WO2010032600A1 - 接着剤組成物及びこれからなる接着剤 - Google Patents

接着剤組成物及びこれからなる接着剤 Download PDF

Info

Publication number
WO2010032600A1
WO2010032600A1 PCT/JP2009/065048 JP2009065048W WO2010032600A1 WO 2010032600 A1 WO2010032600 A1 WO 2010032600A1 JP 2009065048 W JP2009065048 W JP 2009065048W WO 2010032600 A1 WO2010032600 A1 WO 2010032600A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
adhesive composition
weight
resin composition
parts
Prior art date
Application number
PCT/JP2009/065048
Other languages
English (en)
French (fr)
Other versions
WO2010032600A8 (ja
Inventor
裕 保谷
幸治 松永
用二 早川
浩登 安井
伸 得居
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010529704A priority Critical patent/JP5438682B2/ja
Priority to EP09814445A priority patent/EP2327750B1/en
Priority to CN200980136607XA priority patent/CN102159660B/zh
Priority to KR1020117007520A priority patent/KR101281896B1/ko
Priority to US13/119,508 priority patent/US9273202B2/en
Publication of WO2010032600A1 publication Critical patent/WO2010032600A1/ja
Publication of WO2010032600A8 publication Critical patent/WO2010032600A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/14Copolymers of propene
    • C09J123/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Definitions

  • the present invention relates to an adhesive composition
  • a soft polypropylene resin composition (X) in which a propylene copolymer (A) having a specific physical property parameter and a crystalline isotactic polypropylene (B) are formed in a specific ratio
  • the present invention relates to an adhesive comprising the composition.
  • the present invention relates to an adhesive technique that is excellent in handling during use.
  • Polymers called base polymers are used for hot melt adhesives that are attracting attention as solventless adhesives that do not generate VOCs.
  • Examples of such a base polymer include ethylene-vinyl acetate copolymer (EVA) and ethylene / ⁇ -olefin copolymer such as ethylene-based copolymer, amorphous polyolefin (APAO), and styrene elastomer ( SBS, SIS, SEBS, SEPS) and the like are known.
  • a base polymer for example, ethylene / vinyl acetate copolymer (EVA) or ethylene / ⁇ -olefin copolymer which is excellent in flexibility but inferior in heat resistance and rubber elasticity, in flexibility and rubber elasticity.
  • EVA ethylene / vinyl acetate copolymer
  • ethylene / ⁇ -olefin copolymer which is excellent in flexibility but inferior in heat resistance and rubber elasticity, in flexibility and rubber elasticity.
  • Styrenic elastomers SIS, SBS
  • APAO amorphous polyolefins
  • SEBS is also known as a material having a relatively excellent performance balance. However, when used in a harsh environment, heat resistance is sometimes insufficient.
  • soft polypropylene polymers having excellent heat resistance
  • the feature of these soft polypropylene polymers is that they use a material having a narrow molecular weight distribution and composition distribution by using a specific catalyst such as a metallocene catalyst.
  • a specific catalyst such as a metallocene catalyst.
  • known products having a wide molecular weight distribution and a wide composition distribution such as It is disclosed that it has performance superior to that of APAO (for example, there is no deterioration in adhesion performance due to a low molecular weight component and no deterioration in workability due to a high molecular weight component).
  • Patent Document 1 discloses a technique for obtaining a hot melt adhesive using a copolymer of propylene and ethylene. Such a propylene / ethylene copolymer has excellent flexibility, rubber elasticity, and heat resistance stability, but has insufficient heat resistance and creep resistance characteristics when subjected to stress at high temperatures.
  • the document also discloses a technique for blending a crystalline isotactic polypropylene component to improve heat resistance. According to the knowledge of the present inventors, propylene / ethylene copolymer is compatible with polypropylene. Therefore, it is considered that sufficient heat resistance improvement effect cannot be obtained.
  • Patent Document 2 discloses a technique for obtaining a hot melt adhesive using a soft polypropylene polymer that is softened by controlling the stereoregularity of the propylene chain.
  • a soft polypropylene polymer is considered to have better compatibility with crystalline isotactic polypropylene than the propylene / ethylene copolymer described in Patent Document 1, but the findings of the present inventors According to, the glass transition temperature is high due to the small amount of comonomer other than propylene, which is considered to be observed near room temperature. Therefore, since the base polymer becomes brittle at a low temperature range, the stress relaxation property of the adhesive is lost, and as a result, there is a problem that it is easy to peel.
  • Patent Documents 3 and 4 disclose a technique for obtaining a hot melt adhesive excellent in adhesiveness using a virtually completely amorphous soft polypropylene polymer having no heat of crystal melting.
  • an amorphous soft polypropylene polymer having no crystals is used, sufficient heat resistance is not exhibited even when crystalline isotactic polypropylene is blended, and particularly at high temperatures. It is considered that sufficient performance is not exhibited in mechanical strength and creep resistance.
  • Patent Document 5 discloses a technique of an adhesive composition using a propylene / 1-butene random copolymer having high stereoregularity.
  • Such propylene / 1-butene random copolymers have good compatibility with crystalline isotactic polypropylene compared to the previous propylene / ethylene copolymers, but on the other hand are very rigid and hot melt bonded It is difficult to develop the flexibility of the agent.
  • An object of the present invention is to provide an adhesive composition excellent in flexibility, rubber elasticity, mechanical properties (strength, elongation), heat resistance (especially mechanical properties at high temperatures, rubber elasticity), and low-temperature characteristics. .
  • the present invention comprises the following [1] to [5].
  • An adhesive composition (Y) comprising:
  • the requirements (A1) to (A8) to be satisfied by the propylene copolymer (A) are as follows.
  • (A1) Shore A hardness is in the range of 20-90.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 1.2 to 3.5.
  • M OE represents the mole fraction of the sum of the chain of propylene and ethylene and the chain of ⁇ -olefin having 4 or more carbon atoms and ethylene with respect to all dyads
  • M 2 O is the ⁇ of olefin having 4 or more carbon atoms.
  • M E represents the mole fraction of ethylene
  • Tg Glass transition temperature
  • the requirements (B1) to (B3) to be satisfied by the crystalline isotactic polypropylene (B) are as follows.
  • the isotactic pentad fraction (mmmm) is 90 to 99.8%.
  • the propylene copolymer (A) further satisfies one or more requirements selected from the following (A9) and (A10).
  • the soft polypropylene resin composition (X) preferably satisfies any of the following requirements (X1) to (X3), more preferably satisfies the following requirement (X1), and most preferably In addition to X1), the requirement (X2) and the requirement (X3) must be satisfied at the same time.
  • (X1) Differential scanning calorimeter when measured at 23 ° C. ⁇ 2 ° C. for 72 hours or longer and then cooled to ⁇ 40 ° C. or lower and measured at a heating rate of 10 ° C./min. In the (DSC) curve, it has a melting peak Tm (AX) at 30 to 80 ° C., and further shows a melting peak Tm (BX) at 100 to 175 ° C.
  • the internal haze of the 2 mmt press sheet is 0.1-30% and the total light transmittance is 75-99.9%, preferably the internal haze is 0.1-25% and the total light transmittance is 80-99. 9%.
  • Adhesive composition comprising 100 parts by weight of the adhesive composition (Y) and 5 to 1000 parts by weight of a low molecular weight propylene polymer (D) having a melt viscosity of 1 to 15000 mPa ⁇ s at 190 ° C. Thing (Y2).
  • An adhesive composition comprising 100 parts by weight of the adhesive composition (Y) and 5 to 150 parts by weight of a low molecular weight propylene polymer (D) having a melt viscosity of 1 to 15000 mPa ⁇ s at 190 ° C. Thing (Y2).
  • the low molecular weight propylene polymer (D) is preferably an isotactic polypropylene polymer or an atactic polypropylene polymer.
  • a hot-melt adhesive comprising the adhesive composition (Y) or the adhesive composition (Y2).
  • a pressure-sensitive adhesive comprising the adhesive composition (Y) or the adhesive composition (Y2).
  • the adhesive compositions (Y) and (Y2) of the present invention are excellent in flexibility, rubber elasticity, mechanical properties (strength, elongation), heat resistance, and low-temperature characteristics, and therefore are used as adhesives used in harsh environments. It can be suitably used. Further, the adhesive compositions (Y) and (Y2) of the present invention have a feature that the crystallization rate is slow, and they do not immediately solidify (long open time) even when they are in contact with the adherend in a heated and melted state. It can be suitably used as a hot melt adhesive.
  • the adhesive compositions (Y) and (Y2) of the present invention have good transparency, they are suitable as adhesives used in applications that require design properties, and are good with polyolefins, particularly polypropylene. It is also useful as an adhesive that adheres to.
  • a DSC curve of PEBR-1 (first DSC measurement method) is shown.
  • a DSC curve of PEBR-2 (first DSC measurement method) is shown.
  • the DSC curve (1st DSC measuring method) of the propylene ethylene copolymer (PER) used by the comparative example is shown.
  • the DSC curve (first DSC measuring method) of the soft propylene resin composition (X1) used in Examples 1, 2, 5, and 6 among the soft propylene resin composition (X) according to the present invention is shown.
  • the DSC curve (first DSC measurement method) of the soft propylene resin composition (X2) used in Examples 3 and 4 among the soft propylene resin composition (X) according to the present invention is shown.
  • the DSC curve (1st DSC measuring method) of the soft propylene resin composition (X3) used by the comparative examples 3 and 5 among soft propylene resin compositions (X) is shown.
  • the DSC curve (1st DSC measuring method) of the soft propylene resin composition (X4) used by the comparative example 4 among soft propylene resin compositions (X) is shown.
  • 1 is a drawing comparing NMR charts around 15 to 17.5 ppm of a propylene copolymer (PEBR-1) according to the present invention and a soft propylene resin composition (X4). This is an example of a heat-resistant creep test sample of the adhesive composition of the present invention.
  • the adhesive composition (Y) of the present invention comprises a soft polypropylene resin composition (X) in which a propylene copolymer (A) having a specific physical property parameter and a crystalline isotactic polypropylene (B) are formed in a specific ratio. (C) It consists of a tackifier. Moreover, the adhesive composition (Y2) which is another form of this invention mix
  • Propylene copolymer (A) The propylene copolymer (A) used in the present invention satisfies all the following requirements (A1) to (A8).
  • (A1) Shore A hardness is in the range of 20 to 90, preferably 25 to 85, more preferably 27 to 80.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 1.2 to 3.5, preferably 1.4 to It is 3.0, more preferably in the range of 1.6 to 2.6.
  • the isotactic triad fraction (mm) calculated by 13 C-NMR is 85 to 99.9%, preferably 87 to 99.8%.
  • the B value defined by the following formula (1) is 0.8 to 1.3, preferably 0.9 to 1.2, more preferably 0.9 to 1.1.
  • M OE represents the mole fraction of the sum of the chain of propylene and ethylene and the chain of ⁇ -olefin having 4 or more carbon atoms and ethylene with respect to all dyads
  • M 2 O is the ⁇ of olefin having 4 or more carbon atoms.
  • M E represents the mole fraction of ethylene
  • A6 The amount of 2,1-bond of propylene monomer in the total propylene insertion analyzed in 13 C-NMR measurement is less than 1%, preferably 0 to 0.5%, more preferably 0 to 0.1% It is.
  • Tg Glass transition temperature
  • MFR Melt flow rate
  • the Shore A hardness according to the requirement (A1) is obtained by subjecting a specimen obtained by heat-melting the propylene copolymer (A) at 190 to 230 ° C. and press molding at a cooling temperature of 15 to 25 ° C. to 23 ° C. ⁇ 2 It is a value obtained by storing the scale for 72 hours or more in an environment of 0 ° C. and then reading the scale immediately after contact with the pressing needle using an A-type measuring instrument (according to ASTM D-2240).
  • the constituent unit amount (mol%) of each comonomer in requirement (A2) is analyzed by analysis of 13 C-NMR spectrum.
  • a preferred embodiment of the ⁇ -olefin having 4 to 20 carbon atoms is 1-butene.
  • the propylene copolymer (A) having a molecular weight distribution in the range specified by the requirement (A3) is preferable in that it has a low molecular weight and is less sticky. Moreover, since a polymer having such a narrow molecular weight distribution generally has a narrow composition distribution, compatibility with the crystalline isotactic polypropylene (B) is greatly improved.
  • Propylene copolymer (A) having an isotactic triad fraction (mm) in the range shown in requirement (A4) does not completely lose its crystallinity even when many comonomers such as ethylene and 1-butene are copolymerized. . For this reason, excellent mechanical strength, high elongation at break, and good rubber elasticity are exhibited. Further, when the propylene copolymer (A) is partially taken into the crystal part of the crystalline isotactic polypropylene (B) described later, the physical properties, particularly heat resistance, of the soft polypropylene resin composition (X) is dramatically improved. .
  • the propylene copolymer (A) has a B value in the range indicated by the requirement (A5), compatibility with the crystalline isotactic polypropylene (B) described later is further improved.
  • the B value is larger than the above range, it means that each monomer (propylene, ethylene, ⁇ -olefin having 4 to 20 carbon atoms) has a molecular primary structure close to an alternating copolymer in which the monomers are alternately bonded.
  • the propylene copolymer (A) is inferior in compatibility with the crystalline isotactic polypropylene (B).
  • the B value is smaller than the above range, it means that each monomer has a molecular primary structure close to a dense block copolymer. In this case, too, the propylene copolymer (A) and the crystalline isotactic polypropylene (B) The compatibility of is inferior.
  • the propylene copolymer (A) in which the 2,1-bond amount (inversion) of the propylene monomer in the entire propylene insertion is in the range of the requirement (A6) is excellent in regioregularity. That is, since there are few 2,1-bonds which inhibit the crystallinity of the propylene copolymer (A), the propylene copolymer (A) having such physical properties is a preferred embodiment of the present invention as well as the requirement (A4).
  • the 2,1-bond amount of the propylene monomer during the total propylene insertion is calculated according to the method described in JP-A-7-145212, but no peak is observed in the range of 15.0 to 17.5 ppm. Is particularly preferred.
  • the propylene copolymer (A) according to the present invention has a glass transition temperature in the range indicated by the requirement (A7).
  • the glass transition temperature of the propylene copolymer (A) is within this range, the adhesive composition (Y) of the present invention can be provided with practically sufficient low-temperature characteristics.
  • the MFR range of the propylene copolymer (A) is within the range of the requirement (A8), both physical properties (mechanical properties, heat resistance, etc.) and processability of the adhesive composition can be achieved.
  • the MFR value of the propylene copolymer (A) is in a relatively low region as compared with the conventional APAO and the like, but this imparts sufficient heat resistance to the adhesive composition (Y) of the present invention. It is.
  • improvement of workability can be realized by an adhesive composition (Y2) obtained by blending a specific low molecular weight propylene polymer (D) with the adhesive composition (Y), and details thereof will be described later. .
  • the propylene copolymer (A) of the present invention preferably satisfies one or more selected from the following requirements (A9) and (A10) in addition to the above requirements (A1) to (A8).
  • the storage elastic modulus at 23 ° C. to 40 ° C. is in the range of 1 MPa to 100 MPa, preferably 1 to 50 MPa, more preferably 1 to 20 MPa.
  • the one having the maximum peak is defined as Tm (A) 1 .
  • the measurement is performed on a specimen immediately after the condition adjustment for 23 hours or more at 23 ° C. ⁇ 2 ° C. It should be noted that the test specimen at this time was prepared under the press molding conditions described in the requirement (A1), and was not heat-treated at a specific temperature before the condition adjustment.
  • the fact that the propylene copolymer (A) satisfies the requirement (A9) means that the propylene copolymer (A) forms a fine crystal component.
  • the propylene copolymer (A) is likely to be partly incorporated into the crystalline part of the crystalline isotactic polypropylene (B), and the mechanical properties of the adhesive composition (Y), rubber Elasticity and heat resistance are dramatically improved.
  • Tm (A) 1 and Tm (A) 2 are shown in FIGS.
  • the melting enthalpies ⁇ H (A) 1 and H (A) 2 are determined by the method described in JIS K7122.
  • the propylene copolymer (A) does not show the melting peak Tm (A) 1 defined in the requirement (A9), it can be suitably used in the present invention as long as the requirement (A10) is satisfied.
  • the propylene copolymer (A) satisfies the requirement (A10), it means that the propylene copolymer (A) forms a fine crystalline component. Since such fine crystal components are completely melted when the temperature exceeds at least 80 ° C., the storage elastic modulus at 23 ° C. to 40 ° C. is in the range of 1 MPa to 100 MPa, preferably 1 to 50 MPa, more preferably 1 to 20 MPa.
  • the storage elastic modulus E ′ is less than 1 MPa in the range of 30 to 80 ° C., preferably 35 to 70 ° C., more preferably 40 to 70 ° C.
  • the solid viscoelasticity measurement of this invention is observed on tension mode and 1 Hz conditions. The case where both the requirement (A9) and the requirement (A10) are satisfied is particularly suitable in the present invention.
  • the propylene copolymer (A) of the present invention is usually obtained by copolymerizing propylene, ethylene and an ⁇ -olefin having 4 to 20 carbon atoms in the presence of a metallocene catalyst.
  • a metallocene catalyst for example, the catalyst of International Publication No. 2004-087775, for example, the catalysts described in Examples e1 to e5 can be used without limitation.
  • Crystalline isotactic polypropylene (B) The crystalline isotactic polypropylene (B) used in the present invention satisfies all the following requirements (B1) to (B3).
  • the melting point Tm (B) observed by DSC measurement obtained when measured at 10 ° C./min is 100 to 175 ° C., preferably 110 to 170 ° C., more preferably 125 to 170 ° C.
  • the isotactic pentad fraction (mmmm) is 90% to 99.8%, preferably 93% to 99.7%, more preferably 95% to 99.6%.
  • Melt flow rate (MFR) (ASTMD 1238, 230 ° C., under 2.16 kg load) is 0.1 to 100 g / 10 min, preferably 1.0 to 60 g / 10 min, more preferably 1.5 to 50 g / 10 min. It is.
  • the melting point Tm (B) of requirement (B1) is maintained at 200 ° C. for 10 minutes in a differential scanning calorimeter (DSC) measuring device, then cooled to ⁇ 20 ° C. at a temperature drop rate of 10 ° C./min, and 1 at ⁇ 20 ° C. It is determined by the DSC measurement obtained when the temperature is kept again for 10 minutes and then measured again at a heating rate of 10 ° C./min.
  • DSC differential scanning calorimeter
  • this DSC measurement method may be referred to as “second DSC measurement method and DSC curve creation method according to the present invention”.
  • the isotactic pentad fraction (mmmm) in requirement (B2) indicates the abundance ratio of isotactic chains in pentad units in the molecular chain measured using 13 C-NMR. This is the fraction of propylene monomer units at the center of a chain in which five propylene monomer units are continuously meso-bonded.
  • the isotactic pentad fraction (mmmm fraction) can be obtained by the method described in, for example, Japanese Patent Application Laid-Open No. 2007-186664.
  • the crystalline isotactic polypropylene (B) satisfies all the requirements (B1) to (B3), it contributes to improvement of mechanical properties and heat resistance of the soft polypropylene resin composition (X), and the propylene copolymer (A) Good compatibility with.
  • the crystalline isotactic polypropylene (B) of the present invention is propylene / ⁇ -olefin having 2 to 20 carbon atoms (provided that it satisfies the requirements (B1) to (B3)).
  • the copolymer may be a random copolymer (except propylene) or a propylene block copolymer, but is preferably a homopolypropylene or a propylene- ⁇ -olefin random copolymer having 2 to 20 carbon atoms.
  • homopolypropylene is particularly preferable, and from the viewpoint of excellent flexibility and transparency, the obtained composition is particularly propylene / alpha-olefin random copolymer having 2 to 20 carbon atoms. Polymers are preferred.
  • examples of the ⁇ -olefin having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, and the like, copolymers with ethylene, ⁇ -olefins having 4 to 10 carbon atoms Or a copolymer of ethylene and an ⁇ -olefin having 4 to 10 carbon atoms.
  • the structural unit derived from propylene contains 90 mol% or more with respect to a total of 100 mol% of the structural unit derived from propylene and the structural unit derived from ⁇ -olefin having 2 to 20 carbon atoms other than propylene.
  • the crystalline isotactic polypropylene (B) used in the present invention has a heat of fusion ⁇ H (B) corresponding to the melting point Tm (B) specified in the requirement (B1) of 50 to 130 J / g, preferably 55 to 120 J. / G is preferred.
  • the heat of fusion ⁇ H (B) of the crystalline isotactic polypropylene (B) is within this range, the soft polypropylene polymer composition and the polypropylene polymer composition having excellent moldability, heat resistance and transparency and little stickiness This is preferable because a product is obtained.
  • the tensile elastic modulus of the crystalline isotactic polypropylene (B) in the present invention is preferably 500 to 3000 MPa, preferably 600 to 2500 MPa, more preferably 650 to 2200 MPa.
  • the tensile modulus is a value obtained by measuring a 2 mm thick press sheet at 23 ° C. in accordance with JIS K7113-2.
  • the crystalline isotactic polypropylene (B) used in the present invention can be produced by various methods, for example, using a stereoregular catalyst.
  • titanium trichloride or a titanium trichloride composition is a solid titanium catalyst component supported on a carrier having a specific surface area of 100 m 2 / g or more, or magnesium, halogen, electron Examples include a solid titanium catalyst component supported on a carrier having a donor (preferably an aromatic carboxylic acid ester or an alkyl group-containing ether) and titanium as essential components, and these essential components having a specific surface area of 100 m 2 / g or more. .
  • the organometallic compound catalyst component is preferably an organoaluminum compound, and specific examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkylaluminum dihalide, and the like.
  • the organoaluminum compound can be appropriately selected according to the type of titanium catalyst component used.
  • an organic compound having a nitrogen atom, a phosphorus atom, a sulfur atom, a silicon atom, or a boron atom can be used, and preferably, an ester compound and an ether compound having the above atoms are used. .
  • Such a catalyst may be further activated by a technique such as co-grinding, or an olefin as described above may be prepolymerized.
  • the crystalline isotactic polypropylene (B) in the present invention can also be produced with a known metallocene catalyst.
  • Soft polypropylene resin composition (X) The soft polypropylene resin composition (X) of the present invention is a composition composed of the propylene copolymer (A) and the crystalline isotactic polypropylene (B).
  • the soft polypropylene resin composition (X) comprises 40 to 98% by weight of the propylene copolymer (A), preferably 60 to 97% by weight, more preferably 70 to 95% by weight, and 2% of crystalline isotactic polypropylene (B). -60% by weight, preferably 3-40% by weight, more preferably 5-30% by weight (provided that the total of component (A) and component (B) is 100% by weight).
  • the method for obtaining the soft polypropylene resin composition (X) used in the present invention is not particularly limited, but the composition is obtained by polymerizing the propylene copolymer (A) and the crystalline isotactic polypropylene (B) simultaneously or sequentially.
  • Method a method obtained by mixing independently obtained propylene copolymer (A) and crystalline isotactic polypropylene (B), and further, either propylene copolymer (A) or crystalline isotactic polypropylene (B) is mixed first. There is a method in which the first manufactured in the process of manufacturing and producing the other one is added.
  • the soft polypropylene resin composition (X) of the present invention may contain other polymers as optional components within the range not impairing the object of the present invention.
  • the blending amount is not particularly limited, but for example, it is preferably about 0.1 to 30 parts by weight with respect to 100 parts by weight of the soft polypropylene resin composition (X) of the present invention.
  • the soft polypropylene resin composition (X) Improved flexibility and low temperature characteristics.
  • the polymer component is composed only of the propylene copolymer (A) and the crystalline isotactic polypropylene (B) without including other resins.
  • the transparency is particularly excellent.
  • the soft polypropylene resin composition (X) of the present invention includes a weather resistance stabilizer, a heat resistance stabilizer, an antistatic agent, an anti-slip agent, an anti-blocking agent, an antifogging agent, a nucleus within a range not impairing the object of the present invention.
  • Additives such as agents, lubricants, pigments, dyes, plasticizers, anti-aging agents, hydrochloric acid absorbents, antioxidants, copper damage inhibitors may be blended as necessary.
  • the soft polypropylene resin composition (X) of the present invention may be graft-modified with a polar monomer or the like. Specifically, it means a form in which at least one or both of the propylene copolymer (A) and the crystalline isotactic polypropylene (B) constituting the soft polypropylene resin composition (X) are graft-modified with a polar monomer.
  • soft polypropylene resin composition (X) of the present invention those having physical properties satisfying the following requirements (X1) and (X2) are particularly suitable.
  • the soft polypropylene resin composition (X) having such Tm (AX) means that the propylene copolymer (A) in the soft polypropylene resin composition (X) forms a fine crystal component. .
  • the propylene copolymer (A) is likely to be partly incorporated into the crystalline part of the crystalline isotactic polypropylene (B), and the mechanical properties of the adhesive composition (Y), rubber Elasticity and heat resistance are dramatically improved.
  • transition heat (melting enthalpy) ⁇ H (AX) giving the melting peak Tm (AX) is 0.5 to 20 J / g, preferably 0.5 to 15 J / g, more preferably 0.5 to 12 J / g
  • transition heat (melting enthalpy) ⁇ H (BX) giving a melting peak Tm (BX) is 3 to 80 J / g, preferably 5 to 70 J / g g, more preferably in the range of 10-60 J / g.
  • the hardness of the soft polypropylene resin composition (X) of the present invention is not particularly limited as long as it satisfies the requirements (X1) and (X2), but the Shore A hardness is 40 to 95, preferably 55 to 93, More preferably, it is in the range of 65 to 90.
  • the Shore A hardness at this time is determined by the specimen and method prepared under the same conditions as those for measuring the hardness of the propylene copolymer (A) in the requirement (A1) described above.
  • the soft polypropylene resin composition (X) of the present invention include those satisfying the following requirement (X3) in addition to the requirements (X1) and (X2). (X3) of 2 mmt press sheet
  • the internal haze is 0.1 to 30% and the total light transmittance is 75 to 99.9%, preferably the internal haze is 0.1 to 25% and the total light transmittance is 80 to 99.9%.
  • the internal haze and total light transmittance are determined by the following method: A test specimen having a thickness of 2 mm obtained by heat-melting at 190 to 230 ° C. and press molding at a cooling temperature of 15 to 25 ° C. Measures diffused and transmitted light in a cyclohexanol solution using a digital turbidimeter “NDH-2000” manufactured by Nippon Denshoku Industries Co., Ltd., and a C light source. Calculate
  • the soft polypropylene resin composition (X) according to the present invention is characterized in that the phase separation structure of the propylene copolymer (A) and the crystalline isotactic polypropylene (B) is not observed.
  • this phase separation structure was dye
  • the melt flow rate (MFR) (ASTM D1238, 230 ° C., under a load of 2.16 kg) of the soft polypropylene resin composition (X) according to the present invention is the same as that of the propylene copolymer (A) and crystalline isotactic polypropylene (B ) Depending on the MFR. Usually, it is in the range of 0.5 to 500 g / 10 min, preferably 1 to 50 g / 10 min, more preferably 2 to 12 g / 10 min.
  • Tackifier (C) examples include natural rosin, modified rosin, polyterpene resin, synthetic petroleum resin, coumarone resin, phenol resin, xylene resin, styrene resin, and low molecular weight styrene resin. Examples thereof include at least one resin selected from a resin and an isoprene-based resin.
  • rosin resins polyterpene resins, and synthetic petroleum resins are preferable, and those having an aliphatic and / or alicyclic structure are more preferable.
  • Particularly preferred as petroleum resins having an aliphatic and / or alicyclic structure are partially and fully hydrogenated rosins and their derivatives for rosin resins, and homopolymers or copolymers of cyclic terpenes for polyterpene resins.
  • Examples of coal and synthetic petroleum resins include aliphatic petroleum resins, alicyclic petroleum resins, aliphatic-alicyclic copolymer resins, and hydrogenated products of copolymers of naphtha cracked oil and various terpenes.
  • those having a softening point in the range of 25 to 160 ° C. are preferred. If the softening point is less than 25 ° C., the surface may bleed. Conversely, if the softening point exceeds 160 ° C., the viscosity during melting is high. The workability becomes poor.
  • there are Alcon P-70, Archon P-90, Archon P-100, Archon P-115, Archon P-125, Archon P-140 (all of which are trade names) manufactured by Arakawa Chemical Industries, Ltd. Preferably used.
  • tackifiers (C) can be used alone or in admixture of two or more.
  • Adhesive composition (Y) and adhesive composition (Y2) The adhesive composition (Y) of the present invention comprises 10 to 70 parts by weight, preferably 15 to 65 parts by weight, more preferably 25 to 60 parts by weight of the soft polypropylene resin composition (X), and the tackifier ( C) 30 to 90 parts by weight, preferably 35 to 85 parts by weight, more preferably 40 to 75 parts by weight (here, the total amount of component (X) and component (C) is 100 parts by weight).
  • the adhesive composition (Y) By forming the adhesive composition (Y) with such a composition, various physical properties such as flexibility, mechanical properties, heat resistance, and adhesive properties can be balanced.
  • a composition in which the soft polypropylene resin composition (X) is larger than the tackifier (C) is preferable.
  • the soft polypropylene resin composition (X) preferably 55 to 65 parts by weight and 30 to 49 parts by weight of the tackifier (C), preferably 35 to 45 parts by weight are preferred.
  • the flow modifier examples include paraffinic process oil, polyolefin wax, low molecular weight polyolefin, phthalic acid esters, adipic acid esters, fatty acid esters, glycols, epoxy polymer plasticizer, naphthenic oil, etc. Any known one can be used as long as it lowers the melt viscosity of the adhesive composition (Y). Among them, polyolefin waxes and low molecular weight polyolefins are preferable, and the melt viscosity at 190 ° C. is preferably 1 to 15000 mPa ⁇ s.
  • a low molecular weight propylene polymer (D) having a molecular weight of preferably 10 to 12000 mPa ⁇ s, more preferably 25 to 10000 mPa ⁇ s can be suitably used.
  • Such a low molecular weight propylene polymer (D) is a polymer comprising propylene-derived constitutional units in an amount of 40 to 100 mol%, preferably 60 to 100 mol%, particularly preferably 75 to 100 mol%.
  • Wax high wax manufactured by Mitsui Chemicals, Inc.
  • amorphous polypropylene, etc. and those having excellent compatibility with the soft polypropylene resin composition (X) in the adhesive composition (Y2) should be used.
  • the fluidity can be improved without impairing the mechanical properties, heat resistance, and transparency.
  • the stereoregularity of the low-molecular-weight propylene polymer (D) is not particularly limited, but is an atactic polypropylene-based polymer or isotactic in that the compatibility with the soft polypropylene resin composition (X) is further improved.
  • a tech polypropylene polymer is preferred.
  • the amorphous polypropylene is not particularly limited, but preferably has a melting peak Tm of 75 to 160 ° C., more preferably 100 to 155 ° C., and further provides a melting peak Tm from the viewpoint of heat resistance.
  • the heat (melting enthalpy) ⁇ H is 5 to 60 J / g, more preferably 15 to 45 J / g. Hold at 200 ° C. for 10 minutes in the DSC measuring device, cool to ⁇ 20 ° C. at a temperature drop rate of 20 ° C./min, hold at ⁇ 20 ° C. for 1 minute, and then heat again to 200 ° C. at a temperature increase rate of 20 ° C./min. Thus, a DSC curve was created.
  • An adhesive composition (Y2) according to another embodiment of the present invention using such a low molecular weight propylene polymer (D) is added to 100 parts by weight of the adhesive composition (Y) with the low molecular weight propylene polymer.
  • the blend (D) is blended in an amount of 5 to 1000 parts by weight, preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight.
  • These flow modifiers may be used alone or in admixture of two or more.
  • the adhesive composition (Y) of the present invention includes the soft polypropylene resin composition (X) and a tackifier (C), and various additives such as inorganic fillers, antioxidants, and weathering stabilizers used as necessary. It is obtained by melt mixing the agent.
  • the adhesive composition (Y2) of the present invention includes the soft polypropylene resin composition (X), a tackifier (C), a low molecular weight propylene polymer (D), and an inorganic filler used as necessary. It can be obtained by melt-mixing various additives such as antioxidants and weathering stabilizers.
  • the method of melt mixing is not particularly limited, and examples thereof include known mixing methods such as an extruder, an open roll mill, a Banbury mixer, a kneader, and a melt mixing tank.
  • the melt mixing temperature is usually from 100 to 250 ° C., preferably from 160 to 230 ° C.
  • the adhesive composition (Y) or the adhesive composition (Y2) of the present invention has an appropriate setting time, the open time can be adjusted to be long. Therefore, the adhesive composition (Y) or the adhesive composition (Y2) of the present invention can be suitably used as a hot-melt adhesive or a pressure-sensitive adhesive, and among them, it can be suitably used as a hot-melt adhesive.
  • the adhesive composition (Y) or the adhesive composition (Y2) of the present invention is an adhesive for bonding various adherends such as plastic, glass, metal, fiber, artificial / natural leather, paper, and wood.
  • adherends such as plastic, glass, metal, fiber, artificial / natural leather, paper, and wood.
  • at least one adherend is a plastic material, and among them, a polyolefin material, particularly preferably a polypropylene material is preferable.
  • each component constituting the adhesive composition used in the examples (a component corresponding to the propylene copolymer (A) of the present invention, a component corresponding to the crystalline isotactic polypropylene (B) of the present invention, the present invention)
  • the component corresponding to the soft polypropylene resin composition (X)) and each component constituting the adhesive composition used in the comparative example will be described.
  • composition (1-1) Propylene / ethylene / 1-butene copolymer corresponding to propylene copolymer (A) according to the present invention
  • a polymerization catalyst / co-catalyst JP-A-2007-186664 Diphenylmethylene (3-tert-butyl-5-ethylcyclopentadienyl) (2,7-di-tert-butylfluorenyl) zirconium dichloride / methylaluminoxane (manufactured by Tosoh Finechem,
  • the following two types of propylene / ethylene / 1-butene copolymers are obtained by polymerizing ethylene, propylene and 1-butene as raw materials in a hexane solution using a continuous polymerization facility.
  • PEBR-1 and PEBR-2 were obtained.
  • Table 1 shows the physical properties of PEBR-1 and PEBR-2.
  • DSC curves first DSC measurement method
  • a 100 ⁇ m PET film manufactured by Toray, Lumirror was used as a release film during press molding.
  • the separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL.
  • the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C, and the mobile phase is Using o-dichlorobenzene (Wako Pure Chemical Industries) and 0.025% by weight of BHT (Takeda Pharmaceutical) as an antioxidant, it was moved at 1.0 ml / min, the sample concentration was 15 mg / 10 ml, and the sample injection volume was 500 A microliter was used, and a differential refractometer was used as a detector.
  • the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 106, and that of Pressure Chemical Co. was used for 1000 ⁇ Mw ⁇ 4 ⁇ 106.
  • MFR Melt flow rate
  • the propylene copolymer (A) according to the present invention was measured by the “second DSC measurement method and DSC curve creation method according to the present invention” used for determining the melting point of the crystalline isotactic polypropylene (B) described later. In such a case, the melting point may not be observed, but such a propylene copolymer (A) is also preferably used in the present invention.
  • MFR Melt flow rate
  • the soft polypropylene resin composition (X1) was used in Examples 1 and 2 and Examples 5 and 6 described later.
  • Soft polypropylene resin composition (X-2) comprising propylene / ethylene / 1-butene copolymer (PEBR-2) and isotactic polypropylene (PP) 90% by weight of the propylene / ethylene / 1-butene copolymer (PEBR-2) and 10% by weight of isotactic polypropylene (PP) were kneaded (190 ° C., 3 minutes, 40 rpm) with a lab plast mill (manufactured by Toyo Seiki). Thus, a soft polypropylene resin composition (X2) was obtained.
  • Table 2 shows the physical properties of the soft polypropylene resin composition (X2). Further, the DSC curve (first DSC measurement method) is shown in FIG.
  • the soft polypropylene resin composition (X2) was used in Examples 3 and 4 described later.
  • Soft polypropylene resin composition (X-3) comprising propylene / ethylene copolymer (PER) and isotactic polypropylene (PP)
  • the propylene / ethylene copolymer (PER) 85 wt% and isotactic polypropylene (PP) 15 wt% are kneaded (190 ° C., 3 min, 40 rpm) with a Laboplast mill (manufactured by Toyo Seiki), and a soft polypropylene resin composition A product (X3) was obtained.
  • Table 2 shows the physical properties of the soft polypropylene resin composition (X3).
  • a DSC curve first DSC measurement method
  • the soft polypropylene resin composition (X3) was used in Comparative Examples 3 and 5 described later.
  • the soft polypropylene resin composition (X4) has a melting point near 130 ° C., it contains a crystalline polypropylene component corresponding to the isotactic polypropylene (PP) in the soft polypropylene resin compositions (X1) to (X3).
  • FIG. 8 shows the NMR measurement results (around 15.0 to 17.5 ppm) compared with the previous propylene / ethylene / 1-butene copolymer (PEBR-1).
  • FIG. 8 shows that the soft polypropylene resin composition (X4) has a large peak in the vicinity of 15.0 to 17.5 ppm, and thus the soft polypropylene resin composition (X4) can be said to be a material with low positional regularity.
  • Melting points Tm (AX) and Tm (BX) and melting enthalpies ⁇ H (AX) and ⁇ H (BX) are described above as “First DSC measurement method and DSC curve creation method according to the present invention”. Based on the analysis. In addition, using a measuring device manufactured by Perkin Elmer, the test specimen was a 3 mm thick press sheet prepared under the same conditions as those used for Shore A hardness measurement, and the condition was adjusted at 23 ° C. ⁇ 2 ° C. for 2 weeks before the test. What was performed was used.
  • MFR Melt flow rate
  • the scale was read immediately after contact with the pressing needle using an A-type measuring instrument (according to ASTM D-2240). For those having a Shore A hardness of more than 90, the scale after 5 illnesses after contact with the pressing needle was read using a D-type measuring instrument (according to ASTM D-2240).
  • a 50 ⁇ m release PET film (made by Toray Film Processing Co., Ltd.) with a silicon treatment on the surface was used as a release film.
  • a 50 ⁇ m release PET film (made by Toray Film Processing Co., Ltd.) with a silicon treatment on the surface was used as a release film.
  • Residual strain (%) 100 ⁇ (thickness before test ⁇ thickness after test) / (thickness before test ⁇ thickness at compression) It means that it has rubber elasticity, so that this residual strain value is low.
  • a 50 ⁇ m release PET film (made by Toray Film Processing Co., Ltd.) with a silicon treatment on the surface was used as a release film.
  • a 50 ⁇ m release PET film (made by Toray Film Processing Co., Ltd.) with a silicon treatment on the surface was used as a release film.
  • This adhesion test sample was put into an oven set at 80 ° C., and a load was applied to 120 g / cm 2 in a state where one side was fixed and suspended, and held for 30 minutes to stabilize.
  • the set temperature of the oven was 180 ° C., and the temperature at which the sample dropped was observed while gradually raising the temperature inside the oven, and this was taken as the drop temperature. Moreover, 80 degreeC was made into the fall temperature for what fell, when hold
  • a 50 ⁇ m release PET film (made by Toray Film Processing Co., Ltd.) with a silicon treatment on the surface was used as a release film.
  • This press sheet was measured for diffuse transmitted light amount and total transmitted light amount in air using a digital turbidimeter “NDH-2000” manufactured by Nippon Denshoku Industries Co., Ltd., C light source. The light transmittance was calculated.
  • Total haze 100 ⁇ (diffuse transmitted light amount) / (total transmitted light amount)
  • Total light transmittance 100 ⁇ (total transmitted light amount) / (incident light amount) [Solidification speed (crystallization speed)]
  • the solidification rate was evaluated based on the crystallization temperature Tc observed in DSC measurement.
  • the crystallization temperature Tc at this time is analyzed based on the following “third DSC measurement method and DSC curve creation method relating to the present invention”, and is cooled from 200 ° C. to ⁇ 20 ° C. at a temperature decrease rate of 20 ° C./min.
  • the maximum exothermic peak observed between them was defined as Tc.
  • “Third DSC measurement method and DSC curve creation method according to the present invention” Hold at 200 ° C. for 10 minutes in the DSC measuring device, cool to ⁇ 20 ° C. at a temperature drop rate of 20 ° C./min, hold at ⁇ 20 ° C. for 1 minute, and then heat again to 200 ° C. at a temperature increase rate of 20 ° C./min. Thus, a DSC curve was created.
  • Example 1 Laboplast mill (Toyo Seiki) 60 parts by weight of a soft polypropylene resin composition (X1) and 40 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, trade name: Alcon P-125, manufactured by Arakawa Chemical) Manufactured) and kneaded (190 ° C., 5 min, 60 rpm) to obtain an adhesive composition (Y) -1.
  • a tackifier alicyclic saturated hydrocarbon resin, trade name: Alcon P-125, manufactured by Arakawa Chemical
  • Table 3 shows the evaluation results of the adhesive composition (Y) -1.
  • Example 2 40 parts by weight of a soft polypropylene resin composition (X1) and 60 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, trade name: Alcon P-125, manufactured by Arakawa Chemical Co., Ltd.) Manufactured) and kneaded (190 ° C., 5 min, 60 rpm) to obtain an adhesive composition (Y) -2.
  • Table 3 shows the evaluation results of the adhesive composition (Y) -2.
  • Example 3 60 parts by weight of a soft polypropylene resin composition (X2) and 40 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, trade name: Alcon P-125, manufactured by Arakawa Chemical Co., Ltd.) Kneading (190 ° C., 5 min, 60 rpm) to obtain an adhesive composition (Y) -3.
  • Table 3 shows the evaluation results of the adhesive composition (Y) -3.
  • Example 4 40 parts by weight of a soft polypropylene resin composition (X2) and 60 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, manufactured by Arakawa Chemical Co., Ltd .: Alcon P-125) were added to a lab plast mill (Toyo Seiki). Manufactured) and kneaded (190 ° C., 5 min, 60 rpm) to obtain an adhesive composition (Y) -4. Table 3 shows the evaluation results of the adhesive composition (Y) -4.
  • a tackifier C
  • alicyclic saturated hydrocarbon resin manufactured by Arakawa Chemical Co., Ltd .: Alcon P-125
  • Table 3 shows the evaluation results of the adhesive composition (Y) -4.
  • Example 5 60 parts by weight of a soft polypropylene resin composition (X1), 40 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, manufactured by Arakawa Chemical Co., Ltd .: Alcon P-125), (X1) and (C ) With a low molecular weight propylene polymer (D1) blended with 30 parts by weight of polypropylene wax (Mitsui Chemicals, brand name: NP055, melt viscosity at 190 ° C. 52 mPa ⁇ s) The mixture was kneaded (190 ° C., 5 min, 60 rpm) with a plast mill (manufactured by Toyo Seiki) to obtain an adhesive composition (Y2) -1. Table 4 shows the evaluation results of the adhesive composition (Y2) -1. The melt viscosity of polypropylene wax was measured at 190 ° C. using a Brookfield viscometer.
  • C alicyclic saturated hydrocarbon resin, manufactured by Arakawa Chemical Co.
  • Example 6 60 parts by weight of a soft polypropylene resin composition (X1), 40 parts by weight of a tackifier (C) (alicyclic saturated hydrocarbon resin, manufactured by Arakawa Chemical Co., Ltd .: Alcon P-125), (X1) and (C Laboplast mill is prepared by blending 30 parts by weight of APAO (manufactured by Huntsman, brand name: RT2180, melt viscosity at 190 ° C., 8000 mPa ⁇ s) as a low molecular weight propylene polymer (D2) Kneading (manufactured by Toyo Seiki) (190 ° C., 5 min, 60 rpm) to obtain an adhesive composition (Y2) -2.
  • Table 4 shows the evaluation results of the adhesive composition (Y2) -1.
  • the melt viscosity of APAO was measured at 190 ° C. using a Brookfield viscometer.
  • the adhesive composition (Y) of the present invention has good flexibility and rubber elasticity, and has good stress / deformability followability.
  • the adhesive composition (Y) of the present invention is flexible but also has good strength and adhesive performance at high temperatures and excellent heat resistance.
  • the adhesive composition (Y) of the present invention has good transparency.
  • the adhesive composition of this invention has moderate solidification time, and can adjust the open time of a hot-melt-adhesive long.
  • MFR Melt flow rate
  • the upper and lower ends of the test piece were lightly fixed with a chuck jig so that the upper and lower ends of the test piece were 20 mm at room temperature, and fixed firmly after cooling to ⁇ 40 ° C. After the temperature was raised to 100 ° C. and the temperature was stabilized, a tension of 0.1 MPa was applied, and the creep amount (%) after 30 minutes was measured.
  • a 100 ⁇ m PET film manufactured by Toray, Lumirror was used as a release film during press molding.
  • compositions (Z) -1 and (Z) -2 were compared with the soft polypropylene resin composition (X1), and increased in melt flow rate and heat-resistant creep amount. Decrease is observed. This means an improvement in fluidity and heat resistance.
  • compositions (Z) -3 and (Z) -4 are more fluid and heat resistant than the soft polypropylene resin composition (X2). An improvement is observed.

Abstract

要件(A1)硬度;20~90、(A2)C3 単位 50~92 モル%、C2 単位 7~24 モル%、炭素数4~20 のα-オレフィン単位 3~25 モル%から構成、(A3)Mw/Mn1.2~3.5、(A4)mm85~99.9%、(A5)B 値0.8~1.3、(A6)2,1-挿入量1%未満、(A7)Tg-10~-50℃、(A8)MFR0.5~500g/10 分を満たすプロピレンコポリマー(A)40~98 重量%、要件(B1)融点100~175℃、(B2)mmmm90~99.8%、(B3)MFR0.1~100g/10 分を満たす結晶性アイソタクティックポリプロピレン(B)2~60 重量%からなる軟質ポリプロピレン樹脂組成物(X)10~70重量部と粘着付与剤(C)30~90 重量部(ここで成分(X)と成分(C)の合計量を100 重量部とする)からなる接着剤組成物(Y)。

Description

接着剤組成物及びこれからなる接着剤
 本発明は、特定の物性パラメータを有するプロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)が特定の比率で形成された軟質ポリプロピレン樹脂組成物(X)を含んで成る接着剤組成物及び該組成物からなる接着剤に関する。
 詳しくは、優れた柔軟性、ゴム弾性、機械物性(強度、伸び)、耐熱性、低温特性、透明性を有するとともに、結晶化速度(固化速度)が遅いため、特にホットメルト型接着剤として好適な、使用時の取り扱いに優れた接着剤の技術に関する。
 VOCを発生させない無溶剤タイプの接着剤として注目されているホットメルト接着剤には、ベースポリマーと呼ばれる高分子が使用されている。このようなベースポリマーとしては、エチレン・酢酸ビニル共重合体(EVA)やエチレン・α-オレフィン共重合体などエチレンを主成分とする共重合体、非晶性ポリオレフィン(APAO)、スチレン系エラストマー(SBS、SIS、SEBS、SEPS)などが知られている。このようなベースポリマーとしては従来、例えば、柔軟性には優れるが耐熱性やゴム弾性に劣るエチレン・酢酸ビニル共重合体(EVA)やエチレン・α-オレフィン共重合体、柔軟性とゴム弾性に優れるが、耐熱性や耐熱安定性に劣るスチレン系エラストマー(SIS、SBS)、耐熱安定性には優れるが、機械物性(強度)に劣る非晶性ポリオレフィン(APAO)などが知られているが、全ての性能をバランスよく満たすベースポリマーは少なかった。比較的これらの性能バランスに優れた材料としてSEBSなども知られているが、過酷な環境下で使用される際には耐熱性が不十分となるケースがあった。特に高温下で応力がかかる用途では接着剤の凝集破壊(すなわちベースポリマーの耐熱性不足に起因する)が発生するケースが多く、従ってより優れた性能を有するベースポリマーが産業界から求められているのである。
 近年、耐熱性に優れた軟質ポリプロピレン重合体を用いた様々な新規ベースポリマーが提案されている。これらの軟質ポリプロピレン重合体の特長は、メタロセン触媒など特定の触媒を用いることで分子量分布、組成分布の狭い材料を使用していることにあり、広い分子量分布、広い組成分布を有する公知品、例えば前記APAOに比べて優れた性能(例えば低分子量成分による接着性能の低下や高分子量成分による加工性の悪化がないこと)を有することが開示されている。
 特許文献1には、プロピレンとエチレンからなる共重合体を用いたホットメルト接着剤を得る技術が開示されている。このようなプロピレン・エチレン共重合体は優れた柔軟性、ゴム弾性、耐熱安定性を有するが、耐熱変形温度、高温下で応力を受けたときの耐クリープ特性などが十分ではない。また、該文献では耐熱性改良のために結晶性アイソタクティックポリプロピレン成分を配合する技術も開示されているが、本発明者らの知見によるとプロピレン・エチレン共重合体はポリプロピレンとの相容性に劣るため十分な耐熱性改良効果が得られないと考えられる。
 一方、特許文献2には、プロピレン連鎖の立体規則性を制御して柔軟化した軟質ポリプロピレン重合体を用いたホットメルト接着剤を得る技術が開示されている。このような軟質ポリプロピレン重合体は、特許文献1に記載されたプロピレン・エチレン共重合体よりも結晶性アイソタクティックポリプロピレンとの相容性は良好であると考えられるが、本発明者らの知見によるとプロピレン以外のコモノマーが少ないためにガラス転移温度は高く、室温付近に観測されると考えられる。したがって低温域ではベースポリマーが脆化するために接着剤の応力緩和特性が失われ、この結果剥離しやすくなるという問題点がある。また、このような低立体規則性を特長とするポリマーにエチレンなどのコモノマーを共重合させる技術も考えられるが、この場合ポリマーの結晶性がほとんどなくなるために機械強度が失われるなどの問題が顕在化する。また、同時に結晶性アイソタクティックポリプロピレンとの相容性も低下し、これに伴う耐熱性の低下も予想される。
 特許文献3、4には結晶融解熱量を有さない事実上完全非晶性軟質ポリプロピレン重合体を用いた、接着性に優れたホットメルト接着剤を得る技術が開示されている。しかしながら本発明者らの知見によると、結晶を有さない非晶性軟質ポリプロピレン重合体を用いた場合、結晶性アイソタクティックポリプロピレンを配合しても十分な耐熱性が発現せず、特に高温下での機械強度や耐クリープ性において十分な性能が発現しないと考えられる。
 さらに、特許文献5には、立体規則性が高いプロピレン・1-ブテンランダム共重合体を用いた接着剤組成物の技術が開示されている。このようなプロピレン・1-ブテンランダム共重合体は先のプロピレン・エチレン共重合体と比べると結晶性アイソタクティックポリプロピレンとの良好な相容性を有するが、一方非常に剛直でありホットメルト接着剤の柔軟性を発現させることが難しい。
特開2003-518171号公報 WO01/096490号公報 特開2001-288441号公報 特開2008-24859号公報 特開平09-137013号公報
 本発明の課題は、柔軟性、ゴム弾性、機械物性(強度、伸び)、耐熱性(特に高温下での機械物性、ゴム弾性)、低温特性に優れた接着剤組成物を提供することにある。
 本発明は、以下の[1]~[5]からなる。
 [1]下記要件(A1)~(A8)を満たすプロピレンコポリマー(A)40~98重量%、下記要件(B1)~(B3)を満たす結晶性アイソタクティックポリプロピレン(B)2~60重量%からなる軟質ポリプロピレン樹脂組成物(X)10~70重量部と、粘着付与剤(C)30~90重量部(ここで成分(X)と成分(C)の合計量を100重量部とする)からなる接着剤組成物(Y)。
 ここで、プロピレンコポリマー(A)が満たすべき要件(A1)~(A8)は以下の通りである。
 (A1)ショアーA硬度が20~90の範囲にある。
 (A2)プロピレン由来の構成単位を51~90モル%、エチレン由来の構成単位を7~24モル%、炭素数4~20のα-オレフィン由来の構成単位を3~25モル%含むプロピレンとエチレンと炭素数4~20のα-オレフィンとの共重合体(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位の合計を100モル%とする)。
 (A3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2~3.5である。
 (A4)13C-NMRにより算出したアイソタクティックトライアッド分率(mm)が85~99.9%である。
 (A5)下記式(1)で定義されるB値が0.8~1.3である。
Figure JPOXMLDOC01-appb-M000002
 (式中、MOEは、プロピレンとエチレンの連鎖と炭素数4以上のα-オレフィンとエチレンの連鎖の合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンと炭素数4以上のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
 (A6)13C-NMR測定において解析される、全プロピレン挿入中のプロピレンモノマーの2,1-結合量が1%未満である。
 (A7)ガラス転移温度(Tg)が-10℃~-50℃の範囲に観測される。
 (A8)MFR(230℃)が0.5~500g/10minである。
 また、結晶性アイソタクティックポリプロピレン(B)が満たすべき要件(B1)~(B3)は以下の通りである。
 (B1)示差走査熱量計(DSC)測定装置内で10分間200℃保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC測定によって観測される融点Tm(B)が100~175℃である。
 (B2)アイソタクティックペンタッド分率(mmmm)が90~99.8%である。
 (B3)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)が0.1~100g/10minである。
 本発明においては、プロピレンコポリマー(A)がさらに以下(A9)および(A10)から選ばれる一つ以上の要件を満たすものが好適である。
 (A9)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときに得られる示差走査熱量計(DSC)曲線において、融解ピークTm(A)1が30~80℃に観測される。
 (A10)23℃±2℃で72時間以上の状態調節を実施した後の試験体を、-40℃以下まで冷却してから昇温速度3℃/minで測定したときの動的固体粘弾性測定において、23℃~40℃における貯蔵弾性率が1MPa~100MPaの範囲にある。
 また軟質ポリプロピレン樹脂組成物(X)は、下記要件(X1)~(X3)のいずれかを満たすことが好ましく、より好ましくは、下記要件(X1)を満たすことであり、最も好ましくは、要件(X1)に加えて、要件(X2)及び要件(X3)を同時に満たすことである。
 (X1)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときの示差走査熱量計(DSC)曲線において、30~80℃に融解ピークTm(A-X)を有し、さらに100~175℃に融解ピークTm(B-X)を示す。
 (X2)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときの示差走査熱量計(DSC)曲線において、融解ピークTm(A-X)を与える転移熱(融解エンタルピー)ΔH(A-X)が0.5~20J/g、融解ピークTm(B-X)を与える転移熱(融解エンタルピー)ΔH(B-X)が3~80J/gである。
 (X3)2mmtプレスシートの内部ヘイズが0.1~30%かつ全光線透過率が75~99.9%、好ましくは内部ヘイズが0.1~25%、全光線透過率が80~99.9%である。
 [2]前記接着剤組成物(Y)100重量部に、190℃での溶融粘度が1~15000mPa・sの低分子量プロピレン重合体(D)を5~1000重量部配合してなる接着剤組成物(Y2)。
 [3]前記接着剤組成物(Y)100重量部に、190℃での溶融粘度が1~15000mPa・sの低分子量プロピレン重合体(D)を5~150重量部配合してなる接着剤組成物(Y2)。
 また、前記低分子量プロピレン重合体(D)が、アイソタクティックポリプロピレン系重合体もしくはアタクテッィクポリプロピレン系重合体であることも好ましい。
 [4]前記接着剤組成物(Y)または前記接着剤組成物(Y2)からなるホットメルト型接着剤。
 [5]前記接着剤組成物(Y)または前記接着剤組成物(Y2)からなる感圧型接着剤。
 本発明の接着剤組成物(Y)、(Y2)は、柔軟性、ゴム弾性、機械物性(強度、伸び)、耐熱性、低温特性に優れるため、過酷な環境下で使用される接着剤として好適に利用できる。また本発明の接着剤組成物(Y)、(Y2)は結晶化速度が遅く、加熱溶融した状態で被着体と接触してもすぐに固化しない(オープンタイムが長い)という特長を有するため、ホットメルト型接着剤として好適に利用できる。
 さらに、本発明の接着剤組成物(Y)、(Y2)は良好な透明性を有するため、意匠性を必要とする用途に使用される接着剤として好適であり、またポリオレフィン、特にポリプロピレンと良好に接着する接着剤としても有用である。
本発明に係るプロピレンコポリマー(A)のうち、PEBR-1のDSCカーブ(第一のDSC測定法)を示す。 本発明に係るプロピレンコポリマー(A)のうち、PEBR-2のDSCカーブ(第一のDSC測定法)を示す。 比較例で用いたプロピレン・エチレン共重合体(PER)のDSCカーブ(第一のDSC測定法)を示す。 本発明に係る軟質プロピレン樹脂組成物(X)のうち、実施例1、2、5、6で用いた軟質プロピレン樹脂組成物(X1)のDSCカーブ(第一のDSC測定方法)を示す。 本発明に係る軟質プロピレン樹脂組成物(X)のうち、実施例3、4で用いた軟質プロピレン樹脂組成物(X2)のDSCカーブ(第一のDSC測定方法)を示す。 軟質プロピレン樹脂組成物(X)のうち、比較例3、5で用いた軟質プロピレン樹脂組成物(X3)のDSCカーブ(第一のDSC測定方法)を示す。 軟質プロピレン樹脂組成物(X)のうち、比較例4で用いた軟質プロピレン樹脂組成物(X4)のDSCカーブ(第一のDSC測定方法)を示す。 本発明に係るプロピレンコポリマー(PEBR-1)、および軟質プロピレン樹脂組成物(X4)の、15~17.5ppm付近のNMRチャートを比較した図面である。 本発明の接着剤組成物の耐熱クリープ試験サンプルに一例である。
 以下、本発明について具体的に説明する。
 本発明の接着剤組成物(Y)は、特定の物性パラメータを有するプロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)が特定の比率で形成された軟質ポリプロピレン樹脂組成物(X)と(C)粘着付与剤からなる。また、本発明のもう一つの形態である接着剤組成物(Y2)は、前記接着剤組成物(Y)に特定の低分子量プロピレン重合体(D)を配合してなる。
 以下に各成分について説明する。
 プロピレンコポリマー(A)
 本発明で用いられるプロピレンコポリマー(A)は、下記要件(A1)~(A8)を全て満たすものである。
 (A1)ショアーA硬度が20~90、好ましくは25~85、より好ましくは27~80の範囲にある。
 (A2)プロピレン由来の構成単位を51~90モル%、好ましくは60~89モル%、より好ましくは62~88モル%、エチレン由来の構成単位を7~24モル%、好ましくは8~20モル%、より好ましくは8~18モル%、炭素数4~20のα-オレフィン由来の構成単位を3~25モル%、好ましくは3~20モル%、より好ましくは4~20モル%含む(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位の合計を100モル%とする)。
 (A3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2~3.5、好ましくは1.4~3.0、より好ましくは1.6~2.6の範囲にある。
 (A4)13C-NMRにより算出したアイソタクティックトライアッド分率(mm)が85~99.9%、好ましくは87~99.8%にある。
 (A5)下記式(1)で定義されるB値が0.8~1.3、好ましくは0.9~1.2、より好ましくは0.9~1.1にある。
Figure JPOXMLDOC01-appb-M000003
 (式中、MOEは、プロピレンとエチレンの連鎖と炭素数4以上のα-オレフィンとエチレンの連鎖の合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンと炭素数4以上のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
 (A6)13C-NMR測定において解析される、全プロピレン挿入中のプロピレンモノマーの2,1-結合量が1%未満、好ましくは0~0.5%、より好ましくは0~0.1%である。
 (A7)ガラス転移温度(Tg)が-10℃~-50℃、好ましくは-15℃~-40℃の範囲に観測される。
 (A8)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)が0.5~500g/10min、好ましくは2~50g/10min、より好ましくは4~12g/10minを満たす。
 前記要件(A1)~(A8)に関する補足を以下に示す。
 要件(A1)に係るショアーA硬度は、プロピレンコポリマー(A)を190~230℃で加熱溶融させた後15~25℃の冷却温度でプレス成形して得られた試験体を、23℃±2℃の環境下で72時間以上保管して後、A型測定器を用い、押針接触後直ちに目盛りを読み取ることによって得られる値である(ASTM D-2240に準拠)。
 要件(A2)における、各コモノマーの構成単位量(モル%)は13C-NMRスペクトルの解析によって解析される。また、炭素数4~20のα-オレフィンとして好ましい態様は1-ブテンであり、これを選択することでプロピレンコポリマー(A)と後述の結晶性アイソタクティックポリプロピレン(B)との相容性が飛躍的に向上し、これらからなる軟質ポリプロピレン樹脂組成物(X)の物性も飛躍的に向上する。
 要件(A3)で規定された範囲の分子量分布を有するプロピレンコポリマー(A)は、低分子量が少ないためベタツキ感が抑制されるなどの点で好ましい。また、このように狭い分子量分布を有するポリマーは一般に狭い組成分布を有するため、結晶性アイソタクティックポリプロピレン(B)との相容性が飛躍的に向上する。
 要件(A4)で示した範囲のアイソタクティックトライアッド分率(mm)を有するプロピレンコポリマー(A)は、エチレンや1-ブテンなどのコモノマーが多く共重合されても完全に結晶性が失われない。このため、優れた機械強度、高い破断点伸び、良好なゴム弾性が発現する。また、プロピレンコポリマー(A)が後述の結晶性アイソタクティックポリプロピレン(B)の結晶部に一部取り込まれることによって、軟質ポリプロピレン樹脂組成物(X)の物性、特に耐熱性が飛躍的に向上する。
 さらに、プロピレンコポリマー(A)が要件(A5)で示した範囲のB値を有することで、後述の結晶性アイソタクティックポリプロピレン(B)との相容性がより向上する。B値が前記範囲より大きい場合、各モノマー(プロピレン、エチレン、炭素原子数4~20のα-オレフィン)が交互に結合した交互共重合体に近い分子一次構造を有することを意味し、このようなプロピレンコポリマー(A)は結晶性アイソタクティックポリプロピレン(B)との相容性が劣ることになる。またB値が前記範囲より小さい場合、各モノマーが密集したブロック共重合体に近い分子一次構造を有することを意味し、この場合もプロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)との相容性が劣ることになる。
 全プロピレン挿入中のプロピレンモノマーの、2,1-結合量(インバージョン)が要件(A6)の範囲にあるプロピレンコポリマー(A)は位置規則性に優れていることを意味する。すなわちプロピレンコポリマー(A)の結晶性を阻害する2,1-結合が少ないため、このような物性を有するプロピレンコポリマー(A)は要件(A4)と同様に本発明の好適に態様である。なお、全プロピレン挿入中のプロピレンモノマーの2,1-結合量は特開平7-145212号公報に記載された方法に従って算出されるが、15.0~17.5ppmの範囲にピークを観察されないものが特に好ましい。
 本発明に係るプロピレンコポリマー(A)は、要件(A7)で示した範囲のガラス転移温度を有する。プロピレンコポリマー(A)のガラス転移温度がこの範囲にあることで、本発明の接着剤組成物(Y)に実用上十分な低温特性を与えることができる。
 さらには、プロピレンコポリマー(A)のMFR範囲が要件(A8)の範囲にあることで、物性(機械物性、耐熱性など)と接着剤組成物の加工性の両立が可能になる。なお、本発明ではプロピレンコポリマー(A)のMFR値は従来のAPAOなどと比べて比較的低い領域にあるが、これは本発明の接着剤組成物(Y)に十分な耐熱性を付与するためである。なお、加工性の改良については、接着剤組成物(Y)に特定の低分子量プロピレン重合体(D)を配合してなる接着剤組成物(Y2)によって実現でき、これについての詳細は後述する。
 本発明のプロピレンコポリマー(A)は、前記要件(A1)~(A8)に加えさらに以下の要件(A9)および要件(A10)から選ばれる一つ以上を満たすものが好適である。
 (A9)23℃±2℃で72時間以上の状態調節を実施した後の試験体について、-40℃以下まで冷却してから昇温速度10℃/minで測定したときに得られるDSC曲線において、融解ピークTm(A)1が30~80℃、好ましくは30~70℃、より好ましくは30~60℃に観測される。なお、以下の説明では、要件(A9)で規定したDSC測定方法を、『本発明に関する第1のDSC測定方法およびDSC曲線作成方法』と呼称する場合がある。
 (A10)23℃±2℃で72時間以上の状態調節を実施した後の試験体を、-40℃以下まで冷却してから昇温速度3℃/minで測定したときの動的固体粘弾性測定において、23℃~40℃における貯蔵弾性率が1MPa~100MPa、好ましくは1~50MPa、より好ましくは1~20MPaの範囲にある。
 以下要件(A9)について詳説する。
 要件(A9)において、融解ピークが二個以上存在する場合には最大のピークを有するものがTm(A)1として定義される。また測定は、23℃±2℃で72時間以上の状態調節を行った直後の試験体について行われる。このときの試験体は要件(A1)に記載したプレス成形条件で調製されたものであって、状態調整の前に特定の温度で熱処理が施されていない点に留意すべきである。
 プロピレンコポリマー(A)が要件(A9)を満たすことは、プロピレンコポリマー(A)が微小な結晶成分を形成することを意味する。このような微結晶成分を有することでプロピレンコポリマー(A)が上述の結晶性アイソタクティックポリプロピレン(B)の結晶部に一部取り込まれやすくなり、接着剤組成物(Y)の機械物性、ゴム弾性、耐熱性が劇的に向上する。
 上記Tm(A)1およびTm(A)2の解析例を図1~図3に示す。
 なお融解エンタルピーΔH(A)1、H(A)2はJIS K7122に記載の方法で決定される。
 プロピレンコポリマー(A)が要件(A9)で定義した融解ピークTm(A)1を示さない場合であっても、要件(A10)を満たしていれば本発明に好適に用いることができる。換言すれば、プロピレンコポリマー(A)が要件(A10)を満たす場合もプロピレンコポリマー(A)が微小な結晶成分を形成することを意味する。このような微小な結晶成分は少なくとも80℃を超えると完全に融解してしまうため、23℃~40℃における貯蔵弾性率が1MPa~100MPa、好ましくは1~50MPa、より好ましくは1~20MPaの範囲にあり、かつ、温度が30~80℃、好ましくは35~70℃、より好ましくは40~70℃の範囲で貯蔵弾性率E’が1MPa未満になるものが本発明に好適である。なお、本発明の固体粘弾性測定は、引張りモード、1Hzの条件で観測される。要件(A9)と要件(A10)を共に満たす場合が本発明においては特に好適である。
 本発明のプロピレンコポリマー(A)は通常、メタロセン触媒の存在下、プロピレン、エチレンおよび炭素数4~20のα-オレフィンを共重合させることにより得られる。メタロセン触媒としては、例えば国際公開2004-087775の触媒、例えば実施例e1からe5に記載の触媒等を制限無く用いることができる。
 結晶性アイソタクティックポリプロピレン(B)
 本発明で用いられる結晶性アイソタクティックポリプロピレン(B)は以下の要件(B1)~(B3)を全て満たすものである。
 (B1)示差走査熱量計(DSC)測定装置内で10分間200℃保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC測定によって観測される融点Tm(B)が100~175℃、好ましくは110~170℃、より好ましくは125~170℃である。
 (B2)アイソタクティックペンタッド分率(mmmm)が90%~99.8%、好ましくは93%~99.7%、より好ましくは95%~99.6%である。
 (B3)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)が0.1~100g/10min、好ましくは1.0~60g/10min、より好ましくは1.5~50g/10minである。
 要件(B1)の融点Tm(B)は、示差走査熱量計(DSC)測定装置内で10分間200℃保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC測定によって決定される。(以下の説明では、このDSC測定法を『本発明に関する第2のDSC測定方法およびDSC曲線作成方法』と呼称する場合がある。)
 また、要件(B2)におけるアイソタクティックペンタッド分率(mmmm)は、13C-NMRを使用して測定される分子鎖中のペンタッド単位でのアイソタクチック連鎖の存在割合を示しており、プロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。
 具体的には、13C-NMRスペクトルで観測されるメチル炭素領域の全吸収ピーク中に占めるmmmmピークの分率として算出される値である。
 なお、このアイソタクティックペンタッド分率(mmmm分率)は、例えば特開2007-186664公報に記載の方法で求めることができる。
 結晶性アイソタクティックポリプロピレン(B)が要件(B1)~(B3)を全て満たすことで軟質ポリプロピレン樹脂組成物(X)の機械物性、耐熱性の向上に寄与するとともに、前記プロピレンコポリマー(A)と良好に相容性する。
 本発明の結晶性アイソタクティックポリプロピレン(B)は、前記要件(B1)~(B3)を満たすものであれば、ホモポリプロピレンであっても、プロピレン・炭素数2~20のα-オレフィン(ただしプロピレンを除く)ランダム共重合体であっても、プロピレンブロック共重合体であってもよいが、好ましくはホモポリプロピレンあるいはプロピレン-炭素数2~20のα-オレフィンランダム共重合体である。
 得られる組成物の耐熱性と剛性の点からは特にホモポリプロピレンが好ましく、得られる組成物が柔軟性と透明性とに優れる点からは、特にプロピレン-炭素数2~20のα-オレフィンランダム共重合体が好ましい。
 ここで、プロピレン以外の炭素原子数が2~20のα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられ、エチレンとの共重合体、炭素原子数が4~10のα-オレフィンとの共重合体またはエチレンと炭素数が4~10のα-オレフィンとの共重合体が好ましい。
 なお通常、プロピレン由来の構成単位は、プロピレン由来の構成単位と、プロピレン以外の炭素数2~20のα-オレフィン由来の構成単位の合計100モル%に対して、90モル%以上含んでいる。
 また本発明で用いられる結晶性アイソタクティックポリプロピレン(B)は、要件(B1)で規定した融点Tm(B)に対応する融解熱量ΔH(B)が50~130J/g、好ましくは55~120J/gであるものが好適である。結晶性アイソタクティックポリプロピレン(B)の融解熱量ΔH(B)がこの範囲にあると、成形性、耐熱性と透明性に優れるとともにべた付きが少ない軟質ポリプロピレン重合体組成物およびポリプロピレン系重合体組成物が得られるため好適である。
 また、本発明における結晶性アイソタクティックポリプロピレン(B)の引張り弾性率は500~3000MPa、好ましくは600~2500MPa、より好ましくは650~2200MPaであることが好ましい。引張り弾性率は、JIS K7113-2に準拠し、2mm厚みのプレスシートを23℃で測定した値である。
 本発明で用いられる結晶性アイソタクティックポリプロピレン(B)は種々の方法により製造することができるが、たとえば立体規則性触媒を用いて製造することができる。
 具体的には、固体状チタン触媒成分と有機金属化合物触媒成分とさらに必要に応じて電子供与体とから形成される触媒を用いて製造することができる。
 固体状チタン触媒成分としては、具体的に、三塩化チタンまたは三塩化チタン組成物が、比表面積が100m2/g以上である担体に担持された固体状チタン触媒成分、あるいはマグネシウム、ハロゲン、電子供与体(好ましくは芳香族カルボン酸エステルまたはアルキル基含有エーテル)およびチタンを必須成分とし、これらの必須成分が比表面積100m2/g以上である担体に担持された固体状チタン触媒成分が挙げられる。
 有機金属化合物触媒成分としては、有機アルミニウム化合物が好ましく、有機アルミニウム化合物としては具体的に、トリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライドなどが挙げられる。
 なお有機アルミニウム化合物は、使用するチタン触媒成分の種類に合わせて適宜選択することができる。
 電子供与体としては、窒素原子、リン原子、硫黄原子、ケイ素原子あるいはホウ素原子などを有する有機化合物を使用することができ、好ましくは前記のような原子を有するエステル化合物およびエーテル化合物などが挙げられる。
 このような触媒は、さらに共粉砕等の手法により活性化されてもよく、また前記のようなオレフィンが前重合されていてもよい。
 本発明における結晶性アイソタクティックポリプロピレン(B)は公知のメタロセン触媒で製造することもできる。
 軟質ポリプロピレン樹脂組成物(X)
 本発明の軟質ポリプロピレン樹脂組成物(X)は、前記プロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)とから構成される組成物である。
 軟質ポリプロピレン樹脂組成物(X)は、プロピレンコポリマー(A)を40~98重量%、好ましくは60~97重量%、より好ましくは70~95重量%、結晶性アイソタクティックポリプロピレン(B)を2~60重量%、好ましくは3~40重量%、より好ましくは5~30重量%含有する(ただし(A)成分と(B)成分との合計を100重量%とする)。
 プロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)の比率がこのような範囲にあることで、柔軟性、ゴム弾性、透明性に優れた軟質ポリプロピレン樹脂組成物(X)が得られるとともに、最適な固化時間を有する接着剤組成物(Y)を得ることができる。
 本発明に用いる軟質ポリプロピレン樹脂組成物(X)を得る方法としては特に制限はないが、プロピレンコポリマー(A)および結晶性アイソタクティックポリプロピレン(B)を同時または逐次に重合して組成物を得る方法、独立に得たプロピレンコポリマー(A)および結晶性アイソタクティックポリプロピレン(B)を混合して得る方法、さらにはプロピレンコポリマー(A)または結晶性アイソタクティックポリプロピレン(B)の一方を先に製造し、他の一方を生産する工程で先に製造したものを投入する方法などが挙げられる。
 本発明の軟質ポリプロピレン樹脂組成物(X)には、本発明の目的を損なわない範囲内で他の重合体を任意成分として含んでいても良い。その場合、配合量には特に制限はないが、例えば本発明の軟質ポリプロピレン樹脂組成物(X)100重量部に対して0.1~30重量部程度であることが好ましい。
 このような他の重合体として好ましいのは、エチレンを主成分(51mol%以上)とするエチレン系重合体または共重合体であり、これらが適量配合されていると軟質ポリプロピレン樹脂組成物(X)の柔軟性や低温特性が向上する。
 また、他の樹脂を含まないで、重合体成分としてはプロピレンコポリマー(A)および結晶性アイソタクティックポリプロピレン(B)のみからなることも1つの態様である。この場合は特に透明性に優れる。
 本発明の軟質ポリプロピレン樹脂組成物(X)には、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、核剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤、銅害防止剤等の添加剤が必要に応じて配合されていてもよい。
 また、本発明の軟質ポリプロピレン樹脂組成物(X)は極性モノマーなどによってグラフト変性されていてもよい。具体的には軟質ポリプロピレン樹脂組成物(X)を構成するプロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)の少なくとも一方または両方が極性モノマーによりグラフト変性されている形態を意味する。
 本発明の軟質ポリプロピレン樹脂組成物(X)としては、以下の要件(X1)、(X2)を満たす物性を有するものが特に好適である。
 (X1)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときの示差走査熱量計(DSC)曲線(『本発明に関する第1のDSC測定方法およびDSC曲線作成方法』)において、30~80℃、好ましくは30~75℃、より好ましくは30~65℃に融解ピークTm(A-X)を有し、さらに100~175℃、好ましくは110~170℃、より好ましくは125~170℃に融解ピークTm(B-X)を示す。なお、Tm(A-X)は前記プロピレンコポリマー(A)に起因するものであり、Tm(B-X)は結晶性アイソタクティックポリプロピレン(B)に起因するものである。
 軟質ポリプロピレン樹脂組成物(X)がこのようなTm(A-X)を有することは、軟質ポリプロピレン樹脂組成物(X)中のプロピレンコポリマー(A)が微小な結晶成分を形成することを意味する。このような微結晶成分を有することでプロピレンコポリマー(A)が上述の結晶性アイソタクティックポリプロピレン(B)の結晶部に一部取り込まれやすくなり、接着剤組成物(Y)の機械物性、ゴム弾性、耐熱性が劇的に向上する。
 (X2)示差走査熱量計(DSC)曲線において、融解ピークTm(A-X)を与える転移熱(融解エンタルピー)ΔH(A-X)が0.5~20J/g、好ましくは0.5~15J/g、より好ましくは0.5~12J/g、融解ピークTm(B-X)を与える転移熱(融解エンタルピー)ΔH(B-X)が3~80J/g、好ましくは5~70J/g、より好ましくは10~60J/gの範囲にある。
 本発明の軟質ポリプロピレン樹脂組成物(X)の硬度は、前記要件(X1)、(X2)を満たすものであれば特に制限はないが、ショアーA硬度が40~95、好ましくは55~93、より好ましくは65~90にあるものが好適である。
 このときのショアーA硬度は、前記した要件(A1)において、プロピレンコポリマー(A)の硬度を測定するときと同一の条件で調製された試験体および方法で決定される。
 本発明の軟質ポリプロピレン樹脂組成物(X)の特に好ましい態様は、前記要件(X1)、(X2)に加えて、下記要件(X3)をみたすものを挙げることができる
 (X3)2mmtプレスシートの内部ヘイズが0.1~30%かつ全光線透過率が75~99.9%、好ましくは内部ヘイズが0.1~25%、全光線透過率が80~99.9%である。なお、内部ヘイズおよび全光線透過率は以下の方法で決定される;190~230℃で加熱溶融させた後15~25℃の冷却温度でプレス成形して得られた2mm厚みの試験体を、日本電色工業(株)製のデジタル濁度計「NDH-2000」、C光源を用いてシクロヘキサノール溶液中で拡散透過光量および全透過光量を測定し、下式により内部ヘイズ、全光線透過率を計算する。
 内部ヘイズ=100×(拡散透過光量)/(全透過光量)
 全光線透過率=100×(全透過光量)/(入射光量)
 本発明に係る軟質ポリプロピレン樹脂組成物(X)は、前記プロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)の相分離構造が観察されないことが特長である。
 この相分離構造の有無については、内部ヘイズおよび全光線透過率測定に用いた試験体と同一の方法で調製された試験体を用いて、これをルテニウム酸にて染色し、透過型電子顕微鏡(TEM)にて観察することで確認できるが、相分離構造を示さなければ通常軟質ポリプロピレン樹脂組成物(X)の内部ヘイズおよび全光線透過率が上記範囲にある。
 また、本発明に係る軟質ポリプロピレン樹脂組成物(X)のメルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)は、上記プロピレンコポリマー(A)と結晶性アイソタクティックポリプロピレン(B)のMFRに依存する。通常、0.5~500g/10min、好ましくは1~50g/10min、さらに好ましくは2~12g/10minの範囲にある。
 粘着付与剤(C)
 本発明で用いられる粘着付与剤(C)としては、例えば、天然ロジン、変性ロジン、ポリテルペン系樹脂、合成石油樹脂、クマロン系樹脂、フェノール系樹脂、キシレン系樹脂、スチレン系樹脂、低分子量スチレン系樹脂、およびイソプレン系樹脂から選ばれる少なくとも1種の樹脂を挙げることができる。
 これらの中でも、ロジン系樹脂、ポリテルペン系樹脂、合成石油樹脂が好ましく、さらに脂肪族および/または脂環式構造を有するものがより好ましい。
 ここで脂肪族および/または脂環式構造を有する石油樹脂類として特に好ましいものとして、ロジン系樹脂では部分および完全水添ロジンとそれらの誘導体、ポリテルペン系樹脂では環状テルペンの単独重合体あるいは共重合体、合成石油樹脂では脂肪族系石油樹脂、脂環式系石油樹脂、脂肪族-脂環式共重合樹脂、ナフサ分解油と各種テルペンとの共重合体の水添物が挙げられる。
 前記軟質ポリプロピレン樹脂組成物(X)との相容性に優れるこれらを選択することで、後述の接着剤組成物(Y)の透明性が良好になる。
 本発明では、軟化点が 25~160℃の範囲のものが好ましく、軟化点が25℃未満のものでは表面にブリードするおそれがあり、逆に160℃を越えるものでは、溶融時の粘度が高くなり加工性が不良になる。具体的には、荒川化学工業社製のアルコンP-70、アルコンP-90、アルコンP-100 、アルコンP-115、アルコンP-125、アルコンP-140(以上、いずれも商品名)などが好適に使用される。
 これらの粘着付与剤(C)は単独で、あるいは2種以上を混合して使用することができる。
 接着剤組成物(Y)および接着剤組成物(Y2)
 本発明の接着剤組成物(Y)は、前記軟質ポリプロピレン樹脂組成物(X)10~70重量部、好ましくは15~65重量部、より好ましくは25~60重量部と、前記粘着付与剤(C)30~90重量部、好ましくは35~85重量部、より好ましくは40~75重量部(ここで成分(X)と成分(C)の合計量を100重量部とする)からなる。
 接着剤組成物(Y)がこのような組成で形成されることによって、柔軟性、機械物性、耐熱性、接着特性などの諸物性をバランスすることができる。
 特に、柔軟性が要求される用途においては、軟質ポリプロピレン樹脂組成物(X)が粘着付与剤(C)よりも多くなる組成が好ましい。
 具体的には軟質ポリプロピレン樹脂組成物(X)51~70重量部、好ましくは55~65重量部と前記粘着付与剤(C)30~49重量部、好ましくは35~45重量部が好ましい。
 さらに本発明では、必要に応じて以下の流動改質剤配合することができる。
 流動改質剤としては、例えばパラフィン系プロセスオイル、ポリオレフィン系ワックス、低分子量ポリオレフィン、フタル酸エステル類、アジピン酸エステル類、脂肪酸エステル類、グリコール類、エポキシ系高分子可塑剤、ナフテン系オイルなど、接着剤組成物(Y)の溶融粘度を低下させるものであれば公知のものが使用できるが、なかでもポリオレフィン系ワックス、低分子量ポリオレフィンが好ましく、特に190℃での溶融粘度が1~15000mPa・s、好ましくは10~12000mPa・s、より好ましくは25~10000mPa・sの低分子量プロピレン重合体(D)が好適に使用できる。
 このような低分子量プロピレン重合体(D)は、プロピレン由来の構成単位を40~100モル%、好ましくは60~100モル%、特に好ましくは75~100モル%からなる重合体であり、例えばポリプロピレンワックス(三井化学(株)製 ハイワックス)や非晶性ポリプロピレンなどであり、接着剤組成物(Y2)中の軟質ポリプロピレン樹脂組成物(X)との相容性に優れたこれらを使用することで機械物性、耐熱性、透明性を損なうことなく流動性を向上できるため特に好適である。低分子量プロピレン重合体(D)の立体規則性については特に限定されないが、軟質ポリプロピレン樹脂組成物(X)との相容性がさらに良好になる点で、アタクテッィクポリプロピレン系重合体またはアイソタクテッィクポリプロピレン系重合体が好ましい。
 また、非晶性ポリプロピレンとしては、特に限定されないが、好ましくは、耐熱性の観点から、融解ピークTmが75~160℃、より好ましくは100~155℃を有し、さらに融解ピークTmを与える転移熱(融解エンタルピー)ΔHが5~60J/g、より好ましくは15~45J/gを有するものである。DSC測定装置内で10分間200℃保持した後、降温速度20℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度20℃/minで200℃まで加熱することでDSC曲線を作成した。
 このような低分子量プロピレン重合体(D)を用いた、本発明のもう一つの形態である接着剤組成物(Y2)は、接着剤組成物(Y)100重量部に、前記低分子量プロピレン重合体(D)を5~1000重量部、好ましくは5~150重量部、より好ましくは10~120重量部配合してなる。
 これらの流動改質剤は単独で、あるいは2種以上を混合して使用してもよい。
 さらに本発明では、本発明の目的を損なわない範囲であれば、接着剤組成物(Y)または接着剤組成物(Y2)に対して無機フィラー、酸化防止剤、耐候安定剤などの各種添加剤を配合できる。
 本発明の接着剤組成物(Y)は前記軟質ポリプロピレン樹脂組成物(X)と粘着付与剤(C)、さらに必要に応じて使用される無機フィラー、酸化防止剤、耐候安定剤などの各種添加剤を溶融混合することによって得られる。
 また、本発明の接着剤組成物(Y2)は前記軟質ポリプロピレン樹脂組成物(X)と粘着付与剤(C)、低分子量プロピレン重合体(D)、さらに必要に応じて使用される無機フィラー、酸化防止剤、耐候安定剤などの各種添加剤を溶融混合することによって得られる。
 溶融混合の方法は、特に限定されることはなく、公知の混合方法、例えば、押出機、オープンロールミル、バンバリーミキサー、ニーダー、溶融混合槽等が挙げられる。溶融混合温度は通常100~250℃であり、好ましくは160~230℃である。
 本発明の接着剤組成物(Y)または接着剤組成物(Y2)は適度な固化時間を有するため、オープンタイムを長く調節することができる。そのため、本発明の接着剤組成物(Y)または接着剤組成物(Y2)はホットメルト型接着剤、感圧型接着剤として好適に利用できるが、中でもホットメルト型接着剤として好適に利用できる。
 本発明の接着剤組成物(Y)または接着剤組成物(Y2)は、プラスティック、ガラス、金属、繊維、人口・天然皮革、紙、木材など様々な被着体を貼りあわせるための接着剤として利用できるが、特に、少なくとも一方の被着体がプラスティック材料である場合が好適であり、中でもポリオレフィン材料、特に好ましくはポリプロピレン材料である場合が好ましい。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 初めに、実施例で使用した接着剤組成物を構成する各成分(本発明のプロピレンコポリマー(A)に対応する成分、本発明の結晶性アイソタクティックポリプロピレン(B)に対応する成分、本発明の軟質ポリプロピレン樹脂組成物(X)に対応する成分)と、比較例で用いた接着剤組成物を構成する各成分について説明する。
 (1)組成物の構成成分
 (1-1)本発明に係るプロピレンコポリマー(A)に対応するプロピレン・エチレン・1-ブテン共重合体
 重合用触媒/助触媒として、特開2007-186664号公報に記載の方法で調製したジフェニルメチレン(3-tert-ブチル-5-エチルシクロペンタジエニル)(2,7-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド/メチルアルミノキサン(東ソー・ファインケム社製、アルミニウム換算で0.3mmol)と、原料となるエチレン、プロピレン、1-ブテンを、連続重合設備を用いてヘキサン溶液中で重合することで以下の2種類のプロピレン・エチレン・1-ブテン共重合体(PEBR-1)、(PEBR-2)を得た。これらのPEBR-1、PEBR-2の物性を表1に示す。また、DSCカーブ(第一のDSC測定法)を各々、図1および図2に示す。
 (1-2)比較例に用いたプロピレン・エチレン共重合体(PER)
 エクソンモービル社製 VISTAMAXX(銘柄名 VM6100)を使用した。このPERの物性を表1に示す。また、DSCカーブ(第一のDSC測定法)を図3に示す。
 (1-3)比較例に用いたプロピレン・1-ブテン共重合体(PBR)
 国際公開第2004/087775号パンフレットに記載のメタロセン触媒を用いてプロピレン・1-ブテン共重合体(PBR)を得た。このPBRの物性を表1に示す。
 なお、上記各成分の物性値は以下の方法で測定した。
 [ショアーA硬度]
 190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して3mm厚みのプレスシートを作成した。これを23℃±2℃の環境下で72時間保管して後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。
 なお、プレス成形の際には離型フィルムとして、100μmPETフィルム(東レ製、ルミラー)を使用した。
 [コモノマー含量]
 13C-NMRスペクトルの解析により求めた。
 [分子量分布(Mw/Mn)]
 GPC(ゲルパーミエーションクロマトグラフィー)を用い、オルトジクロロベンゼン溶媒(移動相)とし、カラム温度140℃で測定した(ポリスチレン換算、Mw:重量平均分子量、Mn:数平均分子量)。具体的には分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC- 2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本、およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5 mm、長さ300 mmであり、カラム温度は140 ℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用いて、1.0 ml/分で移動させ、試料濃度は15 mg/10 mlとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw <1000、およびMw >4×106については東ソー社製を用いて、1000 ≦ Mw ≦4×106についてはプレッシャーケミカル社製を用いた。
 [立体規則性(mm)]
 13C-NMRスペクトルの解析により求めた。
 [B値]
 特開2007-186664号公報に記載された方法に従って、13C-NMRスペクトルの解析により求めた。
 [位置規則性(インバージョン)]
 13C-NMRスペクトルの解析により求めた。
 [ガラス転移温度(Tg)]
 パーキンエルマー社製の測定装置を用い、本発明に関する第1のDSC測定方法およびDSC曲線作成方法で得られた吸熱曲線を解析して求めた。
 [メルトフローレート(MFR)]
 ASTMD1238に準拠し、230℃、2.16kg荷重下で測定した。
 [融点、融解エンタルピー]
 融点および融解エンタルピーは、以下の『本発明に関する第1のDSC測定方法およびDSC曲線作成方法』に基づいて解析した。なおパーキンエルマー社製の測定装置を用い、試験体は、ショアーA硬度測定に用いたものと同一の条件で作成した3mm厚みのプレスシートを試験前に23℃±2℃で2週間の状態調節を行ったものを用いた。
 『本発明に関する第1のDSC測定方法およびDSC曲線作成方法』
 23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃まで冷却してから昇温速度10℃/minで測定したときに得られるDSC曲線を作成した。このときに得られた融点をTm(A)1、融解エンタルピーをΔH(A)1とした。
 なお、本発明に係るプロピレンコポリマー(A)を、後述する結晶性アイソタクティックポリプロピレン(B)の融点決定のために用いた『本発明に関する第2のDSC測定方法およびDSC曲線作成方法』で測定した場合は、融点が観測されない場合もあるが、このようなプロピレンコポリマー(A)も本願発明では好適に使用される。
 [動的固体粘弾性測定(DMA)によって観測される貯蔵弾性率(E’)]
 Rheometrics社製のRSA-II型試験機にて、引張りモード、測定周波数1Hz、昇温速度3℃/min、測定温度は-40~100℃(または測定限界温度)の範囲で測定し、E’の温度依存性を示す曲線を得た。この曲線を解析して、23℃、40℃におけるE’(MPa)および、E’が1MPa未満になる温度を解析した。なお、試験体は、ショアーA硬度測定に用いたものと同一の条件で作成した500μm厚みのプレスシートを用いた、試験前に23℃±2℃で72時間の状態調節を行った。
Figure JPOXMLDOC01-appb-T000004
 (2)本発明に係る結晶性アイソタクティックポリプロピレン(B)に対応する成分
 (2-1)本発明の結晶性アイソタクティックポリプロピレン(B)に対応するアイソタクティックポリプロピレン(PP)
 Tm=160.4℃、ΔH=99.6J/g、MFR(230℃、2.16kg荷重)=3.0g/10min、mmmm=97.9%
 上記アイソタクティックポリプロピレン(PP)の物性値は、以下の方法で測定した。
 [融点、融解エンタルピー]
 融点Tm(B)および融解エンタルピーΔH(B)は、以下の『本発明に関する第2のDSC測定方法およびDSC曲線作成方法』に基づいて解析した。なおパーキンエルマー社製の測定装置を用いた。
 『本発明に関する第2のDSC測定方法およびDSC曲線作成方法』
 DSC測定装置内で10分間200℃保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC曲線を作成した。
 [立体規則性(mmmm)]
 13C-NMRスペクトルの解析により求めた。
 [メルトフローレート(MFR)]
 プロピレンコポリマー(A)のMFR測定法(既述)と同一方法を採用した。
 (3)本発明に係る軟質ポリプロピレン樹脂組成物(X)に対応する成分、またはこれと比較した成分
 (3-1)プロピレン・エチレン・1-ブテン共重合体(PEBR-1)とアイソタクティックポリプロピレン(PP)からなる軟質ポリプロピレン樹脂組成物(X-1)
 前記のプロピレン・エチレン・1-ブテン共重合体(PEBR-1)85wt%、アイソタクティックポリプロピレン(PP)15wt%を、ラボプラストミル(東洋精機製)にて混練(190℃、3min、40rpm)し、軟質ポリプロピレン樹脂組成物(X1)を得た。軟質ポリプロピレン樹脂組成物(X1)の物性を表2に示す。また、DSCカーブ(第一のDSC測定法)を図4に示す。
 なお、軟質ポリプロピレン樹脂組成物(X1)を後述する実施例1、2および実施例5、6に用いた。
 (3-2)プロピレン・エチレン・1-ブテン共重合体(PEBR-2)とアイソタクティックポリプロピレン(PP)からなる軟質ポリプロピレン樹脂組成物(X-2)
 前記のプロピレン・エチレン・1-ブテン共重合体(PEBR-2)90wt%、アイソタクティックポリプロピレン(PP)10wt%を、ラボプラストミル(東洋精機製)にて混練(190℃、3min、40rpm)し、軟質ポリプロピレン樹脂組成物(X2)を得た。軟質ポリプロピレン樹脂組成物(X2)の物性を表2に示す。また、DSCカーブ(第一のDSC測定法)を図5に示す。
 なお、軟質ポリプロピレン樹脂組成物(X2)を後述する実施例3および4に用いた。
 (3-3)プロピレン・エチレン共重合体(PER)とアイソタクティックポリプロピレン(PP)からなる軟質ポリプロピレン樹脂組成物(X-3)
 前記のプロピレン・エチレン共重合体(PER)85wt%、アイソタクティックポリプロピレン(PP)15wt%を、ラボプラストミル(東洋精機製)にて混練(190℃、3min、40rpm)し、軟質ポリプロピレン樹脂組成物(X3)を得た。軟質ポリプロピレン樹脂組成物(X3)の物性を表2に示す。また、DSCカーブ(第一のDSC測定法)を図6に示す。
 なお、軟質ポリプロピレン樹脂組成物(X3)を後述する比較例3および5に用いた。
 (3-4)市販の軟質ポリプロピレン材料
 住友化学製 タフセレン(登録商標)(銘柄名:T-1712)を用い、これを軟質ポリプロピレン樹脂組成物(X4)とした。軟質ポリプロピレン樹脂組成物(X4)の物性を表2に示す。また、DSCカーブ(第一のDSC測定法)を図7に示す。
 軟質ポリプロピレン樹脂組成物(X4)は130℃付近に融点を有することから、上記軟質ポリプロピレン樹脂組成物(X1)~(X3)中のアイソタクティックポリプロピレン(PP)に対応する結晶性ポリプロピレン成分を含有していることがわかる。
 また、軟質ポリプロピレン樹脂組成物(X4)の位置規則性(インバージョン)を、上記の発明のプロピレンコポリマー(A)に対応する成分と同一の方法で評価した。このときのNMR測定結果(15.0~17.5ppm付近)について、先のプロピレン・エチレン・1-ブテン共重合体(PEBR-1)と比較したものを図8に示す。
 図8より、軟質ポリプロピレン樹脂組成物(X4)は15.0~17.5ppm付近に大きなピークを有していることから、軟質ポリプロピレン樹脂組成物(X4)は位置規則性が低い材料といえる。
 なお、上記組成物の物性値は以下の方法で測定した。
 [融点、融解エンタルピー]
 融点Tm(A-X)およびTm(B-X)および融解エンタルピーΔH(A-X)、ΔH(B-X)は、前記した『本発明に関する第1のDSC測定方法およびDSC曲線作成方法』に基づいて解析した。なおパーキンエルマー社製の測定装置を用い、試験体は、ショアーA硬度測定に用いたものと同一の条件で作成した3mm厚みのプレスシートを試験前に23℃±2℃で2週間の状態調節を行ったものを用いた。
 [ヘイズ、光線透過率]
 ショアーA硬度測定に用いたものと同一の条件で作成した2mm厚みのプレスシートを、日本電色工業(株)製のデジタル濁度計「NDH-2000」、C光源を用いてシクロヘキサノール溶液中で拡散透過光量および全透過光量を測定し、下式により内部ヘイズ、全光線透過率を計算した。
 内部ヘイズ=100×(拡散透過光量)/(全透過光量)
 全光線透過率=100×(全透過光量)/(入射光量)
 [ショアーA硬度]
 プロピレンコポリマー(A)のショアーA硬度測定法(既述)と同一方法を採用した。
 [メルトフローレート(MFR)]
 プロピレンコポリマー(A)のMFR測定法(既述)と同一方法を採用した。
Figure JPOXMLDOC01-appb-T000005
 次に、本発明の実施例・比較例で調製した接着剤組成物の評価項目・評価方法について説明する。
 [柔軟性(ショアーA硬度、ショアーD硬度)]
 実施例または比較例に記載の方法で調製した接着剤組成物を用い、190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して3mm厚みのプレスシートを作成した。
 これを23℃±2℃の環境下で72時間保管して後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。ショアーA硬度が90を超えるものについては、D型測定器を用い、押針接触後5病後の目盛りを読み取った(ASTM D-2240に準拠)。
 なお、プレス成形の際には離型フィルムとして、表面にシリコン処理をした50μmの離形PETフィルム(東レフィルム加工製、セラピール)を使用した。
 [ゴム弾性(圧縮永久歪 CS)]
 実施例または比較例に記載の方法で調製した接着剤組成物を用い、190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作成した。
 なお、プレス成形の際には離型フィルムとして、表面にシリコン処理をした50μmの離形PETフィルム(東レフィルム加工製、セラピール)を使用した。
 これを6枚重ねて25%圧縮し、所定の温度(23℃、または70℃)で24時間保持した後解放し、試験後厚みを測定した。この結果より、下式に従って、24時間保持後の残留歪(圧縮永久歪)を算出した。
 残留歪(%)=100×(試験前厚み-試験後厚み)/(試験前厚み-圧縮時の厚み)
 この残留歪値が低いほどゴム弾性を有することを意味する。
 [機械物性(常温)]
 実施例または比較例に記載の方法で調製した接着剤組成物を用い、190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作成した。
 これをJIS K7113-2に準拠して破断点強度(TS)、破断点伸び(チャック間、EL)、ヤング率(YM)を測定した(測定温度23℃、引張り速度=200mm/min、最大歪=800%)。また、歪=800%で破断しなかったものは、このときの応力をTSとした。
 なお、プレス成形の際には離型フィルムとして、表面にシリコン処理をした50μmの離形PETフィルム(東レフィルム加工製、セラピール)を使用した。
 [機械物性(高温)]
 実施例または比較例に記載の方法で調製した接着剤組成物を用い、190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作成した。
 これを80℃の恒温槽に設置した引張り試験機を用い、JIS K7113-2に準拠して300%まで伸張した際に観測された最大の応力σを測定した。すなわち、降伏点(YS)が観測されたものはこの値が、YSが観測されないものについては300%伸張時の応力がσに対応する。
 なお、プレス成形の際には離型フィルムとして、表面にシリコン処理をした50μmの離形PETフィルム(東レフィルム加工製、セラピール)を使用した。
 [耐熱クリープ (I)(接着クリープ試験)]
 実施例または比較例に記載の方法で調製した接着剤組成物を、卓上ハンドプレス(190℃)を用いてこれをステンレス板(SUS304-BA板、50mm×100mm、94g)に張り合わせて接着試験サンプルを作成した(接着剤厚み=400μm、接着幅=10mm、図9参考)。
 この接着試験サンプルを80℃に設定したオーブンに投入し、片側を固定して吊り下げた状態で120g/cm2になるよう荷重を与え、30分保持して安定させた。
 この後、オーブンの設定温度を180℃とし、オーブン内を徐々に昇温させながらサンプルが落下する温度を観察し、これを落下温度とした。また、80℃で30分保持している際に落下したものは80℃を落下温度とした。
 落下後のサンプルの破壊形態を観測し、凝集破壊(接着剤組成物が破壊)であるか、界面剥離(SUS板との界面で剥離)を観察した。凝集破壊のものはSUS板と良好な接着力を有すると判断した。
 [透明性(全ヘイズ、全光線透過率)]
 実施例または比較例に記載の方法で調製した接着剤組成物を用い、190℃に設定した油圧式熱プレス成形機を用いて5分余熱した後2分間加圧、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作成した。
 なお、プレス成形の際には離型フィルムとして、表面にシリコン処理をした50μmの離形PETフィルム(東レフィルム加工製、セラピール)を使用した。
 このプレスシートを、日本電色工業(株)製のデジタル濁度計「NDH-2000」、C光源を用いて空気中で拡散透過光量および全透過光量を測定し、下式により全ヘイズ、全光線透過率を計算した。
 全ヘイズ=100×(拡散透過光量)/(全透過光量)
 全光線透過率=100×(全透過光量)/(入射光量)
 [固化速度(結晶化速度)]
 固化速度については、DSC測定において観測される結晶化温度Tcをもって評価した。このときの結晶化温度Tcは以下の『本発明に関する第3のDSC測定方法およびDSC曲線作成方法』に基づいて解析し、降温速度20℃/minで200℃から-20℃まで冷却している間に観測される最大の発熱ピークをTcとした。
 また、200℃から-20℃まで降温する間にピークの大小に関わらずTcが観測されなかったものは、-20℃で1分間保持した後の再度昇温速度20℃/minで-20℃から200℃まで測定している間に観測される最大の発熱ピークをTcとした。なおパーキンエルマー社製の測定装置を用いた。
 『本発明に関する第3のDSC測定方法およびDSC曲線作成方法』
 DSC測定装置内で10分間200℃保持した後、降温速度20℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度20℃/minで200℃まで加熱することでDSC曲線を作成した。
 〔実施例1〕
 軟質ポリプロピレン樹脂組成物(X1)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-1を得た。接着剤組成物(Y)-1の評価結果を表3に示す。
 〔実施例2〕
 軟質ポリプロピレン樹脂組成物(X1)40重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)60重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-2を得た。接着剤組成物(Y)-2の評価結果を表3に示す。
 〔実施例3〕
 軟質ポリプロピレン樹脂組成物(X2)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-3を得た。接着剤組成物(Y)-3の評価結果を表3に示す。
 〔実施例4〕
 軟質ポリプロピレン樹脂組成物(X2)40重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)60重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-4を得た。接着剤組成物(Y)-4の評価結果を表3に示す。
 〔比較例1〕
 実施例1で用いた軟質ポリプロピレン樹脂組成物(X1)の代わりに先のプロピレン・エチレン共重合体(PER)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-5を得た。接着剤組成物(Y)-5の評価結果を表3に示す。
 〔比較例2〕
 実施例1で用いた軟質ポリプロピレン樹脂組成物(X1)の代わりに先のプロピレン・1-ブテン共重合体(PBR)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-6を得た。接着剤組成物(Y)-6の評価結果を表3に示す。
 〔比較例3〕
 実施例1で用いた軟質ポリプロピレン樹脂組成物(X1)の代わりに先の軟質ポリプロピレン樹脂組成物(X3)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-7を得た。接着剤組成物(Y)-7の評価結果を表3に示す。
 〔比較例4〕
 実施例1で用いた軟質ポリプロピレン樹脂組成物(X1)の代わりに先の軟質ポリプロピレン樹脂組成物(X4)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部を、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y)-8を得た。接着剤組成物(Y)-8の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 〔実施例5〕
 軟質ポリプロピレン樹脂組成物(X1)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部と、(X1)および(C)の合計量100重量部に対し、低分子量プロピレン重合体(D1)としてポリプロピレンワックス(三井化学製、銘柄名:NP055、190℃における溶融粘度52mPa・s)30重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y2)-1を得た。接着剤組成物(Y2)-1の評価結果を表4に示す。なお、ポリプロピレンワックスの溶融粘度はブルックフィールド型粘度計により、190℃の値を測定した。
 〔実施例6〕
 軟質ポリプロピレン樹脂組成物(X1)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部と、(X1)および(C)の合計量100重量部に対し、低分子量プロピレン重合体(D2)としてAPAO(ハンツマン製、銘柄名:RT2180、190℃における溶融粘度8000mPa・s)30重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y2)-2を得た。接着剤組成物(Y2)-1の評価結果を表4に示す。なお、APAOの溶融粘度はブルックフィールド型粘度計により、190℃の値を測定した。
 〔比較例5〕
 実施例5で用いた軟質ポリプロピレン樹脂組成物(X1)のかわりに軟質ポリプロピレン樹脂組成物(X3)60重量部、さらに粘着付与剤(C)(脂環族飽和炭化水素樹脂、荒川化学製、商標:アルコン P-125)40重量部と、(X1)および(C)の合計量100重量部に対し、低分子量プロピレン重合体(D1)としてポリプロピレンワックス(三井化学製、銘柄名:NP055、190℃における溶融粘度52mPa・s)30重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(190℃、5min、60rpm)して接着剤組成物(Y2)-2を得た。接着剤組成物(Y2)-1の評価結果を表4に示す。なお、ポリプロピレンワックスの溶融粘度はブルックフィールド型粘度計により、190℃の値を測定した。
Figure JPOXMLDOC01-appb-T000007
 以上の結果から以下のことが結論付けられる。
 実施例1、3が示すように、本発明の接着剤組成物(Y)は良好な柔軟性、ゴム弾性を有しており、良好な応力・変形追従性を有している。また、本発明の接着剤組成物(Y)は柔軟でありながら高温での強度や接着性能も良好であり、耐熱性にも優れている。
 さらに、実施例1~4、5、6が示すように、本発明の接着剤組成物(Y)は良好な透明性を有している。また、実施例1、2が示すように本発明の接着剤組成物は適度な固化時間を有しており、ホットメルト接着剤のオープンタイムを長く調整できる。
 次に、参考例として、軟質ポリプロピレン樹脂組成物(X)に低分子量ポリプロピレン(D)を添加したときの流動性および耐熱性について説明する。
 軟質ポリプロピレン樹脂組成物(X)に低分子量ポリプロピレン(D)を添加することで流動性および耐熱性の改質が可能である。軟質ポリプロピレン樹脂組成物(X)と低分子量ポリプロピレン(D)からなる組成物(Z)について以下に参考比較例および参考例を挙げる。なお、融点Tmおよび融解エンタルピーΔHmは『本発明に関する第3のDSC測定方法およびDSC曲線測定方法』に基づいて測定を行った。また、組成物(Z)のメルトフローレートおよび耐熱クリープは、以下の方法により測定し、柔軟性および機械物性は、上記実施例・比較例で調製した接着剤組成物の評価項目・評価方法と同様に行った。
 [メルトフローレート(MFR)]
 ASTMD1238に準拠し、230℃、2.16kg荷重下で測定した。
 [耐熱クリープ (II) (耐熱クリープ量(%))]
 比較参考例または参考例に記載の接着剤組成物を用いて、190℃に設定した油圧式熱プレス成形機を用いて3分余熱した後、3分間加圧、すぐに20℃に設定した冷却槽で3分間冷却して2mm厚みのプレスシートを作製した。これより幅5mm、長さ40mmの試験片を作製し、粘弾性測定装置(ティー・エイ・インスツルメント社製、RSA-III)を用いて測定した。具体的には、室温下で試験片の上下端を20mmとなるようにチャック治具で軽く固定し、-40℃に冷却後しっかりと固定した。100℃まで昇温させ温度が安定した後、0.1MPaの張力を加え、30分後のクリープ量(%)を測定した。
 なお、プレス成形の際には離型フィルムとして、100μmPETフィルム(東レ製、ルミラー)を使用した。
 〔参考比較例1〕
 軟質ポリプロピレン樹脂組成物(X1)を用いた。評価結果を表5に示す。
 〔参考例1〕
 軟質ポリプロピレン樹脂組成物(X1)80重量部、さらに低分子量プロピレン重合体(D2)としてAPAO(ハンツマン製、銘柄名:RT2180、190℃における溶融粘度8000mPa・s、融点Tm152℃、融解エンタルピーΔHm32.5J/g)20重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(200℃、10min、40rpm)して組成物(Z)-1を得た。組成物(Z)-1の評価結果を表5に示す。
 〔参考例2〕
 軟質ポリプロピレン樹脂組成物(X1)60重量部、さらに低分子量プロピレン重合体(D2)としてAPAO(ハンツマン製、銘柄名:RT2180、190℃における溶融粘度8000mPa・s、融点Tm152℃、融解エンタルピーΔHm32.5J/g)40重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(200℃、10min、40rpm)して組成物(Z)-2を得た。組成物(Z)-2の評価結果を表5に示す。
 〔参考比較例2〕
 軟質ポリプロピレン樹脂組成物(X2)を用いた。評価結果を表5に示す。
 〔参考例3〕
 軟質ポリプロピレン樹脂組成物(X2)80重量部、さらに低分子量プロピレン重合体(D2)としてAPAO(ハンツマン製、銘柄名:RT2180、190℃における溶融粘度8000mPa・s、融点Tm152℃、融解エンタルピーΔHm32.5J/g)20重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(200℃、10min、40rpm)して組成物(Z)-3を得た。組成物(Z)-3の評価結果を表5に示す。
 〔参考例4〕
 軟質ポリプロピレン樹脂組成物(X2)60重量部、さらに低分子量プロピレン重合体(D2)としてAPAO(ハンツマン製、銘柄名:RT2180、190℃における溶融粘度8000mPa・s、融点Tm152℃、融解エンタルピーΔHm32.5J/g)40重量部を配合したものを、ラボプラストミル(東洋精機製)にて混練(200℃、10min、40rpm)して組成物(Z)-4を得た。組成物(Z)-4の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 以上の参考比較例および参考例から次のことが示唆される。
 参考比較例1および参考例1、2が示すように、組成物(Z)-1および(Z)-2は軟質ポリプロピレン樹脂組成物(X1)と比較し、メルトフローレートの増加および耐熱クリープ量の減少が認められる。これは流動性および耐熱性の向上を意味する。同様に、参考比較例2および参考例3、4が示すように、組成物(Z)-3および(Z)-4は軟質ポリプロピレン樹脂組成物(X2)と比較し、流動性および耐熱性の向上が認められる。

Claims (12)

  1.  下記要件(A1)~(A8)を満たすプロピレンコポリマー(A)40~98重量%、下記要件(B1)~(B3)を満たす結晶性アイソタクティックポリプロピレン(B)2~60重量%からなる軟質ポリプロピレン樹脂組成物(X)10~70重量部と、
     粘着付与剤(C)30~90重量部(ここで成分(X)と成分(C)の合計量を100重量部とする)からなる接着剤組成物(Y)。
     (A1)ショアーA硬度が20~90の範囲にある。
     (A2)プロピレン由来の構成単位を51~90モル%、エチレン由来の構成単位を7~24モル%、炭素数4~20のα-オレフィン由来の構成単位を3~25モル%含むプロピレンとエチレンと炭素数4~20のα-オレフィンとの共重合体である(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位の合計を100モル%とする)。
     (A3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2~3.5である。
     (A4)13C-NMRにより算出したアイソタクティックトライアッド分率(mm)が85~99.9%である。
     (A5)下記式(1)で定義されるB値が0.8~1.3である。
    Figure JPOXMLDOC01-appb-M000001

     (式中、MOEは、プロピレンとエチレンの連鎖と炭素数4以上のα-オレフィンとエチレンの連鎖の合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンと炭素数4以上のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
     (A6)13C-NMR測定において解析される、全プロピレン挿入中のプロピレンモノマーの2,1-結合量が1%未満である。
     (A7)ガラス転移温度(Tg)が-10℃~-50℃の範囲に観測される。
     (A8)MFR(ASTMD1238、230℃、2.16kg荷重)が0.5~500g/10minである。
     (B1)示差走査熱量計(DSC)測定装置内で10分間200℃保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC測定によって観測される融点Tm(B)が100~175℃である。
     (B2)アイソタクティックペンタッド分率(mmmm)が90~99.8%である。
     (B3)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)が0.1~100g/10minである。
  2.  プロピレンコポリマー(A)がさらに下記(A9)および(A10)から選ばれる一つ以上の要件を満たすことを特徴とする請求項1に記載の接着剤組成物(Y)。
     (A9)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときに得られる示差走査熱量計(DSC)曲線において、融解ピークTm(A)1が30~80℃に観測される。
     (A10)23℃±2℃で72時間以上の状態調節を実施した後の試験体を、-40℃以下まで冷却してから昇温速度3℃/minで測定したときの動的固体粘弾性測定において、23℃~40℃における貯蔵弾性率が1MPa~100MPaの範囲にある。
  3.  軟質ポリプロピレン樹脂組成物(X)が下記要件(X1)を満たすことを特徴とする請求項1または2に記載の接着剤組成物(Y)。
     (X1)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときの示差走査熱量計(DSC)曲線において、30~80℃に融解ピークTm(A-X)を有し、さらに100~175℃に融解ピークTm(B-X)を示す。
  4.  軟質ポリプロピレン樹脂組成物(X)がさらに下記要件(X2)を満たすことを特徴とする請求項1~3のいずれかに記載の接着剤組成物(Y)。
     (X2)23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃以下まで冷却してから昇温速度10℃/minで測定したときの示差走査熱量計(DSC)曲線において、融解ピークTm(A-X)を与える転移熱(融解エンタルピー)ΔH(A-X)が0.5~20J/g、融解ピークTm(B-X)を与える転移熱(融解エンタルピー)ΔH(B-X)が3~80J/gである。
  5.  軟質ポリプロピレン樹脂組成物(X)がさらに下記要件(X3)を満たすことを特徴とする請求項1~4のいずれかに記載の接着剤組成物(Y)。
     (X3)2mmtプレスシートの内部ヘイズが0.1~30%かつ全光線透過率が75~99.9%である。
  6.  請求項1~5のいずれかに記載の接着剤組成物(Y)100重量部に、190℃での溶融粘度が1~15000mPa・sの低分子量プロピレン重合体(D)を5~1000重量部配合してなる接着剤組成物(Y2)。
  7.  請求項1~5のいずれかに記載の接着剤組成物(Y)100重量部に、190℃での溶融粘度が1~15000mPa・sの低分子量プロピレン重合体(D)を5~150重量部配合してなる接着剤組成物(Y2)。
  8.  前記低分子量プロピレン重合体(D)が、アイソタクティックポリプロピレン系重合体もしくはアタクテッィクポリプロピレン系重合体であることを特徴とする請求項6または7に記載の接着剤組成物(Y2)。
  9.  請求項1~5のいずれかに記載の接着剤組成物(Y)からなるホットメルト型接着剤。
  10.  請求項6~8のいずれかに記載の接着剤組成物(Y2)からなるホットメルト型接着剤。
  11.  請求項1~5のいずれかに記載の接着剤組成物(Y)からなる感圧型接着剤。
  12.  請求項6~8のいずれかに記載の接着剤組成物(Y2)からなる感圧型接着剤。
PCT/JP2009/065048 2008-09-18 2009-08-28 接着剤組成物及びこれからなる接着剤 WO2010032600A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010529704A JP5438682B2 (ja) 2008-09-18 2009-08-28 接着剤組成物及びこれからなる接着剤
EP09814445A EP2327750B1 (en) 2008-09-18 2009-08-28 Adhesive composition and adhesive agent comprising same
CN200980136607XA CN102159660B (zh) 2008-09-18 2009-08-28 粘合剂组合物以及由该组合物构成的粘合剂
KR1020117007520A KR101281896B1 (ko) 2008-09-18 2009-08-28 접착제 조성물 및 이것으로 이루어지는 접착제
US13/119,508 US9273202B2 (en) 2008-09-18 2009-08-28 Adhesive composition and adhesive containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-239862 2008-09-18
JP2008239862 2008-09-18

Publications (2)

Publication Number Publication Date
WO2010032600A1 true WO2010032600A1 (ja) 2010-03-25
WO2010032600A8 WO2010032600A8 (ja) 2010-08-05

Family

ID=42039436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065048 WO2010032600A1 (ja) 2008-09-18 2009-08-28 接着剤組成物及びこれからなる接着剤

Country Status (6)

Country Link
US (1) US9273202B2 (ja)
EP (1) EP2327750B1 (ja)
JP (1) JP5438682B2 (ja)
KR (1) KR101281896B1 (ja)
CN (1) CN102159660B (ja)
WO (1) WO2010032600A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041838A1 (de) * 2010-09-27 2012-04-05 Henkel Ag & Co. Kgaa Verklebung mit schmelzklebstoffen
WO2012147951A1 (ja) * 2011-04-27 2012-11-01 東洋インキScホールディングス株式会社 ホットメルト粘着剤、粘着フィルム、被覆物品および被覆物品の製造方法
JP2012236993A (ja) * 2011-04-27 2012-12-06 Toyo Ink Sc Holdings Co Ltd ホットメルト粘着剤、粘着フィルム、被覆物品および被覆物品の製造方法
JP2013064055A (ja) * 2011-09-16 2013-04-11 Henkel Japan Ltd ホットメルト接着剤
EP2666837A4 (en) * 2011-01-18 2015-05-06 Mitsui Chemicals Inc ADHESIVE RESIN COMPOSITION AND HOT DETERGENT AGENT THEREOF
JP2015092008A (ja) * 2015-02-20 2015-05-14 ヘンケルジャパン株式会社 ホットメルト接着剤
JP2015514823A (ja) * 2012-03-09 2015-05-21 エクソンモービル ケミカル パテンツ インコーポレイテッド ポリオレフィン接着剤組成物
JP2015174883A (ja) * 2014-03-13 2015-10-05 三井化学株式会社 ホットメルト用接着剤組成物
CN105219299A (zh) * 2015-09-01 2016-01-06 熊红兵 一种纸巾复合用热熔胶及其制备方法
WO2016028909A1 (en) 2014-08-21 2016-02-25 Dow Global Technologies Llc Adhesive compositions comprising low molecular weight functionalized olefin-based polymers
WO2016104539A1 (ja) * 2014-12-22 2016-06-30 出光興産株式会社 ホットメルト接着剤用ベースポリマー
JP2017532393A (ja) * 2014-08-21 2017-11-02 ダウ グローバル テクノロジーズ エルエルシー 接着剤組成物
JP2018513031A (ja) * 2015-03-02 2018-05-24 ザ プロクター アンド ギャンブル カンパニー 伸張性積層体
JP2018165297A (ja) * 2017-03-28 2018-10-25 三井化学株式会社 プロピレン系樹脂組成物
US10155889B2 (en) 2014-08-21 2018-12-18 Dow Global Technologies Llc Hot melt adhesive composition including a block composite compatibilizer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024330B (zh) * 2012-01-11 2016-08-03 株式会社可乐丽 热塑性聚合物组合物及成型品
EP2915858B1 (en) * 2012-11-02 2020-12-02 Idemitsu Kosan Co., Ltd Adhesive composition and adhesive tape using same
DE202013011790U1 (de) 2013-12-23 2014-07-01 MKT Moderne Kunststoff-Technik Gebrüder Eschbach GmbH Kantenleiste
WO2016029006A1 (en) * 2014-08-21 2016-02-25 Dow Global Technologies Llc Hot melt adhesive composition
EP3207103B1 (en) * 2014-10-13 2021-06-23 Bostik, Inc. Polyolefin-based hot melt adhesives with improved processing and bonding performance
CN107257833B (zh) * 2015-01-23 2020-01-03 波士胶公司 茂金属聚烯烃基低活化温度热封热熔性粘合剂
EP3124567A1 (en) * 2015-07-30 2017-02-01 Borealis AG Polypropylene based hot-melt adhesive composition
US10329463B2 (en) * 2016-05-19 2019-06-25 Shurtape Technologies, Llc Process for making pressure-sensitive adhesive and duct tape
WO2017210507A1 (en) 2016-06-03 2017-12-07 Dow Global Technologies Llc Adhesive composition
WO2019026891A1 (ja) * 2017-07-31 2019-02-07 株式会社クラレ 熱可塑性樹脂組成物、ホットメルト接着剤、自動車部材、及び衛生材料部材
EP3498799B1 (en) * 2017-12-14 2020-11-04 Borealis AG Polyethylene and propylene wax for hot melt adhesive
US20220251260A1 (en) * 2019-05-29 2022-08-11 Mitsui Chemicals, Inc. PROPYLENE-ETHYLENE-alpha-OLEFIN COPOLYMER, POLYPROPYLENE COMPOSITION, AND USE THEREFOR
CN114269798B (zh) * 2019-07-17 2024-02-27 埃克森美孚化学专利公司 具有低玻璃化转变温度的高丙烯含量ep

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198646A (ja) * 1987-10-12 1989-04-17 Mitsui Petrochem Ind Ltd ポリオレフィン樹脂接着用組成物
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH09137013A (ja) 1995-11-13 1997-05-27 Mitsui Petrochem Ind Ltd 剥離性保護フィルム用組成物およびそのフィルム
JP2001523301A (ja) * 1998-02-03 2001-11-20 モンテル テクノロジー カンパニー ビーブイ ポリオレフィンベースのホットメルト接着性組成物
WO2001096490A1 (fr) 2000-06-14 2001-12-20 Idemitsu Petrochemical Co., Ltd. Resine polyolefinique destinee a des adhesifs thermofusibles
JP2002226814A (ja) * 2001-02-05 2002-08-14 Nitto Denko Corp 粘着剤組成物及び粘着シート
JP2003518171A (ja) 1999-12-22 2003-06-03 エクソンモービル・ケミカル・パテンツ・インク プロピレン−ベース−接着剤組成物
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
JP2005263997A (ja) * 2004-03-18 2005-09-29 Mitsui Chemicals Inc プロピレン系接着用重合体組成物及びその積層体
JP2007186664A (ja) 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2008024859A (ja) 2006-07-24 2008-02-07 Sumitomo Chemical Co Ltd ホットメルト接着剤
WO2008099865A1 (ja) * 2007-02-15 2008-08-21 Mitsui Chemicals, Inc. プロピレン系重合体、プロピレン系重合体組成物、ペレットおよび粘着剤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256717A (en) * 1990-12-19 1993-10-26 National Starch And Chemical Investment Holding Corporation Hot melt adhesives useful in temporary bonding operations
EP1209165B1 (en) * 1993-06-07 2006-04-19 Mitsui Chemicals, Inc. Propylene elastomer
US5681654A (en) * 1995-12-04 1997-10-28 The Kendall Company Low-fogging pressure-sensitive adhesive
US6112888A (en) * 1996-06-28 2000-09-05 W. R. Grace & Co.-Conn. Non-reclosable packages containing desiccant matrix
JP2001288441A (ja) 2000-03-31 2001-10-16 Hitachi Kasei Polymer Co Ltd ホットメルト接着剤組成物
US7700707B2 (en) * 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
WO2005111282A1 (en) * 2004-04-30 2005-11-24 Dow Global Technologies Inc. Improved nonwoven fabric and fibers
KR100878869B1 (ko) * 2005-03-18 2009-01-15 미쓰이 가가쿠 가부시키가이샤 프로필렌계 중합체 조성물, 그 용도, 및 열가소성 중합체조성물의 제조 방법
DE102005055018A1 (de) * 2005-11-18 2007-05-24 Clariant Produkte (Deutschland) Gmbh Verwendung von Polyolefinwachsen in Heißschmelzmassen
JP5279495B2 (ja) * 2006-07-13 2013-09-04 三井化学株式会社 熱可塑性樹脂組成物およびそれからなる多層積層体、該熱可塑性樹脂組成物を粘着させてなる物品、ならびに物品の表面保護方法
US8063146B2 (en) * 2007-06-14 2011-11-22 Mitsui Chemicals, Inc. Thermoplastic elastomer composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198646A (ja) * 1987-10-12 1989-04-17 Mitsui Petrochem Ind Ltd ポリオレフィン樹脂接着用組成物
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH09137013A (ja) 1995-11-13 1997-05-27 Mitsui Petrochem Ind Ltd 剥離性保護フィルム用組成物およびそのフィルム
JP2001523301A (ja) * 1998-02-03 2001-11-20 モンテル テクノロジー カンパニー ビーブイ ポリオレフィンベースのホットメルト接着性組成物
JP2003518171A (ja) 1999-12-22 2003-06-03 エクソンモービル・ケミカル・パテンツ・インク プロピレン−ベース−接着剤組成物
WO2001096490A1 (fr) 2000-06-14 2001-12-20 Idemitsu Petrochemical Co., Ltd. Resine polyolefinique destinee a des adhesifs thermofusibles
JP2002226814A (ja) * 2001-02-05 2002-08-14 Nitto Denko Corp 粘着剤組成物及び粘着シート
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
JP2005263997A (ja) * 2004-03-18 2005-09-29 Mitsui Chemicals Inc プロピレン系接着用重合体組成物及びその積層体
JP2007186664A (ja) 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2008024859A (ja) 2006-07-24 2008-02-07 Sumitomo Chemical Co Ltd ホットメルト接着剤
WO2008099865A1 (ja) * 2007-02-15 2008-08-21 Mitsui Chemicals, Inc. プロピレン系重合体、プロピレン系重合体組成物、ペレットおよび粘着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2327750A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124777A (zh) * 2010-09-27 2013-05-29 汉高股份有限及两合公司 利用热熔粘合剂的粘合
WO2012041838A1 (de) * 2010-09-27 2012-04-05 Henkel Ag & Co. Kgaa Verklebung mit schmelzklebstoffen
AU2011310639B2 (en) * 2010-09-27 2015-07-23 Henkel Ag & Co. Kgaa Bonding using hot-melt adhesives
EP2666837A4 (en) * 2011-01-18 2015-05-06 Mitsui Chemicals Inc ADHESIVE RESIN COMPOSITION AND HOT DETERGENT AGENT THEREOF
WO2012147951A1 (ja) * 2011-04-27 2012-11-01 東洋インキScホールディングス株式会社 ホットメルト粘着剤、粘着フィルム、被覆物品および被覆物品の製造方法
JP2012236993A (ja) * 2011-04-27 2012-12-06 Toyo Ink Sc Holdings Co Ltd ホットメルト粘着剤、粘着フィルム、被覆物品および被覆物品の製造方法
JP2013064055A (ja) * 2011-09-16 2013-04-11 Henkel Japan Ltd ホットメルト接着剤
JP2015514823A (ja) * 2012-03-09 2015-05-21 エクソンモービル ケミカル パテンツ インコーポレイテッド ポリオレフィン接着剤組成物
JP2015174883A (ja) * 2014-03-13 2015-10-05 三井化学株式会社 ホットメルト用接着剤組成物
JP2017532393A (ja) * 2014-08-21 2017-11-02 ダウ グローバル テクノロジーズ エルエルシー 接着剤組成物
WO2016028909A1 (en) 2014-08-21 2016-02-25 Dow Global Technologies Llc Adhesive compositions comprising low molecular weight functionalized olefin-based polymers
US10155889B2 (en) 2014-08-21 2018-12-18 Dow Global Technologies Llc Hot melt adhesive composition including a block composite compatibilizer
EP3957698A1 (en) 2014-08-21 2022-02-23 Dow Global Technologies LLC Adhesive compositions comprising low molecular weight functionalized olefin-based polymers
WO2016104539A1 (ja) * 2014-12-22 2016-06-30 出光興産株式会社 ホットメルト接着剤用ベースポリマー
CN107001881A (zh) * 2014-12-22 2017-08-01 出光兴产株式会社 热熔粘接剂用基础聚合物
US10501663B2 (en) 2014-12-22 2019-12-10 Idemitsu Kosan Co., Ltd. Base polymer for hot melt adhesive
JP2015092008A (ja) * 2015-02-20 2015-05-14 ヘンケルジャパン株式会社 ホットメルト接着剤
JP2018513031A (ja) * 2015-03-02 2018-05-24 ザ プロクター アンド ギャンブル カンパニー 伸張性積層体
CN105219299A (zh) * 2015-09-01 2016-01-06 熊红兵 一种纸巾复合用热熔胶及其制备方法
CN105219299B (zh) * 2015-09-01 2017-07-07 熊红兵 一种纸巾复合用热熔胶及其制备方法
JP2018165297A (ja) * 2017-03-28 2018-10-25 三井化学株式会社 プロピレン系樹脂組成物

Also Published As

Publication number Publication date
JPWO2010032600A1 (ja) 2012-02-09
KR101281896B1 (ko) 2013-07-03
EP2327750A4 (en) 2011-12-07
KR20110048074A (ko) 2011-05-09
CN102159660B (zh) 2013-10-16
EP2327750A1 (en) 2011-06-01
US20110172348A1 (en) 2011-07-14
EP2327750B1 (en) 2013-03-27
CN102159660A (zh) 2011-08-17
JP5438682B2 (ja) 2014-03-12
US9273202B2 (en) 2016-03-01
WO2010032600A8 (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5438682B2 (ja) 接着剤組成物及びこれからなる接着剤
JP5705241B2 (ja) 接着性樹脂組成物およびそれから得られるホットメルト接着剤
US20110054117A1 (en) Polyolefin Adhesive Compositions and Method of Making Thereof
EP2435525B1 (en) Polyolefin adhesive compositions
JP5685317B2 (ja) ポリプロピレンベース接着剤組成物
CA2988363C (en) Polypropylene based hot-melt adhesive composition
JP5279495B2 (ja) 熱可塑性樹脂組成物およびそれからなる多層積層体、該熱可塑性樹脂組成物を粘着させてなる物品、ならびに物品の表面保護方法
US20100132886A1 (en) Polyolefin Adhesive Compositions
WO2010116848A1 (ja) 熱可塑性樹脂組成物
JP2017528562A (ja) 結晶性ブロック複合材料を含むホットメルト接着剤組成物
JP5738135B2 (ja) 変性プロピレン系樹脂組成物および当該組成物からなる接着剤
WO2018088359A1 (ja) プロピレン系重合体、プロピレン系樹脂組成物及びそれらを含むホットメルト接着剤
EP4306557A1 (en) 1-butene/ethylene copolymer, 1-butene-based polymer composition containing said 1-butene/ethylene copolymer and propylene-based polymer, 1-butene-based polymer composition containing said 1-butene/ethylene copolymer, propylene-based polymer, and ethylene-based polymer, and uses thereof
JP2019077834A (ja) 接着剤組成物
JP2020176207A (ja) 粘着剤組成物、及び仮止め用粘着フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136607.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529704

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13119508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009814445

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007520

Country of ref document: KR

Kind code of ref document: A