WO2010047312A1 - 地熱発電設備のオンライン診断方法及びオンライン診断システム - Google Patents

地熱発電設備のオンライン診断方法及びオンライン診断システム Download PDF

Info

Publication number
WO2010047312A1
WO2010047312A1 PCT/JP2009/068017 JP2009068017W WO2010047312A1 WO 2010047312 A1 WO2010047312 A1 WO 2010047312A1 JP 2009068017 W JP2009068017 W JP 2009068017W WO 2010047312 A1 WO2010047312 A1 WO 2010047312A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
power generation
data
generation facility
geothermal power
Prior art date
Application number
PCT/JP2009/068017
Other languages
English (en)
French (fr)
Inventor
市郎 明翫
俊和 加藤
勇 大澤
靖之 菱
大輔 福田
泰人 二子石
利明 青木
Original Assignee
富士電機システムズ株式会社
地熱エンジニアリング株式会社
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社, 地熱エンジニアリング株式会社, 日機装株式会社 filed Critical 富士電機システムズ株式会社
Priority to EP09822009A priority Critical patent/EP2339177A1/en
Priority to NZ590408A priority patent/NZ590408A/xx
Priority to US13/054,972 priority patent/US8407027B2/en
Priority to JP2010534805A priority patent/JP5010032B2/ja
Publication of WO2010047312A1 publication Critical patent/WO2010047312A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention uses analysis data from a steam property automatic measuring device that measures the property of steam supplied from a steam separator to a steam turbine and operation data of the geothermal power generation facility in order to support operation of the geothermal power generation facility.
  • the present invention relates to an on-line diagnostic method and an on-line diagnostic system for a geothermal power generation facility that are capable of predicting functional degradation and operation trouble of the geothermal power generation facility.
  • Patent Document 1 proposes a measure for quantitatively displaying and grasping the state of scale adhesion over time during normal operation, and performing a turbine blade scale removal operation and a turbine blade replacement operation.
  • Patent Document 1 the nozzle outlet pressure decreases with time and the turbine output decreases with the increase in the amount of scale and ejected matter adhering to the nozzle plate of the steam turbine to which natural steam spouted from underground is guided. Is monitored during turbine operation to monitor the scale adhesion.
  • the design of separators for geothermal power generation facilities is usually designed according to the fume characteristics of production wells in the early stages of development.
  • the properties of production wells often change over time, and few production wells maintain the production state at the initial stage of development due to a drop in wellhead pressure or a change in gas-liquid ratio.
  • production wells newly joined by excavation to secure the amount of steam often differ greatly from the fumarole characteristics of conventional production wells. Therefore, it is ideal to monitor the status of the production well over time and reflect it in the design of the separator (remodeling or renewal), but in reality, the modification is done because the properties of the production well continue to change. Since it is difficult to set conditions and a large amount of cost is required for remodeling, there are few examples of remodeling or updating separators according to the situation.
  • An example of the separator being modified is a case where the turbine scale adheres too quickly and cannot be operated continuously until periodic inspection.
  • the economic loss in the case where the continuous operation cannot be continued until the predetermined periodic inspection is very large.
  • the power generation is forced to be stopped several times for cleaning the turbine scale before the countermeasure is completed.
  • the scale is removed by conducting open inspections at a frequency of at least once a year.
  • the geothermal steam collected from the production well is dehydrated with a separator and supplied to the turbine with temperature, pressure and flow rate controlled.
  • the quality of steam is mainly determined by the separator conditions based on the amount of water, temperature, pressure, and flow rate, but the results are remarkably reflected in the chemical composition. Therefore, it is extremely important to understand the chemical composition, and operation management using this data must be utilized for the optimal management of geothermal power generation facilities. However, the actual situation is that full-scale operation management in consideration of chemical composition data has not been performed in the past.
  • the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and online analysis data representing the properties of the steam supplied to the steam turbine and operation data of the geothermal power generation facility are monitored.
  • an on-line diagnostic method for a geothermal power generation facility includes a steam property automatic measuring device that measures the property of steam supplied from a steam separator of the geothermal power generation facility to a steam turbine.
  • the geothermal power generation facility online diagnosis method for receiving the analysis data and the geothermal power generation facility operation data online and diagnosing the geothermal power generation facility based on the received data.
  • this online diagnostic method at least one of silica concentration, chlorine ion concentration and acid conductivity is set as the analysis data, and at least the steam flow rate and hot water flow rate separated by the steam separator are used as the operation data.
  • the analysis data and the operation data are collected online, and the geothermal power generation facility is diagnosed based on the collected analysis data and operation data and the management upper limit value or recommended operation value for each data.
  • An on-line diagnostic method for a geothermal power generation facility includes analysis data from a steam property automatic measuring device that measures the property of steam supplied to a steam turbine from a steam separator of the geothermal power generation facility, and the geothermal power
  • This is an on-line diagnostic method for geothermal power generation equipment that receives operation data of power generation equipment online and diagnoses the geothermal power generation equipment based on these received data.
  • this online diagnostic method at least one of silica concentration, chloride ion concentration and acid conductivity, noncondensable gas concentration and pH is set as the analysis data, and the operation data is separated at least by the steam separator.
  • the steam flow rate and the hot water flow rate are set, and the analysis data and the operation data are accumulated and stored in the data storage unit in time series. Then, in the state where it is determined that the silica concentration and one of the chloride ion concentration and the acid conductivity accumulated and stored in the data storage unit have not reached the management upper limit value or the recommended operation value, the data storage unit stores the silica concentration. Predictive deviation from the management upper limit value or recommended operation value of the analysis data and the operation data based on the principal component analysis method and the statistic calculation which are multivariate analysis methods from the stored analysis data and the operation data Is detected.
  • the on-line diagnostic method for geothermal power generation equipment sets at least silica concentration and chlorine ion concentration as the analysis data, and at least the steam flow rate and hot water separated by the steam separator as the operation data. Set the flow rate. Then, the set silica concentration and chloride ion concentration are monitored, and an alarm corresponding to the level for the management upper limit value or the recommended operation value is output to the geothermal power generation facility.
  • the air / water separation calculated based on the chlorine ion concentration, the steam flow rate, and the hot water flow rate When the water removal rate of the vessel is below the reference value, the performance diagnosis result of the steam separator is output.
  • the operation data is at least the steam flow rate, the hot water flow rate, and the water level of the steam / water separator, the moisture removal rate is equal to or less than a reference value, and the When the water level of the steam separator does not exceed the water level upper limit value, a spray start instruction is output to a spray device that performs water spray on the steam supplied from the steam / water separator to the steam turbine.
  • the on-line diagnostic method for geothermal power generation facilities calculates an integrated amount of silica flowing into the steam turbine from the silica concentration and the steam flow rate, and has a close relationship with the calculated integrated silica amount. By comparing the turbine inlet pressure, the turbine outlet pressure, and the turbine casing pressure, the silica deposition state on the steam turbine is estimated based on the time-series tendency. Furthermore, an on-line diagnostic method for geothermal power generation facilities according to another embodiment calculates the amount of gas to be extracted from the non-condensable gas concentration data from the steam property automatic measuring device and the operation data of the condenser after the steam turbine. From this tendency, the operating status of the gas extractor is diagnosed.
  • An on-line diagnostic system for a geothermal power generation facility includes a steam property automatic measuring device that measures the property of steam supplied from a steam separator of a geothermal power generation facility to a steam turbine and outputs analysis data, and the geothermal heat
  • a monitoring / control device that controls operation while monitoring the power generation facility; analysis data from the steam property automatic measurement device; and operation data of the geothermal power generation facility from the monitoring / control device.
  • An on-line diagnostic system for geothermal power generation facilities is configured such that the diagnostic device performs at least one of display of a diagnostic result of the geothermal power generation facility and transmission of the diagnostic result to the monitoring / control device. ing.
  • At least one of silica concentration, chlorine ion concentration and acid conductivity is set as analysis data representing the properties of steam supplied to the steam turbine, and steam flow rate and hot water of the steam separator are set as operation data.
  • the flow rate is set, both data are collected online, and the geothermal power generation facility is diagnosed based on the collected analysis data and operation data, and the management upper limit value or recommended operation value for each data. For this reason, geothermal power generation facilities can be diagnosed accurately at all times, and the current geothermal power generation facility diagnosis results are fed back to the geothermal power generation facility to detect or prevent problems from occurring at an early stage. Thus, more stable operation is possible.
  • the analysis data and the accumulated data of the operation data are diagnosed by applying the principal component analysis method and the statistic calculation, which are multivariate analysis methods, so that the management upper limit value or the recommended operation value of the analysis data and the operation data. It is possible to detect a sign of deviation from Also, the silica concentration and chlorine ion concentration are monitored, and if at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value or the recommended operation value, it is calculated based on the chlorine ion concentration, the steam flow rate, and the hot water flow rate. When the water removal rate of the steam / water separator is equal to or lower than the reference value, the performance diagnosis result of the steam / water separator can be output to warn of a decrease in the capacity of the steam / water separator.
  • the principal component analysis method and the statistic calculation which are multivariate analysis methods
  • the water spray that performs water spray on the steam provided between the steam separator and the steam turbine when the water removal rate is equal to or lower than the reference value and the water level of the steam separator is equal to or lower than the water level upper limit value, the water spray that performs water spray on the steam provided between the steam separator and the steam turbine.
  • the density (number) of mist (micro water droplets) per unit volume is increased, the chances of mists coming into contact with each other (adhesion) is increased, and mist containing mineral ions floating in the vapor is added.
  • the overall particle size can be increased to increase water separation efficiency.
  • the amount of silica accumulated in the steam turbine and the time series tendency of the turbine inlet pressure, turbine outlet pressure, and turbine casing pressure, which are closely related to each other, are compared with each other, and the silica adhesion state to the steam turbine nozzle is determined. Can be estimated. Furthermore, the amount of gas to be extracted is calculated from the non-condensable gas concentration data from the steam property automatic measuring device and the condenser operation data after the steam turbine, and the operation status of the gas extractor is diagnosed from the tendency. can do.
  • FIG. 1 is a schematic system configuration diagram showing an embodiment of the present invention. It is a block diagram which shows geothermal power generation equipment. It is a functional block diagram which shows the specific structure of an online support center. It is a graph which shows the correlation of a hot water flow rate ratio and a silica concentration. Q is a time chart of statistics and T 2 statistics. It is a figure for demonstrating the structural factor of abnormality, Comprising: (a) is a correlation diagram, (b) is a graph which shows a contribution plot. It is a flowchart which shows an example of the diagnostic processing procedure of a diagnostic apparatus. It is a flowchart which shows an example of the deviation prediction diagnostic process sequence shown to S3 of FIG.
  • FIG. 1 is a schematic system configuration diagram showing an embodiment of the present invention
  • FIG. 2 is a system diagram of a geothermal power generation facility to which the present invention can be applied
  • FIG. 3 is a functional block diagram showing an online diagnostic system.
  • reference numeral 10 denotes a geothermal power generation facility.
  • the geothermal power generation facility 10 measures a steam property between a steam separator and a steam turbine, which will be described later, and outputs analysis data.
  • 11 is installed, and the analysis data measured and output by the steam property automatic measuring device 11 is transmitted to the monitoring / controlling device 12 that monitors and controls the operation state of the geothermal power generation facility 10.
  • the vapor property automatic measuring device 11 includes a measuring device 11a and a calculator 11b.
  • the operation data obtained by adding the operation data of the steam / water separator controlled by itself to the transmitted analysis data is sent to the network 15 such as the Internet or a local area network every predetermined time.
  • the driving support center 20 online.
  • the driving support center 20 has an online diagnostic device 21.
  • the online diagnostic device 21 receives the operation data transmitted from the monitoring / control device 12 of the geothermal power generation facility 10 by the central processing unit 22, and uses the analysis data and operation data included in the received operation data as a data storage unit. Data is stored and stored in the data logger 23 in time series.
  • the central processing unit 22 executes various diagnostic processes described later.
  • the details of the geothermal power generation facility 10 are such that geothermal steam ejected from a plurality of production wells PW1 to PWn (n is a natural number) is flow-regulated by the secondary flow rate regulating valves PL1 to PLn and merged. Then, it passes through the water spray device 101 and is supplied to the high-pressure separator 102 as a steam separator.
  • the high-pressure separator 102 separates the steam into hot water, and the separated steam is supplied to the scrubber 104 via the water spray device 103 to wash the steam, and then the mist is removed and output from the scrubber 104. Steam is supplied to the high pressure side of the steam turbine 105 to which the generator G is connected.
  • the hot water separated by the high-pressure separator 102 is supplied to a low-pressure separator (flasher) 106 to expand the hot water under reduced pressure to generate secondary steam.
  • the secondary steam generated by the low-pressure separator 106 is supplied to the demister 108 via the water spray device 107, and the mist is removed by the demister 108 and supplied to the intermediate pressure side of the steam turbine 105.
  • the hot water discharged from the low-pressure separator 106 is pressurized by the brine reinjection pump 109, supplied to the reduction well 110, and returned to the ground.
  • the steam discharged from the steam turbine 105 is supplied to the condenser 111 to condense and condense the steam, and the condensed water is pressurized by the hot well pump 112, and most of the condensed water is supplied to the cold water tower 113. Supplied and cooled.
  • the remaining condensate pressurized by the hot well pump 12 is repressurized by the condensed water reinjection pump 114, supplied to the reduction well 110, and returned to the ground.
  • the chilled water cooled by the chilled water tower 113 is returned to the watering header 111 a of the condenser 111 and supplied to the water spray devices 101, 103, and 107 described above via the washing water pump 115. Further, the chilled water cooled by the chilled water tower 113 is pressurized by the chilled water pump 116, a part thereof is recooled by the cooler 117 and returned to the chilled water tower 113, and the rest is supplied to the gas extraction system 120. .
  • This gas extraction system has an ejector 121 to which the steam from which the mist has been removed by the aforementioned scrubber 104 is supplied for driving.
  • This ejector 121 controls the exhaust pressure discharged from the steam turbine 105 by sucking the exhaust steam in the condenser 111.
  • the discharged steam sucked by the ejector 121 is condensed by the barometric condenser 122 to which cold water is supplied from the cooling water pump 116, and is separated into steam and water.
  • the separated gas is sucked by the vacuum pump 123 to which the cooling water is supplied for cooling from the cooling water pump 116 and is discharged from the pump seal water separator 124 to the atmosphere.
  • the water separated by the barometric condenser 122 is returned to the condenser 111, and the pump seal water separated by the pump seal water separator 124 is also returned to the condenser 111.
  • the steam property automatic measuring device 11 constantly measures steam supplied to the steam turbine 105 to measure silica concentration, chloride ion concentration, acid conductivity, electrical conductivity, pH and non-condensable gas concentration, These are supplied to the monitoring / control device 12 as analysis data.
  • the monitoring / control device 12 adjusts the amount of steam ejected from the production wells PW1 to PWn based on the analysis data inputted from the automatic vapor property measuring device 11 and the diagnostic result inputted from the online diagnostic device 21 described later. It controls the flow rate of the next flow rate adjusting valves PL1 to PLn, the spray amount in the water spray devices 101, 103 and 107, the exhaust steam suction amount of the ejector 121, and the like.
  • the monitoring / control device 12 receives the pressure data of the condenser 111 controlled by itself and the temperature data of the ejector 121, and the high pressure separator.
  • Various operational data such as steam flow and hot water flow separated by the pressure separator 102 and the low-pressure separator 106, wellhead pressure, water level of the high-pressure separator 102, inlet pressure and outlet pressure of the steam turbine 105, and operation data of the condenser 111 are added.
  • the central processing unit 22 of the online diagnostic device 21 receives the analysis data and the driving data via the network 15, the data included in the analyzing data and the driving data is time-sequentially stored in the data logger 23.
  • on-line diagnosis processing of the geothermal power generation facility 10 is executed based on the time-series accumulated data stored in the data logger 23.
  • the central processing unit 22 is configured as shown in FIG. 3 in a functional block diagram. That is, the analysis data and the operation data received from the monitoring / control device 12 are accumulated and stored in the data logger 23 for each type of data in time series. Various accumulated data stored in the data logger 23 are selectively used for the steam property evaluation unit 31, the steam separator evaluation unit 32, the water injection evaluation unit 33, the silica adhesion amount evaluation unit 34 for the steam turbine, the production well pulsation / merging. It is supplied to the condition evaluation unit 35 and the gas extraction system evaluation unit 36.
  • Display information is supplied to an information display unit 41 such as a liquid crystal display constituting the information output unit 40.
  • the information display unit 41 displays various display information supplied. Also output from the steam property evaluation unit 31, the steam separator evaluation unit 32, the water injection evaluation unit 33, the silica adhesion amount evaluation unit 34 to the steam turbine, the production well pulsation / merging condition evaluation unit 35, and the gas extraction system evaluation unit 36.
  • the diagnostic information including the diagnosis result and the warning to be supplied is supplied to the information transmission unit 42 constituting the information output unit 40.
  • the information transmission unit 42 transmits the input diagnostic information to the monitoring / control device 12 of the geothermal power generation facility 10 via the network 15 described above.
  • the vapor property evaluation unit 31 stores the data logger 23 in a state where the silica concentration, the chlorine ion concentration (or acid conductivity), the non-condensable gas concentration, and the pH do not reach the individually set control upper limit values. Based on the stored time-series accumulated data, a sign of deviation from the upper limit of management is detected based on the principal component analysis method which is a multivariate analysis method and the statistic calculation. To detect this sign, first, a principal model is created by applying a principal component analysis method from multivariate data consisting of the analysis data and the operation data immediately after the plant trial operation or immediately after the start of operation.
  • the analysis data and the operation data transmitted online from the monitoring / control device 12 are evaluated by the two indexes of the Q statistic and the T 2 statistic to detect abnormal data. Furthermore, by calculating the constituent factors of the abnormality by contribution plot analysis, the monitoring function is strengthened by notifying the operator of the variable that is the cause of the abnormality and its degree of influence by a message.
  • the silica concentration and heat are now considered as two variables.
  • the normal model representing the correlation between the silica concentration immediately after the start of operation and the hot water flow ratio increases the silica concentration as the hot water flow ratio increases.
  • the correlation is positive and falls within a predetermined range centered on the correlation axis.
  • the silica concentration with respect to the hot water flow rate ratio increases and the correlation is lost, and the point based on the hot water flow rate ratio and the silica concentration is represented by ⁇ .
  • the deviation amount from the correlation axis of the normal model is represented by a Q statistic.
  • the hot water flow rate ratio and the silica concentration both increase and become a point represented by ⁇ that exceeds the range of the normal model, the correlation between the hot water flow rate ratio and the silica concentration is not broken. Since the value increases beyond the range of the normal model, the amplitude from the center of the normal model becomes the Hotelling T 2 statistic.
  • variable 1 and variable 2 when the Q statistic exceeds the threshold when represented by two variables, variable 1 and variable 2, the abnormal point data represented by ⁇
  • the component of the abnormality can be calculated from the breakdown of the difference between the normal line ⁇ present at the intersection of the correlation axis passing through the abnormal point ⁇ and the correlation axis.
  • the constituent factors in this case are to calculate the variable 1, the variable 2, the variable 3,... Which are the constituent factors of the abnormality as shown in FIG. Can do.
  • a variable having a large influence can be specified as a cause of abnormality.
  • the prediction display information indicating the prediction result and the variable having a large influence represented by the contribution plot is output to the information display unit 41.
  • the predictive diagnosis information is output to the information transmission unit 42, which is transmitted to the monitoring / control unit 12 via the network 15 to display or correct the variable that causes the specified abnormality.
  • the silica concentration and the chlorine ion concentration are supplied to the steam separator evaluation unit 32.
  • this steam / water separator evaluation unit 32 first, it is determined whether each of the silica concentration and the chlorine ion concentration exceeds a management upper limit value individually set in advance, and both the silica concentration and the chlorine ion concentration are managed. If it is equal to or lower than the upper limit value, it is determined that the high pressure separator 102 is normal, and the moisture removal rate ⁇ W is calculated based on the following equation (1).
  • ⁇ W [(Fw ⁇ Cclw) / (Fw ⁇ Cclw + Fs ⁇ Ccls)] ⁇ 100 (1)
  • ⁇ W moisture removal rate (%)
  • Fs steam flow rate (t / h)
  • Fw hot water flow rate (t / h)
  • Ccls chlorine ion (ppm) in steam
  • Cclw hot water Of chlorine ion (ppm).
  • the chlorine ion concentration (Cclw) in the hot water separated by the high-pressure separator 102 varies depending on the properties of each geothermal power plant, but is generally about 300 to 6000 ppm in Japan.
  • Such high-concentration chlorine ion analyzers currently have a problem with the reliability of automatic measurement, and are often measured manually.
  • the performance degradation display information composed of the display data of the moisture removal rate ⁇ W is output to the information display unit 41 constituting the information output unit 40.
  • the water injection evaluation unit 33 is supplied with the silica concentration and the chlorine ion concentration, and when either the silica concentration or the chlorine ion concentration is below the control upper limit value.
  • the high pressure separators 102 and 106 are determined to be normal, and guidance display information “The steam separator is functioning effectively. Water injection unnecessary” is output to the information display unit 41.
  • the water spray devices 101, 103, and 107 are set so that the silica concentration or the chlorine ion concentration exceeding the control upper limit value is equal to or lower than the control upper limit value.
  • the set water injection amount information is output to the information transmission unit 42 and transmitted to the monitoring / control device 12 via the network 15.
  • guidance display information stating that “the steam separator is functioning effectively when water is injected” is displayed. Output to the display unit 41.
  • the silica adhesion amount evaluation unit 34 acquires the silica concentration from the steam property automatic measuring device 11 described above at a high frequency, and also acquires the steam flow rate included in the operation data associated therewith at a high frequency.
  • the accumulated amount of silica flowing into 105 is calculated with high accuracy.
  • the steam turbine 105 is determined based on the time-series tendency of the turbine inlet pressure, turbine outlet pressure, turbine casing pressure, and the accumulated amount of silica that has flowed into the steam turbine 105, which are indicators of the adhesion of foreign matters such as silica to the steam turbine 105. Estimate the degree of silica adhesion to the surface.
  • the rate of change in the amount of silica adhering to the steam turbine 105 is estimated by judging the increasing tendency of the accumulated silica amount and the increasing tendency of the turbine inlet pressure, the turbine outlet pressure, and the turbine casing pressure.
  • guidance display information such as “The accumulated silica amount has increased and the passenger compartment pressure has increased.” Output to the display unit 41.
  • the production well pulsation / merging condition evaluation unit 35 displays guidance display information indicating that the production well is functioning effectively on the information display unit 41 when both the silica concentration and the chloride ion concentration are less than the control upper limit value. Output.
  • the secondary flow rate adjustment valves PL1 to PL1 are controlled even when the state that is equal to or higher than the control upper limit value continues for a predetermined period and does not continue for a predetermined period.
  • guidance display information “There is a merging condition change” is output to the information display unit 41.
  • the gas extraction system evaluation unit 36 diagnoses the operation status of the gas extraction system 120.
  • the gas extraction system 120 is an important device for keeping the pressure on the turbine outlet side of the steam turbine 105 constant and causing the steam turbine 105 to perform stable work.
  • the capacity of the gas extraction system 120 is determined by the amount of gas to be extracted.
  • the amount of gas to be extracted is the non-condensable gas originally contained in the production well steam, the water saturated in the operation state of the condenser 111 at the turbine outlet, and the air released from the cooling water of the condenser 111.
  • the ones unique to production wells are non-condensable gases that accompany production well steam. However, this gas changes depending on the addition of the production well and partial disconnection. It often changes over time.
  • the measurement data of the non-condensable gas amount ratio from the vapor property automatic measuring device 11 is extremely effective for the optimum operation of the gas extraction system 120.
  • the amount of non-condensable gas assumed at the initial design stage generally adopts a value with a margin that assumes a safe situation.
  • the amount of drive steam that drives the ejector 121 varies depending on the configuration of the gas extraction system 120 and the operating pressure, and cannot be generally stated. In some cases, however, in the case of a geothermal steam power generation facility that contains about 2% non-condensable gas, About 4 to 7% of the steam supplied to the turbine 105 was consumed. If this amount of steam is optimized according to the current situation, an increase in power generation equivalent to the amount of steam saved can be expected.
  • the operation data necessary for the operation status diagnosis and alarm of the gas extraction system 120 are the extraction gas ejector inlet temperature and pressure, and the cooling water inlet and outlet temperatures of the condenser 111. If the above various data can be measured, it is possible to calculate the amount of gas to be extracted by the ejector 121.
  • the amount of steam saturated with non-condensable gas and air is obtained by the following equation.
  • Fejt [(Fncg + Fair) ⁇ [Ps / (Pt-Ps)]] ............ (2)
  • Fejt amount of steam saturated with non-condensable gas and air (Nm 3 / h)
  • Fncg non-condensable gas (Nm 3 / h)
  • Ps vapor pressure of water at ejector inlet temperature (kPa)
  • Pt ejector inlet pressure (kPa)
  • Fair air volume (Nm 3 / h).
  • the amount of air (Fair) released from the cold water can also be calculated based on Henry's law. That is, it is the air from which the difference between the air that dissolves in the cold water and the air that dissolves in the warm water after cooling the extraction gas is released.
  • the total amount of gas to be finally extracted by the gas extraction system 120 is Fncg (amount of non-condensable gas) + Fejt (amount of steam saturated with non-condensable gas) + Fair (amount of air released from cooling water)
  • the steam amount Fejt saturated with the non-condensable gas and the air amount Fair discharged from the cooling water can be calculated.
  • A a flow meter (Nm 3 / h) installed at the gas extraction device outlet
  • X1 oxygen concentration (vol%) at the gas extraction device outlet
  • 0.21 oxygen concentration in the atmosphere is 21%.
  • warning guidance display information corresponding to the combination of the non-condensable gas amount, the air amount, and the steam amount exceeding the design value is output to the information display unit 41 and a warning is issued to the operator.
  • step S1 it is determined whether or not analysis data and operation data are received from the monitoring / control device 12. When the analysis data and the operation data are not received, the process waits until they are received. When the analysis data and the operation data are received, the process proceeds to step S2.
  • step S2 the received analysis data and operation data are stored in time series in the data logger 23 for each type of data, and then the process proceeds to step S3 to execute a deviation prediction diagnosis process for predicting a deviation from the management upper limit value. Then, the process proceeds to step S4, and after performing the performance diagnosis process of the high pressure separator 102, the process proceeds to step S5. In this step S5, the water injection evaluation process before and after the high-pressure separator 102 is executed, and then the process proceeds to step S6, the silica adhesion state estimation evaluation process of the steam turbine 105 is executed, and then the process proceeds to step S7.
  • step S7 the pulsation / merging evaluation process for evaluating the pulsation / merging condition change of the production wells PW1 to PWn is executed, and then the process proceeds to step S8 and the operation status diagnosis process of the gas extraction system 120 is executed.
  • the process returns to step S1.
  • the deviation prediction diagnosis process in step S3 is a process executed by the steam property evaluation unit 31 described above, as shown in FIG.
  • step S11 the analysis data such as non-condensable gas concentration and pH stored in the data logger 23 is read, and then the analysis data is transferred to step S12. It is determined whether at least one of the non-condensable gas concentration and the pH is equal to or higher than the individually set management upper limit value, among the silica concentration, chloride ion concentration, and acid conductivity.
  • the process proceeds to step S13.
  • step S13 the warning guidance display information “corresponding analysis data exceeds the management upper limit value” is output to the information display unit 41, and the management upper limit value excess warning is output to the information transmission unit 42 of the information output unit 40.
  • step S14 is at least one of the non-condensable gas concentration and pH of the silica concentration, chloride ion concentration, and acid conductivity included in the analysis data equal to or higher than the recommended operation value set lower than the control upper limit value? Determine whether or not.
  • the process proceeds to step S15.
  • step S15 warning guidance display information indicating “driving recommended value exceeded” is output to the information display unit 41, and a driving recommended value excess warning is output to the information transmitting unit 42, and then the process proceeds to step S4.
  • step S16 it is determined whether or not the operation of the geothermal power generation facility 10 is started. When it is the start of operation, the process proceeds to step S17. In this step S17, it is determined whether or not analysis data and operation data for a certain period have been collected. If collection of analysis data and operation data for a certain period has not been completed, the process returns to step S11 to analyze data for a certain period. When the collection of operation data is completed, the process proceeds to step S18.
  • step S18 a normal model is created by the principal component analysis method from the analysis data and operation data for a certain period, and then the process proceeds to step S19 to calculate the Q statistic and the T 2 statistic by comparison with the normal model. .
  • step S20 it is determined whether or not at least one of the calculated Q statistic and T 2 statistic is equal to or greater than a management upper limit value individually set based on the data existence range of the normal model.
  • step S21 guidance display information indicating that “the geothermal power generation facility is normal” is output to the information display unit 41, and then the process proceeds to step S4.
  • step S22 When the determination result is that at least one of the Q statistic and the T 2 statistic is greater than or equal to the management upper limit value, the process proceeds to step S22 to output the predictive warning information to the information transmitting unit 42 and display the abnormality factor guidance display information. After outputting to the information display part 41, it transfers to step S4.
  • step S4 the steam / water separator performance diagnosis process in step S4 is as shown in FIG.
  • step S31 the silica concentration, the chlorine ion concentration, the steam flow rate and the hot water flow rate are read. Then, the process proceeds to step S32, where the above-described silica concentration, chlorine ion concentration, steam flow rate and hot water flow rate are based on the read values.
  • the water removal rate ⁇ W of the high pressure separator 102 is calculated by performing the calculation of the equation (1).
  • step S33 it is determined whether or not at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value.
  • the process proceeds to step S34, and the guidance display information “Separator is functioning effectively. Moisture removal rate 99.OO%” is displayed as information.
  • step S33 If the determination result in step S33 indicates that at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value, the process proceeds to step S35, and the moisture removal rate ⁇ W calculated in step S32 is set in advance. It is determined whether or not the calculated reference value ⁇ Ws or less. If the determination result shows that the moisture removal rate ⁇ W exceeds the reference value ⁇ Ws, the process proceeds to step S39, “The separator is functioning effectively, but further improvement of the moisture removal rate is necessary.” After the guidance display information is output to the information display unit 41, the process proceeds to step S4.
  • step S35 determines whether or not the moisture removal rate ⁇ W is equal to or less than the reference value ⁇ Ws. If the determination result in step S35 is that the moisture removal rate ⁇ W is equal to or less than the reference value ⁇ Ws, the process proceeds to step S36 to determine whether or not the water spray device 101 exists. When the water spray device 101 is present, the process proceeds to step S37, and “There is a possibility that the separator alone can be improved. After confirming the separator water level, it is recommended to perform water spray. Moisture removal rate: 99.OO%” After the guidance display information is output to the information display unit 41, the process proceeds to step S4.
  • step S36 determines whether the water spray device 101 is present. If the result of the determination in step S36 is that the water spray device 101 is not present, the process proceeds to step S38, and “the separator alone cannot be improved, and if it remains unchanged, the process proceeds to turbine evaluation. After the guidance display information of “rate 99.OO%” is output to the information display unit 41, the process proceeds to step S5. Moreover, the steam-water separator water injection evaluation process in step S5 is as shown in FIG. First, in step S41, the silica concentration and the chlorine ion concentration are read, and then the process proceeds to step S42 to determine whether at least one of the silica concentration and the chlorine ion concentration exceeds the management upper limit value.
  • step S43 If the determination result indicates that both the silica concentration and the chlorine ion concentration do not exceed the control upper limit value, the process proceeds to step S43, and the guidance display information “Separator is functioning effectively. After outputting to the display part 41, it transfers to step S5.
  • step S42 when the determination result of step S42 shows that at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value, the process proceeds to step S44, and whether or not the separator water level exceeds the water level upper limit value. judge. If the determination result indicates that the separator water level exceeds the water level upper limit value, the water level may rise and the separated hot water may be mixed in the steam.
  • the guidance display information “Please lower the water level of the separator.” Is output to the information display unit 41, and the process proceeds to step S5.
  • step S44 determines whether the separator water level does not exceed the water level upper limit value.
  • step S46 determines whether the command value for the water injection amount for the water spray device 101 is output to the information transmission unit 42.
  • step S47 it is determined whether a new silica concentration and chlorine ion concentration have been received. When the silica concentration and the chlorine ion concentration are not received, the process waits until they are received. When the new silica concentration and the chlorine ion concentration are received, the process proceeds to step S48, and again the new silica concentration and the chlorine ion concentration are received. It is determined whether at least one of them exceeds the management upper limit value.
  • step S5 When at least one of the new silica concentration and the chlorine ion concentration exceeds the control upper limit value, the process returns to step S46, and when both the new silica concentration and the chlorine ion concentration are lower than the control upper limit value, the process proceeds to step S49. Then, after the guidance display information “Separator is functioning effectively by water injection” is output to the information display unit 41, the process proceeds to step S5.
  • step S6 The steam turbine silica adhesion state estimation evaluation process in step S6 is as shown in FIG. First, in step S51, the silica concentration, turbine inlet pressure, turbine outlet pressure, and turbine casing pressure are read. Then, the process proceeds to step S52, and the amount of silica flowing into the steam turbine 105 is calculated from the silica concentration. Next, the process proceeds to step S53, and a value obtained by adding the calculated silica amount to the previous silica accumulated amount is set as a new silica accumulated amount, and then the process proceeds to step S54.
  • the steam turbine is based on the new accumulated amount of silica and the time-series trends of the turbine inlet pressure, the tagin outlet pressure, and the turbine casing pressure, which are indicators of scale adhesion of silica or the like to the steam turbine 105.
  • the amount of silica attached to 105 is estimated.
  • step S55 it is determined whether or not the estimated silica adhesion amount exceeds a preset management upper limit value. If the estimated silica adhesion amount does not exceed the management upper limit value, “ After the guidance display information “silica adhesion amount is within the allowable range” is output to the information display unit 41, the process proceeds to step S6. Further, when the determination result in step S55 indicates that the estimated silica adhesion amount exceeds the control upper limit value, the process proceeds to step S57, and guidance display information indicating that “the silica adhesion amount to the steam turbine is outside the allowable range” is displayed. After outputting to the information display part 41, it transfers to step S6.
  • the silica adhesion degree was estimated based on the accumulated silica amount and the time-series tendency of the turbine inlet pressure, turbine outlet pressure, and turbine casing pressure.
  • the present invention is not limited to this, and the rate of change in the amount of silica deposition exceeds a predetermined value by detecting the accumulated amount of silica and the increasing tendency of the turbine inlet pressure, turbine outlet pressure, and turbine casing pressure.
  • Guidance display information may be output to the information display unit 41.
  • step S61 the silica concentration and the chlorine ion concentration are read, and then the process proceeds to step S62 to determine whether or not at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value.
  • step S62 determines whether or not at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value.
  • step S63 the guidance display information “Production well is functioning effectively” is displayed on the information display unit. After the output to 41, the process proceeds to step S7.
  • step S62 When the determination result in step S62 indicates that at least one of the silica concentration and the chlorine concentration exceeds the management upper limit value, the process proceeds to step S64, and at least the silica concentration and the chlorine concentration exceeding the management upper limit value. It is determined whether one continuously exceeds the management upper limit value. When the determination result continuously exceeds the management upper limit value, the process proceeds to step S65, and guidance display information “there is a change in the merging condition” is output to the information display unit 41, and then to step S7. If the management upper limit value is not continuously exceeded, the process proceeds to step S66.
  • step S66 it is determined whether or not there is a change in the opening of each of the secondary flow control valves PL1 to PLn. If there is no change in the opening, the process proceeds to step S65, and if there is a change in the opening. Proceeds to step S67.
  • step S67 guidance display information “production well pulsation” is output to the information display unit 41, and then the process proceeds to step S7.
  • the gas extraction system operating condition diagnosis process in step S8 is as shown in FIG. First, in step S71, the non-condensable gas amount ratio, the extraction gas ejector inlet temperature and pressure, and the cooling water inlet and outlet temperatures of the condenser 111 are read.
  • step S72 the process proceeds to step S72, and the amount of steam Fejt saturated with the non-condensable gas is calculated according to the above equation (2), and the amount of air Fair and the amount of non-condensable gas Fncg released from the cooling water are calculated. .
  • step S73 the extraction gas total amount Fall is calculated by adding the non-condensable gas amount Fncg, the vapor amount Fejt saturated with the non-condensable gas, and the air amount Fair released from the cooling water.
  • step S74 it is determined whether or not the total amount of extracted gas Fall exceeds a preset design value Fallp.
  • the process proceeds to step S75, and it is determined whether or not the extraction pressure has reached the set value.
  • step S77 guidance display information “The gas extraction system is not functioning normally” is output to the information display section 41.
  • step S76 guidance display information “The gas extraction system is functioning normally” is output to the information display unit 41. Then, the process returns to step S1.
  • step S74 determines whether or not the non-condensable gas amount Fncg exceeds the preset design value Fncgp. judge.
  • the process proceeds to step S79, and it is determined whether or not the air amount Fair exceeds a preset design amount Fairp.
  • the process proceeds to step S80, and “the non-condensable gas amount Fncg and the air amount Fair are excessive.
  • step S79 determines whether or not the steam amount Fejt exceeds a preset design value Fejtp.
  • step S82 “The amount of non-condensable gas and the steam amount is excessive. It is effective to lower the condenser temperature.
  • the guidance display information “well gas amount is increasing” is output to the information display unit 41, and the process returns to step S1.
  • step S81 when the determination result of step S81 indicates that the steam amount Fejt does not exceed the set value Fejtp, the process proceeds to step S83, and “the amount of non-condensable gas is excessive. Is output to the information display section 41, and the process returns to step S1.
  • step S78 determines whether or not the non-condensable gas amount Fncg does not exceed the design value Fncgp.
  • step S84 determines whether or not the air amount Fair exceeds the design value Fairp. judge. If the determination result indicates that the air amount Fair exceeds the design value Fairp, the process proceeds to step S85 to determine whether or not the steam amount exceeds the design value. If the amount of steam does not exceed the design value, there is a possibility that air has been sucked in from some gas seal, and the process proceeds to step S86.
  • step S86 guidance display information “Air amount is excessive. Check the gas seal part.” Is output to the information display part 41, and then the process returns to step S1.
  • step S85 if the steam amount exceeds the design value, the process proceeds to step S87, where “the air amount and the steam amount are excessive. It is effective when the condenser temperature is lowered.
  • the guidance display information of “Please” is output to the information display unit 41, and the process returns to Step S1.
  • step S84 when the determination result in step S84 indicates that the air amount Fair does not exceed the design value Fairp, the process proceeds to step S88, and the guidance is “The steam amount is excessive. It is effective to lower the condenser temperature.”
  • the process of step S3 and the process of FIG. 8 correspond to the steam property evaluating unit 31
  • the process of step S4 and the process of FIG. 9 correspond to the steam separator evaluating unit 32
  • the processing of step S6 and the processing of FIG. 11 correspond to the silica adhesion amount evaluation unit 34
  • the processing of step S7 and the processing of FIG. 12 are the production well pulsation / merging condition evaluation unit 35.
  • the process of step S8 and the process of FIG. 13 correspond to the gas extraction system evaluation unit 36.
  • the geothermal power generation facility 10 When the geothermal power generation facility 10 is newly installed, or when the steam property automatic measuring device 11 and the diagnostic device 21 are newly installed in the existing geothermal power generation facility 10, the steam property automatic measuring device 11 and the diagnostic device 21 are started to operate. At that point, the central processing unit 22 of the diagnostic apparatus 21 executes the diagnostic process shown in FIG. In this diagnosis process, when the analysis data and the operation data are not received from the steam property automatic measuring apparatus 11, the process waits until they are received. When the analysis data and the operation data are received, the received analysis data and operation data are stored in the data logger. 23 stores the various data in time series (step S2).
  • step S17 Since the predictive diagnosis is a system that predicts the future state based on the accumulated data, the predictive diagnosis cannot be performed when the collection for a certain period is not completed. For this reason, in step S12, it is determined whether at least one of the noncondensable gas concentration and the pH is equal to or higher than the control upper limit value, among the silica concentration, the chlorine ion concentration, and the acid conductivity.
  • step S14 determines whether or not the operation recommended value is smaller than the management upper limit value.
  • the geothermal power generation facility 10 is normal, and guidance display information indicating that is displayed on the information display unit 41. For this reason, an operator can grasp
  • a normal model is created based on the principal component analysis method based on these analysis data, and the created normal model is stored in the data logger 23. Thereafter, each time receiving the analytical data, on the basis of the analytical data to calculate the Q statistic and T 2 statistic by comparison with normal model (step S19), both the calculated Q statistic and T 2 statistic When it is less than the management upper limit value, it is determined that the geothermal power generation facility 10 is normal, and guidance display information to that effect is displayed on the information display unit 41.
  • the silica concentration with respect to the hot water flow rate deviates from the correlation of the normal model, and the Q statistic is based on the normal model.
  • the predictive alarm is transmitted to the monitoring / control device 12 via the information transmitting unit 42, and the abnormality component is calculated based on the contribution plot, and the calculated abnormality component is displayed on the information display unit 41. .
  • the occurrence of an abnormality can be prevented in advance by the operator grasping a sign of the occurrence of the abnormality and taking a countermeasure based on the constituent factors of the abnormality before the abnormality occurs.
  • the monitoring of the Q statistic and the T 2 statistic is a specific technique for predictive diagnosis. In addition, in proportion to the amount of monitoring data stored, this predictive diagnosis is characterized by being more realistic and reliable.
  • the steam / water separator performance diagnosis process shown in FIG. 9 is executed. In this steam-water separator performance diagnosis process, when the silica concentration and the chlorine ion concentration do not exceed the control upper limit values, it is determined as normal, and “the separator is functioning effectively. The water removal rate is 99.99. % ”Guidance display information is displayed on the information display unit 41.
  • the moisture removal rate ⁇ W of the separator is calculated.
  • the calculated water removal rate ⁇ W is less than or equal to the reference value ⁇ Ws, if the water spray device 101 is present, “there is a possibility of improvement with the separator alone.
  • Guidance display information of “moisture removal rate 99.OO%” is displayed on the information display unit 41. For this reason, the operator can recover the water removal rate ⁇ W at the separator by setting the water injection amount of the water spray device 101 and pouring water.
  • the water removal rate ⁇ W of the separator cannot be improved independently.
  • the displayed guidance display information is displayed on the information display unit 41. Further, when at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value, and when the water removal rate ⁇ W is equal to or higher than the reference value ⁇ Ws, the separator itself is normal, so the separator functions effectively. Guidance display information to that effect is displayed on the information display unit 41. In this case, it can be determined that the abnormality is caused by other factors such as adhesion of foreign matter to the steam turbine.
  • the process proceeds to step S5 after the steam / water separator performance diagnosis process, and the steam / water separator injection evaluation process shown in FIG. 10 is executed, so that at least one of the silica concentration and the chloride ion concentration is the control upper limit value. If it exceeds the state, the water spray devices 101, 103 and 107 are operated to wash the steam with the spray water. At this time, since the water spray device 101 is disposed on the inlet side of the high pressure separator 102, the density of mist (micro water droplets) per unit volume is obtained by washing the steam from the production wells PW1 to PWn with the spray water. Increase the number of particles, increase the chances that mists will come together (adhere), attach more water particles to the mist containing mineral ions floating in the vapor, and increase the particle size to separate the water in the separator Expected to increase efficiency.
  • mist micro water droplets
  • vc (Dp 2 ⁇ ⁇ ⁇ r ⁇ ⁇ 2 ) / (18 ⁇ ⁇ ) (4)
  • vc centrifugal sedimentation velocity of particles (m / s)
  • density difference (kg / m 3 ) between particles (water) and continuous layer (water vapor)
  • Dp particle diameter (m)
  • rotation Angular velocity (rad / s)
  • viscosity (Pa ⁇ s) of continuous layer (steam)
  • r radius of separator (m).
  • the centrifugal sedimentation rate of the particles increases in proportion to the square of the particle size. If the centrifugal sedimentation rate is increased, the separation efficiency is surely increased if the residence time in the separator is the same.
  • the water vapor used for general geothermal power generation is saturated steam, and even if water is sprayed, this added water evaporates and the vapor capacity increases, and as a result, the residence time in the separator can be reduced. Absent. Therefore, the separation efficiency is surely improved.
  • the formula for calculating the amount of mineral in the separator separation steam is as follows.
  • Fm Fs ⁇ ⁇ fw ⁇ (1 ⁇ sw / 100) ⁇ Cmw (5)
  • Fm amount of mineral matter in separator separated steam (g / h)
  • Fs steam flow rate (t / h)
  • Fw hot water flow rate (t / h)
  • Cmw mineral concentration (ppm) in hot water.
  • step S6 the steam turbine silica adhesion state estimation evaluation process shown in FIG. 11 is executed.
  • steam from the high pressure separator 102 and the low pressure separator 106 supplied to the steam turbine 105 is automatically measured in a short period by the steam property automatic measuring device 11 and monitored as analysis data.
  • Sent to the control device 12 Since the monitoring / control device 12 adds various operation data to the analysis data and transmits it online to the diagnostic device 21 via the network 15, the diagnostic device 21 can collect silica concentration data in a short cycle. Based on the silica concentration data, it is possible to calculate the integrated amount of silica attached to the steam turbine 105.
  • the silica deposition amount and the time-series tendency of the turbine inlet pressure, turbine outlet pressure, and turbine casing pressure which are indicators of scale deposition of silica or the like on the steam turbine, indicate the degree of silica deposition on the steam turbine 105. Can be estimated. At this time, by detecting the increasing tendency of the accumulated silica amount and detecting the increasing tendency of the turbine inlet pressure, the turbine outlet pressure, and the turbine casing pressure, the silica adhering state to the steam turbine nozzle can be further determined based on the rate of change. It can be estimated with high accuracy.
  • the production well pulsation / merging condition evaluation process is subsequently executed.
  • the cause is based on the pulsation of the production well, or the merging due to the addition or reduction of the production well. It is possible to accurately grasp whether the condition changes.
  • step S8 the gas extraction system operation status diagnosis process is executed.
  • the non-condensable gas amount Fncg, the vapor amount Fejt saturated with the non-condensable gas, and the air amount Fair discharged from the cooling water are calculated, and the total amount of extracted gas Fall, which is the sum of these, Whether or not exceeds the management upper limit value.
  • the management upper limit value it is determined whether or not the gas extraction system 120 is normal depending on whether or not the extraction pressure in the ejector 121 has reached a set value.
  • the amount of ejector-driven steam varies depending on the configuration and operating pressure of the gas extraction system, and cannot be generally stated. In some cases, however, the steam supplied to the turbine in the case of a geothermal steam power generator containing about 2% non-condensable gas. About 4 to 7% was consumed. If this amount of steam is optimized according to the current situation, an increase in power generation equivalent to the amount of steam saved can be expected.
  • the case where various treatments are performed based on whether or not at least one of the silica concentration and the chlorine ion concentration exceeds the control upper limit value is not limited thereto. Acid conductivity can be applied instead of the chlorine ion concentration.
  • the analysis data to be evaluated by the vapor property evaluation unit 31 is not limited to the case of applying all of the non-condensable gas concentration and pH of the above-described silica concentration, chloride ion concentration and acid conductivity. Depending on the ten steam properties, some of the above data or other new analysis data can be added. Since the principal component analysis method is applied in the deviation prediction diagnosis process in the vapor property evaluation unit, the number of analysis data is not limited, and by creating a normal model with a larger number of analysis data, Even if an abnormality occurs, the abnormality can be predicted in advance.
  • the first variable x1 is the silica concentration
  • the second variable x2 is the pH
  • the third variable x3 is the hot water flow rate ratio
  • these variables are expressed in three dimensions as shown in FIG.
  • a new coordinate z1 and z2 are introduced to extract the principal components, and as shown in FIG.
  • the principal component can be expressed in a low dimension
  • the distance in the radial direction from the coordinate origin is the T 2 statistic
  • the distance in the vertical direction is the Q statistic.
  • the presence or absence of an abnormality can be determined from the deviation from the normal model that appears in the circle. Furthermore, in the above-described embodiment, the case has been described where abnormality determination is performed based on whether or not the analysis data exceeds the management upper limit value. However, the present invention is not limited to this, and operation recommendations smaller than the management upper limit value are recommended. An abnormality determination may be made based on whether or not the value is exceeded.

Abstract

 地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定して分析データを出力する蒸気性状自動測定装置11と、前記地熱発電設備を監視しながら運転を制御する監視・制御装置12と、前記蒸気性状自動測定装置の分析データと前記監視・制御装置からの前記地熱発電設備の運転データとに基づいて前記地熱発電設備の蒸気性状評価、気水分離器の評価、生産井の脈動及び合流の評価の少なくとも一つを行い、前記地熱発電設備の運転状態を診断する診断装置21とを有する。

Description

地熱発電設備のオンライン診断方法及びオンライン診断システム
 本発明は、地熱発電設備の運転支援を行なうために、気水分離器から蒸気タービンに供給される蒸気の性状を測定する蒸気性状自動測定装置からの分析データ及び地熱発電設備の運転データを利用して地熱発電設備の機能低下や運転トラブルを未然に予測するようにした地熱発電設備のオンライン診断方法及びオンライン診断システムに関する。
 地熱発電設備の生産井から噴出し蒸気タービンへ供給される地熱蒸気には種々の鉱物成分やガス成分が含まれている。この鉱物成分がタービン翼へ付着するとタービンの仕事率が低下し、また地熱蒸気中に含まれる非凝縮性ガス成分が増加すると復水器の圧力が上昇するなど地熱発電出力へ支障を来たす事態が発生する。
 このため、通常運転時の経時的なスケール付着状況を定量的に表示・把握し、タービン翼のスケール除去作業やタービン翼の交換作業を行なう対策が特許文献1で提案されている。この特許文献1では、地下から噴出する天然蒸気が導かれる蒸気タービンのノズル板へのスケール・噴出物の付着量の増加に伴ってノズル出口圧力が経時的に低下してタービン出力が低下することをタービン運転中に監視することによりスケール付着状況を監視するようにしている。
特開2002-250271号公報
 しかしながら、特許文献1に記載の従来例にあっては、タービンノズルの前後圧力差に基づいてスケール付着状況を定量的に表示・把握するだけであり、スケール付着の原因を特定することや予測をすることは行なわれていない。
 そのため、このような事象の原因の特定と不具合発生時期を予測し、そのような事態を未然に防止または発生を遅らせる対策はもっぱら長年の経験と実績に基づく熟練した運転員の判断にゆだねられていた。
 また、蒸気中の溶存成分の分析は多くの場合、手分析で行われていて労力と費用が必要な為、地熱発電設備の管理者により月に1回程度の頻度で行われていることが多い。海外の地熱発電設備では、分析技術者の確保が難しいため蒸気中の溶存成分の分析が実施されていない例もある。
 このように適宜データが得られない事や熟練運転員の養成と確保には多大な負担がかかっていたという未解決の課題がある。
 しかも、地熱発電設備の大きな運転阻害要因として、気水分離器(以下、セパレータと称する)に供給する蒸気の性状変化があげられる。
 地熱発電設備のセパレータの設計は、通常は開発初期の生産井の噴気特性に合わせて設計される。しかし生産井の性状は経年的に変化することが多く、坑口圧力の低下や気液比の変化により、開発初期の生産状態を維持している生産井はほとんどない。また、蒸気量確保のため新たに掘削合流した生産井が従来の生産井の噴気特性と大きく異なることも少なくない。従って、経年的に生産井の状況をモニタリングして、セパレータの設計に反映させること(改造や更新の実施)が理想的であるが、現実的には生産井の性状が変化し続けるために改造条件の設定が難しく、また改造に要する多額の費用が発生するなどの為、状況に合わせたセパレータの改造や更新が行われる例はほとんどない。
 セパレータの改造が行われる例としては、タービンスケールの付着速度が速すぎて、定期点検までの連続運転ができない状況になった場合である。しかし、このように所定の定期点検まで継続運転が続けられない場合の経済的損失は非常に大きい。また、継続運転不能になってからの対策開始では、対策の完了までにタービンスケール清掃のため、さらに数回の発電停止を余儀なくされる。多くの地熱発電所では付着スケールの除去のため、年1回以上の高い頻度での開放点検を行い、スケール除去を行っている実態がある。
 この蒸気の品質確保のため、生産井で採取した地熱蒸気はセパレータで水分除去し、温度・圧力・流量を管理した状態でタービンへ供給される。蒸気の品質は水分量・温度・圧力・流量を基本としたセパレータの条件設定で主に決まるが、その結果は化学的な組成に顕著に反映される。そのため化学的な組成の把握が極めて重要で、このデータを用いた運転管理こそが地熱発電設備の最適管理に生かされなければならない。しかし、過去において化学的な組成データを考慮した本格的な運転管理は行われていないのが実情である。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、蒸気タービンに供給される蒸気の性状を表す分析データ及び地熱発電設備の運転データをオンラインで監視することにより、地熱発電設備の異常の発生を早期に確認したり、また正確に予知・予測したりする診断を行なうことができる地熱発電設備のオンライン診断方法及びオンライン診断システムを提供することを目的としている。
 上記目的を達成するために、一の実施形態に係る地熱発電設備のオンライン診断方法は、地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定する蒸気性状自動測定装置からの分析データと、前記地熱発電設備の運転データとをオンラインで受信し、これらの受信データに基づいて前記地熱発電設備の診断を行なう地熱発電設備のオンライン診断方法である。このオンライン診断方法では、前記分析データとして、少なくともシリカ濃度、塩素イオン濃度及び酸導電率の一方を設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定し、前記分析データ及び運転データをオンラインで収集し、収集した前記分析データ及び運転データと各データに対する管理上限値又は運転推奨値とに基づいて前記地熱発電設備の診断を行なう。
 また、他の形態に係る地熱発電設備のオンライン診断方法は、地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定する蒸気性状自動測定装置からの分析データと、前記地熱発電設備の運転データとをオンラインで受信し、これらの受信データに基づいて前記地熱発電設備の診断を行なう地熱発電設備のオンライン診断方法である。このオンライン診断方法では、前記分析データとして、少なくともシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度、pHを設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定し、前記分析データ及び前記運転データをデータ格納部に時系列的に蓄積記憶する。そして、データ格納部に蓄積記憶された前記シリカ濃度と塩素イオン濃度及び酸導電率の一方とが管理上限値又は運転推奨値に達していないと判断されている状態で、前記データ格納部に蓄積記憶されている前記分析データ及び前記運転データから多変量解析の方法である主成分分析法と統計量計算とに基づき前記分析データ及び前記運転データの管理上限値又は運転推奨値からの逸脱の予兆を検知する。
 他の形態にかかる地熱発電設備のオンライン診断方法は、前記分析データとして、少なくともシリカ濃度、塩素イオン濃度を設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定する。そして、設定した前記シリカ濃度と塩素イオン濃度とを監視して管理上限値又は運転推奨値に対するレベルに応じた警報を前記地熱発電設備に出力する。また、前記シリカ濃度と塩素イオン濃度の少なくとも一方が前記管理上限値又は運転推奨値を超えている場合、前記塩素イオン濃度、前記蒸気流量及び前記熱水流量に基づいて演算された前記気水分離器の水分除去率が基準値以下の場合に気水分離器の性能診断結果を出力する。
 他の形態に係る地熱発電設備のオンライン診断方法は、前記運転データは、少なくとも前記蒸気流量、熱水流量及び前記気水分離器の水位であり、前記水分除去率が基準値以下で、かつ前記気水分離器の水位が水位上限値を超えていない場合、前記気水分離器から前記蒸気タービンに供給される蒸気に対して水スプレーを行なうスプレー装置に対してスプレー開始指示を出力する。
 他の形態に係る地熱発電設備のオンライン診断方法は、前記シリカ濃度と前記蒸気流量から、前記蒸気タービンへ流入したシリカ積算量を演算し、演算したシリカ積算量と、これに密接な関係のあるタービン入口圧力、タービン出口圧力、タービン車室圧力を対比させその時系列的な傾向とにより前記蒸気タービンへのシリカ付着状態を推定する。
 さらに他の形態に係る地熱発電設備のオンライン診断方法は、前記蒸気性状自動測定装置からの非凝縮性ガス濃度のデータと前記蒸気タービン後段の復水器の運転データから抽気すべきガス量を演算し、その傾向からガス抽出機の運転状況を診断する。
 一の形態に係る地熱発電設備のオンライン診断システムは、地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定して分析データを出力する蒸気性状自動測定装置と、前記地熱発電設備を監視しながら運転を制御する監視・制御装置と、前記蒸気性状自動測定装置からの分析データと前記監視・制御装置からの前記地熱発電設備の運転データとに基づいて前記地熱発電設備の蒸気性状評価、気水分離器の評価、生産井の脈動及び合流の評価の少なくとも一つを行い、前記地熱発電設備の運転状態を診断する診断装置とを有する。
 他の形態に係る地熱発電設備のオンライン診断システムは、前記診断装置は、前記地熱発電設備の診断結果の表示及び当該診断結果の前記監視・制御装置への送信の少なくとも一方を行なうように構成されている。
 本発明によれば、蒸気タービンに供給される蒸気の性状を表す分析データとして少なくともシリカ濃度、塩素イオン濃度及び酸導電率の一方を設定し、運転データとして気水分離器の蒸気流量及び熱水流量を設定し、両データをオンラインで収集し、収集した分析データ及び運転データと各データに対する管理上限値又は運転推奨値とに基づいて地熱発電設備の診断を行なう。このため、地熱発電設備の診断を常時正確に行なうことができ、現状の地熱発電設備の診断結果を地熱発電設備にフィードバックすることにより、問題の発生を早期に発見したり、または未然に防止することにより、より安定した運転が可能となる。
 殊に、分析データ及び運転データの蓄積データの診断を多変量解析の方法である主成分分析法及び統計量計算を適用して行なうことにより、分析データ及び運転データの管理上限値又は運転推奨値からの逸脱の予兆を検知することができる。
 また、シリカ濃度、塩素イオン濃度を監視し、シリカ濃度と塩素イオン濃度の少なくとも一方が管理上限値又は運転推奨値を超えている場合、塩素イオン濃度、蒸気流量及び熱水流量に基づいて演算された気水分離器の水分除去率が基準値以下の場合に気水分離器の性能診断結果を出力することにより、気水分離器の能力低下を警告することができる。
 このとき、水分除去率が基準値以下で、且つ気水分離器の水位が水位上限値以下である場合に、気水分離器及び蒸気タービン間に設けた蒸気に対して水スプレーを行なう水スプレー装置を作動させることにより、単位容積当りのミスト(微小水滴)の存在密度(個数)を増加させ、ミスト同士が接触合体(付着)する機会を増やし、蒸気中に浮遊する鉱物イオンを含むミストに水の粒を付着させて、全体の粒径を大きくして水分離効率を高めることができる。
 さらに、蒸気タービンに流入したシリカ積算量と、これに密接な関係のあるタービン入口圧力、タービン出口圧力、タービン車室圧力を対比させその時系列的な傾向とにより前記蒸気タービンノズルへのシリカ付着状況を推定することができる。
 さらにまた、蒸気性状自動測定装置からの非凝縮性ガス濃度のデータと前記蒸気タービン後段の復水器の運転データから抽気すべきガス量を演算し、その傾向からガス抽出機の運転状況を診断することができる。
 なおさらに、シリカ濃度、塩素イオン濃度及び酸導電率の一方が管理上限値を超える状態を監視することにより、複数の生産井の脈動であるか、合流条件の変化であるかを正確に診断することができる。
本発明の一実施形態を示す概略システム構成図である。 地熱発電設備を示す構成図である。 オンラインサポートセンターの具体的構成を示す機能ブロック図である。 熱水流量比とシリカ濃度の相関関係を示すグラフである。 Q統計値及びT2統計値のタイムチャートである。 異常の構成要因を説明するための図であって、(a)は相関図、(b)は寄与プロットを示すグラフである。 診断装置の診断処理手順の一例を示すフローチャートである。 図7のS3に示す逸脱予知診断処理手順の一例を示すフローチャートである。 図7のS4に示す気水分離器性能診断処理手順の一例を示すフローチャートである。 図7のS5に示す気水分離器注水評価処理手順の一例を示すフローチャートである。 図7のS6に示す蒸気タービンシリカ付着状態推定評価処理手順の一例を示すフローチャートである。 図7のS7に示す生産井の脈動・合流条件評価処理手順の一例を示すフローチャートである。 図7のS8に示すガス抽出システム運転状況診断処理手順の一例を示すフローチャートである。 図6(a)の相関図に関連する3変数の主成分分析法の説明に供する図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明の一実施形態を示すシステム概略構成図、図2本発明を適用し得る地熱発電設備の系統図、図3はオンライン診断システムを示す機能ブロック図である。
 図1において、10は地熱発電設備であって、この地熱発電設備10では、後述する気水分離器と蒸気タービンとの間の蒸気の性状を測定して分析データを出力する蒸気性状自動測定装置11が設置され、この蒸気性状自動測定装置11で測定され、出力された分析データが、地熱発電設備10の運転状態を監視すると共に制御する監視・制御装置12に伝送される。なお、蒸気性状自動測定装置11は測定装置11aと演算器11bとで構成されている。
 この監視・制御装置12では、所定時間毎に、伝送された分析データに自己が制御している気水分離器の運転データを付加した稼働データをインターネット、ローカルエリアネットワーク等の任意のネットワーク15を介して運転サポートセンター20へオンラインで送信する。この運転サポートセンター20は、オンライン診断装置21を有している。このオンライン診断装置21は、地熱発電設備10の監視・制御装置12から送信された稼働データを中央演算装置22で受信し、受信した稼働データに含まれる分析データ及び運転データをデータ格納部としてのデータロガ23に時系列的に蓄積記憶する。中央演算装置22では、後述する各種診断処理を実行する。
 地熱発電設備10の詳細は、図2に示すように、複数n本(nは自然数)の生産井PW1~PWnから噴出する地熱蒸気が二次流量調整弁PL1~PLnで流量調整されて合流されて水スプレー装置101を通過して気水分離器としての高圧セパレータ102に供給される。
 この高圧セパレータ102で蒸気と熱水とに分離し、分離された蒸気が水スプレー装置103を介してスクラバー104に供給されて蒸気を洗浄してからミストを除去し、このスクラバー104から出力される蒸気が発電機Gを接続した蒸気タービン105の高圧側に供給される。
 一方、高圧セパレータ102で分離された熱水は低圧セパレータ(フラッシャー)106に供給されて熱水を減圧膨張し、二次蒸気を発生させる。この低圧セパレータ106で発生された二次蒸気は水スプレー装置107を介してデミスター108に供給され、このデミスター108でミストが除去されて蒸気タービン105の中圧側に供給される。
 一方、低圧セパレータ106から排出される熱水は、ブライン再注入ポンプ109で加圧されて還元井110に供給されて地中に戻される。
 また、蒸気タービン105から排出される蒸気は、復水器111に供給されて蒸気を凝縮して復水し、その復水はホットウェルポンプ112で加圧され、その大部分が冷水塔113に供給されて冷却される。また、ホットウェルポンプ12で加圧された復水の残りが凝縮水再注入ポンプ114で再加圧されて還元井110に供給されて地中に戻される。
 冷水塔113で冷却された冷水は、復水器111の散水ヘッダ111aに戻されると共に、洗浄水ポンプ115を介して前述した各水スプレー装置101、103及び107に供給される。さらに、冷水塔113で冷却された冷水は、冷却水ポンプ116で加圧され、その一部が冷却器117で再冷却されて冷水塔113に戻され、残りがガス抽出システム120に供給される。
 このガス抽出システムは、前述したスクラバー104でミストが除去された蒸気が駆動用として供給されたエジェクター121を有している。このエジェクター121によって、復水器111内の排出蒸気を吸引することにより、蒸気タービン105から排出される排気圧力を制御する。このエジェクター121で吸引された排出蒸気は、冷却水ポンプ116から冷水が供給されたバロメトリックコンデンサ122で凝縮されて気水分離される。分離された気体が冷却水ポンプ116から冷水が冷却用に供給された真空ポンプ123によって吸引されてポンプシール水分離器124から大気に放出される。バロメトリックコンデンサ122で分離された水は復水器111に戻されると共に、ポンプシール水分離器124にて分離されたポンプシール水も復水器111に戻される。
 そして、スクラバー104及びデミスター108でミストが除去された蒸気が蒸気性状自動測定装置11に供給されて測定される。この蒸気性状自動測定装置11は、蒸気タービン105に供給される蒸気を常時測定して、シリカ濃度、塩化物イオン濃度、酸導電率、電気伝導率、pH及び非凝縮性ガス濃度を測定し、これらを分析データとして監視・制御装置12に供給する。
 監視・制御装置12では、蒸気性状自動測定装置11から入力される分析データと後述するオンライン診断装置21から入力される診断結果とに基づいて、生産井PW1~PWnの噴出蒸気量を調整する二次流量調整弁PL1~PLnの流量、水スプレー装置101、103及び107でのスプレー量、エジェクター121の排出蒸気吸引量等を制御する。
 また、監視・制御装置12は、蒸気性状自動測定装置11から分析データが入力されると、この分析データに自身が制御している復水器111の圧力データ及びエジェクター121の温度データ、高圧セパレータ102及び低圧セパレータ106で分離された蒸気流量及び熱水流量、坑口圧力、高圧セパレータ102の水位、蒸気タービン105の入口圧力及び出口圧力、復水器111の運転データ等の各種運転データを付加してネットワーク15を介して運転サポートセンター20に送信する。
 運転サポートセンター20では、オンライン診断装置21の中央演算装置22で、ネットワーク15を介して分析データ及び運転データを受信すると、これら分析データ及び運転データに含まれるデータ毎に時系列的にデータロガ23に格納すると共に、データロガ23に格納された時系列的な蓄積データに基づいて地熱発電設備10のオンライン診断処理を実行する。
 ここで、中央演算装置22は機能ブロック図で表すと図3に示すように構成されている。
 すなわち、監視・制御装置12から受信した分析データ及び運転データはデータロガ23に各種データ毎に時系列的に蓄積されて格納されている。このデータロガ23に記憶されている各種蓄積データが選択的に蒸気性状評価部31、気水分離器評価部32、注水評価部33、蒸気タービンへのシリカ付着量評価部34、生産井脈動・合流条件評価部35及びガス抽出システム評価部36に供給される。
 蒸気性状評価部31、気水分離器評価部32、注水評価部33、蒸気タービンへのシリカ付着量評価部34、生産井脈動・合流条件評価部35及びガス抽出システム評価部36から出力される表示情報が情報出力部40を構成する液晶ディスプレイ等の情報表示部41に供給される。この情報表示部41では、供給される各種表示情報を表示する。
 また、蒸気性状評価部31、気水分離器評価部32、注水評価部33、蒸気タービンへのシリカ付着量評価部34、生産井脈動・合流条件評価部35及びガス抽出システム評価部36から出力される診断結果や警報を含む診断情報が情報出力部40を構成する情報送信部42に供給される。この情報送信部42では、入力される診断情報を前述したネットワーク15を介して地熱発電設備10の監視・制御装置12に送信する。
 ここで、蒸気性状評価部31では、シリカ濃度、塩素イオン濃度(または酸導電率)、非凝縮性ガス濃度、pHがそれぞれ個別に設定された管理上限値に達していない状態で、データロガ23に格納されている時系列的な蓄積データから多変量解析の方法である主成分分析法と統計量計算に基づき管理上限値からの逸脱の予兆を検知する。
 この予兆を検知するには、先ず、プラント試運転時または、運転開始直後の前記分析データと前記運転データからなる多変数データより主成分分析法を適用し基準となる正常モデルを作成する。変数データ間の相関に着目し、統計量計算を行って、Q統計量及びホテリングのT2統計量を算出し、(1)正常時の変数間の相関から外れていたら異常と判定する(Q統計量)(2)正常時の変数間の相関に合っていても振幅(平均からの変動)が大きすぎれば異常と判定する(T2統計量)。
 監視・制御装置12からオンラインで送信されてくる前記分析データと前記運転データを、上記Q統計量及びT2統計量の二つの指標により評価を行い異常データの検出を行う。さらに、寄与プロット解析により異常の構成要因を算出することで、異常の要因となっている変数とその影響度をメッセージによりオペレータに知らしめることで監視機能の強化を行っている。
 ここで、熱水流量比を[(分離された熱水流量)/(分離された蒸気流量+分離された熱水流量)]とすると、具体的には、今、2変数としてシリカ濃度と熱水流量比とを設定した場合、運転開始直後のシリカ濃度と熱水流量比との相関を表す正常モデルは、熱水流量比が上昇するとシリカ濃度も上昇することから、図4に示すように正の相関となって、相関軸を中心とする所定の範囲内に収まる。ここで、例えば高圧セパレータ102等に異常が発生して、熱水流量比に対するシリカ濃度が増加して相関関係が崩れることになり、熱水流量比及びシリカ濃度に基づく点が▲で表すように正常モデルの相関軸からずれた場合には、正常モデルの相関軸からのずれ量がQ統計量で表される。これに対して、熱水流量比及びシリカ濃度が共に大きくなって、正常モデルの範囲を超える■で表される点となった場合には、熱水流量比及びシリカ濃度の相関は崩れないが、正常モデルの範囲を超えて値が大きくなるので、正常モデルの中心からの振幅がホテリングのT2統計量となる。
 このため、Q統計量及びホテリングのT2統計量を計算すると共に、正常モデルの範囲に基づいて図5に示すようにQ統計量の閾値及びT2統計量の閾値を決定することにより、シリカ濃度が管理上限値を超えない場合でも、Q統計量及びT2統計量の何れかが閾値を超えた場合に異常を予知することができる。
 このとき、異常となったQ統計量又はT2統計量に対する寄与プロットを行なうことにより、異常の構成要因を解析することができる。すなわち、例えば図6(a)に示すように、変数1及び変数2の2変数で表される場合に、Q統計量が閾値を超えた場合には、▲で表される異常点のデータとこの異常点▲を通る相関軸からの垂線と相関軸との交点に存在する正常時のデータ●との差の内訳から異常の構成要因を算出することができる。この場合の構成要因は、統計学的な処理により図6(b)に示すように異常の構成要因となっている変数1、変数2、変数3・・・と、その影響度を算出することができる。この影響度の大きい変数を異常の要因として特定することができる。
 したがって、Q統計量又はT2統計量に基づいて異常を予知した場合に、予知結果と、寄与プロットで表される影響度の大きい変数とを表す予知表示情報を情報表示部41に出力することにより表示し、予知診断情報を情報送信部42に出力することにより、ネットワーク15を介して監視・制御部12に送信して、特定された異常の要因となる変数を表示または修正制御する。
 また、逸脱予知診断処理結果が正常であるときに、シリカ濃度及び塩素イオン濃度が気水分離器評価部32に供給される。この気水分離器評価部32で、先ず、シリカ濃度及び塩素イオン濃度のそれぞれが予め個別に設定された管理上限値を超えているか否かを判定し、シリカ濃度及び塩素イオン濃度の双方が管理上限値以下である場合には、高圧セパレータ102が正常であると判断して、下記(1)式に基づいて水分除去率ηWを演算する。
 ηW=[ (Fw×Cclw) /(Fw×Cclw+Fs×Ccls) ]×100 …………(1)
 ここで、ηW:水分の除去率(%)、Fs:蒸気流量(t/h)、Fw:熱水流量(t/h)、Ccls:蒸気中の塩素イオン(ppm)、Cclw:熱水中の塩素イオン(ppm)である。
 また、高圧セパレータ102で分離された熱水中の塩素イオン濃度(Cclw)は、地熱発電所毎の性状により異なるが、国内では一般に300~6000ppm程度である。このような高濃度塩素イオン分析計は現状では自動計測の信頼性に問題があり、手分析による計測を行う場合が多い。
 そして、気水分離器評価部32の水分除去率演算部32aで演算した水分除去率ηWの表示データと、「気水分離器は有効に機能している」旨のガイダンス表示情報とで構成される正常表示情報を、情報出力部40を構成する情報表示部41に出力する。
 一方、シリカ濃度又は塩素イオン濃度が管理上限値を超えている場合には、高圧セパレータ102の性能低下と判断して、水スプレー装置101、103及び107の注水量を水分除去率ηWが予め設定した管理上限値ηWu以上となるように設定し、「気水分離器単独で改善の可能性がある。気水分離器の水位を確認後、水スプレー実施を推奨」のガイダンス表示情報と現在の水分除去率ηWの表示データとで構成される性能低下表示情報を、情報出力部40を構成する情報表示部41に出力する。
 また、注水評価部33では、逸脱予知診断処理結果が正常であるときに、シリカ濃度及び塩素イオン濃度が供給され、これらシリカ濃度又は塩素イオン濃度の何れかが管理上限値以下である場合には、高圧セパレータ102及び106が正常であると判断して、「気水分離器は有効に機能している。注水不要」のガイダンス表示情報を情報表示部41に出力する。
 一方、シリカ濃度又は塩素イオン濃度が管理上限値を超えている場合には、管理上限値を超えているシリカ濃度又は塩素イオン濃度が管理上限値以下となるように水スプレー装置101、103及び107の注水量を設定し、設定した注水量情報を情報送信部42に出力して、監視・制御装置12にネットワーク15を介して送信する。また、監視各管理上限値を超えているシリカ濃度又は塩素イオン濃度が管理上限値以下となったときには、「注水実施で気水分離器は有効に機能している」旨のガイダンス表示情報を情報表示部41に出力する。
 さらに、シリカ付着量評価部34は、前述した蒸気性状自動測定装置11からシリカ濃度を高頻度で取得すると共に、これに伴う運転データに含まれる蒸気流量も高頻度で取得することにより、蒸気タービン105へ流入したシリカ積算量を高精度で演算する。また、蒸気タービン105へのシリカ等の異物付着の指標となるタービン入口圧力、タービン出口圧力、タービン車室圧力の時系列的な傾向と、蒸気タービン105へ流入したシリカ積算量とにより蒸気タービン105へのシリカ付着程度を推定する。また、シリカ積算量の増加傾向と、タービン入口圧力、タービン出口圧力、タービン車室圧力の増加傾向を判断することにより、蒸気タービン105へのシリカ付着量の変化率を推定する。シリカ付着程度が所定量を超えたとき又はシリカ付着量の変化率が所定値を超えたときには、「シリカ積算量が増加し、車室圧力が上昇しています。」等のガイダンス表示情報を情報表示部41に出力する。
 生産井脈動・合流条件評価部35は、シリカ濃度及び塩素イオン濃度の双方が管理上限値未満であるときには、「生産井は有効に機能している」旨のガイダンス表示情報を情報表示部41に出力する。シリカ濃度及び塩素イオン濃度の一方が管理上限値以上となったときには、管理上限値以上となった状態が所定期間連続している場合及び所定期間連続していない場合でも二次流量調整弁PL1~PLnの開度に変動がない場合に合流条件に変化が発生したものと判断して、「合流条件変化あり」のガイダンス表示情報を情報表示部41に出力する。シリカ濃度及び塩素イオン濃度の一方が管理上限値以上となったときには、この状態が連続していない場合に、各二次流量調整弁PL1~PLnの開度変動がある場合には、生産井PW1~PWnの脈動があるものと判断して、「生産井の脈動あり」のガイダンス表示情報を情報表示部41に出力する。
 さらにまた、ガス抽出システム評価部36は、ガス抽出システム120の運転状況を診断するものである。ガス抽出システム120は、蒸気タービン105のタービン出口側の圧力を一定に保ち、蒸気タービン105に安定した仕事をさせるために重要な機器である。ガス抽出システム120の能力は、抽気すべきガス量によって決定される。この抽気すべきガス量は生産井蒸気にもともと含まれる非凝縮性ガスとタービン出口の復水器111の運転状態で飽和する水分および復水器111の冷却水から放出される空気である。このうち生産井特有のものは生産井蒸気に同伴する非凝縮性ガスである。ところが、このガスは生産井の追加合流や一部切り離しによって変わってくる。また経年と共に変化してくる場合が多い。前記蒸気性状自動測定装置11からの非凝縮性ガス量比の測定データはガス抽出システム120の最適運転のため極めて有効である。初期の設計段階で想定した非凝縮性ガス量は、一般に安全側の事態を想定した余裕を持った値を採用している。エジェクター121を駆動する駆動蒸気量は、ガス抽出システム120の構成や運転圧力によって変わり一概には言えないが、ある例では2%程度の非凝縮性ガスを含む地熱蒸気の発電設備の場合、蒸気タービン105に供給する蒸気の4~7%程度が消費されていた。この蒸気量を現状にあわせて最適化すればその蒸気節約分相当の発電量の増加が期待できる。
 ガス抽出システム120の運転状況診断と警報に必要な運転データは、抽気ガスエジェクター入口温度と圧力、および復水器111の冷却水の入口と出口温度である。
 上記の諸データが測定できれば、エジェクター121で抽気すべきガス量を演算することが可能である。
 非凝縮性ガスと空気に飽和する蒸気量は、次式で求められる。
 Fejt=[(Fncg+Fair)×[Ps/(Pt-Ps)] ]    …………(2)
 ここで、Fejt:非凝縮性ガスと空気に飽和する蒸気量(Nm3/h)、Fncg:非凝縮性ガス(Nm3/h)、Ps:エジェクター入口温度での水の蒸気圧(kPa)、Pt:エジェクター入口圧力(kPa)、Fair:空気量(Nm3/h)である。
 また、復水器111の冷水が空冷式の冷水塔113の冷水であれば、この冷水から放出される空気量(Fair)もヘンリーの法則に基づき計算できる。即ち、冷たい状態の水に溶解する空気と抽気ガスを冷却して温まった状態の水に溶解する空気の差が放出される空気である。このヘンリーの法則に基づく計算方法は公知でありここでは省略するが、最終的にガス抽出システム120で抽気すべきガス総量は、
 Fncg(非凝縮性ガス量)+Fejt(非凝縮性ガスに飽和する蒸気量)+Fair(冷却水から放出される空気量)
となり、非凝縮性ガスに飽和する蒸気量Fejtと冷却水から放出される空気量Fairは計算可能である。また、空気量Fairはガス抽出装置出口に設置されている流量計の指示から前記の飽和する水分を除いた値と、非凝縮性ガス量の差から計算で求める事も可能であるし、また抽気ガスの酸素濃度を実測する事でも想定可能である。即ち、次式の計算で求められる。
 Fair=(A×X1×0.01)/0.21   …………(3)
 ここで、A: ガス抽出装置出口に設置されている流量計(Nm3/h)、X1: ガス抽出装置出口の酸素濃度(vol%)、0.21:大気中の酸素濃度が21%である。
 そして、算出した抽気すべきガス総量が設計値を超えているか否かを判定し、抽気すべきガス総量が設計値以下である場合には、エジェクター入口圧力Ptが設定値に達しているか否かを判定する。設定値に達していない場合には、「ガス抽出システムが正常に機能していません。」のガイダンス表示情報を情報表示部41に出力する。設定値に達している場合には、「ガス抽出システムは正常に機能している。」のガイダンス表示情報を情報表示部41に出力する。
 また、抽気すべきガス総量が設計値を超えている場合には、非凝縮性ガス量、冷却水から放出される空気量および非凝縮性ガスに飽和する蒸気量のそれぞれが設計値を超えているか否かを判定することにより、設計値を超えている非凝縮性ガス量、空気量及び蒸気量の組み合わせに応じた警告ガイダンス表示情報を情報表示部41に出力して、オペレータに警告を発する。
 そして、中央演算装置22では、図7に示すオンライン診断処理を実行する。
 このオンライン診断処理は、図7に示すように、先ず、ステップS1で、監視・制御装置12から分析データ及び運転データを受信したか否かを判定する。分析データ及び運転データを受信していないときにはこれらを受信するまで待機し、分析データ及び運転データを受信したときにはステップS2に移行する。
 このステップS2では、受信した分析データ及び運転データを各種データ毎にデータロガ23に時系列的に格納し、次いでステップS3に移行して、管理上限値逸脱の予知を行なう逸脱予知診断処理を実行し、次いでステップS4に移行して、高圧セパレータ102の性能診断処理を実行してからステップS5に移行する。
 このステップS5では、高圧セパレータ102の前後の注水評価処理を実行し、次いでステップS6に移行して、蒸気タービン105のシリカ付着状態推定評価処理を実行してからステップS7に移行する。
 このステップS7では、生産井PW1~PWnの脈動・合流条件変化を評価する脈動・合流評価処理を実行し、次いでステップS8に移行して、ガス抽出システム120の運転状況診断処理を実行してから前記ステップS1に戻る。
 ここで、ステップS3の逸脱予知診断処理は、前述した蒸気性状評価部31で実行する処理であって、図8に示すとおりである。
 まず、ステップS11で、データロガ23に格納されているシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpH等の分析データを読込み、次いでステップS12に移行して、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが個別に設定された管理上限値以上であるか否かを判定する。この判定結果が、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが管理上限値以上であるときにはステップS13に移行する。このステップS13では、「該当する分析データが管理上限値超過」の警報ガイダンス表示情報を情報表示部41に出力すると共に、管理上限値超過警報を情報出力部40の情報送信部42に出力してからステップS4に移行する。
 また、前記ステップS12の判定結果が、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの全てが管理上限値未満であるときにはステップS14に移行する。このステップS14では、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが管理上限値よりは低く設定された運転推奨値以上であるか否かを判定する。この判定結果が、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが運転推奨値以上であるときには、ステップS15に移行する。このステップS15では、「運転推奨値超過」を表す警報ガイダンス表示情報を情報表示部41に出力すると共に、運転推奨値超過警報を情報送信部42に出力してからステップS4に移行する。
 一方、ステップS14の判定結果が、分析データに含まれるシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの全てが運転推奨値未満であるときにはステップS16に移行する。このステップS16では、地熱発電設備10の稼働開始時であるか否かを判定し、稼働開始時であるときには、ステップS17に移行する。このステップS17では、一定期間の分析データ及び運転データを収集したか否かを判定し、一定期間の分析データ及び運転データの収集が完了していないときには前記ステップS11に戻り、一定期間の分析データ及び運転データの収集が完了したときには、ステップS18に移行する。
 このステップS18では、一定期間の分析データ及び運転データから主成分分析法で正常モデルを作成し、次いでステップS19に移行して、正常モデルとの対比によるQ統計量及びT2統計量を算出する。
 次いで、ステップS20に移行して、算出したQ統計量及びT2統計量の少なくとも一方が正常モデルのデータ存在範囲に基づいて個別に設定された管理上限値以上であるか否かを判定する。この判定結果が、管理上限値未満であるときにはステップS21に移行して、「地熱発電設備は正常である。」旨のガイダンス表示情報を情報表示部41に出力してからステップS4に移行する。また、判定結果がQ統計量及びT2統計量の少なくとも一方が管理上限値以上であるときにはステップS22に移行して、予兆警報情報を情報送信部42に出力すると共に、異常要因ガイダンス表示情報を情報表示部41に出力してからステップS4に移行する。
 さらに、前記ステップS4の気水分離器性能診断処理は、図9に示すとおりである。先ず、ステップS31で、シリカ濃度、塩素イオン濃度、蒸気流量及び熱水流量を読込み、次いでステップS32に移行して、読込んだシリカ濃度、塩素イオン濃度、蒸気流量及び熱水流量に基づいて前記(1)式の演算を行って高圧セパレータ102の水分除去率ηWを算出する。
 次いで、ステップS33に移行して、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えているか否かを判定する。シリカ濃度及び塩素イオン濃度の双方が管理上限値以下であるときには、ステップS34に移行して、「セパレータは有効に機能している。水分除去率99.○○%」のガイダンス表示情報を情報表示部41に出力してからステップS4に移行する。
 また、ステップS33の判定結果が、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えている場合には、ステップS35に移行して、前記ステップS32で算出した水分除去率ηWが予め設定した基準値ηWs以下であるか否かを判定する。この判定結果が、水分除去率ηWが基準値ηWsを超えている場合には、ステップS39に移行して、「セパレータは有効に機能しているが、更なる水分除去率の向上が必要。」のガイダンス表示情報を情報表示部41に出力してからステップS4に移行する。
 また、ステップS35の判定結果が、水分除去率ηWが基準値ηWs以下であるときには、ステップS36に移行して、水スプレー装置101が存在するか否かを判定する。水スプレー装置101が存在する場合には、ステップS37に移行して、「セパレータ単独で改善の可能性がある。セパレータ水位を確認後、水スプレー実施を推奨。水分除去率99.○○%」のガイダンス表示情報を情報表示部41に出力してからステップS4に移行する。
 さらに、前記ステップS36の判定結果が、水スプレー装置101が存在しない場合には、ステップS38に移行して、「セパレータ単独で改善は不可能、このまま推移した場合、タービンの評価に進む。水分除去率99.○○%」のガイダンス表示情報を情報表示部41に出力してからステップS5に移行する。
 また、ステップS5の気水分離器注水評価処理は、図10に示すとおりである。先ず、ステップS41で、シリカ濃度及び塩素イオン濃度を読込み、次いでステップS42に移行して、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えているか否かを判定する。この判定結果が、シリカ濃度及び塩素イオン濃度の双方が管理上限値を超えていない場合にはステップS43に移行して、「セパレータは有効に機能している。注水不要」のガイダンス表示情報を情報表示部41に出力してからステップS5に移行する。
 また、ステップS42の判定結果が、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えている場合には、ステップS44に移行して、セパレータ水位が水位上限値を超えているか否かを判定する。この判定結果が、セパレータ水位が水位上限値を超えている場合には、水位が上がり分離された熱水が蒸気中に混入する可能性があるためステップS45に移行して「セパレータは有効に機能していません。セパレータの水位を下げて下さい。」のガイダンス表示情報を情報表示部41に出力してからステップS5に移行する。
 さらに、ステップS44の判定結果が、セパレータ水位が水位上限値を超えていない場合には、ステップS46に移行して、水スプレー装置101に対する注水量の指令値を情報送信部42に出力してからステップS47に移行する。
 このステップS47では、新たなシリカ濃度及び塩素イオン濃度を受信したか否かを判定する。シリカ濃度及び塩素イオン濃度を受信していないときには、これらを受信するまで待機し、新たなシリカ濃度及び塩素イオン濃度を受信したときには、ステップS48に移行して、再度新たなシリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えているか否かを判定する。新たなシリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えているときには、前記ステップS46に戻り、新たなシリカ濃度及び塩素イオン濃度の双方が管理上限値以下であるときにはステップS49に移行して、「注水実施でセパレータは有効に機能している。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS5に移行する。
 ステップS6の蒸気タービンシリカ付着状態推定評価処理は、図11に示すとおりである。先ず、ステップS51でシリカ濃度、タービン入口圧力、タービン出口圧力、タービン車室圧力を読込み、次いでステップS52に移行して、シリカ濃度から蒸気タービン105に流入するシリカ量を算出する。次いでステップS53に移行して、算出したシリカ量を前回のシリカ積算量に加算した値を新たなシリカ積算量としてからステップS54に移行する。このステップS54では、新たなシリカ積算量と、蒸気タービン105へのシリカ等のスケール付着の指標となるタービン入口圧力、タージン出口圧力及びタービン車室圧力の時系列的な傾向とに基づいて蒸気タービン105へのシリカ付着量を推定する。
 次いでステップS55に移行して、推定したシリカ付着量が予め設定した管理上限値を超えたか否かを判定し、推定したシリカ付着量が管理上限値を超えていない場合には「蒸気タービンへのシリカ付着量は許容範囲内。」のガイダンス表示情報を情報表示部41に出力してからステップS6に移行する。
 また、ステップS55の判定結果が、推定したシリカ付着量が管理上限値を超えた場合には、ステップS57に移行して「蒸気タービンへのシリカ付着量は許容範囲外。」のガイダンス表示情報を情報表示部41に出力してからステップS6に移行する。
 なお、上記蒸気タービンシリカ付着状態推定評価処理においては、シリカ積算量とタービン入口圧力、タービン出口圧力及びタービン車室圧力の時系列な傾向とに基づいてシリカ付着程度を推定した。しかし、本発明はこれに限定されるものではなく、シリカ積算量と、タービン入口圧力、タービン出口圧力及びタービン車室圧力の増加傾向を検知して、シリカ付着量の変化率が所定値を超えたときにガイダンス表示情報を情報表示部41に出力するようにしてもよい。
 さらにまた、ステップS7の生産井の脈動・合流条件評価処理は、図12に示すとおりである。先ず、ステップS61で、シリカ濃度及び塩素イオン濃度を読込み、次いでステップS62に移行して、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えたか否かを判定する。この判定結果が、シリカ濃度及び塩素イオン濃度の双方が管理上限値を超えていないときには、ステップS63に移行して、「生産井は有効に機能している。」のガイダンス表示情報を情報表示部41に出力してからステップS7に移行する。
 また、ステップS62の判定結果が、シリカ濃度及び塩素濃度の少なくとも一方が管理上限値を超えている場合には、ステップS64に移行して、管理上限値を超えているシリカ濃度及び塩素濃度の少なくとも一方が連続的に管理上限値を超えているか否かを判定する。この判定結果が、連続的に管理上限値を超えている場合には、ステップS65に移行して、「合流条件の変化あり」のガイダンス表示情報を情報表示部41に出力してからステップS7に移行し、連続的に管理上限値を超えていない場合にはステップS66に移行する。
 このステップS66では、各二次流量調整弁PL1~PLnの開度変化があるか否かを判定し、開度変化がない場合には、前記ステップS65に移行し、開度変化がある場合には、ステップS67に移行する。このステップS67では、「生産井の脈動有り」のガイダンス表示情報を情報表示部41に出力してからステップS7に移行する。
 なおさらに、ステップS8のガス抽出システム運転状況診断処理は、図13に示すとおりである。先ず、ステップS71で、非凝縮性ガス量比、抽気ガスエジェクター入口温度と圧力、並びに復水器111の冷却水の入口及び出口温度とを読込む。次いでステップS72に移行して、前記(2)式にしたがって、非凝縮性ガスに飽和する蒸気量Fejtを算出すると共に、冷却水から放出される空気量Fair及び非凝縮性ガス量Fncgを算出する。
 次いで、ステップS73に移行して、非凝縮性ガス量Fncg、非凝縮性ガスに飽和する蒸気量Fejt及び冷却水から放出される空気量Fairを加算して抽気ガス総量Fallを算出する。
 次いでステップS74に移行して、抽気ガス総量Fallが予め設定した設計値Fallpを超えているか否かを判定する。抽気ガス総量Fallが設計値Fallpを超えてないときにはステップS75に移行して、抽気圧力が設定値に達していないか否かを判定する。この判定結果が、抽気圧力が設定値に達していないときにはステップS77に移行して、「ガス抽出システムが正常に機能していません。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。また、ステップS75の判定結果が抽気圧力が設定圧力に達しているときにはステップS76に移行して、「ガス抽出システムは正常に機能している。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 さらに、ステップS74の判定結果が、抽気ガス総量Fallが設計値Fallpを超えているときには、ステップS78に移行して、非凝縮性ガス量Fncgが予め設定した設計値Fncgpを超えているか否かを判定する。この判定結果が、非凝縮性ガス量Fncgが設計値Fncgpを超えているときには、ステップS79に移行して、空気量Fairが予め設定した設計量Fairpを超えているか否かを判定する。この判定結果が、空気量Fairが設計値Fairpを超えているときには、ステップS80に移行して、「非凝縮性ガス量Fncgと空気量Fairとが過大です。生産井のガスが増加の可能性があります。またシール部を点検して下さい。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 また、ステップS79の判定結果が、空気量Fairが設計値Fairpを超えていないときには、ステップS81に移行して、蒸気量Fejtが予め設定された設計値Fejtpを超えているか否かを判定する。この判定結果が、蒸気量Fejtが設計値Fejtpを超えているときにはステップS82に移行して、「非凝縮性ガス量と蒸気量が過大です。復水器温度を下げる事が有効です。また生産井のガス量が増加しています。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 さらに、ステップS81の判定結果が、蒸気量Fejtが設定値Fejtpを超えていない場合には、ステップS83に移行して、「非凝縮性ガス量が過大です。生産井のガス量が増加している可能性があります。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 さらにまた、前記ステップS78の判定結果が、非凝縮性ガス量Fncgが設計値Fncgpを超えていない場合には、ステップS84に移行して、空気量Fairが設計値Fairpを超えているか否かを判定する。この判定結果が、空気量Fairが設計値Fairpを超えている場合にはステップS85に移行して、蒸気量が設計値を超えているか否かを判定する。蒸気量が設計値を超えていない場合には、どこかのガスシールから空気が吸い込まれている可能性があるため、ステップS86に移行する。このステップS86では「空気量が過大です。ガスシール部を点検して下さい。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。ステップS85において、蒸気量が設計値を超えている場合にはステップS87に移行して、「空気量と蒸気量が過大。復水器温度を下げると有効。また、シール部の点検をして下さい。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 なおさらに、ステップS84の判定結果が、空気量Fairが設計値Fairpを超えていないときにはステップS88に移行して、「蒸気量が過大です。復水器温度を下げる事が有効です。」のガイダンス表示情報を情報表示部41に出力してから前記ステップS1に戻る。
 ここで、ステップS3の処理及び図8の処理が蒸気性状評価部31に対応し、ステップS4の処理及び図9の処理が気水分離器評価部32に対応し、ステップS5の処理及び図10の処理が注水評価部33に対応し、ステップS6の処理及び図11の処理がシリカ付着量評価部34に対応し、ステップS7の処理及び図12の処理が生産井脈動・合流条件評価部35に対応し、ステップS8の処理及び図13の処理がガス抽出システム評価部36に対応している。
 次に、上記実施形態の動作を説明する。
 今、地熱発電設備10を新設した場合や、既存の地熱発電設備10に蒸気性状自動測定装置11及び診断装置21を新設した場合には、蒸気性状自動測定装置11及び診断装置21を稼働開始させた時点で、診断装置21の中央演算装置22で、図7に示す診断処理を実行する。この診断処理では、蒸気性状自動測定装置11から分析データ及び運転データを受信していないときには、これらを受信するまで待機し、分析データ及び運転データを受信すると、受信した分析データ及び運転データをデータロガ23に各種データ毎に時系列的に格納する(ステップS2)。
 次いで、図8に示す逸脱予知診断処理を実行する。この逸脱予知診断処理では、診断装置21の稼働開始時点であるので、蒸気性状自動測定装置11で収集する分析データ及び監視・制御装置12で付加される運転データを一定期間収集したか否かを判定する(ステップS17)。予兆診断は蓄積されたデータをもとに将来の状態を予測するシステムであるから、一定期間の収集が完了していないときには、予兆診断を行なうことができない。このため、ステップS12で、シリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが管理上限値以上であるか否かを判定する。全てが管理上限値未満であるときにはステップS14に移行して、管理上限値より小さい値の運転推奨値以上であるか否かを判定する。全てが運転推奨値未満であるときには地熱発電設備10が正常であると判断して、その旨を表すガイダンス表示情報を情報表示部41に表示する。このため、オペレータは情報表示部41のガイダンス表示情報を視認することにより、地熱発電設備10が正常であることを把握することができる。
 この状態で、シリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの少なくとも1つが管理上限値以上となると、該当する分析データが管理上限値超過を表すガイダンス表示情報を情報表示部41に表示すると共に、管理上限値超過となった分析データについての警報を情報送信部42に出力する。このため、管理上限値超過となった分析データの警報がネットワーク15を介して監視・制御装置12に送信されるので、この監視・制御装置12で警報に基づいて管理上限値超過となった分析データを管理上限値未満となるように必要な機器を制御する。
 一方、一定期間の分析データの収集が完了すると、これらの分析データに基づいて主成分分析法に基づいて正常モデルを作成し、作成した正常モデルをデータロガ23に記憶しておく。その後、分析データを受信する毎に、分析データに基づいて正常モデルとの対比によるQ統計量及びT2統計量を算出し(ステップS19)、算出したQ統計量及びT2統計量の双方が管理上限値未満であるときには地熱発電設備10が正常と判断して、その旨のガイダンス表示情報が情報表示部41に表示される。
 ところが、シリカ濃度及び塩素イオン濃度が管理上限値以下であるにもかかわらず、前述したように、例えば熱水流量に対するシリカ濃度が正常モデルの相関関係から外れてQ統計量が正常モデルに基づいて設定される閾値を超えたり、熱水流量とシリカ濃度との相関関係を維持しているが振幅が大きくなって正常モデル範囲から逸脱してT2統計量が正常モデルに基づいて設定される閾値を超えたりした場合には、異常が発生する予兆であると判断する。そして、予兆警報を、情報送信部42を介して監視・制御装置12に送信すると共に、寄与プロットに基づいて異常の構成要因を算出し、算出した異常の構成要因を情報表示部41に表示する。このため、オペレータが異常発生の予兆を把握して、異常が発生する前に異常の構成要因に基づいて対策を講じることにより、異常発生を未然に防止することができる。
 このQ統計量、T2統計量の監視こそが予兆診断の具体的な手法である。また、監視データの蓄積量に比例して、この予兆診断はより現実に即した信頼できるものになる特徴がある。
 また、逸脱予知診断処理が終了すると、図9に示す気水分離器性能診断処理が実行される。この気水分離器性能診断処理では、シリカ濃度及び塩素イオン濃度が管理上限値を超えていない状態では、正常と判断されて、「セパレータは有効に機能している。水分除去率は99.99%」のガイダンス表示情報が情報表示部41に表示される。
 しかしながら、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えると、セパレータの水分除去率ηWを算出する。この算出した水分除去率ηWが基準値ηWs以下となったときには、水スプレー装置101が存在する場合には、「セパレータ単独で改善の可能性がある。セパレータ水位を確認後、水スプレー実施を推奨。水分除去率99.○○%」のガイダンス表示情報が情報表示部41に表示される。このため、オペレータが水スプレー装置101の注水量を設定して注水することにより、セパレータでの水分除去率ηWを回復させることができる。
 ところが、過去に設置された古い装置では水スプレー装置を備えていない例もあり、その場合には、セパレータの水分除去率ηWを単独で改善不可能であるので、その旨及び水分除去率ηWを表すガイダンス表示情報を情報表示部41に表示する。
 さらに、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超えたときに、水分除去率ηWが基準値ηWs以上であるときには、セパレータ自体は正常であるので、セパレータは有効に機能している旨のガイダンス表示情報を情報表示部41に表示する。この場合には、蒸気タービンへの異物の付着等の他の要因による異常と判断することができる。
 本実施形態では、気水分離器性能診断処理の次にステップS5に移行して図10に示す気水分離器注水評価処理を実行するので、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理上限値を超える状態となると、水スプレー装置101、103及び107を作動させ蒸気をスプレー水で洗浄する。
 このとき、水スプレー装置101は高圧セパレータ102の入口側に配置されているので、生産井PW1~PWnからの蒸気をスプレー水で洗浄することにより、単位容積当りのミスト(微小水滴)の存在密度(個数)を増加させ、ミスト同士が接触合体(付着)する機会を増やし、蒸気中に浮遊する鉱物イオンを含むミストに更に水の粒を付着させ、粒径を大きくしてセパレータでの水分離効率を高める働きが期待できる。
 水滴径(粒径)が大きくなると、分離効率が上昇する事は下記のストークスの遠心沈降速度の式から明らかである。
 vc=(Dp2×Δρ×r×ω2)/(18×μ) …………(4)
 ここで、vc:粒子の遠心沈降速度(m/s)、Δρ:粒子(水)と連続層(水蒸気)の密度差(kg/m3)、Dp:粒子の直径(m)、ω:回転角速度(rad/s)、μ:連続層(蒸気)の粘度(Pa・s)、r:セパレータの半径(m)である。
 すなわち、粒子の遠心沈降速度は粒径の二乗に比例して増加する。遠心沈降速度が増加すればセパレータ内の滞留時間が同じならば確実に分離効率が上昇する。ここで、一般的な地熱発電に供する水蒸気は飽和蒸気であり、水分をスプレーしてもこの添加水分が蒸発して蒸気容量を増加させ、その結果セパレータ内の滞留時間を減少させることはあり得ない。従って分離効率は確実に向上する。
 また、セパレータ分離蒸気中の鉱物質の量を計算する式は下記である。
 Fm=Fs×ηfw×(1―ηsw/100)×Cmw …………(5)
 ここで、Fm:セパレータ分離蒸気中の鉱物質の量(g/h)、Fs:蒸気流量(t/h)、Fw:熱水流量(t/h)、ηfw:セパレータ供給2相流の水分含有率(-)=Fw/(Fs+Fw)、ηsw:水分の除去率(%)、Cmw:熱水中の鉱物濃度(ppm)である。
 このスプレー水による蒸気洗浄は非常に効果的である。セパレータ供給蒸気の2%程度の水スプレーを実施すると0.04%程度の水分分離効率を高め、結果として飛沫同伴される鉱物質も減少する事が実際の装置で確認されている。
 例えば、100t/h,熱水含有率5%で熱水中の鉱物質2000wppm(g/t)の生産井蒸気をセパレータに供給し、そのときの熱水分離効率が99.92%であるとすると、セパレータ分離蒸気中に含まれる鉱物質は、
 (100t/h)×(0.05)×(1-0.9992)×(2000g/t)=8g/h   …………(6)
である。
 そこで、この生産井蒸気にセパレータ手前で2%の水スプレーを実施し熱水分離効率が0.04%増の99.96%に上昇すると、セパレータ分離蒸気中の鉱物質は、
 [(100t/h)×(0.05+0.02)]×(1-0.9996)×[(2000g/t)×5/(5+2)]=4g/h ………(7)
と半減する。
 この様にセパレータ分離蒸気中の飛沫同伴鉱物質が低減できる事は実績に基づく計算からも明らかである。
 この気水分離器注水評価処理が完了すると、ステップS6に移行して図11に示す蒸気タービンシリカ付着状態推定評価処理が実行される。この蒸気タービンシリカ付着状態推定評価処理では、蒸気タービン105に供給される高圧セパレータ102及び低圧セパレータ106からの蒸気が蒸気性状自動測定装置11で自動的にしかも短い周期で測定され、分析データとして監視・制御装置12に送られる。そして、監視・制御装置12で分析データに各種運転データを付加して診断装置21にネットワーク15を介してオンライン送信するので、診断装置21でシリカ濃度データを短い周期で収集することができ、このシリカ濃度データに基づいて蒸気タービン105に対するシリカ付着積算量を算出することができる。しかも、シリカ付着積算量と、蒸気タービンへのシリカ等のスケール付着の指標となるタービン入口圧力、タービン出口圧力、タービン車室圧力の時系列的な傾向とで蒸気タービン105へのシリカ付着程度を推定することができる。このとき、シリカ積算量の増加傾向の検知とタービン入口圧力、タービン出口圧力、タービン車室圧力の増加傾向の検知とを行なうことにより、変化率に基づいて蒸気タービンノズルへのシリカ付着状態をより精度良く推定することができる。
 そして、蒸気タービンシリカ付着状態推定評価処理が完了すると、続いて生産井の脈動・合流条件評価処理が実行される。この脈動・合流条件評価処理では、シリカ濃度及び塩素イオン濃度の少なくとも一方が管理基準値を超えたときに、その要因が生産井の脈動に基づくものであるか、生産井の追加又は削減による合流条件の変化であるかを正確に把握することができる。
 そして、最後にステップS8でガス抽出システム運転状況診断処理が実行される。このガス抽出システム運転状況診断処理では、非凝縮性ガス量Fncg、非凝縮性ガスに飽和する蒸気量Fejt及び冷却水から放出される空気量Fairが算出され、これらの総和である抽気ガス総量Fallが管理上限値を超えているか否かを判定する。管理上限値を超えていない場合にはエジェクター121での抽気圧力が設定値に達しているか否かでガス抽出システム120が正常であるか否かを判断する。一方、抽気ガス総量Fallが管理上限値を超えている場合には、非凝縮性ガス量Fncg、空気量Fair及び蒸気量Fejtの何れか又は複数の組み合わせが設計値を超えているかを判定し、設計値を超えている量に対して適切なガイダンス表示情報を情報表示部41に表示し、オペレータに伝達することができる。
 そして、エジェクター駆動蒸気量はガス抽出システムの構成や運転圧力によって変わり、一概には言えないが、ある例では2%程度の非凝縮性ガスを含む地熱蒸気の発電装置の場合タービンに供給する蒸気の4~7%程度が消費されていた。この蒸気量を現状にあわせて最適化すればその蒸気節約分相当の発電量の増加が期待できる。
 なお、上記実施形態においては、シリカ濃度と塩素イオン濃度との少なくとも一方が管理上限値を超えているか否かに基づいて各種処理を行なう場合について説明したが、これに限定されるものではなく、塩素イオン濃度に代えて酸導電率を適用することもできる。
 また、蒸気性状評価部31で評価する分析データとしては、上述したシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度及びpHの全てを適用する場合に限らず、地熱発電設備10の蒸気性状に合わせて、上記のうちの一部のデータ或いは他の新たな分析データを追加することができる。蒸気性状評価部での逸脱予知診断処理で主成分分析法を適用しているので、分析データ数は限定されず、より多くの分析データ数で正常モデルを作成することにより、何れかのデータで異常が発生する場合でもその異常を未然に予知することができる。
 さらに、上記実施形態では、主成分分析法として2変数を例にとって説明したが、これに限定されるものではない。例えば第1の変数x1をシリカ濃度、第2の変数x2をpH、第3の変数x3を熱水流量比としたとき、これらの変数は図14に示すように3次元で表現される。このときデータの分布が平面状でz1及びz2平面上に分布しているものとすると、新たな座標z1及びz2を導入して主成分を抽出することにより、図14に示すように、2次元の低次元で主成分を表現することができ、座標原点からの半径方向の距離がT2統計量となり、上下方向の距離がQ統計量となる。円内で表れる正常モデルから逸脱量で異常の有無を判断することができる。
 さらにまた、上記実施形態では、分析データが管理上限値を超えているか否かで異常判断を行なうようにした場合について説明したが、これに限定されるものではなく、管理上限値より小さい運転推奨値を超えているか否かで異常判断を行なうようにしてもよい。
 10…地熱発電設備、11…蒸気性状自動測定装置、12…監視・制御装置、15…ネットワーク、20…運転サポートセンター、21…診断装置、22…中央演算装置、23…データロガ、31…蒸気性状評価部、32…気水分離器評価部、33…注水評価部、34…シリカ付着量評価部、35…生産井脈動・合流条件評価部、36…ガス抽出システム評価部、40…情報出力部、41…情報表示部、42…情報送信部、101,103,107…水スプレー装置、102…高圧セパレータ、104…スクラバー、105…蒸気タービン、106…低圧セパレータ、108…デミスター、110…還元井、111…復水器、113…冷水塔、120…ガス抽出システム、121…エジェクター、123…真空ポンプ、124…ポンプシール水分離器

Claims (8)

  1.  地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定する蒸気性状自動測定装置からの分析データと、前記地熱発電設備の運転データとをオンラインで受信し、これらの受信データに基づいて前記地熱発電設備の診断を行なう地熱発電設備のオンライン診断方法であって、
     前記分析データとして、少なくともシリカ濃度、塩素イオン濃度及び酸導電率の一方を設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定し、前記分析データ及び運転データをオンラインで収集し、収集した前記分析データ及び運転データと各データに対する管理上限値又は運転推奨値とに基づいて前記地熱発電設備の診断を行なうことを特徴とする地熱発電設備のオンライン診断方法。
  2.  地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定する蒸気性状自動測定装置からの分析データと、前記地熱発電設備の運転データとをオンラインで受信し、これらの受信データに基づいて前記地熱発電設備の診断を行なう地熱発電設備のオンライン診断方法であって、
     前記分析データとして、少なくともシリカ濃度、塩素イオン濃度及び酸導電率の一方、非凝縮性ガス濃度、pHを設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定し、前記分析データ及び前記運転データをデータ格納部に時系列的に蓄積記憶し、該データ格納部に蓄積記憶された前記シリカ濃度と塩素イオン濃度及び酸導電率の一方とが管理上限値又は運転推奨値に達していないと判断されている状態で、前記データ格納部に蓄積記憶されている前記分析データ及び前記運転データから多変量解析の方法である主成分分析法と統計量計算とに基づき前記分析データ及び前記運転データの管理上限値又は運転推奨値からの逸脱の予兆を検知することを特徴とする地熱発電設備のオンライン診断方法。
  3.  前記分析データとして、少なくともシリカ濃度、塩素イオン濃度を設定し、前記運転データとして、少なくとも前記気水分離器で分離された蒸気流量及び熱水流量を設定し、前記シリカ濃度と塩素イオン濃度を監視して管理上限値又は運転推奨値に対するレベルに応じた警報を前記地熱発電設備に出力し、前記シリカ濃度と塩素イオン濃度の少なくとも一方が前記管理上限値又は運転推奨値を超えている場合、前記塩素イオン濃度、前記蒸気流量及び前記熱水流量に基づいて演算された前記気水分離器の水分除去率が基準値以下の場合に気水分離器の性能診断結果を出力することを特徴とする請求項1又は2に記載の地熱発電設備のオンライン診断方法。
  4.  前記運転データは、少なくとも前記蒸気流量、熱水流量及び前記気水分離器の水位であり、前記水分除去率が基準値以下で、かつ前記気水分離器の水位が水位上限値を超えていない場合、前記気水分離器から前記蒸気タービンに供給される蒸気に対して水スプレーを行なうスプレー装置に対してスプレー開始指示を出力することを特徴とする請求項3に記載の地熱発電設備のオンライン診断方法。
  5.  前記シリカ濃度と前記蒸気流量から、前記蒸気タービンへ流入したシリカ積算量を演算し、演算したシリカ積算量と、これに密接な関係のあるタービン入口圧力、タービン出口圧力、タービン車室圧力を対比させその時系列的な傾向とにより前記蒸気タービンへのシリカ付着状態を推定することを特徴とする請求項1乃至4の何れか1項に記載の地熱発電設備のオンライン診断方法。
  6.  前記蒸気性状自動測定装置からの非凝縮性ガス濃度のデータと前記蒸気タービン後段の復水器の運転データから抽気すべきガス量を演算し、その傾向からガス抽出機の運転状況を診断することを特徴とする請求項1乃至5の何れか1項に記載の地熱発電設備のオンライン診断方法。
  7.  地熱発電設備の気水分離器から蒸気タービンに供給される蒸気の性状を測定して分析データを出力する蒸気性状自動測定装置と、
     前記地熱発電設備を監視しながら運転を制御する監視・制御装置と、
     前記蒸気性状自動測定装置からの分析データと前記監視・制御装置からの前記地熱発電設備の運転データとに基づいて前記地熱発電設備の蒸気性状評価、気水分離器の評価、生産井の脈動及び合流の評価の少なくとも一つを行い、前記地熱発電設備の運転状態を診断する診断装置と
    を有することを特徴とする地熱発電設備のオンライン診断システム。
  8.  前記診断装置は、前記地熱発電設備の診断結果の表示及び当該診断結果の前記監視・制御装置への送信の少なくとも一方を行なうように構成されていることを特徴とする請求項7に記載の熱発電設備のオンライン診断システム。
PCT/JP2009/068017 2008-10-21 2009-10-19 地熱発電設備のオンライン診断方法及びオンライン診断システム WO2010047312A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09822009A EP2339177A1 (en) 2008-10-21 2009-10-19 Online diagnostic method and online diagnostic system for geothermal generation facility
NZ590408A NZ590408A (en) 2008-10-21 2009-10-19 An online diagnostic method and system for a geothermal generation facility
US13/054,972 US8407027B2 (en) 2008-10-21 2009-10-19 Online diagnostic method and online diagnostic system for geothermal generation facility
JP2010534805A JP5010032B2 (ja) 2008-10-21 2009-10-19 地熱発電設備のオンライン診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008271190 2008-10-21
JP2008-271190 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047312A1 true WO2010047312A1 (ja) 2010-04-29

Family

ID=42119350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068017 WO2010047312A1 (ja) 2008-10-21 2009-10-19 地熱発電設備のオンライン診断方法及びオンライン診断システム

Country Status (5)

Country Link
US (1) US8407027B2 (ja)
EP (1) EP2339177A1 (ja)
JP (1) JP5010032B2 (ja)
NZ (1) NZ590408A (ja)
WO (1) WO2010047312A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052577A (ja) * 2013-09-09 2015-03-19 三菱重工業株式会社 地熱発電用蒸気性状監視装置及び方法、地熱発電システム、地熱発電システムの制御方法
JP2018091809A (ja) * 2016-12-07 2018-06-14 三菱日立パワーシステムズ株式会社 地熱発電用蒸気性状監視装置、地熱発電システム、地熱発電用蒸気性状監視方法、及び、地熱発電システム制御方法
JP2020012456A (ja) * 2018-07-20 2020-01-23 株式会社東芝 スケール抑制装置、地熱発電設備およびスケール抑制方法
JP7094431B1 (ja) 2021-10-29 2022-07-01 西日本技術開発株式会社 プラント性能管理方法、プラント性能管理装置、及びプラント性能管理プログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ591875A (en) * 2008-10-03 2013-06-28 Geothermal Engineering Co Ltd Device for measuring silica concentration and conductivity of steam in a geothermal power generation plant
US20120283885A1 (en) * 2011-05-04 2012-11-08 General Electric Company Automated system and method for implementing statistical comparison of power plant operations
CA2847637C (en) * 2013-03-26 2021-10-19 Energie-Stat Inc. System and method for thermal response testing
CN103955172A (zh) * 2014-03-24 2014-07-30 长安大学 一种地热工程自动监控系统设计方法
WO2016064744A1 (en) 2014-10-22 2016-04-28 Sisler John R Radio frequency based void fraction determination
US9689823B2 (en) 2015-03-10 2017-06-27 Rosemount Inc. Steam quality meter and measurement method
US10061298B2 (en) 2016-04-27 2018-08-28 General Electric Company Control of machinery with calibrated performance model
KR101863781B1 (ko) * 2016-09-08 2018-06-01 두산중공업 주식회사 로터 진동 이상 감지 장치 및 방법
CN107526711A (zh) * 2017-08-01 2017-12-29 苏州西热节能环保技术有限公司 汽轮机供热改造后输出功率的计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222140A (ja) * 1986-01-06 1987-09-30 ジ−イ−オ− オペレ−タ− コ−ポレ−シヨン 連続的気体・蒸気モニタ
JPH11326310A (ja) * 1998-05-11 1999-11-26 Okuaizu Chinetsu Kk 地熱蒸気中の非凝縮性ガスの濃度測定装置
JP2002131261A (ja) * 2000-10-19 2002-05-09 Mitsubishi Heavy Ind Ltd 蒸気純度監視装置
JP2002250271A (ja) 2001-02-23 2002-09-06 Toshiba Eng Co Ltd 地熱発電用蒸気タービンのスケール付着監視システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595717A (en) * 1989-03-23 1997-01-21 Tasman Pulp & Paper Co., Limited Controlled precipitation of amorphous silica from geothermal fluids or other aqueous media containing silicic acid
US7206646B2 (en) * 1999-02-22 2007-04-17 Fisher-Rosemount Systems, Inc. Method and apparatus for performing a function in a plant using process performance monitoring with process equipment monitoring and control
US8044793B2 (en) * 2001-03-01 2011-10-25 Fisher-Rosemount Systems, Inc. Integrated device alerts in a process control system
JP3614751B2 (ja) * 2000-03-21 2005-01-26 東京電力株式会社 コンバインド発電プラントの熱効率診断方法および装置
US6980928B1 (en) * 2000-09-06 2005-12-27 General Electric Company System and method for providing efficiency and cost analysis during steam path audits
FR2852396B1 (fr) * 2003-03-11 2006-01-06 Inst Francais Du Petrole Methode et dispositif d'analyse du co2 contenu dans un fluide de forage
US7356383B2 (en) * 2005-02-10 2008-04-08 General Electric Company Methods and apparatus for optimizing combined cycle/combined process facilities
WO2006119108A2 (en) * 2005-04-29 2006-11-09 Fat Spaniel Technologies, Inc. Computer implemented systems and methods for pre-emptive service and improved use of service resources
EP1931690A2 (en) * 2005-10-04 2008-06-18 Thompson Technology Industrie, Inc. System and method for array and string level monitoring of a grid-connected photovoltaic power system
US9557210B2 (en) * 2007-02-02 2017-01-31 The Secretary, Department Of Atomic Energy, Govt. Of India Method for non-intrusive on-line detection of turbine blade condition
EP2444869B1 (en) * 2007-03-12 2017-05-03 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
US9217566B2 (en) * 2007-03-27 2015-12-22 Boyle Energy Services & Technology, Inc. Method and apparatus for commissioning power plants
US8005640B2 (en) * 2009-12-18 2011-08-23 Indie Energy Systems Co., LLC Thermal response geothermal testing unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222140A (ja) * 1986-01-06 1987-09-30 ジ−イ−オ− オペレ−タ− コ−ポレ−シヨン 連続的気体・蒸気モニタ
JPH11326310A (ja) * 1998-05-11 1999-11-26 Okuaizu Chinetsu Kk 地熱蒸気中の非凝縮性ガスの濃度測定装置
JP2002131261A (ja) * 2000-10-19 2002-05-09 Mitsubishi Heavy Ind Ltd 蒸気純度監視装置
JP2002250271A (ja) 2001-02-23 2002-09-06 Toshiba Eng Co Ltd 地熱発電用蒸気タービンのスケール付着監視システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052577A (ja) * 2013-09-09 2015-03-19 三菱重工業株式会社 地熱発電用蒸気性状監視装置及び方法、地熱発電システム、地熱発電システムの制御方法
JP2018091809A (ja) * 2016-12-07 2018-06-14 三菱日立パワーシステムズ株式会社 地熱発電用蒸気性状監視装置、地熱発電システム、地熱発電用蒸気性状監視方法、及び、地熱発電システム制御方法
JP2020012456A (ja) * 2018-07-20 2020-01-23 株式会社東芝 スケール抑制装置、地熱発電設備およびスケール抑制方法
JP7077169B2 (ja) 2018-07-20 2022-05-30 株式会社東芝 スケール抑制装置、地熱発電設備およびスケール抑制方法
JP7094431B1 (ja) 2021-10-29 2022-07-01 西日本技術開発株式会社 プラント性能管理方法、プラント性能管理装置、及びプラント性能管理プログラム
JP2023067203A (ja) * 2021-10-29 2023-05-16 西日本技術開発株式会社 プラント性能管理方法、プラント性能管理装置、及びプラント性能管理プログラム

Also Published As

Publication number Publication date
NZ590408A (en) 2012-12-21
US20110144947A1 (en) 2011-06-16
JPWO2010047312A1 (ja) 2012-03-22
EP2339177A1 (en) 2011-06-29
JP5010032B2 (ja) 2012-08-29
US8407027B2 (en) 2013-03-26

Similar Documents

Publication Publication Date Title
JP5010032B2 (ja) 地熱発電設備のオンライン診断方法
EP3055747B1 (en) Correlation and annotation of time series data sequences to extracted or existing discrete data
EP3055746B1 (en) Correlation and annotation of time series data sequences to extracted or existing discrete data
JP7296524B2 (ja) 分布図を通じた機器の予知保全方法
SG181966A1 (en) Method and apparatus for monitoring performance and anticipate failures of plant instrumentation
US8751423B2 (en) Turbine performance diagnostic system and methods
JP5946976B2 (ja) 流体使用設備管理方法、又は、流体使用設備管理システム
US9400196B2 (en) Method of detecting and controlling E-line loss in a centrifuge
CN106768000B (zh) 一种风力发电机组变流器水冷系统压力异常检测方法
CN103226651A (zh) 基于相似度统计的风电机组状态评估预警方法和系统
US11720093B2 (en) Method for predictive maintenance of equipment via distribution chart
CN207882268U (zh) 润滑油检测控制系统
JP5297951B2 (ja) 防食データ解析システム
JP7296525B2 (ja) 分布図を通じた機器の予知保全方法
CN112326246A (zh) 基于周期数据及核密度估计的轴承安全状态在线监测方法
CN115630284A (zh) 一种考虑服役周期的空压机故障分析与寿命预测系统
CN113048073B (zh) 一种潜污水泵设备的预测性维护方法和存储设备
JP2008140109A (ja) プロセス操作支援装置およびプロセス操作支援方法
CN117287854B (zh) 一种基于大数据在线监测的热水器故障定位分析方法及系统
CN117213894B (zh) 一种海洋工程装备运行异常监测系统
CN117879168A (zh) 一种基于多模态融合的火电站实时预警系统
CN117540147A (zh) 一种用于发电机组的水系统滤网运行状态监测方法
Nurcahyo et al. Using Failure and Repair Data for System Improvement in Plant Facilities
CN114839339A (zh) 一种监测发电机定冷水漏氢量的方法和系统
CN115618563A (zh) 一种地热供暖采水泵维修决策系统及设计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534805

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 590408

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2009822009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12011500207

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13054972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE