WO2010029628A1 - Illumination system - Google Patents

Illumination system Download PDF

Info

Publication number
WO2010029628A1
WO2010029628A1 PCT/JP2008/066441 JP2008066441W WO2010029628A1 WO 2010029628 A1 WO2010029628 A1 WO 2010029628A1 JP 2008066441 W JP2008066441 W JP 2008066441W WO 2010029628 A1 WO2010029628 A1 WO 2010029628A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
lamp
illumination
mers
brightness
Prior art date
Application number
PCT/JP2008/066441
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 志賀
忠幸 北原
諭 神子
小島 直人
志郎 福田
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/066441 priority Critical patent/WO2010029628A1/en
Publication of WO2010029628A1 publication Critical patent/WO2010029628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/40Controlling the intensity of light discontinuously
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a lighting system.
  • thermal power generation is one of the main power supply sources in Japan.
  • carbon dioxide which causes global warming
  • atmospheric air as fuel such as oil, coal, and natural gas burns.
  • Sulfur oxides and nitrogen oxides that cause pollution are emitted. Therefore, it is expected that the reduction of power consumption will reduce the emission of substances that cause greenhouse gases and air pollution, and this will lead to a reduction in the load on the global environment.
  • an illuminating lamp control device including an inverter type fluorescent lamp and a control device that adjusts and controls the inverter type fluorescent lamp to a desired luminance.
  • this illuminating lamp control apparatus the user can control the inverter type fluorescent lamp to a desired luminance, and wasteful power consumption can be suppressed.
  • the present invention has been made in view of the above circumstances, and it is possible to reduce the useless power consumption by controlling the dimming of the illuminating lamp, and to change the aspect of the luminance change according to the situation. It is an exemplary problem to provide
  • the load power adjustment switch has at least two reverse conduction type semiconductor switches and a capacitor for accumulating magnetic energy of current at the time of current interruption and regenerating to the illuminating lamp.
  • the load power supplied to the illuminating lamp may be adjusted by controlling the gate phase.
  • the luminance change mode adjustment means adjusts the mode of the luminance change, variations of the luminance change mode (from “high luminance” to “low luminance” or from “low luminance” to “high luminance”) are variations. It can be enriched. Since it is not always a constant brightness change mode, it can be a quick brightness change or a slow brightness change depending on the situation, so it is possible to appropriately adjust the brightness change mode according to the position of the object and its approach speed it can.
  • the luminance change mode may be a luminance change speed. For example, when a vehicle as an object approaches at high speed, the luminance is changed at a high luminance change speed, and when a person as an object approaches by walking (that is, at a relatively low speed), the luminance is changed at a low luminance change speed. Can be changed. It is possible to adjust the speed of the luminance change according to the approach speed of the object.
  • the control means may increase the luminance of the illuminating lamp when the object is present and decrease the luminance of the illuminating lamp when the object is not present. Since the luminance is increased when the object is present, it can be illuminated brightly when illumination is necessary. On the other hand, since the luminance is lowered when the object is not present, it is possible to save power when illumination is unnecessary.
  • Stepwise change may be at least one of the increase or decrease in luminance.
  • the number of steps of luminance change is arbitrary.
  • the luminance may be changed in two steps according to the distance to the object, or the luminance may be changed in ten steps. It is also possible to change the number of steps according to the approach speed.
  • you may comprise this illumination system so that a continuous brightness
  • the control means may change the luminance of the illuminating lamp according to the distance between the object detection means and the object. As described above, if the luminance of the illuminating lamp is changed according to the distance between the target object detection means and the target object, it is possible to save power while eliminating the uncomfortable feeling of the luminance change.
  • the object detection means detects the presence / absence of the object based on at least one of temperature change, presence / absence of motion, or magnetic field change in the detection region, or information transmission / reception with the object. Good.
  • the presence / absence of the object can be detected based on the body temperature, movement, and the like.
  • the presence / absence of the object can be detected based on the temperature, movement, magnetic field change, and the like.
  • the object is a mobile phone or an information terminal possessed by a person, the presence / absence of the object is detected based on information transmission / reception (for example, radio waves, infrared rays, etc.) between the object detection means and the object. Can do.
  • the object detection means may be a speed sensor that detects the speed of the object in the detection region.
  • a magnetic energy regenerative switch and control means can be used to construct an illumination system using an existing illumination light. It is possible to construct a system that can change luminance (brightness and darkness) at low cost without using an inverter-type illumination lamp that supports dimming control.
  • the object means all objects to be illuminated with illumination light, and for example, a person or a car corresponds to the object.
  • radio wave sources such as mobile phones and metal products, magnetic sources, and the like are also included in the object.
  • the present invention it is possible to control the dimming of the illuminating lamp to reduce useless power consumption, and to change the aspect of the luminance change according to the situation.
  • FIG. 2A and FIG. 2B are diagrams for explaining MERS switching control by the control unit.
  • FIG. 3A and FIG. 3B are diagrams for explaining MERS switching control by the control unit.
  • FIG. 4A and FIG. 4B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system. It is a graph which shows load voltage / rated voltage when changing gate phase angle (alpha). It is a figure which shows the other aspect of MERS. It is a figure which shows the other aspect of MERS.
  • Gate phase angle M: Person (object) V: Automobile (object) SW1 to SW8: Reverse conducting semiconductor switches G1 to G4: Gates D1 and D2 of the reverse conducting semiconductor switches SW1 to SW4: Diodes DC (P), DC (N): DC terminal AC: AC terminal 10: MERS embedded system 20: AC power supply 30: Magnetic energy regenerative switch (MERS) 32, 33, 34, 35, 36: Capacitor 40: Control unit (control means) 50: Inductive load 60: Street lamp (illumination lamp) 65, 65a, 65b, 65c, 65d, 65e, 65f, 65g, 65h: illumination lamp 70: dimming control unit 72: signal control unit 74: Adjustment unit (luminance change mode adjustment means) 75: Guidance speed adjustment unit 80: Presence detection sensor (object detection means) 81: Detection range 90: Distance sensor (object detection means) 91: Detection range 95: Speed sensor (object detection means) 96: Detection range 100, 200, 300: Il
  • the illumination system is connected between an object detection unit that detects the presence / absence of an object and a power source and an illumination lamp, and lights the illumination lamp that is output from the power source to the illumination lamp.
  • a load power adjustment switch that adjusts the load power for the control, and a control means (control unit) that is connected to the load power adjustment switch and changes the luminance of the illumination lamp by controlling the gate phase of the load power adjustment switch.
  • the illumination system further includes brightness change mode adjusting means for adjusting the brightness change mode of the illuminating lamp.
  • the load power adjustment switch is, for example, a magnetic energy regeneration switch (Magnetic Energy Recovery Switch: MERS) (hereinafter referred to as MERS).
  • MERS Magnetic Energy Recovery Switch
  • MERS does not have reverse blocking capability, that is, it can be turned on / off in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements, and has current when the current is cut off. It is a switch that can regenerate magnetic energy without loss by accumulating magnetic energy in a capacitor and releasing it to the load side through a semiconductor element provided with an ON gate. This is an energy regeneration switch. (For example, refer to Japanese Patent No. 3634882. In this patent publication, a full bridge type MERS is disclosed.)
  • MERS a semiconductor element capable of forward control, such as a transistor in which power MOSFETs and diodes are connected in antiparallel, is used as a reverse conducting semiconductor element.
  • the MERS is configured by connecting a bridge circuit composed of four semiconductor elements of the reverse conduction type and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. And MERS can flow an electric current to either direction by controlling the gate phase of these four reverse conduction type semiconductor elements.
  • MERS is a pair of two reverse conducting semiconductor elements located on a diagonal line among four reverse conducting semiconductor elements connected in a bridge. The operation is performed in synchronization with the frequency, and when one pair is ON, the other pair is OFF. In addition, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
  • the current conducted in the forward direction becomes the second diode of the other pair, the second diode of the other pair. It flows through a path called a diode, which charges the capacitor. That is, the magnetic energy of the current is stored in the capacitor. The magnetic energy of the current at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor rises and the current becomes zero. When the capacitor voltage increases until the capacitor current reaches zero, the current interruption is complete. At this time, since the ON gate is already given to the other pair, the charge of the capacitor is discharged to the load side through the semiconductor element that is turned ON, and the magnetic energy accumulated in the capacitor is regenerated to the load side.
  • MERS outputs the output of MERS by controlling the gate phase of two pairs of two reverse conducting semiconductor elements located on the diagonal line among the four reverse conducting semiconductor elements. It is possible to arbitrarily control the magnitude of the voltage and the phase of the current.
  • the control unit has a function of changing the luminance of the illuminating lamp (brightness / darkness change) by controlling the gate phase of the MERS in accordance with the detection result (output signal) from the object detection means. Furthermore, the brightness of the illuminating lamp can be changed in a desired manner by the brightness change mode adjusting means.
  • MERS as a load power adjustment switch
  • a MERS embedded system in which MERS is connected in series between an AC power source and a dielectric load will be described as an example.
  • MERS can comprise an alternating current power supply device by incorporating it into an alternating current power source, and can constitute a MERS built-in load by incorporating it into an inductive load.
  • FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
  • the MERS embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance. As the inductive load 50, two 40 W fluorescent lamps are connected in parallel. MERS 30 is inserted between AC power supply 20 and inductive load 50.
  • the MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
  • the MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the MERS 30 is an energy storage device that absorbs the magnetic energy of the current that flows through the bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4 and when the reverse conducting semiconductor switch of the bridge circuit is cut off. And a capacitor 32.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N).
  • an inductive load 50 is at the connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3 at the AC terminal at the connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4.
  • An AC power source 20 is connected in series to each AC terminal.
  • a first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. Then, for example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction becomes the second pair of reverse conduction type semiconductor switches SW3-capacitors 32.
  • the reverse conduction type semiconductor switch SW4 flows through the path, whereby the capacitor 32 is charged. That is, the magnetic energy of the current is stored in the capacitor 32.
  • the magnetic energy of the current at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 increases and the current becomes zero.
  • the current interruption is completed.
  • the ON gate since the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
  • a pulse voltage is applied to the inductive load 50.
  • the magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
  • the control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided.
  • the control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
  • 2A, 2 ⁇ / b> B, 3 ⁇ / b> A, 3 ⁇ / b> B, 4 ⁇ / b> A, and 4 ⁇ / b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
  • the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
  • the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is reversed, for example, about 2 ms. (This corresponds to a gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.)
  • FIG. It flows through a path passing through the type semiconductor switch SW3-capacitor 32-reverse conducting type semiconductor switch SW4.
  • the magnetic energy is absorbed (charged) in the capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage. Therefore, as shown in FIG. It flows through a path passing through the semiconductor switch SW4-capacitor 32-reverse conducting semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
  • FIGS. 5A, 5B, 5C, and 5D show the MERS embedded system 10 in the case where the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. It is a figure for demonstrating the operation result of. 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated, and FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated. Yes.
  • FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1.
  • the MERS 30 is inserted in series between the AC power supply 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. Can be close to 1.
  • the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current.
  • the power factor of the AC power supply 20 can be brought close to 1.
  • the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted.
  • the load voltage can be increased or decreased steplessly.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are obtained when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz.
  • the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of the MERS 30 can be continuously controlled from 0 deg to 360 deg.
  • FIG. 6 shows measured values of load voltage / rated voltage when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is changed when two 40 W fluorescent lamps are used as loads.
  • the rated voltage is a voltage corresponding to 100% of the power supply voltage.
  • the gate phase angle ⁇ is controlled in the range from 180 deg to 360 deg, the result is the same as when the direction is changed from 180 deg to 0 deg.
  • the charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32.
  • the MERS 30 has a gate phase angle ⁇ . Regardless of the case, zero voltage zero current switching, that is, soft switching is always possible.
  • the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the MERS 30. Therefore, the adverse effects of harmonic noise on precision instruments and measuring instruments hardly occur in MERS 30, and MERS 30 can be used with peace of mind in hospitals and the like. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation
  • each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal.
  • the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
  • the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
  • FIG. 7 and 8 are diagrams showing other modes of the MERS 30.
  • FIG. The MERS 30 shown in FIG. 7 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
  • the vertical half-bridge MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5 and SW6. , Two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
  • the MERS 30 shown in FIG. 8 is a horizontal half-bridge type.
  • the horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors.
  • the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a series on a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
  • FIG. 9 is a block configuration diagram showing a schematic configuration of the illumination system 100 according to Embodiment 1 of the present invention.
  • the lighting system 100 can be applied to outdoor lighting such as street lighting and lighting for facilities such as stadiums, and indoor lighting in stores, hotels, private houses, and the like.
  • outdoor lighting such as street lighting and lighting for facilities such as stadiums
  • indoor lighting in stores, hotels, private houses, and the like In the first embodiment, an example in which the lighting system 100 is applied to a streetlight installed mainly on a road through which a person passes will be described.
  • the lighting system 100 may be configured using existing street lamp equipment.
  • the lighting system 100 is mainly used on a highway through which a car passes by coordination of a plurality of street lamps (illumination lamps) 60 and adjustment of a luminance change speed by an adjustment unit 74 (see FIG. 10). It can be applied to installed highway lighting.
  • the illumination system 100 generally includes a MERS 30, a streetlight (illumination lamp) 60, a dimming control unit 70, and a presence detection sensor (object detection means) 80.
  • the MERS 30 is connected to the streetlight 60 and the dimming control unit 70
  • the presence detection sensor 80 is connected to the dimming control unit 70.
  • a plurality of street lamps 60 are installed along the road, and a plurality of light control units 70 and MERS 30 are installed so as to correspond to each of them.
  • Each MERS 30 is connected to the AC power source 20.
  • a presence detection sensor 80 is installed in the vicinity of each streetlight 60.
  • FIG. 10 is a block configuration diagram for explaining a schematic configuration of the dimming control unit 70.
  • FIG. 10 shows a connection state of the MERS 30, the dimming control unit 70, and the presence detection sensor 80 corresponding to one street lamp 60 among the plurality of street lamps 60.
  • the dimming control unit 70 has a control unit (control unit) 40, a signal control unit 72, and an adjustment unit (luminance change mode adjustment unit) 74 inside.
  • the MERS 30 is a magnetic energy regenerative switch as described above, and is connected to the street lamp 60 and the dimming control unit 70 to adjust the brightness of the street lamp 60 based on gate phase control from the dimming control unit 70. More specifically, the control unit 40 controls the gate phase of the MERS 30 based on the output from the presence detection sensor 80 so that the streetlight 60 becomes brighter or darker.
  • the street lamp 60 is an illumination lamp installed along the road. In the present lighting system 100, it is possible to divert the existing street lamp 60 without having to separately install the street lamp 60.
  • the streetlight 60 may be, for example, a discharge lamp such as a fluorescent lamp, a mercury lamp, or a sodium lamp.
  • the streetlight 60 illuminates the road and contributes to ensuring the safety of people passing through the road.
  • the brightness of the street lamp 60 is reduced to reduce power consumption, and when the person approaches, the brightness of the street lamp 60 automatically increases. To ensure safety.
  • the change in luminance is realized by gate phase control from the control unit 40.
  • the presence detection sensor 80 is a sensor for detecting the presence / absence of the person M as an object.
  • the presence detection sensor 80 has a detection range 81 indicated by a broken line in FIG. 10, and when a person M exists in the detection range 81, the presence signal is directed toward the signal control unit 72 of the dimming control unit 70. When there is no person M in the detection range 81, a non-existence signal is transmitted toward the signal control unit 72 of the dimming control unit 70.
  • the presence detection sensor 80 may be an infrared sensor, for example, and may detect the presence / absence of the person M within the detection range 81 based on the body temperature of the person M.
  • the presence detection sensor 80 may be a CCD camera, for example, and may detect the presence / absence of the person M within the detection range 81 based on the movement of the person M.
  • the presence detection sensor 80 may have an information communication function and perform information transmission / reception with a communication device such as a mobile phone possessed by the person M. According to this, the information transmitted from the presence detection sensor 80 is received by the communication device, and the reception confirmation information transmitted from the communication device is received by the presence detection sensor 80, so that the person M is within the detection range 81. Detect the presence.
  • the dimming control unit 70 includes a control unit (control means) 40, a signal control unit 72, and an adjustment unit 74 inside. Based on the presence / absence of the person M within the detection range 81, the street light 60 It has a function to change the brightness. The luminance change is performed based on the gate phase control of the MERS 30 by the control unit 40 as described above.
  • the signal control unit 72 is for receiving a signal from the presence detection sensor 80. When the person M exists within the detection range 81, the signal control unit 72 receives a “presence” signal from the presence detection sensor 80. And the signal control part 72 makes the control part 40 perform gate phase control for the streetlight 60 to light-emit with the brightness
  • the signal control unit 72 receives a “non-existence” signal from the presence detection sensor 80. And the signal control part 72 makes the control part 40 perform gate phase control for light emission with the brightness
  • the electric power for example, 1/10 electric power
  • the control unit 40 recognizes that the person M is outside the detection range 81 and is “not present” by the presence detection sensor 80 at time t1.
  • the MERS 30 is controlled so that the streetlight 60 performs illumination with a luminance L1 that is 1/10 of the luminance L3 based on the rated load power.
  • the control unit 40 increases the brightness of the streetlight 60 until the brightness L3 is reached.
  • the control unit 40 reduces the luminance of the streetlight 60 to the luminance L1.
  • the street lamp 60 becomes bright and contributes to ensuring safety.
  • the street lamp 60 becomes dark and saves. It can contribute to electric power.
  • the adjustment unit 74 is for adjusting the luminance change mode of the streetlight 60, and has luminance change speed information inside.
  • the luminance change rate information includes luminance increase rate information and luminance decrease rate information.
  • the detection state of the person M in the detection range 81 changes from “non-existing” to “existing”.
  • Luminance change rate information is defined by the amount of change in luminous intensity and luminance per unit time such as OOcd / sec, OOlx / sec, etc., but as per OOW / sec, Of course, it may be defined by the amount of change in load power.
  • the control part 40 adjusts the load electric power of the streetlight 60 by performing the gate phase control of MERS30, the variation
  • change_quantity of the gate phase per unit time deg / sec.
  • the amount of change per unit time does not have to be constant. For example, in order to reduce a sense of incongruity for the person M, the amount of change per unit time is small at the beginning of the change, and the amount of change per unit time gradually increases. Can also be set. Also, the amount of change per unit time can be set so that the rate of change per unit time is constant. In addition, the amount of change per unit time can be made variable according to ambient illuminance, time, weather conditions, and the like.
  • the luminance decrease speed information of the street lamp 60 has the same amount of change as the luminance increase speed information and has an opposite sign. It may be defined, or a numerical value different from the brightness increase speed information may be defined.
  • the time t5 when the luminance of the streetlight 60 reaches the luminance L3 and the time t7 when it returns to the luminance L1 are based on the luminance increasing speed information and the luminance decreasing speed information in the adjusting unit 74.
  • the control unit 40 transmits luminance increase speed information in the adjustment unit 74.
  • the gate phase control of the MERS 30 is performed based on the above, and the luminance of the street lamp 60 is increased based on the set luminance increase speed.
  • the control unit 40 determines the luminance in the adjustment unit 74.
  • the gate phase control of the MERS 30 is performed based on the decrease speed information, and the brightness of the street lamp 60 is decreased based on the set brightness decrease speed.
  • the luminance change rate information (luminance increase rate information, luminance decrease rate information) can be set individually according to the application of the lighting system 100. Therefore, when the lighting system 100 is applied to a streetlight 60 mainly installed on a road through which a person passes, as in the first embodiment, the moving speed of the person M as an object is relatively low.
  • the brightness change speed information is set so that the brightness change is performed at a relatively low speed.
  • the luminance change is performed at a relatively low speed, a large current load is not applied to the street lamp 60 or the MERS 30. Therefore, the durability (life) of the entire lighting system 100 can be improved. In addition, power consumption due to a large current load can be reduced, which contributes to power saving. If the luminance change is rapid, the person M passing the road may be surprised. However, if the luminance change changes slowly, the person M is comfortable with little discomfort.
  • this lighting system 100 when this lighting system 100 is applied to, for example, a highway illumination lamp installed on an expressway, the object is not a person M but an automobile that passes mainly at high speed. Therefore, in this case, the luminance change speed information of the adjustment unit 74 is set so that the luminance change is performed at a relatively high speed.
  • the lighting system 100 is provided with a plurality of street lamps 60 along the road, and a plurality of dimming control units 70, presence detection sensors (object detection means) corresponding to each of them. ) Since 80 and MERS 30 are installed, a plurality of street lamps 60 can be coordinated when the brightness of the street lamp 60 is changed for an automobile traveling at high speed.
  • a presence detection sensor object detection means corresponding to a streetlight 60 adjacent to the streetlight 60 whose brightness is to be adjusted by the automobile at time t2.
  • the presence detection sensor 80 enters the detection range 81 of 80 and recognizes “existence”, the signal is transmitted to the dimming control unit 70 of the streetlight 60 whose luminance is to be adjusted, and the signal control unit 72
  • the control unit 40 changes the luminance of the streetlight 60 to an intermediate luminance L2 (for example, half the luminance L3 based on the rated load power) based on the information of the adjustment unit 74. Raise until it reaches.
  • the signal control unit 72 “exists in its own streetlight area”.
  • the controller 40 increases the luminance of the streetlight 60 until it reaches the luminance L3 based on the rated load power.
  • the control unit 40 reduces the luminance of the streetlight 60 to the luminance L1.
  • the time t3 when the luminance of the streetlight 60 reaches the luminance L2 is based on the luminance increasing speed information and the luminance decreasing speed information in the adjustment unit 74.
  • the detection range 81 of the streetlight 60 whose luminance is to be adjusted is used to recognize the presence of the automobile. Since the brightness of the street lamp 60 is adjusted, sufficient illumination is provided without delay for a car passing at high speed, thereby ensuring safety. In addition, since the brightness of the streetlight 60 is increased after the vehicle enters the detection range 81 corresponding to the adjacent streetlight 60, the brightness is increased in two steps, and the brightness of the vehicle driver suddenly increases. Can be avoided. In addition, the brightness adjustment is not limited to two stages, and the brightness adjustment is performed in three or more stages by using the presence detection sensor 80 corresponding to the adjacent streetlight 60. Similarly, it can be made variable according to ambient illuminance, time, weather conditions, and the like.
  • FIG. 11 is a block configuration diagram showing a schematic configuration of the illumination system 200 according to Embodiment 2 of the present invention.
  • the illumination system 200 has substantially the same configuration as the illumination system 100 according to the first embodiment, but includes a distance sensor 90 instead of the presence detection sensor 80. Also in the second embodiment, the illumination system 200 is constructed using street lamps 60 that are mainly installed along roads through which people pass.
  • the distance sensor 90 has a function of measuring the distance from the person M as an object and transmitting the measurement result (distance information) to the signal control unit 72.
  • the signal control unit 72 causes the control unit 40 to control the gate phase of the MERS 30 according to the distance information.
  • the street lamp 60 is illuminated with the brightness L1 that is 1/10 of the brightness L3 at the rated load power.
  • the control unit 40 increases the luminance of the streetlight 60 to an intermediate luminance L2 between the luminance L1 and the luminance L3. Further, when the person M approaches the distance sensor 90 and arrives at the position P3, the control unit 40 increases the luminance of the streetlight 60 to the luminance L3 based on the rated load power.
  • the control unit 40 reduces the luminance of the streetlight 60 to the luminance L2, and further the person M becomes the position P5 and out of the detection range 91.
  • the control unit 40 reduces the luminance of the streetlight 60 to the luminance L1.
  • the brightness of the street lamp 60 changes according to the distance between the distance sensor 90 and the person M, so that it is possible to realize more natural and comfortable brightness adjustment. If the distance sensor 90 and the streetlight 60 are arranged at close positions, the distance sensor 90 and the streetlight 60 become brighter as it gets closer to the streetlight 60 and darker as it gets farther away from the streetlight. can do.
  • the number of stages of luminance is not limited to the three stages as described in the second embodiment, and may be set to two stages or four or more stages as necessary.
  • the change speed at the time of luminance change that is, the inclination in the luminance change is also set as abrupt (high speed) or moderate (low speed) as necessary.
  • the change in brightness is not a step change, but may be a change proportional to the distance between the distance sensor 90 and the person M.
  • this lighting system 200 when this lighting system 200 is applied to, for example, a highway illumination lamp installed on a highway, the object is not a person M but an automobile that passes mainly at high speed. Therefore, in this case, the luminance change speed information of the adjustment unit 74 is set so that the luminance change is performed at a relatively high speed.
  • the lighting system 200 is also provided with a plurality of street lamps 60 along the road, and a plurality of dimming control units 70, distance sensors (object detection means) 90, and MERS 30 are installed so as to correspond to each of them. Therefore, when changing the brightness of the streetlight 60 with respect to the automobile traveling at high speed, the plurality of streetlights 60 can be coordinated. Specifically, similarly, not only the detection range 91 of the street lamp 60 whose luminance is to be adjusted, but also the detection range 91 of the distance sensor 90 corresponding to the adjacent street lamp 60 in the lighting system 200 is used to adjust the luminance. The brightness of the streetlight 60 is adjusted by recognizing the distance from the streetlight 60 to be tried to the car.
  • FIG. 12 is a block configuration diagram showing a schematic configuration of the illumination system 300 according to Embodiment 3 of the present invention.
  • the lighting system 300 can be applied to, for example, lighting lamps provided on the road surface of an expressway through which automobiles pass at high speed, side wall surfaces, bridge railings, tunnel ceilings, and wall surfaces.
  • the illumination system 300 can divert existing highway illumination light equipment without the need to separately install highway illumination light equipment.
  • the illumination system 300 is roughly configured by a MERS 30, an illumination lamp 65, a control unit (control means) 40, a signal control unit 72, and a speed sensor 95.
  • the illumination lamp 65 may be a discharge lamp such as a fluorescent lamp, a mercury lamp, or a sodium lamp.
  • a plurality of illumination lamps 65 are installed along the road, and a plurality of MERSs 30 and a control unit 40 are installed so as to correspond to each of them, and each MERS 30 is connected to each illumination lamp 65, and each MERS 30 is connected to each MERS 30.
  • Each control unit 40 is connected to each other. That is, the illuminating lamp 65, the MERS 30, and the control unit 40 are one set.
  • Each MERS 30 is connected to the AC power source 20.
  • a predetermined number of groups (for example, 100 groups) of the illumination lamps 65, the MERS 30, and the control unit 40 constitute one illumination unit, and each control unit 40 of the illumination unit controls a signal control unit 72 that controls the illumination unit. , And the adjustment unit 74, respectively.
  • the signal control unit 72 and the adjustment unit 74 are connected to each other.
  • an induction speed adjustment unit 75 is connected to the signal control unit 72.
  • FIG. 12 a connection state of one control unit 40 among the plurality of control units 40 is shown.
  • the speed sensor 95 has a function of measuring the speed of the target vehicle V within the detection range 96 and transmitting the measurement results (vehicle presence information and speed information) to the signal control unit 72. is doing.
  • the MERS 30 is a magnetic energy regenerative switch as described above, and each control unit 40 of the corresponding lighting unit controls the gate phase of each MERS 30 using the output from the speed sensor 95 and the information of the guide speed adjustment unit 75 as a trigger. By doing so, each illumination lamp 65 of the illumination unit is configured to become brighter or darker.
  • the illuminating lamp 65 of the illumination system 300 according to Embodiment 3 includes a plurality of illuminating lamps 65 belonging to a predetermined illuminating unit (part of the illuminating lamps 65a to 65h). Are provided at predetermined intervals along the road, for example, on the side walls of the road and the guard rail, so that a “light band” having a predetermined speed is formed by the brightness of the plurality of illumination lamps 65.
  • Each illumination lamp 65 is configured to repeat light and dark periodically.
  • the illuminating lamp 65 is divided into three levels of luminance L1 based on electric power lower than the rated load electric power (for example, 1/10 electric power), luminance L3 at the rated load electric power, and luminance L2 in the middle.
  • the brightness can be changed (that is, the brightness can be changed with four steps from time t1 to time t5 as one cycle), and the installation interval of each illumination lamp 65 (for example, the distance from the illumination lamp 65a to the illumination lamp 65b) is If it is 2.2 m, for example, in order to form an “light band” of 100 km / h (27.8 m / sec), each illumination lamp 65 is controlled as follows.
  • the brightness of each illuminating lamp 65 is performed by the corresponding control unit 40 controlling the gate phase of the corresponding MERS 30.
  • the illuminating lamp 65a has the luminance L1 before receiving the trigger.
  • time t1 luminance L1 to luminance L2
  • time t2 luminance L2 to luminance L3
  • time t3 luminance L3 to luminance L2
  • time t4 luminance L2 to luminance L1
  • time t5 Brightness changes again from luminance L1 to luminance L2.
  • each illuminating lamp 65 can form a “light band” that repeats bright and dark changes and travels at 100 km / h.
  • the change in brightness of each illumination lamp 65 continues for a predetermined time (for example, 30 sec), and the “light band” also continues for a predetermined time.
  • one cycle of light / dark change can be divided into 16 parts every 20 msec, and each illumination lamp 65 can be changed light / dark, so the brightness change mode is selected as appropriate, such as four or more stages. it can. This selection is based on information from the adjustment unit 74.
  • FIG. 14 shows the speed of the vehicle V (Speed V) measured by the speed sensor 95 and the speed of the “light band” formed by the lighting system 300 (Speed) stored in the guidance speed adjustment unit 75 and used by the lighting system 300.
  • L is shown.
  • the illumination light 65 starts to change from light to dark as described above from time t1 in FIG.
  • a “light band” having a predetermined induction speed Vint (for example, 100 km / h) is formed. This “light band” continues for a predetermined time.
  • the guide speed Vint may be changed depending on the traffic situation, the regulation situation, and the weather situation on the road. Moreover, you may set so that it may change according to the speed of the detected motor vehicle V.
  • the guide speed adjusting unit 75 transmits the guide speed Vint to the adjusting unit 74 via the signal control unit 72, and the adjusting unit 74 selects a luminance change mode according to the guide speed Vint from the stored information.
  • This lighting system 300 can be used on an uphill of a highway, an entrance of a tunnel, etc., where a driver loosens the accelerator and the speed of a traveling vehicle decreases and traffic is likely to occur, or conversely, a downhill, near the exit of a tunnel, etc. It is good to install in a place where it is preferable to reduce the speed of the automobile for traveling safety. In general, a driver unconsciously accelerates when the speed of an object running in parallel next to the car being driven is faster than the speed of the own vehicle, and conversely, when the speed is slower than the speed of the own vehicle, the driver decelerates. It is known that there is a psychological tendency to run at speed. Therefore, the lighting system 300 is installed at these locations, and guides the automobile traveling at each location toward travel at a desired predetermined speed by the “light band” that travels at a predetermined speed. be able to.
  • the speed sensor 95 is used in the lighting system 300 according to the third embodiment
  • the presence detection sensor 80 used in the lighting system 100 according to the first embodiment or the embodiment is used instead of the speed sensor 95.
  • the distance sensor 90 used in the illumination system 200 according to 2 may be used.

Abstract

An illumination system (100) has a presence detection sensor (80) which detects the presence/absence of a human (M) or a vehicle (V), an MERS (30) which is connected with an AC power supply (20) and a street lamp (60), and a control part (40) which varies the luminance of the street lamp (60) by varying the output voltage and the phase of the current of the MERS (30) according to an output signal from the presence detection sensor (80). The illumination system moreover has an adjustment part (74) which adjusts the luminance variation mode of the street lamp (60).

Description

照明システムLighting system
 本発明は、照明システムに関するものである。 The present invention relates to a lighting system.
 近年、大気汚染や地球温暖化などの環境問題が特に深刻化してきており、環境問題への取り組みとして、消費エネルギー量の低減(省エネ)が盛んに図られるようになってきている。 In recent years, environmental problems such as air pollution and global warming have become particularly serious, and as an approach to environmental problems, reduction of energy consumption (energy saving) has been actively pursued.
 例えば、日本における主な電力供給源の一つとして火力発電があるが、火力発電では、石油、石炭、天然ガスなどの燃料の燃焼に伴って、地球温暖化の原因となる二酸化炭素や、大気汚染の原因となる硫黄酸化物、窒素酸化物などが排出される。そのため、消費電力の削減によって、温室効果ガスや大気汚染の原因となる物質の排出が削減され、これが地球環境に与える負荷の低減につながることが期待されている。 For example, thermal power generation is one of the main power supply sources in Japan. In thermal power generation, carbon dioxide, which causes global warming, and atmospheric air as fuel such as oil, coal, and natural gas burns. Sulfur oxides and nitrogen oxides that cause pollution are emitted. Therefore, it is expected that the reduction of power consumption will reduce the emission of substances that cause greenhouse gases and air pollution, and this will lead to a reduction in the load on the global environment.
 省エネへの取り組みの一つとしては、例えば、インバータ方式の蛍光灯とこのインバータ方式の蛍光灯を所望の輝度まで調整制御する制御装置とを備えた照明灯制御装置が提案されている。この照明灯制御装置によれば、ユーザがインバータ方式の蛍光灯を所望の輝度まで制御することができ、無駄な電力消費を抑えることができる。(特許文献1及び2参照)
特開2008-103352号公報 特開2008-130437号公報
As one approach to energy saving, for example, an illuminating lamp control device including an inverter type fluorescent lamp and a control device that adjusts and controls the inverter type fluorescent lamp to a desired luminance has been proposed. According to this illuminating lamp control apparatus, the user can control the inverter type fluorescent lamp to a desired luminance, and wasteful power consumption can be suppressed. (See Patent Documents 1 and 2)
JP 2008-103352 A JP 2008-130437 A
 しかしながら、照明灯の点灯使用時の輝度を調整制御するためには調光制御対応の高価なインバータ方式の蛍光灯を採用しなければならず、また調光制御対応のインバータ方式の蛍光灯以外の既存の蛍光灯や、水銀灯、ナトリウム灯などの放電灯では減光方向に調光することが困難である。 However, in order to adjust and control the brightness when the lighting is turned on, an expensive inverter-type fluorescent lamp compatible with dimming control must be adopted, and other than the inverter-type fluorescent lamp compatible with dimming control It is difficult to dimm in the dimming direction with existing fluorescent lamps, discharge lamps such as mercury lamps and sodium lamps.
 例えば、道路用の照明灯には光量が大きく寿命の長い水銀灯やナトリウム灯などの放電灯が多く使用されており、これらの放電灯を減光方向に調光制御する機構が提供されていない。そのため、現状では、道路用照明灯は道路上に車両が存在しない場合であっても常時定格点灯している。従って、無駄な電力を消費していることとなる。 For example, many lighting lamps for road use, such as mercury lamps and sodium lamps having a large light amount and a long life, are used, and a mechanism for dimming control of these discharge lamps in the dimming direction is not provided. Therefore, at present, the road illumination lamp is always lit at a rated level even when there is no vehicle on the road. Therefore, useless power is consumed.
 また、例えばトンネルや、公園、建物内の通路などにおいても、車両や人の存在が全くない状態であるにもかかわらず、放電灯を点灯状態に維持していることが多く、無駄に電力が消費されている。 Also, for example, in tunnels, parks, passages in buildings, etc., there are many cases in which discharge lamps are kept lit even though there are no vehicles or people present, and power is wasted. Is consumed.
 このように、従来から所謂「点けっ放し」になっている道路用、公園内、建物内などにおける照明灯(特に、放電灯)を、必要に応じて点消灯したり、光量を調整したりして、省電力に寄与することのできる提案が要望されていた。 In this way, lighting (especially discharge lamps) for roads, parks, buildings, etc., which has been conventionally known as “light-on”, can be turned on and off and the amount of light can be adjusted as necessary. Thus, a proposal that can contribute to power saving has been demanded.
 更には、その照明灯における点消灯や輝度調整の態様を状況に応じて調整したいという要望もある。例えば、道路用の照明灯においては、節電のために輝度が低く調整されている場合であっても、自動車が高速で近づいてきた場合は瞬時に輝度を上昇させる必要があるが、人が歩いて近づいてきた場合は輝度を徐々に上昇させれば充分な場合がある。 Furthermore, there is a desire to adjust the lighting / light-out and brightness adjustment mode of the lamp according to the situation. For example, in road lighting, even if the brightness is adjusted to be low for power saving, it is necessary to increase the brightness instantaneously when a car approaches at high speed. When approaching, it may be sufficient to gradually increase the brightness.
 自動車や人などの対象物の近づき具合(対象物までの距離や接近速度等)に応じて輝度変化の態様を変化させる必要がある場合もある。また、屋外に設置される照明灯と屋内に設置される照明灯とでは、輝度の変化態様を変えたいという要望もある。 In some cases, it is necessary to change the aspect of the luminance change in accordance with the degree of approach of an object such as a car or a person (distance to the object, approach speed, etc.). There is also a desire to change the luminance change mode between an illumination lamp installed outdoors and an illumination lamp installed indoors.
 本発明は上記の事情に鑑みて為されたもので、照明灯を減光制御して、無駄な電力消費を削減すると共に、状況に応じてその輝度変化の態様を変化させることのできる照明システムを提供することを例示的課題とする。 The present invention has been made in view of the above circumstances, and it is possible to reduce the useless power consumption by controlling the dimming of the illuminating lamp, and to change the aspect of the luminance change according to the situation. It is an exemplary problem to provide
 上記課題を解決するために、本発明の例示的側面としての照明システムは、対象物の存在/非存在を検出する対象物検出手段と、電源及び照明灯との間に接続され、電源から照明灯に出力される、照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、対象物検出手段と負荷電力調整スイッチに接続され、対象物検出手段からの出力信号に基づき負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、照明灯の輝度を変化させる制御手段と、を備えた照明システムであって、照明灯の輝度変化態様を調整する輝度変化態様調整手段を更に有している。 In order to solve the above problems, an illumination system according to an exemplary aspect of the present invention is connected between an object detection unit that detects the presence / absence of an object, a power source, and an illumination lamp, and illuminates from the power source. Load power adjustment switch that adjusts the load power to turn on the illuminating lamp that is output to the lamp, and is connected to the object detection means and the load power adjustment switch, and adjusts the load power based on the output signal from the object detection means A control system for changing the brightness of the illumination lamp by changing the magnitude of the output voltage of the switch and the phase of the current, and a brightness change mode adjustment means for adjusting the brightness change mode of the illumination lamp It has further.
 負荷電力調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の持つ磁気エネルギーを蓄積して照明灯に回生するためのコンデンサとを有し、これらの逆導通型半導体スイッチのゲート位相を制御することで、照明灯に供給する負荷電力を調整するものであってもよい。 The load power adjustment switch has at least two reverse conduction type semiconductor switches and a capacitor for accumulating magnetic energy of current at the time of current interruption and regenerating to the illuminating lamp. The load power supplied to the illuminating lamp may be adjusted by controlling the gate phase.
 必要に応じて照明灯の輝度を変化させることができるので、所謂「点けっ放し」を防止して、必要な状況においてのみ必要な輝度で照明することができ、省電力に寄与することができる。また、輝度変化態様調整手段が、その輝度変化の態様を調整するので、輝度変化(「高輝度」から「低輝度」へ、又は「低輝度」から「高輝度」の変化)の態様をバリエーション豊かにすることができる。常に一定の輝度変化態様でなく、状況に応じて素早い輝度変化やゆっくりの輝度変化とすることができるので、対象物の位置やその接近速度に応じて、輝度変化態様を適切に調整することができる。 Since the brightness of the illuminating lamp can be changed as necessary, so-called “spot-off” can be prevented, and illumination can be performed with the necessary brightness only in a necessary situation, thereby contributing to power saving. . In addition, since the luminance change mode adjustment means adjusts the mode of the luminance change, variations of the luminance change mode (from “high luminance” to “low luminance” or from “low luminance” to “high luminance”) are variations. It can be enriched. Since it is not always a constant brightness change mode, it can be a quick brightness change or a slow brightness change depending on the situation, so it is possible to appropriately adjust the brightness change mode according to the position of the object and its approach speed it can.
 上記の輝度変化態様は、輝度変化速度であってもよい。例えば、対象物としての自動車が高速で接近する場合に速い輝度変化速度で輝度変化させ、対象物としての人が歩いて(すなわち、比較的低速で)接近する場合には遅い輝度変化速度で輝度変化させることができる。対象物の接近速度に応じて輝度変化の速度を調整することが可能となる。 The luminance change mode may be a luminance change speed. For example, when a vehicle as an object approaches at high speed, the luminance is changed at a high luminance change speed, and when a person as an object approaches by walking (that is, at a relatively low speed), the luminance is changed at a low luminance change speed. Can be changed. It is possible to adjust the speed of the luminance change according to the approach speed of the object.
 制御手段が、対象物の存在時に照明灯の輝度を上昇させ、対象物の非存在時に照明灯の輝度を低下させてもよい。対象物の存在時に輝度を上昇させるので、照明が必要な場合に明るく照明することができる。一方、対象物の非存在時に輝度を低下させるので、照明が不要な場合に節電することができる。 The control means may increase the luminance of the illuminating lamp when the object is present and decrease the luminance of the illuminating lamp when the object is not present. Since the luminance is increased when the object is present, it can be illuminated brightly when illumination is necessary. On the other hand, since the luminance is lowered when the object is not present, it is possible to save power when illumination is unnecessary.
 輝度の上昇又は低下の少なくともいずれか一方が、段階的変化であってもよい。例えば、対象物が接近するにつれて段階的に輝度を上昇させ、対象物が遠ざかるにつれて段階的に輝度を低下させることにより、違和感のない適正照明輝度の実現及び省電力を両立させると共に、輝度調整の制御の簡略化を図ることができる。ここで、輝度変化の段階数(ステップ)は自由である。対象物との距離に応じて2段階に輝度変化するように構成してもよいし、10段階に輝度変化するように構成してもよい。接近速度に応じて段階数を変化させることも可能である。もちろん、段階的な輝度変化でなく、対象物との距離の二乗に比例するように、連続的な輝度変化を実現するようにこの照明システムを構成してもよい。 Stepwise change may be at least one of the increase or decrease in luminance. For example, by increasing the brightness step by step as the object approaches, and by decreasing the brightness step by step as the object moves away, it is possible to achieve both proper illumination brightness and power saving, and to adjust the brightness. Control can be simplified. Here, the number of steps of luminance change is arbitrary. The luminance may be changed in two steps according to the distance to the object, or the luminance may be changed in ten steps. It is also possible to change the number of steps according to the approach speed. Of course, you may comprise this illumination system so that a continuous brightness | luminance change may be implement | achieved so that it may be proportional to the square of the distance with a target object instead of a stepwise brightness | luminance change.
 制御手段が、対象物検出手段と対象物との距離に応じて照明灯の輝度を変化させてもよい。上述したように、対象物検出手段と対象物との距離に応じて照明灯の輝度を変化させれば、輝度変化の違和感を排除しつつ省電力を可能とすることができる。 The control means may change the luminance of the illuminating lamp according to the distance between the object detection means and the object. As described above, if the luminance of the illuminating lamp is changed according to the distance between the target object detection means and the target object, it is possible to save power while eliminating the uncomfortable feeling of the luminance change.
 対象物検出手段が、その検出領域内における温度変化、動きの有無、若しくは磁界変化、又は対象物との情報送受信のうち少なくともいずれか1つに基づき対象物の存在/非存在を検出してもよい。 Even if the object detection means detects the presence / absence of the object based on at least one of temperature change, presence / absence of motion, or magnetic field change in the detection region, or information transmission / reception with the object. Good.
 例えば、対象物が人である場合、その体温、動き等に基づいて対象物の存在/非存在を検出することができる。対象物が自動車である場合、その温度、動き、磁界変化等に基づいて対象物の存在/非存在を検出することができる。対象物が、人が所持する携帯電話機や情報端末である場合、対象物検出手段と対象物との情報送受信(例えば、電波や赤外線等)に基づいて対象物の存在/非存在を検出することができる。 For example, when the object is a person, the presence / absence of the object can be detected based on the body temperature, movement, and the like. When the object is an automobile, the presence / absence of the object can be detected based on the temperature, movement, magnetic field change, and the like. When the object is a mobile phone or an information terminal possessed by a person, the presence / absence of the object is detected based on information transmission / reception (for example, radio waves, infrared rays, etc.) between the object detection means and the object. Can do.
 照明灯が、ほぼ一直線上に並んだ複数個であり、対象物の存在時にそれらの複数個の照明灯の輝度を、所定時間、位相を段階的に変位させ周期的に変化させてもよい。また、対象物検出手段が、その検出領域内における対象物の速度を検出する速度センサーでよい。 There may be a plurality of illuminating lamps arranged substantially in a straight line, and the luminance of the illuminating lamps may be changed periodically by changing the phase stepwise for a predetermined time when an object is present. Further, the object detection means may be a speed sensor that detects the speed of the object in the detection region.
 負荷電力調整スイッチとして、例えば磁気エネルギー回生スイッチと制御手段とを用いることにより、既存の照明灯を利用して照明システムを構築することができる。調光制御対応のインバータ方式の照明灯を用いることなく、低コストで輝度変化(明暗変化)を可能とするシステム構築を行うことができる。 As a load power adjustment switch, for example, a magnetic energy regenerative switch and control means can be used to construct an illumination system using an existing illumination light. It is possible to construct a system that can change luminance (brightness and darkness) at low cost without using an inverter-type illumination lamp that supports dimming control.
 負荷電力調整生スイッチとして、磁気エネルギー回生スイッチを用いて照明灯の輝度変化を実現すれば、インバータ回路を用いる必要がない。従って、高調波ノイズの発生を最小限に抑えることができ、ノイズ発生による周囲への悪影響を低減することができる。ここで対象物とは、照明光により照明されるべき物体全般を意味し、例えば人や自動車等が対象物に該当する。また、例えば、携帯電話機や金属製品等の電波源、磁性源等も対象物に含まれる。 If the brightness change of the illuminating lamp is realized using a magnetic energy regenerative switch as a load power adjustment regenerative switch, it is not necessary to use an inverter circuit. Therefore, the generation of harmonic noise can be minimized, and adverse effects on the surroundings due to the noise generation can be reduced. Here, the object means all objects to be illuminated with illumination light, and for example, a person or a car corresponds to the object. In addition, for example, radio wave sources such as mobile phones and metal products, magnetic sources, and the like are also included in the object.
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。 Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、照明灯を減光制御して、無駄な電力消費を削減すると共に、状況に応じてその輝度変化の態様を変化させることができる。 According to the present invention, it is possible to control the dimming of the illuminating lamp to reduce useless power consumption, and to change the aspect of the luminance change according to the situation.
MERS組み込みシステムの基本構成を示す図である。It is a figure which shows the basic composition of a MERS embedded system. 図2(a)、図2(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 2A and FIG. 2B are diagrams for explaining MERS switching control by the control unit. 図3(a)、図3(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 3A and FIG. 3B are diagrams for explaining MERS switching control by the control unit. 図4(a)、図4(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 4A and FIG. 4B are diagrams for explaining MERS switching control by the control unit. 図5(a)、(b)、(c)、(d)は、MERS組み込みシステムの動作結果を説明するための図である。FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are diagrams for explaining operation results of the MERS embedded system. ゲート位相角αを変化させたときの負荷電圧/定格電圧を示すグラフである。It is a graph which shows load voltage / rated voltage when changing gate phase angle (alpha). MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. 本発明の実施の形態1に係る照明システムの概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the illumination system which concerns on Embodiment 1 of this invention. 図9に示す照明システムにおける調光制御部の概略構成を説明するためのブロック構成図である。It is a block block diagram for demonstrating schematic structure of the light control part in the illumination system shown in FIG. 本発明の実施の形態2に係る照明システムの概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the illumination system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る照明システムの概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the illumination system which concerns on Embodiment 3 of this invention. 図12に示す照明システムの作動を示す図である。It is a figure which shows the action | operation of the illumination system shown in FIG. 図12に示す照明システムの作動のための設定を示すグラフである。It is a graph which shows the setting for the action | operation of the illumination system shown in FIG.
符号の説明Explanation of symbols
α:ゲート位相角
M:人(対象物)
V:自動車(対象物)
SW1~SW8:逆導通型半導体スイッチ
G1~G4:逆導通型半導体スイッチSW1~SW4のゲート
D1、D2:ダイオード
DC(P)、DC(N):直流端子
AC:交流端子
10:MERS組み込みシステム 
20:交流電源 
30:磁気エネルギー回生スイッチ(MERS) 
32、33、34、35、36:コンデンサ 
40:制御部(制御手段) 
50:誘導性負荷 
60:街灯(照明灯)
65、65a、65b、65c、65d、65e、65f、65g、65h:照明灯
70:調光制御部
72:信号制御部 
74:調整部(輝度変化態様調整手段)
75:誘導速度調整部
80:存在検出センサー(対象物検出手段) 
81:検出範囲
90:距離センサー(対象物検出手段)
91:検出範囲
95:速度センサー(対象物検出手段)
96:検出範囲
100、200、300:照明システム
α: Gate phase angle M: Person (object)
V: Automobile (object)
SW1 to SW8: Reverse conducting semiconductor switches G1 to G4: Gates D1 and D2 of the reverse conducting semiconductor switches SW1 to SW4: Diodes DC (P), DC (N): DC terminal AC: AC terminal 10: MERS embedded system
20: AC power supply
30: Magnetic energy regenerative switch (MERS)
32, 33, 34, 35, 36: Capacitor
40: Control unit (control means)
50: Inductive load
60: Street lamp (illumination lamp)
65, 65a, 65b, 65c, 65d, 65e, 65f, 65g, 65h: illumination lamp 70: dimming control unit 72: signal control unit
74: Adjustment unit (luminance change mode adjustment means)
75: Guidance speed adjustment unit 80: Presence detection sensor (object detection means)
81: Detection range 90: Distance sensor (object detection means)
91: Detection range 95: Speed sensor (object detection means)
96: Detection range 100, 200, 300: Illumination system
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明に係る好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Further, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本実施形態に係る照明システムは、対象物の存在/非存在を検出する対象物検出手段と、電源及び照明灯との間に接続され、電源から照明灯に出力される、照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、負荷電力調整スイッチに接続され、負荷電力調整スイッチのゲート位相を制御させることにより照明灯の輝度を変化させる制御手段(制御部)と、を備えた照明システムであって、照明灯の輝度変化態様を調整する輝度変化態様調整手段を更に備えている。負荷電力調整スイッチは、例えば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)である。 The illumination system according to the present embodiment is connected between an object detection unit that detects the presence / absence of an object and a power source and an illumination lamp, and lights the illumination lamp that is output from the power source to the illumination lamp. A load power adjustment switch that adjusts the load power for the control, and a control means (control unit) that is connected to the load power adjustment switch and changes the luminance of the illumination lamp by controlling the gate phase of the load power adjustment switch. The illumination system further includes brightness change mode adjusting means for adjusting the brightness change mode of the illuminating lamp. The load power adjustment switch is, for example, a magnetic energy regeneration switch (Magnetic Energy Recovery Switch: MERS) (hereinafter referred to as MERS).
 MERSは、例えば、逆阻止能力を持たない、すなわち逆導通型の半導体素子を4つ用いて順逆両方向の電流をゲート制御のみでON/OFF可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーをコンデンサに蓄積し、ONゲートが与えられた半導体素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチであり、このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチである。(例えば、特許第3634982号公報を参照。本特許公報では、フルブリッジ型のMERSを開示している。)。 MERS, for example, does not have reverse blocking capability, that is, it can be turned on / off in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements, and has current when the current is cut off. It is a switch that can regenerate magnetic energy without loss by accumulating magnetic energy in a capacitor and releasing it to the load side through a semiconductor element provided with an ON gate. This is an energy regeneration switch. (For example, refer to Japanese Patent No. 3634882. In this patent publication, a full bridge type MERS is disclosed.)
 MERSには、逆導通型の半導体素子として、例えば、パワーMOSFETやダイオードを逆並列接続したトランジスタ等の順方向制御が可能な半導体素子が用いられている。MERSは、この逆導通型の半導体素子4つで構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出するコンデンサを接続して構成される。そして、MERSは、これら4つの逆導通型の半導体素子のゲート位相を制御することで、電流をどちらの方向にも流すことが可能となっている。 In MERS, a semiconductor element capable of forward control, such as a transistor in which power MOSFETs and diodes are connected in antiparallel, is used as a reverse conducting semiconductor element. The MERS is configured by connecting a bridge circuit composed of four semiconductor elements of the reverse conduction type and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. And MERS can flow an electric current to either direction by controlling the gate phase of these four reverse conduction type semiconductor elements.
 また、MERSは、ブリッジ接続された4つの逆導通型の半導体素子のうち、対角線上に位置する2つの逆導通型の半導体素子がペアとなり、2つのペアのON/OFFの切換動作を電源の周波数に同期して行い、一方のペアがONの時は他方のペアがOFFとなるように動作する。また、このON/OFFの切換タイミングに合わせて、コンデンサは磁気エネルギーの充放電を繰り返す。 MERS is a pair of two reverse conducting semiconductor elements located on a diagonal line among four reverse conducting semiconductor elements connected in a bridge. The operation is performed in synchronization with the frequency, and when one pair is ON, the other pair is OFF. In addition, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
 そして、一方のペアにOFFゲートが与えられ、他方のペアにONゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-コンデンサ-他方のペアの第2のダイオードという経路で流れ、これによりコンデンサに電荷を充電する。すなわち、電流の磁気エネルギーがコンデンサに蓄積される。電流遮断時の電流の磁気エネルギーは、コンデンサの電圧が上昇して電流がゼロになるまでコンデンサに蓄積される。コンデンサ電流がゼロになるまでコンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にONゲートが与えられているため、ONしている半導体素子を通してコンデンサの電荷が負荷側に放電され、コンデンサに蓄積された磁気エネルギーが負荷側に回生される。 Then, when an OFF gate is given to one pair and an ON gate is given to the other pair, the current conducted in the forward direction becomes the second diode of the other pair, the second diode of the other pair. It flows through a path called a diode, which charges the capacitor. That is, the magnetic energy of the current is stored in the capacitor. The magnetic energy of the current at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor rises and the current becomes zero. When the capacitor voltage increases until the capacitor current reaches zero, the current interruption is complete. At this time, since the ON gate is already given to the other pair, the charge of the capacitor is discharged to the load side through the semiconductor element that is turned ON, and the magnetic energy accumulated in the capacitor is regenerated to the load side.
 このように、MERSは、4つの逆導通型の半導体素子のうち対角線上に位置する2つの逆導通型の半導体素子からなるペア2つのON/OFFのゲート位相を制御することで、MERSの出力電圧の大きさと電流の位相を任意に制御することが可能である。 Thus, MERS outputs the output of MERS by controlling the gate phase of two pairs of two reverse conducting semiconductor elements located on the diagonal line among the four reverse conducting semiconductor elements. It is possible to arbitrarily control the magnitude of the voltage and the phase of the current.
 制御部は、対象物検出手段からの検出結果(出力信号)に応じてMERSのゲート位相を制御することにより、照明灯の輝度を変化(明暗変化)させる機能を有する。更に、照明灯の輝度は、輝度変化態様調整手段により、所望の変化態様を得ることができる。 The control unit has a function of changing the luminance of the illuminating lamp (brightness / darkness change) by controlling the gate phase of the MERS in accordance with the detection result (output signal) from the object detection means. Furthermore, the brightness of the illuminating lamp can be changed in a desired manner by the brightness change mode adjusting means.
 まず、負荷電力調整スイッチとしてのMERSの構成及び動作を説明する。本実施形態では、MERSを交流電源と誘電性負荷との間に直列に接続したMERS組み込みシステムを例に説明する。なお、MERSは交流電源に組み込むことで交流電源装置を構成することができ、また誘導性負荷に組み込むことでMERS組み込み負荷を構成することができる。 First, the configuration and operation of MERS as a load power adjustment switch will be described. In this embodiment, a MERS embedded system in which MERS is connected in series between an AC power source and a dielectric load will be described as an example. In addition, MERS can comprise an alternating current power supply device by incorporating it into an alternating current power source, and can constitute a MERS built-in load by incorporating it into an inductive load.
 図1は、MERS組み込みシステム10の基本構成を示す図である。 FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
 図1において、MERS組み込みシステム10は、交流電源20と、インダクタンスのある誘導性負荷50を備える。なお、誘導性負荷50としては、40Wの蛍光灯2灯を並列に接続して用いている。交流電源20と誘導性負荷50との間には、MERS30が挿入されている。また、MERS組み込みシステム10は、MERS30のスイッチングを制御する制御部40を備える。 1, the MERS embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance. As the inductive load 50, two 40 W fluorescent lamps are connected in parallel. MERS 30 is inserted between AC power supply 20 and inductive load 50. The MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
 MERS30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。MERS30は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路の逆導通型半導体スイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収するエネルギー蓄積用のコンデンサ32とを備える。 The MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss. The MERS 30 is an energy storage device that absorbs the magnetic energy of the current that flows through the bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4 and when the reverse conducting semiconductor switch of the bridge circuit is cut off. And a capacitor 32.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
 コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子には誘導性負荷50が、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子には交流電源20が、それぞれ直列接続されている。 The capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). In addition, an inductive load 50 is at the connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3 at the AC terminal at the connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4. An AC power source 20 is connected in series to each AC terminal.
 MERS30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にON/OFFされる。すなわち、片方のペアがONのとき他方のペアはOFFとなる。そして、例えば、第1のペアにOFFゲートが与えられ、第2のペアにONゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これによりコンデンサ32が充電される。すなわち、電流の磁気エネルギーがコンデンサ32に蓄積される。 A first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. Then, for example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction becomes the second pair of reverse conduction type semiconductor switches SW3-capacitors 32. The reverse conduction type semiconductor switch SW4 flows through the path, whereby the capacitor 32 is charged. That is, the magnetic energy of the current is stored in the capacitor 32.
 電流遮断時の電流の磁気エネルギーは、コンデンサ32の電圧が上昇して電流がゼロになるまでコンデンサに蓄積され、コンデンサ電流がゼロになるまでコンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にONゲートが与えられているため、ONしている逆導通型半導体スイッチSW3、SW4を通してコンデンサ32の電荷が誘導性負荷50に放電され、コンデンサ32に蓄積された磁気エネルギーが誘導性負荷50に回生される。 The magnetic energy of the current at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 increases and the current becomes zero. When the voltage of the capacitor 32 increases until the capacitor current becomes zero, the current interruption is completed. . At this time, since the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
 電流のON/OFF時、誘導性負荷50にはパルス電圧が印加されるが、電圧の大きさはコンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導性負荷50の耐電圧許容範囲内とすることができる。また、MERS30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、例えば、パワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオード(寄生ダイオード)が並列接続されている。 When the current is turned on / off, a pulse voltage is applied to the inductive load 50. The magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30. The reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
 MERS30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、例えば、IGBTやダイオードを逆並列接続したトランジスタ等の素子を用いることもできる。 In addition to the body diode, a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4. As the reverse conducting semiconductor switches SW1 to SW4, for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
 制御部40は、MERS30の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、MERS30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのON/OFF動作と、逆導通型半導体スイッチSW3、SW4からなるペアのON/OFF動作とを、一方がONのとき他方がOFFとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。 The control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided. The control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
 続いて、制御部40によるMERS30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、制御部40によるMERS30のスイッチング制御を説明するための図である。 Subsequently, switching control of the MERS 30 by the control unit 40 will be described in detail. 2A, 2 </ b> B, 3 </ b> A, 3 </ b> B, 4 </ b> A, and 4 </ b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
 まず、コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をONにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。 First, when the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
 次に、交流電源20の電圧が反転する前の所定のタイミング、例えば、約2ms前に、制御部40は逆導通型半導体スイッチSW1、SW2をOFFにする。(これは、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degに相当する。)これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収(充電)される。本実施形態では、逆導通型半導体スイッチSW1、SW2をOFFにするタイミングで、逆導通型半導体スイッチSW3、SW4をONにしている。 Next, the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is reversed, for example, about 2 ms. (This corresponds to a gate phase angle α for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.) As a result, as shown in FIG. It flows through a path passing through the type semiconductor switch SW3-capacitor 32-reverse conducting type semiconductor switch SW4. As a result, the magnetic energy is absorbed (charged) in the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
 コンデンサ32の充電が完了すると、すなわちコンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にONであり、またコンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。 When the charging of the capacitor 32 is completed, that is, when the voltage of the capacitor 32 exceeds a predetermined value, the current is cut off. When the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage. Therefore, as shown in FIG. It flows through a path passing through the semiconductor switch SW4-capacitor 32-reverse conducting semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
 次に、コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。 Next, when the discharge from the capacitor 32 is completed, as shown in FIG. 3B, the current flows through a path passing through the reverse conducting semiconductor switches SW1 and SW3 and a path passing through the reverse conducting semiconductor switches SW4 and SW2. The parallel conduction state is established.
 次に、交流電源20の電圧が反転する前の所定のタイミングで、制御部40は逆導通型半導体スイッチSW3、SW4をOFFにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収される。本実施形態では、逆導通型半導体スイッチSW3、SW4をOFFにするタイミングで、逆導通型半導体スイッチSW1、SW2をONにしている。 Next, at a predetermined timing before the voltage of the AC power supply 20 is inverted, the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4. As a result, as shown in FIG. 4A, the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2. As a result, the magnetic energy is absorbed by the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
 コンデンサ32の充電が完了すると電流は遮断され、そして交流電源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にONであり、またコンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放電される。コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、MERS30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。 When the charging of the capacitor 32 is completed, the current is cut off, and when the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW1 and SW2 are already ON, and the capacitor 32 has a charging voltage. ), The current flows through the path through the reverse conducting semiconductor switch SW2-capacitor 32-reverse conducting semiconductor switch SW1. Then, the magnetic energy accumulated in the capacitor 32 is discharged. When the discharge from the capacitor 32 is completed, the parallel conduction state shown in FIG. Thus, the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
 このようなMERS30のスイッチング制御により、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合におけるMERS組み込みシステム10の動作結果を説明するための図である。図5(a)は、MERS30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、MERS30が組み込まれた場合の電源電圧、電流、負荷電圧の波形を示している。また、図5(c)はコンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がONになるタイミングを示している。 The following effects can be obtained by such switching control of the MERS 30. FIGS. 5A, 5B, 5C, and 5D show the MERS embedded system 10 in the case where the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. It is a figure for demonstrating the operation result of. 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated, and FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated. Yes. FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
 図5(a)に示すように、MERS30が組み込まれていない場合、誘導性負荷50の影響により、電流の位相が電源電圧の位相よりも遅れている。そのため交流電源20の力率は1より小さい。一方、交流電源20と誘導性負荷50との間にMERS30を直列に挿入した場合には、図5(b)に示すように電流の位相を進ませることができるため、交流電源20の力率を1に近づけることが可能である。 As shown in FIG. 5A, when the MERS 30 is not incorporated, the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1. On the other hand, when the MERS 30 is inserted in series between the AC power supply 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. Can be close to 1.
 すなわち、MERS30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、誘導性負荷50の磁気エネルギーをコンデンサ32に蓄えて、電流の位相を進ませ、これにより交流電源20の力率を1に近づけることが可能である。また、MERS30は、電流の位相を進ませるだけでなく、電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。更に、誘導性負荷50の磁気エネルギーをコンデンサ32に貯え、蓄えた磁気エネルギーを誘導性負荷50に回生することにより、負荷電圧を無段階に増減させることが可能である。 That is, the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current. As a result, the power factor of the AC power supply 20 can be brought close to 1. In addition, the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted. Furthermore, by storing the magnetic energy of the inductive load 50 in the capacitor 32 and regenerating the stored magnetic energy in the inductive load 50, the load voltage can be increased or decreased steplessly.
 また、図5(c)及び図5(d)に示すように、逆導通型半導体スイッチSW1がONになるタイミングでは、コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がOFFになるタイミングにおいてもコンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。 Further, as shown in FIGS. 5C and 5D, when the reverse conducting semiconductor switch SW1 is turned on, the capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1 is parallel. This is a current that flows through the diode of the reverse conducting semiconductor switch SW1 when conducting. The capacitor voltage is 0 even when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
 上記の通り、図5(a)、(b)、(c)、(d)は、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合におけるMERS組み込みシステム10の動作結果を示しているが、MERS30の逆導通型半導体スイッチを制御するゲート位相角αは、0degから360degまで連続的に制御することができる。図6は、負荷として40Wの蛍光灯2灯を用いた場合、逆導通型半導体スイッチを制御するゲート位相角αを変化させたときの負荷電圧/定格電圧の実測値を示す。定格電圧とは、電源電圧の100%に相当する電圧である。負荷電圧/定格電圧は、ゲート位相角αが0degからの増加に伴い増加し、ゲート位相角α=約90degで約140%の極大値となり、ゲート位相角αが更に増加すると減少し、ゲート位相角α=180degでは約50%にまで減少する。途中のゲート位相角α=約135degで、負荷電圧/定格電圧=1になっている。従って、MERS30のゲート位相角αを135degを基準に約±30deg制御することにより、負荷電圧を電源電圧の約60%から130%まで連続的に制御することができる。なお、ゲート位相角αを180degから360degまでの範囲で制御すると、180degから0degの向きに変化させたときの結果と同じになる。 As described above, FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are obtained when the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. Although the operation result of the MERS embedded system 10 is shown, the gate phase angle α for controlling the reverse conducting semiconductor switch of the MERS 30 can be continuously controlled from 0 deg to 360 deg. FIG. 6 shows measured values of load voltage / rated voltage when the gate phase angle α for controlling the reverse conducting semiconductor switch is changed when two 40 W fluorescent lamps are used as loads. The rated voltage is a voltage corresponding to 100% of the power supply voltage. The load voltage / rated voltage increases as the gate phase angle α increases from 0 deg, reaches a maximum value of about 140% at the gate phase angle α = about 90 deg, decreases as the gate phase angle α further increases, and decreases to the gate phase. At the angle α = 180 deg, it decreases to about 50%. On the way, the gate phase angle α = about 135 deg and the load voltage / rated voltage = 1. Therefore, the load voltage can be continuously controlled from about 60% to 130% of the power supply voltage by controlling the gate phase angle α of the MERS 30 by about ± 30 deg with respect to 135 deg. When the gate phase angle α is controlled in the range from 180 deg to 360 deg, the result is the same as when the direction is changed from 180 deg to 0 deg.
 コンデンサ32の充放電周期は、誘導性負荷50とコンデンサ32との共振周期の半周期分であり、スイッチング周期が誘導性負荷50とコンデンサ32との共振周期より長い時には、MERS30はゲート位相角αに関係なく常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。 The charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32. When the switching cycle is longer than the resonance cycle of the inductive load 50 and the capacitor 32, the MERS 30 has a gate phase angle α. Regardless of the case, zero voltage zero current switching, that is, soft switching is always possible.
 MERS30に用いられるコンデンサ32は、従来の電圧型インバータと異なり、回路にあるインダクタンスの磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。コンデンサ容量は、負荷との共振周期がスイッチング周波数より短くなるように選定する。そのため、従来の電圧型インバータで問題となりやすい高調波ノイズは、MERS30におけるスイッチングでは殆ど発生しない。従って、精密機器や計測機器等に対する高調波ノイズによる悪影響が、MERS30においては殆ど発生せず、MERS30を病院等においても安心して使用することができる。また、ソフトスイッチングであることから、電力損失が少なく、発熱も少ない。 Unlike the conventional voltage type inverter, the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter. The capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the MERS 30. Therefore, the adverse effects of harmonic noise on precision instruments and measuring instruments hardly occur in MERS 30, and MERS 30 can be used with peace of mind in hospitals and the like. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation | fever.
 また、MERS30をゲートパルス発生装置として用いた場合、各MERS30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各MERS30を制御することができる。例えば、インターネット等の通信回線を利用して無線で制御信号を送り、MERS30を無線制御できる。 Also, when the MERS 30 is used as a gate pulse generator, each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal. For example, the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
 上述のMERS組み込みシステム10では、MERS30は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続されたコンデンサ32とからなる構成であったが、MERS30は次のような構成であってもよい。 In the MERS embedded system 10 described above, the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
 図7及び図8は、MERS30の他の態様を示す図である。図7に示すMERS30は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つのコンデンサ32とからなるフルブリッジ型のMERS30に対して、2つの逆導通型半導体スイッチと2つのダイオード、及び2つのコンデンサで構成される縦型のハーフブリッジ型となっている。 7 and 8 are diagrams showing other modes of the MERS 30. FIG. The MERS 30 shown in FIG. 7 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
 より詳細には、この縦型のハーフブリッジ構造のMERS30は、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つのコンデンサ33、34と、この2つのコンデンサ33、34それぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。 More specifically, the vertical half-bridge MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5 and SW6. , Two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
 図8に示すMERS30は、横型のハーフブリッジ型である。横型のハーフブリッジ型MERSは、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。 The MERS 30 shown in FIG. 8 is a horizontal half-bridge type. The horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors.
 より詳細には、この横型のハーフブリッジ構造MERS30は、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7及びコンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8及びコンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。 More specifically, the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a series on a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
  [実施の形態1]
 続いて、本発明の実施の形態1に係る照明システムについて説明する。
[Embodiment 1]
Subsequently, the illumination system according to Embodiment 1 of the present invention will be described.
 図9は、本発明の実施の形態1に係る照明システム100の概略構成を示すブロック構成図である。この照明システム100は、例えば、街灯、競技場等の施設用照明などの屋外照明、店舗、ホテル、個人宅等における屋内照明に適用可能である。本実施の形態1においては、この照明システム100を、主に人が通る道路に設置される街灯に適用した例について説明する。照明システム100は、既存の街灯設備を利用して構成されてもよい。なお、後述するように、この照明システム100は、複数の街灯(照明灯)60の協調、及び調整部74(図10参照)による輝度変化速度の調整により、主に自動車が通過する高速道路に設置される高速道路用照明灯に適用することができるようになっている。 FIG. 9 is a block configuration diagram showing a schematic configuration of the illumination system 100 according to Embodiment 1 of the present invention. The lighting system 100 can be applied to outdoor lighting such as street lighting and lighting for facilities such as stadiums, and indoor lighting in stores, hotels, private houses, and the like. In the first embodiment, an example in which the lighting system 100 is applied to a streetlight installed mainly on a road through which a person passes will be described. The lighting system 100 may be configured using existing street lamp equipment. As will be described later, the lighting system 100 is mainly used on a highway through which a car passes by coordination of a plurality of street lamps (illumination lamps) 60 and adjustment of a luminance change speed by an adjustment unit 74 (see FIG. 10). It can be applied to installed highway lighting.
 図9に示すように、本実施の形態1に係る照明システム100は、MERS30、街灯(照明灯)60、調光制御部70、存在検出センサー(対象物検出手段)80を有して大略構成されている。MERS30は、街灯60及び調光制御部70に接続され、調光制御部70には存在検出センサー80が接続されている。 As shown in FIG. 9, the illumination system 100 according to the first embodiment generally includes a MERS 30, a streetlight (illumination lamp) 60, a dimming control unit 70, and a presence detection sensor (object detection means) 80. Has been. The MERS 30 is connected to the streetlight 60 and the dimming control unit 70, and the presence detection sensor 80 is connected to the dimming control unit 70.
 道路に沿って複数の街灯60が設置され、その各々に対応するように、複数の調光制御部70及びMERS30が設置されている。各MERS30は、交流電源20に接続されている。各街灯60の近傍には、各々存在検出センサー80が設置されている。 A plurality of street lamps 60 are installed along the road, and a plurality of light control units 70 and MERS 30 are installed so as to correspond to each of them. Each MERS 30 is connected to the AC power source 20. In the vicinity of each streetlight 60, a presence detection sensor 80 is installed.
 図10は、調光制御部70の概略構成を説明するためのブロック構成図である。図10においては、複数の街灯60のうち1つの街灯60に対応するMERS30、調光制御部70、存在検出センサー80の接続状態を示している。調光制御部70は、内部に制御部(制御手段)40、信号制御部72、調整部(輝度変化態様調整手段)74を有して大略構成されている。 FIG. 10 is a block configuration diagram for explaining a schematic configuration of the dimming control unit 70. FIG. 10 shows a connection state of the MERS 30, the dimming control unit 70, and the presence detection sensor 80 corresponding to one street lamp 60 among the plurality of street lamps 60. The dimming control unit 70 has a control unit (control unit) 40, a signal control unit 72, and an adjustment unit (luminance change mode adjustment unit) 74 inside.
 MERS30は、上述したように磁気エネルギー回生スイッチであり、街灯60及び調光制御部70に接続されて、調光制御部70からのゲート位相制御に基づき街灯60の輝度調整を行うものである。より具体的には、存在検出センサー80からの出力に基づいて制御部40がMERS30のゲート位相を制御することにより、街灯60が明るくなったり暗くなったりするように構成されている。 The MERS 30 is a magnetic energy regenerative switch as described above, and is connected to the street lamp 60 and the dimming control unit 70 to adjust the brightness of the street lamp 60 based on gate phase control from the dimming control unit 70. More specifically, the control unit 40 controls the gate phase of the MERS 30 based on the output from the presence detection sensor 80 so that the streetlight 60 becomes brighter or darker.
 街灯60は、道路に沿って設置された照明灯である。本照明システム100においては、別途わざわざ街灯60を設置する必要なく、既設の街灯60を流用することができる。街灯60は、例えば、蛍光灯、水銀灯、ナトリウム灯等の放電灯であってもよい。街灯60は、道路を照明してその道路を通過する人の安全確保に寄与するためのものである。本実施の形態1に係る照明システム100においては、人の通過がない場合には、街灯60の輝度が低減されて電力消費が抑えられ、人が接近すると自動的に街灯60の輝度が上昇して安全を確保するように構成されている。その輝度変化は、制御部40からのゲート位相制御によって実現されている。 The street lamp 60 is an illumination lamp installed along the road. In the present lighting system 100, it is possible to divert the existing street lamp 60 without having to separately install the street lamp 60. The streetlight 60 may be, for example, a discharge lamp such as a fluorescent lamp, a mercury lamp, or a sodium lamp. The streetlight 60 illuminates the road and contributes to ensuring the safety of people passing through the road. In the lighting system 100 according to the first embodiment, when there is no person passing through, the brightness of the street lamp 60 is reduced to reduce power consumption, and when the person approaches, the brightness of the street lamp 60 automatically increases. To ensure safety. The change in luminance is realized by gate phase control from the control unit 40.
 存在検出センサー80は、対象物としての人Mの存在/非存在を検出するためのセンサーである。存在検出センサー80は、図10中に破線で示す検出範囲81を有しており、その検出範囲81に人Mが存在する場合に存在信号を調光制御部70の信号制御部72に向けて送信し、検出範囲81に人Mが存在しない場合に非存在信号を調光制御部70の信号制御部72に向けて送信する。 The presence detection sensor 80 is a sensor for detecting the presence / absence of the person M as an object. The presence detection sensor 80 has a detection range 81 indicated by a broken line in FIG. 10, and when a person M exists in the detection range 81, the presence signal is directed toward the signal control unit 72 of the dimming control unit 70. When there is no person M in the detection range 81, a non-existence signal is transmitted toward the signal control unit 72 of the dimming control unit 70.
 存在検出センサー80が例えば赤外線センサーであって、検出範囲81内での人Mの存在/非存在を人Mの体温に基づいて検出するものであってもよい。存在検出センサー80が例えばCCDカメラであって、検出範囲81内での人Mの存在/非存在を人Mの動きに基づいて検出するものであってもよい。 The presence detection sensor 80 may be an infrared sensor, for example, and may detect the presence / absence of the person M within the detection range 81 based on the body temperature of the person M. The presence detection sensor 80 may be a CCD camera, for example, and may detect the presence / absence of the person M within the detection range 81 based on the movement of the person M.
 また、存在検出センサー80が情報通信機能を有し、人Mが所持する携帯電話機等の通信機器と情報送受信を行うものであってもよい。これによれば、存在検出センサー80から送信された情報が通信機器によって受信され、通信機器から送信された受信確認情報が存在検出センサー80によって受信されることにより、検出範囲81内に人Mが存在することを検出する。 Further, the presence detection sensor 80 may have an information communication function and perform information transmission / reception with a communication device such as a mobile phone possessed by the person M. According to this, the information transmitted from the presence detection sensor 80 is received by the communication device, and the reception confirmation information transmitted from the communication device is received by the presence detection sensor 80, so that the person M is within the detection range 81. Detect the presence.
 調光制御部70は、内部に制御部(制御手段)40、信号制御部72、調整部74を有しており、検出範囲81内での人Mの存在/非存在に基づいて、街灯60の輝度を変化させる機能を有している。その輝度変化は、上述のように、制御部40によるMERS30のゲート位相制御に基づいて行われている。 The dimming control unit 70 includes a control unit (control means) 40, a signal control unit 72, and an adjustment unit 74 inside. Based on the presence / absence of the person M within the detection range 81, the street light 60 It has a function to change the brightness. The luminance change is performed based on the gate phase control of the MERS 30 by the control unit 40 as described above.
 信号制御部72は、存在検出センサー80からの信号を受信するためのものである。検出範囲81内に人Mが存在する場合に、信号制御部72は存在検出センサー80から「存在」信号を受信する。そして、信号制御部72は、制御部40に対して街灯60が定格負荷電力に基づく輝度で発光するためのゲート位相制御を行わせる。 The signal control unit 72 is for receiving a signal from the presence detection sensor 80. When the person M exists within the detection range 81, the signal control unit 72 receives a “presence” signal from the presence detection sensor 80. And the signal control part 72 makes the control part 40 perform gate phase control for the streetlight 60 to light-emit with the brightness | luminance based on rated load electric power.
 一方、検出範囲81内に人Mが存在しない場合に、信号制御部72は存在検出センサー80から「非存在」信号を受信する。そして、信号制御部72は、制御部40に対して街灯60が定格負荷電力よりも低い電力(例えば、1/10の電力)に基づく輝度で発光するためのゲート位相制御を行わせる。その結果、検出範囲81内に人Mが存在しない場合に街灯60の輝度が低下し、検出範囲81内に人Mが存在する場合に街灯60の輝度が上昇する。 On the other hand, when the person M is not present in the detection range 81, the signal control unit 72 receives a “non-existence” signal from the presence detection sensor 80. And the signal control part 72 makes the control part 40 perform gate phase control for light emission with the brightness | luminance based on the electric power (for example, 1/10 electric power) in which the streetlight 60 is lower than rated load electric power. As a result, when the person M is not present in the detection range 81, the brightness of the street lamp 60 is reduced, and when the person M is present within the detection range 81, the brightness of the street lamp 60 is increased.
 具体的には、図10(実線のグラフ)に示すように、制御部40は、人Mが検出範囲81の外におり、時間t1で存在検出センサー80に「非存在」と認識されているときは街灯60が定格負荷電力に基づく輝度L3の1/10の輝度L1で照明を行うようにMERS30を制御する。そして、人Mが検出範囲81の中に入り時間t4で存在検出センサー80が「存在」と認識すると、制御部40は街灯60の輝度を輝度L3に達するまで上昇させる。更に、人Mが進み、検出範囲81の外になり時間t6で存在検出センサー80が「非存在」と認識すると、制御部40は街灯60の輝度を輝度L1まで低下させる。 Specifically, as shown in FIG. 10 (solid line graph), the control unit 40 recognizes that the person M is outside the detection range 81 and is “not present” by the presence detection sensor 80 at time t1. In some cases, the MERS 30 is controlled so that the streetlight 60 performs illumination with a luminance L1 that is 1/10 of the luminance L3 based on the rated load power. Then, when the person M enters the detection range 81 and the presence detection sensor 80 recognizes “present” at time t4, the control unit 40 increases the brightness of the streetlight 60 until the brightness L3 is reached. Further, when the person M advances and goes out of the detection range 81 and the presence detection sensor 80 recognizes “non-existence” at time t6, the control unit 40 reduces the luminance of the streetlight 60 to the luminance L1.
 このように、検出範囲81に人Mが入ってくると街灯60が明るくなって安全確保に寄与することができ、かつ検出範囲81内から人Mが出てゆくと街灯60が暗くなって省電力に寄与することができる。 As described above, when the person M enters the detection range 81, the street lamp 60 becomes bright and contributes to ensuring safety. When the person M comes out of the detection range 81, the street lamp 60 becomes dark and saves. It can contribute to electric power.
 調整部74は、街灯60の輝度変化態様を調整するためのものであり、内部に輝度変化速度情報を有している。輝度変化速度情報は、輝度上昇速度情報と輝度低下速度情報を有しており、そのうち輝度上昇速度情報は、検出範囲81内での人Mの検出状態が「非存在」から「存在」となった場合において、街灯60の輝度を上昇させる速度の情報である。輝度変化速度情報は、例えば、○○cd/sec、○○lx/sec等の単位時間当たりの光度や輝度の変化量で定義されるが、○○W/secのように、単位時間当たりの負荷電力の変化量で定義されてももちろんよい。また、この照明システム100においては、制御部40がMERS30のゲート位相制御を行うことにより街灯60の負荷電力を調整するので、○○deg/secのように、単位時間当たりのゲート位相の変化量で定義されてももちろんよい。 The adjustment unit 74 is for adjusting the luminance change mode of the streetlight 60, and has luminance change speed information inside. The luminance change rate information includes luminance increase rate information and luminance decrease rate information. Among the luminance increase rate information, the detection state of the person M in the detection range 81 changes from “non-existing” to “existing”. Information on the speed at which the luminance of the streetlight 60 is increased. Luminance change rate information is defined by the amount of change in luminous intensity and luminance per unit time such as OOcd / sec, OOlx / sec, etc., but as per OOW / sec, Of course, it may be defined by the amount of change in load power. Moreover, in this lighting system 100, since the control part 40 adjusts the load electric power of the streetlight 60 by performing the gate phase control of MERS30, the variation | change_quantity of the gate phase per unit time like (circle) deg / sec. Of course, it may be defined as
 単位時間当たりの変化量は一定でなくてもよく、例えば人Mにとっても違和感を少なくするために変化の最初は単位時間当たりの変化量が小さく、徐々に単位時間当たりの変化量が増大するように設定することもできる。また、単位時間当たりの変化率が一定になるように単位時間当たりの変化量を設定することもできる。また、これらの単位時間当たりの変化量を周囲の照度、時刻、天気の状況等により可変にすることもできる。 The amount of change per unit time does not have to be constant. For example, in order to reduce a sense of incongruity for the person M, the amount of change per unit time is small at the beginning of the change, and the amount of change per unit time gradually increases. Can also be set. Also, the amount of change per unit time can be set so that the rate of change per unit time is constant. In addition, the amount of change per unit time can be made variable according to ambient illuminance, time, weather conditions, and the like.
 また、検出範囲81内での人Mの検出状態が「存在」から「非存在」となった場合における街灯60の輝度低下速度情報は、輝度上昇速度情報と同じ変化量であって逆符号で定義されてもよいし、輝度上昇速度情報と別の数値が定義されてもよい。 Further, when the detection state of the person M in the detection range 81 changes from “presence” to “non-existence”, the luminance decrease speed information of the street lamp 60 has the same amount of change as the luminance increase speed information and has an opposite sign. It may be defined, or a numerical value different from the brightness increase speed information may be defined.
 街灯60の輝度が輝度L3に達する時間t5、及び輝度L1に戻る時間t7は、この調整部74内の輝度上昇速度情報、及び輝度低下速度情報に基づく。 The time t5 when the luminance of the streetlight 60 reaches the luminance L3 and the time t7 when it returns to the luminance L1 are based on the luminance increasing speed information and the luminance decreasing speed information in the adjusting unit 74.
 存在検出センサー80が人Mの存在を検出し、信号制御部72が制御部40に対して街灯60の輝度を上昇させる制御指令を送出すると、制御部40が調整部74内の輝度上昇速度情報に基づいてMERS30のゲート位相制御を行い、設定された輝度上昇速度に基づき街灯60の輝度が上昇する。一方、存在検出センサー80が人Mの非存在を検出し、信号制御部72が制御部40に対して街灯60の輝度を低下させる制御指令を送出すると、制御部40が調整部74内の輝度低下速度情報に基づいてMERS30のゲート位相制御を行い、設定された輝度低下速度に基づき街灯60の輝度が低下する。 When the presence detection sensor 80 detects the presence of the person M and the signal control unit 72 sends a control command to increase the luminance of the streetlight 60 to the control unit 40, the control unit 40 transmits luminance increase speed information in the adjustment unit 74. The gate phase control of the MERS 30 is performed based on the above, and the luminance of the street lamp 60 is increased based on the set luminance increase speed. On the other hand, when the presence detection sensor 80 detects the absence of the person M and the signal control unit 72 sends a control command for reducing the luminance of the streetlight 60 to the control unit 40, the control unit 40 determines the luminance in the adjustment unit 74. The gate phase control of the MERS 30 is performed based on the decrease speed information, and the brightness of the street lamp 60 is decreased based on the set brightness decrease speed.
 この輝度変化速度情報(輝度上昇速度情報、輝度低下速度情報)は、照明システム100の用途に応じて個別に設定可能となっている。従って、本実施の形態1のように、この照明システム100を主に人が通る道路に設置された街灯60に適用する場合は、対象物としての人Mの移動速度が比較的低速であるので、輝度変化が比較的低速に行われるように輝度変化速度情報を設定する。 The luminance change rate information (luminance increase rate information, luminance decrease rate information) can be set individually according to the application of the lighting system 100. Therefore, when the lighting system 100 is applied to a streetlight 60 mainly installed on a road through which a person passes, as in the first embodiment, the moving speed of the person M as an object is relatively low. The brightness change speed information is set so that the brightness change is performed at a relatively low speed.
 輝度変化が比較的低速に行われるので、街灯60やMERS30に大きな電流負荷がかからない。そのため、照明システム100全体の耐久性(寿命)を向上させることができる。また、大きな電流負荷に起因する電力消費を低減することができ、省電力に寄与することができる。輝度変化が急激であれば道路を通る人Mが驚いてしまう場合があるが、輝度変化がゆっくり変化すれば、人Mにとっても違和感が少なく快適である。 Since the luminance change is performed at a relatively low speed, a large current load is not applied to the street lamp 60 or the MERS 30. Therefore, the durability (life) of the entire lighting system 100 can be improved. In addition, power consumption due to a large current load can be reduced, which contributes to power saving. If the luminance change is rapid, the person M passing the road may be surprised. However, if the luminance change changes slowly, the person M is comfortable with little discomfort.
 一方、この照明システム100を、例えば高速道路に設置される高速道路用照明灯に適用する場合は、対象物が人Mでなく主に高速で通過する自動車となる。従って、この場合は輝度変化が比較的高速に行われるように調整部74の輝度変化速度情報を設定する。 On the other hand, when this lighting system 100 is applied to, for example, a highway illumination lamp installed on an expressway, the object is not a person M but an automobile that passes mainly at high speed. Therefore, in this case, the luminance change speed information of the adjustment unit 74 is set so that the luminance change is performed at a relatively high speed.
 更に、この照明システム100は、図9に示す通り、道路に沿って複数の街灯60が設置され、その各々に対応するように、複数の調光制御部70、存在検出センサー(対象物検出手段)80及びMERS30が設置されているので、高速で走行する自動車に対して街灯60の輝度を変化させるときは、複数の街灯60を協調させることができる。 Further, as shown in FIG. 9, the lighting system 100 is provided with a plurality of street lamps 60 along the road, and a plurality of dimming control units 70, presence detection sensors (object detection means) corresponding to each of them. ) Since 80 and MERS 30 are installed, a plurality of street lamps 60 can be coordinated when the brightness of the street lamp 60 is changed for an automobile traveling at high speed.
 具体的には、図10(一点鎖線のグラフ)に示すように、自動車が時間t2において輝度を調整しようとしている街灯60の一つ隣りの街灯60に対応する存在検出センサー(対象物検出手段)80の検出範囲81の中に入りその存在検出センサー80が「存在」と認識すると、その信号は輝度を調整しようとしている街灯60の調光制御部70に伝達され、信号制御部72は「隣りの街灯エリアに存在」と認識し、制御部40は調整部74の情報に基づき街灯60の輝度を、中間的な輝度L2(例えば、定格負荷電力に基づく輝度L3の1/2の輝度)に達するまで上昇させる。更に、自動車が進み、輝度を調整しようとしている街灯60の検出範囲81の中に入り時間t4で存在検出センサー80が「存在」と認識すると、信号制御部72は「自分の街灯エリアに存在」と認識し、制御部40は街灯60の輝度を定格負荷電力に基づく輝度L3に達するまで上昇させる。自動車が更に進み、検出範囲81の外になり時間t6で存在検出センサー80が「非存在」と認識すると、制御部40は街灯60の輝度を輝度L1まで低下させる。街灯60の輝度が輝度L2に達する時間t3、輝度L3に達する時間t5及び輝度L1に戻る時間t7は、同様に、調整部74内の輝度上昇速度情報、及び輝度低下速度情報に基づく。 Specifically, as shown in FIG. 10 (dotted line graph), a presence detection sensor (object detection means) corresponding to a streetlight 60 adjacent to the streetlight 60 whose brightness is to be adjusted by the automobile at time t2. When the presence detection sensor 80 enters the detection range 81 of 80 and recognizes “existence”, the signal is transmitted to the dimming control unit 70 of the streetlight 60 whose luminance is to be adjusted, and the signal control unit 72 The control unit 40 changes the luminance of the streetlight 60 to an intermediate luminance L2 (for example, half the luminance L3 based on the rated load power) based on the information of the adjustment unit 74. Raise until it reaches. Further, when the vehicle advances and enters the detection range 81 of the streetlight 60 whose luminance is to be adjusted, and the presence detection sensor 80 recognizes “existence” at time t4, the signal control unit 72 “exists in its own streetlight area”. The controller 40 increases the luminance of the streetlight 60 until it reaches the luminance L3 based on the rated load power. When the vehicle further advances and goes out of the detection range 81 and the presence detection sensor 80 recognizes “non-existence” at time t6, the control unit 40 reduces the luminance of the streetlight 60 to the luminance L1. Similarly, the time t3 when the luminance of the streetlight 60 reaches the luminance L2, the time t5 when the luminance reaches the luminance L3, and the time t7 when the luminance returns to the luminance L1 are based on the luminance increasing speed information and the luminance decreasing speed information in the adjustment unit 74.
 このように、輝度を調整しようとしている街灯60の検出範囲81だけでなく、照明システム100内の隣りの街灯60に対応する存在検出センサー80の検出範囲81も用いて自動車の存在を認識して街灯60の輝度を調整するので、高速で通過する自動車に対しても、遅れることなく充分な照明が提供され、安全確保が図られる。また、自動車が隣りの街灯60に対応する検出範囲81に入ったときから街灯60の輝度を上昇させているので、2段階で輝度を上昇させ、自動車の運転者が驚くような急激な輝度上昇を避けることができる。また、2段階の輝度調整に限らず、更に隣りの街灯60に対応する存在検出センサー80を用いるなどして3段階以上の輝度調整にすること、輝度調整の単位時間当たりの変化量等を、同様に周囲の照度、時刻、天気の状況等により可変にすることもできる。 In this way, not only the detection range 81 of the streetlight 60 whose luminance is to be adjusted, but also the detection range 81 of the presence detection sensor 80 corresponding to the adjacent streetlight 60 in the lighting system 100 is used to recognize the presence of the automobile. Since the brightness of the street lamp 60 is adjusted, sufficient illumination is provided without delay for a car passing at high speed, thereby ensuring safety. In addition, since the brightness of the streetlight 60 is increased after the vehicle enters the detection range 81 corresponding to the adjacent streetlight 60, the brightness is increased in two steps, and the brightness of the vehicle driver suddenly increases. Can be avoided. In addition, the brightness adjustment is not limited to two stages, and the brightness adjustment is performed in three or more stages by using the presence detection sensor 80 corresponding to the adjacent streetlight 60. Similarly, it can be made variable according to ambient illuminance, time, weather conditions, and the like.
  [実施の形態2]
 図11は、本発明の実施の形態2に係る照明システム200の概略構成を示すブロック構成図である。この照明システム200は、実施の形態1に係る照明システム100と略同様の構成であるが、存在検出センサー80の代わりに距離センサー90を有して構成されている。本実施の形態2においても、主に人が通る道路に沿って設置された街灯60を用いて照明システム200が構築されている。
[Embodiment 2]
FIG. 11 is a block configuration diagram showing a schematic configuration of the illumination system 200 according to Embodiment 2 of the present invention. The illumination system 200 has substantially the same configuration as the illumination system 100 according to the first embodiment, but includes a distance sensor 90 instead of the presence detection sensor 80. Also in the second embodiment, the illumination system 200 is constructed using street lamps 60 that are mainly installed along roads through which people pass.
 距離センサー90は、対象物としての人Mとの距離を計測し、その計測結果(距離情報)を信号制御部72に向けて送信する機能を有している。そして、信号制御部72は、距離センサー90から距離情報を受信すると、その距離情報に応じて制御部40にMERS30のゲート位相の制御を行わせるようになっている。 The distance sensor 90 has a function of measuring the distance from the person M as an object and transmitting the measurement result (distance information) to the signal control unit 72. When receiving the distance information from the distance sensor 90, the signal control unit 72 causes the control unit 40 to control the gate phase of the MERS 30 according to the distance information.
 具体的には、図11に示すように、人Mが検出範囲91外の位置P1にいるときは、街灯60が定格負荷電力における輝度L3の1/10の輝度L1で照明を行うようにMERS30を制御する。そして、人Mが距離センサー90に接近して検出範囲91内の位置P2に来たとき、制御部40は、街灯60の輝度を輝度L1と輝度L3との中間的輝度L2にまで上昇させる。更に人Mが距離センサー90に接近して位置P3に来たとき、制御部40は、街灯60の輝度を定格負荷電力に基づく輝度L3にまで上昇させる。 Specifically, as shown in FIG. 11, when the person M is at the position P1 outside the detection range 91, the street lamp 60 is illuminated with the brightness L1 that is 1/10 of the brightness L3 at the rated load power. To control. When the person M approaches the distance sensor 90 and reaches the position P2 in the detection range 91, the control unit 40 increases the luminance of the streetlight 60 to an intermediate luminance L2 between the luminance L1 and the luminance L3. Further, when the person M approaches the distance sensor 90 and arrives at the position P3, the control unit 40 increases the luminance of the streetlight 60 to the luminance L3 based on the rated load power.
 人Mが距離センサー90を通過して遠ざかって位置P4となったとき、制御部40は、街灯60の輝度を輝度L2にまで低下させ、更に人Mが位置P5となって検出範囲91外にまで遠ざかったとき、制御部40は街灯60の輝度を輝度L1にまで低下させる。 When the person M passes the distance sensor 90 and moves away to the position P4, the control unit 40 reduces the luminance of the streetlight 60 to the luminance L2, and further the person M becomes the position P5 and out of the detection range 91. The control unit 40 reduces the luminance of the streetlight 60 to the luminance L1.
 このように、この照明システム200においては、距離センサー90と人Mとの距離に応じて街灯60の輝度が変化するので、より自然で違和感のない輝度調整を実現することができる。距離センサー90と街灯60とを近接位置に配置すれば、街灯60に近づくほど明るくなり、街灯から遠ざかるほど暗くなるので、適切な明るさの照明光による安全確保と省電力化との両立に寄与することができる。 As described above, in the lighting system 200, the brightness of the street lamp 60 changes according to the distance between the distance sensor 90 and the person M, so that it is possible to realize more natural and comfortable brightness adjustment. If the distance sensor 90 and the streetlight 60 are arranged at close positions, the distance sensor 90 and the streetlight 60 become brighter as it gets closer to the streetlight 60 and darker as it gets farther away from the streetlight. can do.
 もちろん、輝度の段階数は本実施の形態2において説明したような3段階に限られず、必要に応じて2段階に設定されたり4段階以上に設定される。また、輝度変化時の変化速度、すなわち輝度変化における傾きも必要に応じて急激(高速)又は緩やか(低速)に設定される。明るさの変化は段階的な変化でなく、距離センサー90と人Mとの距離に比例する変化であってもよい。 Of course, the number of stages of luminance is not limited to the three stages as described in the second embodiment, and may be set to two stages or four or more stages as necessary. In addition, the change speed at the time of luminance change, that is, the inclination in the luminance change is also set as abrupt (high speed) or moderate (low speed) as necessary. The change in brightness is not a step change, but may be a change proportional to the distance between the distance sensor 90 and the person M.
 一方、この照明システム200を、例えば高速道路に設置される高速道路用照明灯に適用する場合は、対象物が人Mでなく主に高速で通過する自動車となる。従って、この場合は輝度変化が比較的高速に行われるように調整部74の輝度変化速度情報を設定する。 On the other hand, when this lighting system 200 is applied to, for example, a highway illumination lamp installed on a highway, the object is not a person M but an automobile that passes mainly at high speed. Therefore, in this case, the luminance change speed information of the adjustment unit 74 is set so that the luminance change is performed at a relatively high speed.
 また、この照明システム200も道路に沿って複数の街灯60が設置され、その各々に対応するように、複数の調光制御部70、距離センサー(対象物検出手段)90及びMERS30が設置されているので、高速で走行する自動車に対して街灯60の輝度を変化させるとき、複数の街灯60を協調させることができる。具体的には、同様に、輝度を調整しようとしている街灯60の検出範囲91だけでなく、照明システム200内の隣りの街灯60に対応する距離センサー90の検出範囲91も用いて、輝度を調整しようとする街灯60からその自動車までの距離を認識して街灯60の輝度を調整する。従って、高速で通過する自動車に対しても、遅れることなく充分な照明が提供され、安全確保が図られる。また、自動車が隣りの街灯60に対応する検出範囲91に入ったときから街灯60の輝度を上昇することにより、違和感のない自然な輝度上昇が得られ、自動車の運転者が驚くような急激な輝度上昇を避けることができる。 The lighting system 200 is also provided with a plurality of street lamps 60 along the road, and a plurality of dimming control units 70, distance sensors (object detection means) 90, and MERS 30 are installed so as to correspond to each of them. Therefore, when changing the brightness of the streetlight 60 with respect to the automobile traveling at high speed, the plurality of streetlights 60 can be coordinated. Specifically, similarly, not only the detection range 91 of the street lamp 60 whose luminance is to be adjusted, but also the detection range 91 of the distance sensor 90 corresponding to the adjacent street lamp 60 in the lighting system 200 is used to adjust the luminance. The brightness of the streetlight 60 is adjusted by recognizing the distance from the streetlight 60 to be tried to the car. Therefore, sufficient illumination is provided without delay for a vehicle passing at high speed, and safety can be ensured. Further, by increasing the brightness of the streetlight 60 after the vehicle enters the detection range 91 corresponding to the adjacent streetlight 60, a natural brightness increase without a sense of incongruity can be obtained, and the driver of the vehicle is surprised suddenly. An increase in brightness can be avoided.
  [実施の形態3]
 続いて本発明の実施の形態3に係る照明システムについて説明する。
[Embodiment 3]
Subsequently, an illumination system according to Embodiment 3 of the present invention will be described.
 図12は、本発明の実施の形態3に係る照明システム300の概略構成を示すブロック構成図である。この照明システム300は、例えば、主に自動車が高速で通過する高速道路の路面上方、側壁面、橋の欄干、トンネルの天井、及び壁面等に設けられる照明灯に適用可能である。照明システム300は、別途わざわざ高速道路用照明灯設備を設置する必要なく、既存の高速道路用照明灯設備を流用することができる。 FIG. 12 is a block configuration diagram showing a schematic configuration of the illumination system 300 according to Embodiment 3 of the present invention. The lighting system 300 can be applied to, for example, lighting lamps provided on the road surface of an expressway through which automobiles pass at high speed, side wall surfaces, bridge railings, tunnel ceilings, and wall surfaces. The illumination system 300 can divert existing highway illumination light equipment without the need to separately install highway illumination light equipment.
 図12に示すように、本実施の形態3に係る照明システム300は、MERS30、照明灯65、制御部(制御手段)40、信号制御部72、及び速度センサー95により大略構成されている。照明灯65は、例えば、蛍光灯、水銀灯、ナトリウム灯等の放電灯であってもよい。道路に沿って複数の照明灯65が設置され、その各々に対応するように、複数のMERS30及び制御部40が設置されており、各照明灯65には各MERS30が接続され、各MERS30には、各制御部40がそれぞれ接続されている。すなわち、照明灯65、MERS30、及び制御部40が、1組になっている。各MERS30は、交流電源20に接続されている。所定数の組(例えば、100組)の照明灯65、MERS30、及び制御部40は、1照明ユニットを構成し、その照明ユニットの各制御部40は、その照明ユニットを制御する信号制御部72、及び調整部74にそれぞれ接続されている。信号制御部72と調整部74は、お互い接続されている。また、信号制御部72には、誘導速度調整部75が接続されている。図12においては、複数の制御部40のうち1つの制御部40の接続状態を示している。 As shown in FIG. 12, the illumination system 300 according to the third embodiment is roughly configured by a MERS 30, an illumination lamp 65, a control unit (control means) 40, a signal control unit 72, and a speed sensor 95. The illumination lamp 65 may be a discharge lamp such as a fluorescent lamp, a mercury lamp, or a sodium lamp. A plurality of illumination lamps 65 are installed along the road, and a plurality of MERSs 30 and a control unit 40 are installed so as to correspond to each of them, and each MERS 30 is connected to each illumination lamp 65, and each MERS 30 is connected to each MERS 30. Each control unit 40 is connected to each other. That is, the illuminating lamp 65, the MERS 30, and the control unit 40 are one set. Each MERS 30 is connected to the AC power source 20. A predetermined number of groups (for example, 100 groups) of the illumination lamps 65, the MERS 30, and the control unit 40 constitute one illumination unit, and each control unit 40 of the illumination unit controls a signal control unit 72 that controls the illumination unit. , And the adjustment unit 74, respectively. The signal control unit 72 and the adjustment unit 74 are connected to each other. In addition, an induction speed adjustment unit 75 is connected to the signal control unit 72. In FIG. 12, a connection state of one control unit 40 among the plurality of control units 40 is shown.
 速度センサー95は、その検出範囲96の中において対象物である自動車Vの速度を計測し、その計測結果(自動車の存在情報、及び速度情報)を信号制御部72に向けて送信する機能を有している。MERS30は、既に述べたように磁気エネルギー回生スイッチであり、速度センサー95からの出力及び誘導速度調整部75の情報をトリガーに、対応する照明ユニットの各制御部40が各MERS30のゲート位相を制御することにより、当該照明ユニットの各照明灯65が明るくなったり暗くなったりするように構成されている。 The speed sensor 95 has a function of measuring the speed of the target vehicle V within the detection range 96 and transmitting the measurement results (vehicle presence information and speed information) to the signal control unit 72. is doing. The MERS 30 is a magnetic energy regenerative switch as described above, and each control unit 40 of the corresponding lighting unit controls the gate phase of each MERS 30 using the output from the speed sensor 95 and the information of the guide speed adjustment unit 75 as a trigger. By doing so, each illumination lamp 65 of the illumination unit is configured to become brighter or darker.
 本実施の形態3に係る照明システム300の照明灯65は、具体的には図13に示すように、所定の照明ユニットに属する複数の照明灯65(一部である照明灯65aから照明灯65hまでを示している)が、例えば道路の側壁、ガードレールに、道路に沿って所定の間隔で設けられており、複数の照明灯65の明暗により所定の速度の「光帯」を形成するように、各照明灯65は、周期的に明暗を繰り返すよう構成されている。 Specifically, as shown in FIG. 13, the illuminating lamp 65 of the illumination system 300 according to Embodiment 3 includes a plurality of illuminating lamps 65 belonging to a predetermined illuminating unit (part of the illuminating lamps 65a to 65h). Are provided at predetermined intervals along the road, for example, on the side walls of the road and the guard rail, so that a “light band” having a predetermined speed is formed by the brightness of the plurality of illumination lamps 65. Each illumination lamp 65 is configured to repeat light and dark periodically.
 照明灯65は、例えば図13に示すように、定格負荷電力よりも低い電力(例えば1/10の電力)に基づく輝度L1、定格負荷電力における輝度L3、及びその中間の輝度L2の3段階に明暗変化できる(すなわち、時間t1から時間t5までの4ステップを1サイクルとして明暗変化できる)ものであって、各照明灯65の設置間隔(例えば、照明灯65aから照明灯65bまでの距離)が2.2mであるとすれば、例えば100km/h(27.8m/sec)の「光帯」を形成するために、各照明灯65は次のように制御される。上述のように、各照明灯65の明暗は、対応する制御部40が対応するMERS30のゲート位相を制御することにより行われる。 For example, as shown in FIG. 13, the illuminating lamp 65 is divided into three levels of luminance L1 based on electric power lower than the rated load electric power (for example, 1/10 electric power), luminance L3 at the rated load electric power, and luminance L2 in the middle. The brightness can be changed (that is, the brightness can be changed with four steps from time t1 to time t5 as one cycle), and the installation interval of each illumination lamp 65 (for example, the distance from the illumination lamp 65a to the illumination lamp 65b) is If it is 2.2 m, for example, in order to form an “light band” of 100 km / h (27.8 m / sec), each illumination lamp 65 is controlled as follows. As described above, the brightness of each illuminating lamp 65 is performed by the corresponding control unit 40 controlling the gate phase of the corresponding MERS 30.
 照明灯65aは、図13に示すように、トリガーを受ける前は輝度L1であるが、時間t1の時点でトリガーを受けると、明暗変化の1サイクル(時間t1から時間t5)=0.317sec(8.8m/27.78m/sec)にて、時間t1:輝度L1から輝度L2、時間t2:輝度L2から輝度L3、時間t3:輝度L3から輝度L2、時間t4:輝度L2から輝度L1、時間t5:再び輝度L1から輝度L2と、明暗変化する。照明灯65aの車両進行方向に隣り合う照明灯65bは、同じく明暗変化の1サイクル=0.317secで、時間t1:輝度L2から輝度L1、時間t2:輝度L1から輝度L2、時間t3:輝度L2から輝度L3、時間t4:輝度L3から輝度L2と、照明灯65aより明暗変化の1/4サイクル分だけ位相が遅れて明暗変化する。照明灯65c以降も同様である。従って、時間t1において、照明灯65c及び照明灯65gが輝度L3であるが、明暗変化の1/4サイクル後である時間t2においては、車両進行方向にそれぞれ一つ進んだ照明灯65d及び照明灯65hが輝度L3となる。このように、各照明灯65は、明暗変化を繰る返し、100km/hで進む「光帯」を形成できる。各照明灯65の明暗変化は、所定時間(例えば、30sec)継続し、「光帯」も所定時間継続する。 As shown in FIG. 13, the illuminating lamp 65a has the luminance L1 before receiving the trigger. However, when the trigger is received at the time t1, one cycle of light-dark change (from time t1 to time t5) = 0.317 sec ( 8.8 m / 27.78 m / sec), time t1: luminance L1 to luminance L2, time t2: luminance L2 to luminance L3, time t3: luminance L3 to luminance L2, time t4: luminance L2 to luminance L1, time t5: Brightness changes again from luminance L1 to luminance L2. The illuminating lamp 65b adjacent to the traveling direction of the illuminating lamp 65a is similarly 1 cycle of brightness change = 0.317 sec, time t1: luminance L2 to luminance L1, time t2: luminance L1 to luminance L2, time t3: luminance L2 To luminance L3, time t4: The luminance changes from luminance L3 to luminance L2, and the phase is delayed from the illuminating lamp 65a by ¼ cycle of the luminance change. The same applies to the illumination lamp 65c and thereafter. Therefore, at time t1, the illumination lamp 65c and the illumination lamp 65g have the luminance L3, but at the time t2, which is a quarter cycle after the light / dark change, the illumination lamp 65d and the illumination lamp respectively advanced by one in the vehicle traveling direction. 65h is the luminance L3. In this way, each illuminating lamp 65 can form a “light band” that repeats bright and dark changes and travels at 100 km / h. The change in brightness of each illumination lamp 65 continues for a predetermined time (for example, 30 sec), and the “light band” also continues for a predetermined time.
 電源周波数が50Hzの場合、明暗変化の1サイクルを20msecづつ16分割して各照明灯65を明暗変化できるため、輝度変化は4段又はそれ以上の多段とするなど、輝度変化の態様は適宜選択できる。この選択は、調整部74の情報による。 When the power supply frequency is 50 Hz, one cycle of light / dark change can be divided into 16 parts every 20 msec, and each illumination lamp 65 can be changed light / dark, so the brightness change mode is selected as appropriate, such as four or more stages. it can. This selection is based on information from the adjustment unit 74.
 図14は、誘導速度調整部75に格納された、この照明システム300で用いる、速度センサー95が計測した自動車Vの速度(Speed V)と照明システム300が形成する「光帯」の速度(Speed L)の関係を示す。自動車Vの速度が検出されない(自動車Vが存在しない)場合、又は自動車Vの速度が所定速度V0(例えば、50Km/h)未満の場合、各照明灯65は、いずれも定格負荷電力よりも低い電力(例えば1/10の電力)に基づく輝度L1に維持され、「光帯」は形成されない。速度センサー95が、走行している自動車Vの速度が所定速度V0以上であることを認識した場合、それをトリガーとして図13の時間t1から、各照明灯65は上述の通り明暗変化を開始し、所定の誘導速度Vint(例えば、100Km/h)の「光帯」を形成する。この「光帯」は所定時間継続する。この誘導速度Vintは、道路の交通状況、規制状況、天候状況によって変更してもよい。また、検出した自動車Vの速度に応じて変更するように設定してもよい。誘導速度調整部75は、誘導速度Vintを、信号制御部72を介して調整部74に伝達し、調整部74は、格納されている情報から誘導速度Vintに応じた輝度変化態様を選択する。 FIG. 14 shows the speed of the vehicle V (Speed V) measured by the speed sensor 95 and the speed of the “light band” formed by the lighting system 300 (Speed) stored in the guidance speed adjustment unit 75 and used by the lighting system 300. L) is shown. When the speed of the automobile V is not detected (the automobile V does not exist), or when the speed of the automobile V is less than a predetermined speed V0 (for example, 50 Km / h), each of the lighting lamps 65 is lower than the rated load power. The luminance L1 based on electric power (for example, 1/10 electric power) is maintained, and no “light band” is formed. When the speed sensor 95 recognizes that the speed of the traveling vehicle V is equal to or higher than the predetermined speed V0, the illumination light 65 starts to change from light to dark as described above from time t1 in FIG. A “light band” having a predetermined induction speed Vint (for example, 100 km / h) is formed. This “light band” continues for a predetermined time. The guide speed Vint may be changed depending on the traffic situation, the regulation situation, and the weather situation on the road. Moreover, you may set so that it may change according to the speed of the detected motor vehicle V. FIG. The guide speed adjusting unit 75 transmits the guide speed Vint to the adjusting unit 74 via the signal control unit 72, and the adjusting unit 74 selects a luminance change mode according to the guide speed Vint from the stored information.
 この照明システム300は、高速道路の上り坂、トンネルの入口部分等、運転者がついアクセルを緩め走行する自動車の速度が落ち渋滞を招きやすい箇所、或は逆に下り坂、トンネルの出口付近等、走行安全上自動車の速度を落とすことが好ましい箇所に設置するとよい。一般に、運転者は、運転している自動車の隣りを並走する物体の速度が自車の速度より速いと無意識に加速し、逆に自車の速度より遅いと減速し、並走する物体の速度に合わせて走行する心理的傾向があることが知られている。従って、この照明システム300は、これらの箇所に設置することにより、所定の速度で進む「光帯」によって、それぞれの箇所において走行している自動車を望ましい所定の速度での走行に向けて誘導することができる。 This lighting system 300 can be used on an uphill of a highway, an entrance of a tunnel, etc., where a driver loosens the accelerator and the speed of a traveling vehicle decreases and traffic is likely to occur, or conversely, a downhill, near the exit of a tunnel, etc. It is good to install in a place where it is preferable to reduce the speed of the automobile for traveling safety. In general, a driver unconsciously accelerates when the speed of an object running in parallel next to the car being driven is faster than the speed of the own vehicle, and conversely, when the speed is slower than the speed of the own vehicle, the driver decelerates. It is known that there is a psychological tendency to run at speed. Therefore, the lighting system 300 is installed at these locations, and guides the automobile traveling at each location toward travel at a desired predetermined speed by the “light band” that travels at a predetermined speed. be able to.
 この実施の形態3に係る照明システム300では、速度センサー95を用いているが、速度センサー95の代わりに、実施の形態1に係る照明システム100で用いた存在検出センサー80、或は実施の形態2に係る照明システム200で用いた距離センサー90を用いて構成することもできる。 Although the speed sensor 95 is used in the lighting system 300 according to the third embodiment, the presence detection sensor 80 used in the lighting system 100 according to the first embodiment or the embodiment is used instead of the speed sensor 95. The distance sensor 90 used in the illumination system 200 according to 2 may be used.
 なお、本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

Claims (11)

  1.  対象物の存在/非存在を検出する対象物検出手段と、
     電源及び照明灯との間に接続され負荷電力調整スイッチと、
     前記対象物検出手段と前記負荷電力調整スイッチに接続され、前記対象物検出手段からの出力信号に基づき前記負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、前記照明灯の輝度を変化させる制御手段と、を備えた照明システムであって、
     前記照明灯の輝度変化態様を調整する輝度変化態様調整手段を更に有している照明システム。
    An object detection means for detecting the presence / absence of the object;
    A load power adjustment switch connected between the power source and the lighting,
    By connecting the object detection means and the load power adjustment switch, and changing the magnitude of the output voltage and the current phase of the load power adjustment switch based on the output signal from the object detection means, A lighting system comprising: a control means for changing brightness;
    An illumination system further comprising brightness change mode adjusting means for adjusting a brightness change mode of the illuminating lamp.
  2.  前記負荷電力調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の持つ磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、前記逆導通型半導体スイッチのゲート位相を制御することで、前記照明灯に供給する負荷電力を調整することを特徴とする請求項1に記載の照明システム。 The load power adjustment switch includes at least two reverse conducting semiconductor switches, and a capacitor for accumulating magnetic energy of current at the time of current interruption and regenerating to the illuminating lamp, and the reverse conducting semiconductor The lighting system according to claim 1, wherein load power supplied to the illuminating lamp is adjusted by controlling a gate phase of the switch.
  3.  前記輝度変化態様は、輝度変化速度である請求項1に記載の照明システム。 The illumination system according to claim 1, wherein the luminance change mode is a luminance change speed.
  4.  前記制御手段が、前記対象物の存在時に前記照明灯の輝度を上昇させ、前記対象物の非存在時に前記照明灯の輝度を低下させる請求項1に記載の照明システム。 The lighting system according to claim 1, wherein the control means increases the luminance of the illuminating lamp when the object is present and decreases the luminance of the illuminating lamp when the object is not present.
  5.  前記輝度の上昇又は低下の少なくともいずれか一方が、段階的変化である請求項1に記載の照明システム。 The lighting system according to claim 1, wherein at least one of the increase or decrease in luminance is a step change.
  6.  前記制御手段が、前記対象物検出手段と前記対象物との距離に応じて前記照明灯の輝度を変化させる請求項1に記載の照明システム。 The illumination system according to claim 1, wherein the control means changes the luminance of the illumination lamp in accordance with a distance between the object detection means and the object.
  7.  前記対象物検出手段が、その検出領域内における温度変化、動きの有無、若しくは磁界変化、又は前記対象物との情報送受信のうち少なくともいずれか1つに基づき前記対象物の存在/非存在を検出する請求項1に記載の照明システム。 The object detection means detects the presence / absence of the object based on at least one of temperature change, presence / absence of motion, or magnetic field change in the detection region, and information transmission / reception with the object. The lighting system according to claim 1.
  8.  前記照明灯がほぼ一直線上に並んだ複数個であり、前記対象物の存在時に前記複数個の照明灯の輝度を、所定時間、位相を段階的に変位させ周期的に変化させる請求項1に記載の照明システム。 2. The illumination lamp according to claim 1, wherein a plurality of the illumination lamps are arranged in a substantially straight line, and the luminance of the plurality of illumination lamps is periodically changed by stepwise shifting a phase for a predetermined time when the object is present. The lighting system described.
  9.  前記対象物検出手段が、その検出領域内における前記対象物の速度を検出する請求項8に記載の照明システム。 The illumination system according to claim 8, wherein the object detection means detects the speed of the object in the detection area.
  10.  前記照明灯は、誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、又は抵抗性負荷を有する照明灯であることを特徴とする請求項1乃至請求項9のいずれか1項に記載に照明システム。 10. The illumination lamp according to claim 1, wherein the illumination lamp is an illumination lamp having an inductive load, an illumination lamp connected to the inductive load, or an illumination lamp having a resistive load. Described in the lighting system.
  11.  前記誘導性負荷を有する照明灯は、蛍光灯、水銀灯、ナトリウム灯等の放電灯であることを特徴とする請求項1乃至請求項9のいずれか1項に記載に照明システム。 10. The illumination system according to claim 1, wherein the illuminating lamp having an inductive load is a discharge lamp such as a fluorescent lamp, a mercury lamp, or a sodium lamp.
PCT/JP2008/066441 2008-09-11 2008-09-11 Illumination system WO2010029628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066441 WO2010029628A1 (en) 2008-09-11 2008-09-11 Illumination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066441 WO2010029628A1 (en) 2008-09-11 2008-09-11 Illumination system

Publications (1)

Publication Number Publication Date
WO2010029628A1 true WO2010029628A1 (en) 2010-03-18

Family

ID=42004896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066441 WO2010029628A1 (en) 2008-09-11 2008-09-11 Illumination system

Country Status (1)

Country Link
WO (1) WO2010029628A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273826B2 (en) 2006-03-15 2012-09-25 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/α-olefin interpolymers
TWI640222B (en) * 2017-11-29 2018-11-01 鴻海精密工業股份有限公司 System and method of adjusting lighting device
CN110691442A (en) * 2019-10-15 2020-01-14 奚小忠 Intelligent LED street lamp use monitoring system based on big data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135281A (en) * 1992-09-10 1994-05-17 Honda Motor Co Ltd Automatic flashing device for vehicle lamp unit
JPH1097897A (en) * 1996-09-24 1998-04-14 Meidensha Corp Control system for illumination in tunnel
JP2002299076A (en) * 2001-03-30 2002-10-11 Matsushita Electric Works Ltd Lighting system
JP2002329586A (en) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd Lighting system and luminaire
JP2008071545A (en) * 2006-09-12 2008-03-27 Nippon Steel Corp Illumination lamp control method, and illumination lamp control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135281A (en) * 1992-09-10 1994-05-17 Honda Motor Co Ltd Automatic flashing device for vehicle lamp unit
JPH1097897A (en) * 1996-09-24 1998-04-14 Meidensha Corp Control system for illumination in tunnel
JP2002299076A (en) * 2001-03-30 2002-10-11 Matsushita Electric Works Ltd Lighting system
JP2002329586A (en) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd Lighting system and luminaire
JP2008071545A (en) * 2006-09-12 2008-03-27 Nippon Steel Corp Illumination lamp control method, and illumination lamp control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243140B2 (en) 2004-03-17 2016-01-26 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US8273826B2 (en) 2006-03-15 2012-09-25 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/α-olefin interpolymers
TWI640222B (en) * 2017-11-29 2018-11-01 鴻海精密工業股份有限公司 System and method of adjusting lighting device
CN110691442A (en) * 2019-10-15 2020-01-14 奚小忠 Intelligent LED street lamp use monitoring system based on big data

Similar Documents

Publication Publication Date Title
KR101268423B1 (en) Apparatus for turn-on control of solar cell street light
JP4481366B2 (en) Lighting control device
JP4528886B2 (en) Power control device
KR101928471B1 (en) Intelligent Street Lights Device that Operate by Recognizing Traffic Conditions
KR20060011803A (en) Led solar light system and method for controlling a solar light
US11565624B2 (en) Dimmable external vehicle lighting and methods of use
WO2010029628A1 (en) Illumination system
KR20120080442A (en) A street light and a controlling method thereof
KR20180051007A (en) Smart streetlight system
CN111503562B (en) Intelligent tunnel lighting system and method
WO2008032855A1 (en) Illuminating lamp control method and illuminating lamp control apparatus
KR200432782Y1 (en) automatic lighting system for underground park
JP2012174663A (en) Light control illumination device and light control illumination system
CN110177417A (en) A kind of street lamp control system and control method based on condition of road surface control
CN107426862B (en) Solar LED street lamp control method and device
KR100868485B1 (en) Street lamp of power saving type and the control method to use solar cell
KR102105324B1 (en) Control system dimming of street light using power line phase control
RU2700677C2 (en) Method and device for energy-saving control of street lighting (versions)
JP4051888B2 (en) Street light
JP2013539902A (en) Method and electric circuit for operating the light source of an automobile headlight by direct current, an automobile headlight light module comprising such a circuit, and an automobile headlight comprising such a light module
JP5279464B2 (en) Tunnel lighting apparatus and tunnel lighting system using the same
WO2011046464A1 (en) Method for organizing energy-saving artificial lighting and intelligent device (embodiments)
GB2594540A (en) Traffic signalling apparatus
CN111526648A (en) Intelligent lighting system
KR20170060326A (en) Street light having a wireless surveillance camera and Control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08810493

Country of ref document: EP

Kind code of ref document: A1