硬化性樹脂を用いることが好ましい。熱可塑性を有する熱硬化性樹脂は、加熱すると軟化して変形できるようになるが、そのまま加熱を続けると化学反応を起こして硬化する樹脂である。なお、シート状封止材は、メタアクリル樹脂(ポリ(メタ)アクリレート)を主成分とする熱可塑性を有する光硬化性樹脂(線膨張係数:6×10-5(K-1)、硬化後(封止部材4a)の可視波長域での光透過率:97%)を用いてもよい。また、シート状封止材に乾燥剤を添加し、封止部材4aに乾燥機能を付与してもよい。
スペーサ部5aは、球状スペーサが分散した液状封止材の硬化物である。球状スペーサの平均粒径は1~100μmであることが好ましく、封止性能や光線透過率を考慮すると、20μm以下であることがより好ましい。球状スペーサの材料としては特に限定されず、例えば、プラスチック、シリカが挙げられる。本実施形態では、球状スペーサとして、粒径が12μmシリカ球状スぺーサー(商品名:ハイプレシカ、線膨張係数:5×10-7(K-1)、宇部日東化成製)を使用している。液状封止材は、流動性を有する接着剤である。本実施形態では、液状封止材としてエポキシ樹脂(EP)を主成分とする光硬化性樹脂(商品名:XNR5516、線膨張係数:7×10-5(K-1)、ナガセケムテックス社製)を使用している。スペーサ部5aは、素子基板1aの端子領域8側の端部に沿った平面形状を有しており、素子領域3及び端子領域8の間の領域に配置されている。液状封止材としては、エポキシ樹脂以外の熱硬化性樹脂を用いてもよいが、光硬化性樹脂を用いることが好ましい。これにより、液状封止材の硬化時間を短縮することができる。また、液状封止材としては、塗布環境の制限の少ないアクリル樹脂等の紫外線(UV)硬化型樹脂を用いてもよい。
本実施形態の有機ELパネルによれば、素子領域3及び端子領域8の間の領域に配置されたスペーサ部5aにより、有機ELパネルの変形を抑制し、封止部材4aの剥がれの発生を抑制することができる。これにより、封止部材4aの気密性の低下を抑制し、有機ELパネルの信頼性を高めることができる。また、スペーサ部5aが素子領域3及び端子領域8の間の領域のみに配置され、スペーサ部5aが素子領域3を囲まないことにより、有機ELパネルの額縁領域の増加を抑制することができる。
また、スペーサ部5aと封止部材4aとが離れた位置に配置されることにより、スペーサ部5aと封止部材4aとの間には空間6が形成される。この空間6を緩衝として利用することで、有機ELパネルの変形をより抑制し、封止部材4aの剥がれの発生をより抑制することができる。これにより、封止部材4aの気密性の低下をより抑制し、有機ELパネルの信頼性をより高めることができる。
また、スペーサ部5aを用いることで、素子領域3上に設けられる封止部材4aにスペーサを含芯させる必要がないため、トップエミッション構造の有機ELパネルを容易に実現することができる。また、外部からの押圧等によって素子領域3に配置された有機EL素子が直接ダメージを受けるおそれを少なくすることができる。
以下、実施形態1の有機ELパネルの製造方法について説明する。
図4(a)~(d)は、実施形態1の有機ELパネルの製造工程を示す斜視模式図である。また、図5は、実施形態1の有機ELパネルの分断工程前の状態を示す平面模式図である。
まず、図4(a)に示すように、封止マザー基板2を準備する。次に、図4(b)に示すように、ロールツーロール法を用いて、封止マザー基板2上に複数のシート状封止材4を貼り付ける(シート状封止材配置工程)。シート状封止材4は、後の工程で封止マザー基板2と素子マザー基板1とを貼り合わせたときに、素子領域3と重なり、かつ端子領域8と重ならない位置に貼り付けられる。このように、複数の素子領域3に対して共通のシート状封止材4を用いることにより、素子領域3ごとに独立したシート状封止材4を貼り付ける場合に比べて、シート状封止材4の貼り付けに要するタクトタイムを大幅に削減することができる。また、シート状封止材配置工程では、シート状封止材4は、端子領域8を介さずに隣接する素子領域3の配列方向に沿って(実質的に平行な方向で)貼り付けられる。これにより、必要な領域にのみシート状封止材4を容易に配置することができ、端子領域8がシート状封止材4に被覆されることを防止することができる。また、シート状封止材4を複数列で同時に貼り付けることができるため、シート状封止材4の貼り付けに要するタクトタイムを短縮することができる。
次に、図4(c)に示すように、ディスペンサを用いて、球状スペーサが分散した液状封止材5を封止マザー基板2上に塗布する(スペーサ配置工程)。スペーサ配置工程の前に、球状スペーサを液状封止材5中に均一に分散させるとともに、液状封止材5に含まれる揮発成分を除去するために、球状スペーサを混合した液状封止材5を攪拌及び減圧脱泡することが好ましい。本実施形態では、複数の素子領域3に対して共通のシート状封止材4を配置しているため、素子領域3ごとに独立したシート状封止材4を配置する場合に比べて、シート状封止材4を囲むように液状封止材5を塗布するために必要な工程のタクトタイムを大幅に削減することができる。
スペーサ配置工程では、球状スペーサが分散した液状封止材5は、シート状封止材4と離れた位置に塗布されており、球状スペーサ及び液状封止材5とシート状封止材4との間の領域には、空間が形成されている。この空間を利用して、液状封止材5が素子領域3に進入することによる有機EL素子の劣化を防止することができる。また、この空間は、分断工程での応力集中や外的ストレスの緩衝として利用することもできる。更に、スペーサ配置工程では、液状封止材5は、シート状封止材4を囲むように塗布されている。したがって、後の工程でシート状封止材4の硬化前に減圧又は真空環境下で液状封止材5を硬化し、スペーサ部5aを形成することで、スペーサ部5aによって囲まれた領域を減圧又は真空に保つことができるため、シート状封止材4の硬化を大気環境下で行うことが可能となる。そして、スペーサ配置工程では、端子領域8を介さずに隣接する素子領域3の間の領域に液状封止材5が配置されないため、後の工程で素子マザー基板1及び封止マザー基板2を分断して得られる有機ELパネルの取り数を増加させることができる。
次に、一般的な方法を用いて有機EL素子を素子領域3に形成した素子マザー基板1を準備し、図4(d)に示すように、窒素(N)ガス、ドライエア等の不活性ガスが導入された減圧又は真空環境下で、シート状封止材4及び液状封止材5を介して素子マザー基板1と封止マザー基板2とを常温で貼り合わせる(貼り合わせ工程)。この工程を減圧又は真空環境下で行うことにより、液状封止材5の内部、及び、シート状封止材4と素子マザー基板1との接着面に気泡を発生させることなく、素子マザー基板1と封止マザー基板2とを貼り合わせることができる。また、この工程を常温で行うことにより、アライメントズレ等による歩留まりの低下を抑制しつつ、貼り合わせ工程のタクトタイムを大幅に短縮することができる。
次に、窒素(N)ガス、ドライエア等の不活性ガスが導入された減圧又は真空環境下で液状封止材5に紫外(UV)線を照射して光重合により硬化させる(液状封止材硬化工程)。これにより、球状スペーサを含んだ液状封止材5の硬化物であるスペーサ部5aを形成することができる。このように、液状封止材5の硬化時に加熱処理を行わないことから、アライメント不良等によって歩留まりが低下することなく、液状封止材硬化工程のタクトタイムを大幅に短縮することができる。また、有機EL素子は熱に弱いため、加熱処理を削減することにより、有機EL素子の信頼性を向上させることができる。また、シート状封止材4の外周を囲むように液状封止材5を配置するとともに、シート状封止材4の硬化前に液状封止材5を硬化させることにより、スペーサ部5aによって囲まれた領域を減圧又は真空に保つことができるため、シート状封止材4の硬化を大気環境下で行うことが可能となる。
次に、貼り合わされた素子マザー基板1及び封止マザー基板2を大気環境下に取り出した後、シート状封止材4を加熱し、シート状封止材4を軟化させた後、更に加熱して熱重合させることによりシート状封止材4を硬化させる(シート状封止材硬化工程)。これにより、シート状封止材4の硬化物である封止部材4aを形成することができる。このように、シート状封止材4を硬化させる前に一旦軟化させることにより、シート状封止材4の凹凸追従性を向上させることができる。したがって、例えば、有機ELパネルを減圧又は真空環境から外気環境に取り出したときに基板(素子マザー基板1及び/又は封止マザー基板2)が変形しても、シート状封止材4を基板の変形に追随させることができるため、基板とシート状封止材4との界面での真空気泡の発生及び混入を抑制することができるとともに、引き回し配線の凹凸に対するシート状封止材4の被覆性をより高めることができる。また、シート状封止材4の硬化を熱重合によって行うことで、光照射による有機EL素子の劣化を防ぐことができる。また、封止部材4aの透湿性を低下させることができ、封止部材4aの封止性能をより向上させることができる。
なお、シート状封止材4に熱可塑性を有する光硬化性樹脂を用いた場合は、シート状封止材硬化工程では、窒素(N)ガス、ドライエア等の不活性ガスが導入された減圧又は真空環境下でシート状封止材4を加熱し、シート状封止材4を軟化させた後、光を照射する光重合によってシート状封止材4を硬化させればよい。この場合は、加熱による有機EL素子の劣化を抑制するとともに、シート状封止材硬化工程のタクトタイムを減少させることができる。また、シート状封止材4に熱可塑性を有する熱硬化性樹脂を用いた場合と同様に、封止部材4aの透湿性を低下させることができ、封止部材4aの封止性能をより向上させることができる。
次に、貼り合わされた素子マザー基板1及び封止マザー基板2の分断を行う(分断工程)。図5中の点線は、有機ELパネルの分断位置(分断ライン)を示しており、点線に囲まれた領域がパネル領域である。本実施形態では、図5に示すように、素子領域3を囲む3辺の分断位置を封止部材4a上に設定し、素子マザー基板1及び封止マザー基板2を封止部材4aとともに同じ位置で分断することにより、有機ELパネルの挟額縁化を実現することができる。また、素子領域3をシート状封止材4の硬化物である封止部材4aで被覆していることで、密着性及びバリア性を高めるともに、パネル形成後の接着強度を高くすることができるため、このように素子マザー基板1及び封止マザー基板2を封止部材4aとともに同じ位置で分断したとしても、有機ELパネルの機械的強度を充分に確保することができる。また、端子領域8を介さずに隣接する素子領域3の間にスペーサ部5aが配置されていないため、1組の素子マザー基板1及び封止マザー基板2から得られる有機ELパネルの取り数を増加させることができる。更に、シート状封止材4を素子領域3に貼り付ける際の位置合わせを高精度に行う必要がないため、シート状封止材4の位置合わせ不良を低減し、歩留りを向上することができる。
ここで、分断工程について、図を参照して詳細に説明する。図6(a)~(c)は、実施形態1の有機ELパネルの分断工程を示す断面模式図である。なお、図6(a)~(c)は、図5に示した状態の縦方向に沿った断面に相当する。したがって、図6(a)~(c)におけるスペーサ部5aの左側には、端子領域が設けられている。まず、図6(a)に示すように、ホイールスクライブ10を用いて分断位置に溝11を形成する。本実施形態では、ホイールスクライブ10として三星ダイヤモンド製のぺネットを使用し、押込み量は100μmとする。次に、図6(b)に示すように、分断位置に形成された溝11に対して圧力(ブレイク圧力)を加え、貼り合わされた素子マザー基板1及び封止マザー基板2を分断する。本実施形態では、素子領域3の端子領域側の分断位置のブレイク圧力は7~9N、素子領域3の端子領域側以外の分断位置のブレイク圧力は9~11Nとする。素子領域3の端子領域側以外の分断位置では、素子マザー基板1及び封止マザー基板2を封止部材4aとともに分断しているため、溝11のような垂直クラックが形成されにくい。したがって、素子領域3の端子領域側以外の分断位置では、素子領域3の端子領域側の分断位置よりも、ブレイク圧力を高くすることが好ましい。なお、素子領域3の端子領域側以外の分断位置は、素子マザー基板1及び封止マザー基板2とも同一のため、ブレイク圧力を高くしたとしても、封止部材4aの剥がれが発生する可能性は低い。
端子領域の周辺では、端子領域に電子部品を容易に実装するという観点から、封止マザー基板2を分断して得られる封止基板2aが端子領域に重ならないように、素子領域3及び端子領域の間の領域で封止マザー基板2を分断するとともに、端子領域を挟んで素子領域3の反対側に位置する領域で素子マザー基板1を分断する必要がある。このように、端子領域の周辺では、素子マザー基板1及び封止マザー基板2の分断位置が異なっていることから、分断工程での応力集中に起因する素子マザー基板1及び封止マザー基板2の変形により、封止部材4aの剥がれが発生し、封止部材4aの気密性が低下することが懸念される。図7(a)~(c)は、スペーサ部5aを有しない有機ELパネルの分断工程を示す断面模式図である。図7(a)~(c)に示すように、ホイールスクライブ10を用いて図6(a)と同じ分断位置に溝11を形成してから、溝11に圧力を加えると、上述したように、端子領域の周辺では、素子マザー基板1及び封止マザー基板2の分断位置が異なっていることから、封止部材4aの剥がれが発生し、封止部材4aの気密性が低下してしまう。これに対し、本実施形態の有機ELパネルは、端子領域及び素子領域3の間の領域に配置されたスペーサ部5aを備えることにより、上記懸念を解消することができる。このようにして、図6(c)に示すように、有機ELパネルを得ることができる。
また、スペーサ部5aと封止部材4aとの間に形成された空間6が緩衝として作用するため、ブレイク工程での応力集中や外的ストレスに起因する封止部材4aの剥がれの発生をより抑制することができる。なお、スペーサ部5aが配置されていない素子領域3の端子領域8側以外の3辺については、素子マザー基板1と封止マザー基板2とで分断位置が同一であるため、封止部材4aの剥がれは発生しにくい。したがって、本実施形態の有機ELパネルのように、スペーサ部5aを必要な領域のみに配置することにより、有機ELパネルの額縁領域の増加を抑制することができる。
図8は、実施形態1の有機ELパネルの端子領域近傍を示す平面模式図であり、図9は、スペーサ部5aを有しない有機ELパネルの端子領域近傍を示す平面模式図である。図8に示すように、本実施形態の有機ELパネルは、スペーサ部5aを利用して、封止部材4aの膜厚を厳密に制御することができるため、引き回し配線(配線部)9の凹凸に対する封止部材4aの被覆性が向上し、引き回し配線9の凹凸を封止部材4aで完全に覆うことができる。他方、図9に示すように、スペーサ部5aを有しない有機ELパネルでは、封止部材4aの端子領域側の端部に乱れが発生し、引き回し配線9の凹凸を封止部材4aで完全に覆うことができなくなり、封止部材4aの気密性が低下するおそれがある。このように、スペーサ部5aを用いることで、引き回し配線9の凹凸に対する封止部材4aの被覆性を向上させることができ、有機ELパネルの信頼性を高めることができる。
以下、実施形態1の変形例について説明する。
図10は、実施形態1の別の有機ELパネルを示す平面模式図である。図10に示すように、本実施形態の有機ELパネルは、素子領域3及び端子領域8の間の領域と、素子領域3を挟んで端子領域8に対向する領域とにスペーサ部5aが配置されていてもよい。この場合、素子領域3及び端子領域8の間の領域に配置されたスペーサ部5aは、第一スペーサとして機能し、素子領域3を挟んで端子領域8に対向する領域に配置されたスペーサ部5aは、第二スペーサとして機能する。このような有機ELパネルは、素子領域3を挟んで端子領域8と対向する領域の分断位置を変更し、分断工程を行うことで作製することができる。
このように、素子領域3及び端子領域8の間の領域と、素子領域3を挟んで端子領域8と対向する領域とにスペーサ部5aが配置されることで、環境温度の変化等の外的ストレスによる有機ELパネルの変形をより抑制し、封止部材4aの剥がれの発生をより抑制することができるため、封止部材4aの気密性の低下をより抑制することができる。また、封止部材4aの膜厚をより厳密に制御することができるため、有機EL素子と接続される引き回し配線の凹凸に対する封止部材4aの被覆性をより高めることができ、引き回し配線の凹凸に起因する封止部材4aの気密性の低下をより抑制することができる。以上より、有機ELパネルの信頼性をより高めることができる。
なお、第一スペーサと、第二スペーサとは、異なる材料であってもよいが、同一の材料であることが好ましい。これにより、分断位置を変更するだけで、図10に示すように、素子領域3及び端子領域8の間と、素子領域3を挟んで端子領域8と対向する領域とにスペーサ部5aを容易に配置することができるため、第一及び第二スペーサを備える有機ELパネルの製造工程を簡略化することができる。
このように、本実施形態の有機ELパネルは、長期に渡って安定した発光特性を維持することができるため、有機ELディスプレイ及び有機EL照明に好適に用いることができる。
本願は、2008年9月1日に出願された日本国特許出願2008-223240号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1:素子マザー基板
1a:素子基板
2:封止マザー基板
2a:封止基板
3:素子領域
4:シート状封止材
4a:封止部材(シート状封止材の硬化物)
5:液状封止材
5a:スペーサ部(球状スペーサが分散した液状封止材の硬化物)
6:空間
8:端子領域
9:引き回し配線(配線部)
10:ホイールスクライブ
11:溝

Claims (33)

  1. 有機エレクトロルミネセンス素子及び端子領域が形成された素子基板と、該有機エレクトロルミネセンス素子を被覆する封止部材と、該封止部材を介して該素子基板に貼り合わされた封止基板とを備える有機エレクトロルミネセンスパネルであって、
    該有機エレクトロルミネセンスパネルは、該有機エレクトロルミネセンス素子及び該端子領域の間の領域のみに配置された第一スペーサを備えることを特徴とする有機エレクトロルミネセンスパネル。
  2. 前記封止基板は、前記端子領域に重ならないことを特徴とする請求項1記載の有機エレクトロルミネセンスパネル。
  3. 前記第一スペーサは、前記封止部材から離れた位置に配置されることを特徴とする請求項1又は2記載の有機エレクトロルミネセンスパネル。
  4. 前記第一スペーサは、樹脂に分散した状態で配置された球状スペーサであることを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネセンスパネル。
  5. 前記樹脂は、光硬化性樹脂であることを特徴とする請求項4記載の有機エレクトロルミネセンスパネル。
  6. 前記封止部材は、熱硬化性樹脂を含むことを特徴とする請求項1~5のいずれかに記載の有機エレクトロルミネセンスパネル。
  7. 前記封止部材は、厚みが1~100μmであることを特徴とする請求項1~6のいずれかに記載の有機エレクトロルミネセンスパネル。
  8. 前記封止部材は、可視波長域での光透過率が80%以上であることを特徴とする請求項1~7のいずれかに記載の有機エレクトロルミネセンスパネル。
  9. 前記第一スペーサと前記封止部材とは、線膨張係数の差が1.0×10-4(K-1)以下であることを特徴とする請求項1~8のいずれかに記載の有機エレクトロルミネセンスパネル。
  10. 前記第一スペーサと前記封止部材と前記素子基板と前記封止基板とは、線膨張係数の差が1.0×10-4(K-1)以下であることを特徴とする請求項1~9のいずれかに記載の有機エレクトロルミネセンスパネル。
  11. 前記有機エレクトロルミネセンスパネルは、前記有機エレクトロルミネセンス素子を挟んで前記端子領域の反対側に位置する領域のみに配置される第二スペーサを備えることを特徴とする請求項1~10のいずれかに記載の有機エレクトロルミネセンスパネル。
  12. 前記第一スペーサ及び前記第二スペーサは、同一の材料で構成されることを特徴とする請求項11記載の有機エレクトロルミネセンスパネル。
  13. 前記有機エレクトロルミネセンスパネルは、トップエミッション構造を有することを特徴とする請求項1~12のいずれかに記載の有機エレクトロルミネセンスパネル。
  14. 請求項1~13のいずれかに記載の有機エレクトロルミネセンスパネルを備えることを特徴とする有機エレクトロルミネセンスディスプレイ。
  15. 請求項1~13のいずれかに記載の有機エレクトロルミネセンスパネルを備えることを特徴とする有機エレクトロルミネセンス照明。
  16. 有機エレクトロルミネセンス素子及び端子領域がそれぞれ形成された複数のパネル領域を備える素子マザー基板を用いた有機エレクトロルミネセンスパネルの製造方法であって、
    該製造方法は、該端子領域を被覆せず、かつ該有機エレクトロルミネセンス素子を被覆するようにシート状封止材を配置するシート状封止材配置工程と、
    少なくとも該有機エレクトロルミネセンス素子及び該端子領域の間の領域にスペーサを配置するスペーサ配置工程と、
    該素子マザー基板及び封止マザー基板を貼り合わせる貼り合わせ工程と、
    該素子マザー基板及び該封止マザー基板を該シート状封止材とともに同じ場所で分断する分断工程とを含むことを特徴とする有機エレクトロルミネセンスパネルの製造方法。
  17. 前記分断工程では、前記有機エレクトロルミネセンス素子及び前記端子領域の間の領域で前記封止マザー基板が分断されるとともに、前記端子領域を挟んで前記有機エレクトロルミネセンス素子の反対側に位置する領域で前記素子マザー基板が分断されることを特徴とする請求項16記載の有機エレクトロルミネセンスパネルの製造方法。
  18. 前記分断工程では、前記有機エレクトロルミネセンス素子及び前記端子領域の間の領域のみに前記スペーサが残るように前記素子マザー基板及び前記封止マザー基板が分断されることを特徴とする請求項16又は17記載の有機エレクトロルミネセンスパネルの製造方法。
  19. 前記分断工程では、前記有機エレクトロルミネセンス素子及び前記端子領域の間の領域と、前記有機エレクトロルミネセンス素子を挟んで前記端子領域の反対側に位置する領域とにのみ前記スペーサが残るように前記素子マザー基板及び前記封止マザー基板が分断されることを特徴とする請求項16又は17記載の有機エレクトロルミネセンスパネルの製造方法。
  20. 前記シート状封止材配置工程では、前記端子領域を介さずに隣接する前記有機エレクトロルミネセンス素子を連続して被覆するように前記シート状封止材が配置されることを特徴とする請求項16~19のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  21. 前記シート状封止材配置工程では、前記端子領域を介さずに隣接する前記有機エレクトロルミネセンス素子の配列方向に沿ってシート状封止材が配置されることを特徴とする請求項20記載の有機エレクトロルミネセンスパネルの製造方法。
  22. 前記スペーサ配置工程では、前記シート状封止材が配置される領域を囲むように前記スペーサが配置されることを特徴とする請求項16~21のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  23. 前記スペーサ配置工程では、前記シート状封止材から離れた位置に前記スペーサが配置されることを特徴とする請求項16~22のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  24. 前記スペーサは、球状スペーサであり、
    前記スペーサ配置工程では、前記シート状封止材が配置される領域を囲むように該球状スペーサが分散した液状封止材が配置されることを特徴とする請求項16~23のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  25. 前記スペーサ配置工程では、前記シート状封止材から離れた位置に前記球状スペーサ及び前記液状封止材が配置されることを特徴とする請求項24記載の有機エレクトロルミネセンスパネルの製造方法。
  26. 前記液状封止材は、光硬化性樹脂を含むことを特徴とする請求項24又は25記載の有機エレクトロルミネセンスパネルの製造方法。
  27. 前記有機エレクトロルミネセンスパネルの製造方法は、前記シート状封止材を軟化させた後、硬化させる工程を含むことを特徴とする請求項16~26のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  28. 前記シート状封止材は、熱可塑性を有することを特徴とする請求項27記載の有機エレクトロルミネセンスパネルの製造方法。
  29. 前記シート状封止材は、重合によって硬化することを特徴とする請求項16~28のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  30. 前記重合は、光重合又は熱重合であることを特徴とする請求項29記載の有機エレクトロルミネセンスパネルの製造方法。
  31. 前記シート状封止材は、硬化後の可視波長域での光透過率が80%以上であることを特徴とする請求項16~30のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法。
  32. 請求項16~31のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法を用いることを特徴とする有機エレクトロルミネセンスディスプレイの製造方法。
  33. 請求項16~31のいずれかに記載の有機エレクトロルミネセンスパネルの製造方法を用いることを特徴とする有機エレクトロルミネセンス照明の製造方法。
PCT/JP2009/059523 2008-09-01 2009-05-25 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法 WO2010024006A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0917178A BRPI0917178A2 (pt) 2008-09-01 2009-05-25 painel eletroluminescente orgânico, visor eletroluminescente orgânico e métodos de produção dos mesmos
RU2011112400/07A RU2476036C2 (ru) 2008-09-01 2009-05-25 Органическая электролюминесцентная панель, органический электролюминесцентный дисплей, органическое электролюминесцентное осветительное устройство и способы их производства
EP09809661.3A EP2352361B1 (en) 2008-09-01 2009-05-25 Organic electroluminescence panel, organic electroluminescence display, organic electroluminescence illumination and method for manufacturing such panel, display and illumination
CN200980127596.9A CN102100126B (zh) 2008-09-01 2009-05-25 有机电致发光面板、有机电致发光显示器、有机电致发光照明装置和它们的制造方法
KR1020117004141A KR101246656B1 (ko) 2008-09-01 2009-05-25 유기 일렉트로루미네센스 패널, 유기 일렉트로루미네센스 디스플레이, 유기 일렉트로루미네센스 조명 및 그들의 제조 방법
JP2010526599A JP5323841B2 (ja) 2008-09-01 2009-05-25 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法
US13/059,519 US8410685B2 (en) 2008-09-01 2009-05-25 Organic electroluminescent panel, organic electroluminescent display, organic electroluminescent lighting device, and production methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-223240 2008-09-01
JP2008223240 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010024006A1 true WO2010024006A1 (ja) 2010-03-04

Family

ID=41721183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059523 WO2010024006A1 (ja) 2008-09-01 2009-05-25 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法

Country Status (8)

Country Link
US (1) US8410685B2 (ja)
EP (1) EP2352361B1 (ja)
JP (1) JP5323841B2 (ja)
KR (1) KR101246656B1 (ja)
CN (1) CN102100126B (ja)
BR (1) BRPI0917178A2 (ja)
RU (1) RU2476036C2 (ja)
WO (1) WO2010024006A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206613A (ja) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd 有機el装置およびその製造方法
WO2014050864A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 電子モジュール
KR20140073446A (ko) 2012-12-06 2014-06-16 가부시키가이샤 히타치세이사쿠쇼 유기 el 밀봉 장치, 밀봉 롤 필름 제작 장치 및 유기 el 밀봉 시스템
KR20140073447A (ko) 2012-12-06 2014-06-16 가부시키가이샤 히타치세이사쿠쇼 유기 el 밀봉 장치
JP2014232625A (ja) * 2013-05-29 2014-12-11 株式会社ジャパンディスプレイ 表示装置及びその製造方法
WO2015016082A1 (ja) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子
WO2015163061A1 (ja) * 2014-04-23 2015-10-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
JP2017044921A (ja) * 2015-08-27 2017-03-02 株式会社ジャパンディスプレイ 表示装置及びその製造方法
JP2017510036A (ja) * 2014-03-21 2017-04-06 エルジー ディスプレイ カンパニー リミテッド 封止用積層体、有機発光装置及びこれらの製造方法
WO2018221018A1 (ja) * 2017-05-30 2018-12-06 富士フイルム株式会社 有機エレクトロルミネッセンス積層体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864367B2 (ja) * 2011-06-16 2016-02-17 日東電工株式会社 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
WO2013115627A1 (ko) 2012-02-03 2013-08-08 주식회사 엘지화학 접착 필름
KR101879831B1 (ko) * 2012-03-21 2018-07-20 삼성디스플레이 주식회사 플렉시블 표시 장치, 유기 발광 표시 장치 및 플렉시블 표시 장치용 원장 기판
KR101965260B1 (ko) * 2012-10-09 2019-04-04 삼성디스플레이 주식회사 플렉서블 디스플레이 장치용 어레이 기판
KR101476686B1 (ko) 2013-04-01 2014-12-26 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR102135933B1 (ko) * 2013-12-31 2020-07-21 엘지디스플레이 주식회사 플렉서블 유기발광다이오드 표시장치의 제조방법
CN104576698B (zh) * 2014-12-22 2018-11-23 上海天马有机发光显示技术有限公司 一种有机发光二极管的阵列基板及其封装方法
US9768417B2 (en) * 2014-12-22 2017-09-19 Shanghai Tianma AM-OLED Co., Ltd. Array substrate of organic light-emitting diodes and method for packaging the same
KR20180041135A (ko) 2015-07-16 2018-04-23 어레이 바이오파마 인크. Ret 키나아제 억제제로서 치환된 피라졸로[1,5-a]피리딘 화합물
KR102457248B1 (ko) * 2016-01-12 2022-10-21 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102457246B1 (ko) * 2016-01-12 2022-10-21 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JOP20190077A1 (ar) 2016-10-10 2019-04-09 Array Biopharma Inc مركبات بيرازولو [1، 5-a]بيريدين بها استبدال كمثبطات كيناز ret
TWI704148B (zh) 2016-10-10 2020-09-11 美商亞雷生物製藥股份有限公司 作為ret激酶抑制劑之經取代吡唑并[1,5-a]吡啶化合物
CN110267960B (zh) 2017-01-18 2022-04-26 阿雷生物药品公司 作为RET激酶抑制剂的取代的吡唑并[1,5-a]吡嗪化合物
JP7061195B2 (ja) 2018-01-18 2022-04-27 アレイ バイオファーマ インコーポレイテッド RETキナーゼ阻害剤としての置換ピラゾロ[3,4-d]ピリミジン化合物
JP6997876B2 (ja) 2018-01-18 2022-02-04 アレイ バイオファーマ インコーポレイテッド Retキナーゼ阻害剤としての置換ピラゾリル[4,3-c]ピリジン化合物
CA3087354C (en) 2018-01-18 2023-01-03 Array Biopharma Inc. Substituted pyrrolo[2,3-d]pyrimidines compounds as ret kinase inhibitors
KR102624165B1 (ko) 2018-10-12 2024-01-12 삼성디스플레이 주식회사 표시장치 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178866A (ja) 2001-10-03 2003-06-27 Sony Corp 表示装置およびその製造方法
JP2006179352A (ja) 2004-12-22 2006-07-06 Tohoku Pioneer Corp 自発光パネルの製造方法
JP2006286412A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 発光パネルの製造方法及び表示パネルの製造方法
JP2007329448A (ja) * 2006-06-07 2007-12-20 Samsung Sdi Co Ltd 有機発光ディスプレイ装置
WO2008078648A1 (ja) 2006-12-26 2008-07-03 Sharp Kabushiki Kaisha 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US544899A (en) * 1895-08-20 Curtain-fixture
US5445899A (en) * 1992-12-16 1995-08-29 Westinghouse Norden Systems Corp. Color thin film electroluminescent display
US5445898A (en) 1992-12-16 1995-08-29 Westinghouse Norden Systems Sunlight viewable thin film electroluminescent display
ATE332572T1 (de) * 1996-06-19 2006-07-15 Matsushita Electric Ind Co Ltd Photoelektronisches material, dieses verwendende vorrichtungen und herstellungsverfahren
JP4801278B2 (ja) * 2001-04-23 2011-10-26 株式会社半導体エネルギー研究所 発光装置及びその作製方法
JP4240276B2 (ja) 2002-07-05 2009-03-18 株式会社半導体エネルギー研究所 発光装置
JP2004342432A (ja) * 2003-05-15 2004-12-02 Nec Corp 有機el表示装置
US7792489B2 (en) 2003-12-26 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic appliance, and method for manufacturing light emitting device
JP4801346B2 (ja) * 2003-12-26 2011-10-26 株式会社半導体エネルギー研究所 発光装置の作製方法
TWI383527B (zh) * 2004-06-11 2013-01-21 Organic semiconductor components
TWI405496B (zh) * 2004-12-13 2013-08-11 Sanyo Electric Co 有機電場發光元件之封裝方法,及發光面板以及顯示面板之製造方法
JP4745181B2 (ja) * 2006-09-26 2011-08-10 富士フイルム株式会社 有機el発光装置、及び有機el発光装置の製造方法
JP2009231192A (ja) * 2008-03-25 2009-10-08 Seiko Epson Corp 有機el装置の製造方法、有機el装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178866A (ja) 2001-10-03 2003-06-27 Sony Corp 表示装置およびその製造方法
JP2006179352A (ja) 2004-12-22 2006-07-06 Tohoku Pioneer Corp 自発光パネルの製造方法
JP2006286412A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 発光パネルの製造方法及び表示パネルの製造方法
JP2007329448A (ja) * 2006-06-07 2007-12-20 Samsung Sdi Co Ltd 有機発光ディスプレイ装置
WO2008078648A1 (ja) 2006-12-26 2008-07-03 Sharp Kabushiki Kaisha 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352361A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206613A (ja) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd 有機el装置およびその製造方法
WO2014050864A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 電子モジュール
KR20140073446A (ko) 2012-12-06 2014-06-16 가부시키가이샤 히타치세이사쿠쇼 유기 el 밀봉 장치, 밀봉 롤 필름 제작 장치 및 유기 el 밀봉 시스템
KR20140073447A (ko) 2012-12-06 2014-06-16 가부시키가이샤 히타치세이사쿠쇼 유기 el 밀봉 장치
JP2014232625A (ja) * 2013-05-29 2014-12-11 株式会社ジャパンディスプレイ 表示装置及びその製造方法
WO2015016082A1 (ja) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子
JP2017510036A (ja) * 2014-03-21 2017-04-06 エルジー ディスプレイ カンパニー リミテッド 封止用積層体、有機発光装置及びこれらの製造方法
US10177341B2 (en) 2014-03-21 2019-01-08 Lg Display Co., Ltd. Encapsulating laminated body, organic light-emitting device and production methods for said body and device
KR20160135260A (ko) 2014-04-23 2016-11-25 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자 및 유기 일렉트로루미네센스 소자의 제조 방법
WO2015163061A1 (ja) * 2014-04-23 2015-10-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
JPWO2015163061A1 (ja) * 2014-04-23 2017-04-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
US9806280B2 (en) 2014-04-23 2017-10-31 Konica Minolta, Inc. Organic electroluminescent element having a sealing substrate, and method for producing organic electroluminescent element
JP2017044921A (ja) * 2015-08-27 2017-03-02 株式会社ジャパンディスプレイ 表示装置及びその製造方法
US10115774B2 (en) 2015-08-27 2018-10-30 Japan Display Inc. Display device and method of manufacturing the same
WO2018221018A1 (ja) * 2017-05-30 2018-12-06 富士フイルム株式会社 有機エレクトロルミネッセンス積層体

Also Published As

Publication number Publication date
RU2011112400A (ru) 2012-10-10
KR101246656B1 (ko) 2013-03-25
JPWO2010024006A1 (ja) 2012-01-26
JP5323841B2 (ja) 2013-10-23
BRPI0917178A2 (pt) 2015-11-10
US8410685B2 (en) 2013-04-02
CN102100126A (zh) 2011-06-15
RU2476036C2 (ru) 2013-02-20
US20110133637A1 (en) 2011-06-09
EP2352361B1 (en) 2014-09-24
KR20110043713A (ko) 2011-04-27
EP2352361A4 (en) 2013-02-27
EP2352361A1 (en) 2011-08-03
CN102100126B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5323841B2 (ja) 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法
US8084938B2 (en) Organic electroluminescent panel, organic electroluminescent display, organic electroluminescent lighting device, and production methods thereof
JP6935879B2 (ja) 表示基板、表示パネル及び表示装置
TWI389271B (zh) 環境敏感電子元件之封裝體及其封裝方法
US8016632B2 (en) Light emitting display device and method of fabricating the same
US8154200B2 (en) Encapsulation of organic devices
CN1681360A (zh) 平板显示器和制造此显示器的方法
JP5341982B2 (ja) 有機elモジュールおよびその製造方法
KR20060094476A (ko) 디스플레이 장치 및 그 제조 방법
CN108190832B (zh) Oled面板及其制作方法
US11165040B2 (en) Package structure, packaging method and display device
TWM535644U (zh) 高分子分散液晶複合層之封裝結構
JP2013157328A (ja) 有機電界発光素子
CN114188382B (zh) Oled显示面板及其封装方法
KR102110839B1 (ko) 표시 장치 및 그 제조 방법
JP2011034827A (ja) 有機el表示装置およびその製造方法
TW201039027A (en) Liquid crystal display apparatus, liquid crystal display panel and farbricating method thereof
JP2006106036A (ja) パネルの製造方法
JP2004152664A (ja) 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
CN114335390A (zh) 显示面板
JP2006004708A (ja) 封止装置、封止方法、有機el装置、および電子機器
JP5099452B2 (ja) 発光パネル及びその製造方法
WO2018088011A1 (ja) 有機電界発光素子パネル、および有機電界発光素子パネルの製造方法
KR100688830B1 (ko) 유기 발광 표시소자의 제조 방법 및 그 제조 장치
KR20060064161A (ko) 캡 부착 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127596.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 111/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010526599

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13059519

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117004141

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011112400

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0917178

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110225