WO2010047672A1 - Self-cleaning and sterilizing endotracheal and tracheostomy tube - Google Patents

Self-cleaning and sterilizing endotracheal and tracheostomy tube Download PDF

Info

Publication number
WO2010047672A1
WO2010047672A1 PCT/US2008/011947 US2008011947W WO2010047672A1 WO 2010047672 A1 WO2010047672 A1 WO 2010047672A1 US 2008011947 W US2008011947 W US 2008011947W WO 2010047672 A1 WO2010047672 A1 WO 2010047672A1
Authority
WO
WIPO (PCT)
Prior art keywords
sterilizing
cleaning
self
endotracheal tube
lumen
Prior art date
Application number
PCT/US2008/011947
Other languages
French (fr)
Inventor
Chamkurkishtiah P. Rao
Diana C. Lister
Original Assignee
Rao Chamkurkishtiah P
Lister Diana C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rao Chamkurkishtiah P, Lister Diana C filed Critical Rao Chamkurkishtiah P
Priority to PCT/US2008/011947 priority Critical patent/WO2010047672A1/en
Publication of WO2010047672A1 publication Critical patent/WO2010047672A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0463Tracheal tubes combined with suction tubes, catheters or the like; Outside connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/0096Material properties self cleaning, e.g. having lotus effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0222Materials for reducing friction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/051General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
    • A61M2205/053General characteristics of the apparatus combined with other kinds of therapy with radiation therapy ultraviolet

Definitions

  • the present invention relates to endotracheal or tracheostomy tubes and suction catheters used with such tubes, and particularly to a self-cleaning and sterilizing endotracheal or tracheostomy tube, and an associated suction catheter for use with the endotracheal or tracheostomy tube.
  • mucociliary action regulates the flow of mucus across the layers of epithelial cells within air passages.
  • an endotracheal tube When a person experiences breathing difficulty or occlusion, an endotracheal tube is often inserted within the person's air passage. The endotracheal tube, however, interferes with the cilia of the epithelial cells, thus disrupting the mucociliary action. This often causes the accumulation of mucus about or within the endotracheal tube. This accumulation of mucus not only occludes the endotracheal tube passage, but can result in the accumulation and adhesion of bacteria and other microbes to the endotracheal tube, with resulting pulmonary infections.
  • Suction catheters are typically provided, either separately or in combination with the endotracheal tube, for removal of the accumulated mucus.
  • the function of the suction catheter is to remove the mucus, excess mucus may adhere to the surface of the suction catheter, which results in impaired functioning thereof and may result in unwanted mucus remaining on the endotracheal tube. This may result in contamination of both the suction catheter and the endotracheal tube and in the inefficient operation of one or both.
  • a suction catheter is effective in removing watery mucous, the suction catheter is ineffective at removing mucous that has collected and dried on the wall of the endotracheal tubing, or on the catheter itself.
  • the self-cleaning and sterilizing endotracheal tube provides a combination endotracheal tube and suction catheter, which decreases the tendency of mucus and bacteria to adhere to the inner surfaces of the endotracheal tube and the suction catheter.
  • the endotracheal tube defines a lumen for maintaining a patient's airway.
  • the endotracheal tube is made from a flexible nano-composite polymer, such as polyvinyl chloride or silicone rubber, the lower portion of the tube being adapted for passage into the patient's trachea.
  • the suction catheter is a flexible tube made from the same material as the endotracheal tube, and can be passed through the lumen of the endotracheal tube while still leaving room for the passage of air through the endotracheal tube in an annular passage around the catheter.
  • a fitting may be attached to the upper end of the catheter equipped with various ports so that the catheter may alternatively be connected to a vacuum source to provide suction, an irrigation port for lavage, for passage of an endoscope, etc.
  • the inner surfaces of the suction catheter and the endotracheal tube may be made self- cleaning and sterilizing several different ways.
  • the inner surfaces may be provided with a "lotus effect" either by laser etching the tubing and catheter, or a mold used to form the tubing and catheter, with a femtosecond laser, or by coating the tubing with a hydrophobic material that produces the same effect.
  • the lotus effect refers to the structure of the lotus leaf, which is covered with tiny pillars. Water drops are carried up the pillars, form a spherical shape, and fall down the pillars, carrying away any accumulated dirt.
  • the same surface effect can be achieved with laser etching, or by applying certain hydrophobic coatings, such as poly (ethylene oxide).
  • the inner surfaces of the endotracheal tube and the catheter may be coated with a photocatalytic material with antimicrobial properties when exposed to ultraviolet light.
  • a photocatalytic material with antimicrobial properties when exposed to ultraviolet light.
  • Such materials may include titanium oxide, silicon oxide, zinc oxide, zirconium oxide, cadmium sulfate, metal oxides or combinations thereof.
  • a light source such as a light emitting diode (LED), which may be a UV LED, is attached to an upper portion of the endotracheal tube. Light emitted by the light source is carried by a fiberoptic bundle. The fibers pass through the endotracheal tube and illuminate the photocatalytic material in one of two ways.
  • LED light emitting diode
  • an uncoated portion of the fibers extends axially within the lumen of the endotracheal tube, emitting light radially.
  • the lumen is lined with a UV reflective barrier and the photocatalytic material is transparent.
  • the fibers are coated, but terminate at different lengths, providing point sources that are directed radially inward into the lumen of the endotracheal tube.
  • the photocatalytic material need not be transparent in this embodiment.
  • the lumen of the suction catheter is also coated with a photocatalytic material. The suction catheter is positioned outside the endotracheal tube when not in use, and may be exposed to UV or solar visible light externally and/or intraluminally.
  • Self-cleaning results from decreased adherence of biomatter to the walls of the endotracheal tube and suction catheter upon exposure to UV light, by the photocatalytic production of substances toxic to bacteria and other microbes, and/or by exposure to UV radiation at wavelengths known to exhibit antimicrobial activity (185 nm, 254 nm, and 265 nm). It should be understood that this is a preferred range of wavelength, and that any wavelength range may be utilized, including wavelengths from ultraviolet spectra, visible light spectra or any other suitable spectra, dependent upon the particular needs and desires of the user.
  • the endotracheal tube and suction catheter may also be made self-cleaning and sterilizing by a combination of the hydrophobic surface and the fiberoptic-photocatalytic coatings, if desired.
  • the scope of the present invention also extends to a tracheostomy tube, which has the same appearance and structure as the endotracheal tube, but is shorter in length, being designed for insertion into a tracheostomy stoma below the larynx.
  • Fig. 1 is an environmental perspective view of a self-cleaning and sterilizing endotracheal tube according to the present invention.
  • Fig. 2 is an environmental perspective view of the self-cleaning and sterilizing endotracheal tube according to the present invention with a suction catheter inserted therein.
  • Fig. 3 is a partial perspective view of the self-cleaning and sterilizing endotracheal tube according to the present invention, broken away and partially in section to show details of the invention.
  • Fig. 4 is an environmental perspective view of an alternative embodiment of the self- cleaning and sterilizing endotracheal tube according to the present invention.
  • Fig. 5A is a partial perspective view of the endotracheal tube of Fig. 4, broken away and partially in section to show details thereof.
  • Fig. 5B shows a partial, microscopic view of a hydrophobic surface formed on the inner surfaces of the endotracheal tube and suction catheter according to an embodiment of the present invention.
  • the present invention is directed towards a self-cleaning and sterilizing endotracheal tube, which may include a combination endotracheal tube and suction catheter 10 that decreases the tendency of mucus and bacteria to adhere to the inner surfaces of the endotracheal tube and the suction catheter.
  • the combination 10 includes an endotracheal tube 32 and a suction catheter 18.
  • a fitting may be attached to the suction catheter with ports for connection of a vacuum tube 14 (which may have a fluted gripping surface 46) for the application of suction, an irrigation tube 12 for lavage, and an endotracheal tube adapter for insertion of an endoscope or other device through the catheter.
  • the endotracheal tube 32 has a lower portion adapted for insertion into a patient's trachea and defines a lumen for maintaining patentcy of the patient's airways.
  • the diameter of the endotracheal tube lumen is large enough to permit passage of the suction catheter 14 therethrough and maintain the passage of air through an annular passage between the catheter 14 and the endotracheal tube 32.
  • suction catheter 14 and lower portion 32 are formed from flexible nano-composite polymers, which will be comfortable for the patient, and which will not degrade or corrode in the presence of bodily fluids. Such materials may include polyvinyl chloride or silicone rubber. Further, as best shown in Fig.
  • the lower end of the endotracheal tube 32 is beveled, allowing for easy and comfortable insertion within the patient's trachea, the lower end 30 of the suction catheter 18 extending through the lower end of endotracheal tube 32.
  • the endotracheal tube may be shaped, sized or formed from materials adapted for use in maintaining the patient's airways, and that the scope of the present invention also extends to a tracheostomy tube, which has the same structure as the endotracheal tube 32, but is shorter in length, being adapted for insertion through a tracheosotmy stoma below the larynx.
  • the endotracheal tube 32 may be made self-cleaning and sterilizing by providing the inner surface 44 of the tube 32 defining the lumen with a hydrophobic surface.
  • the suction catheter 18 may be made self-cleaning and sterilizing by providing the inner surface 34 defining the lumen of the suction catheter 18 with a hydrophobic surface in order to reduce the tendency of mucus and bacteria to adhere thereto.
  • Such a hydrophobic surface may be formed to exhibit the "lotus effect.”
  • the lotus effect refers to the structure of the lotus leaf, which is covered with tiny pillars. Water drops are carried up the pillars, form a spherical shape, and fall down the pillars, carrying away any accumulated dirt.
  • Such a surface is shown in the microscopic view of Fig. 5B, with alternating rows of peaks 60 and valleys 62 defining the pillars.
  • the hydrophobic surface may be formed by laser etching the interior surfaces 44 and 34 of the tube 32 and the catheter 18, respectively, with a femtosecond laser forming perpendicular lines, or by shaping a mold for extrusion or injection molding of the tube 32 and catheter 18 with femtosecond laser pulses.
  • the hydrophobic surface may be formed by coating the inner surfaces 44 and 34 with a hydrophobic material, such as poly (ethylene oxide), which forms chains of polymer defining the pillars in the lumens of the endotracheal tube 32 and suction catheter 18.
  • the inner surfaces may be coated with a photocatalytic material with antimicrobial properties when exposed to ultraviolet light, or other selective ranges of electromagnetic radiation.
  • a photocatalytic material with antimicrobial properties when exposed to ultraviolet light, or other selective ranges of electromagnetic radiation.
  • antibacterial coating materials may include, for example, titanium oxide, silicon oxide, zinc oxide, zirconium oxide, cadmium sulfate, other metal oxides or combinations thereof. It is well known that doping the above materials with nitrogen or sulfur allows for photocatalysis thereof in the presence of solar or visible light. It should be understood that the photocatalytic surface may be combined with the hydrophobic surface of Fig. 5B.
  • an illumination source 22 is mounted to the exterior of the endotracheal tube 32 by a bracket attached to the tube 32 by an arm extending from an upper portion of the tube 32.
  • the illumination source 22 may comprise an LED.
  • the illumination source 22 may comprise a source of ultraviolet light, such as one or more ultraviolet light emitting diodes.
  • the illumination source may further comprise a light source capable of emitting ultraviolet light at wavelengths known to exhibit antimicrobial activity, such as 185 nm, 254 nm and 265 nm, or at wavelengths known to induce optimal photocatalytic activity in the particular coating used, such as 254 nm for titanium dioxide.
  • a power cord 20 is provided for connection with a suitable source of electrical current.
  • a fiberoptic bundle is further provided, with each optical fiber having an upper end and a lower end.
  • the upper ends 26 thereof are in direct optical communication with the illumination source 22, and are shown in Fig. 2 as being bundled together within fiberoptic cable harnesses 24.
  • the fibers pass through the endotracheal tube 32 and provide illumination to the photocatalytic coating in one of two ways.
  • the lower ends 36 of the optical fibers are uncoated, and extend axially along the inner wall 44 of the endotracheal tube 32.
  • the light projects along a substantially radial direction through the walls of the optical fibers.
  • the photocatalytic coating is transparent, and a UV reflector 38 is disposed between the fibers 36 and the exterior of the tube 32.
  • optical fibers may have different lengths with the lower ends 42 of the optical fibers 40 being directed radially to form point sources of light directed into the lumen of the tube 32.
  • the fibers are coated throughout their length, and may be attached to or embedded within the wall of the tube 32.
  • the tube 32 is rendered self-cleaning and sterilizing by illuminating the photocatalyst, either through decreasing adherence of biomatter to the walls of the tube 32 by UV radiation, by production of substances toxic to bacteria through photocatalytic activity, and/or by irradiation with UV light at wavelengths known to exhibit antimicrobial activity.
  • the suction catheter 18 When not in use, the suction catheter 18 is preferably removed from the endotracheal tube 38.
  • the suction catheter 14 may be sterilized through irradiation with ultraviolet light externally and/or intraluminally, or by solar or visible light when the photocatalyst has been doped with nitrogen or sulfur. Further, although shown as being applied to an endotracheal tube, it should be understood that the above arrangement may further be used with a tracheostomy tube or the like.
  • the tube 32 may be rendered self-cleaning and sterilizing through a combination of a hydrophobic surface exhibiting the lotus effect and through a fiberoptic endotracheal tube illuminating a photocatalyst, if desired.
  • the endotracheal tube shown in the Figures is for exemplary purposes only, and that the present invention may be applied to any suitable endotracheal tube or tracheostomy tube, dependent upon the needs and desires of the user. It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Abstract

The self-cleaning and sterilizing endotracheal and tracheostomy tube may include a combination of an endotracheal tube or a tracheostomy tube and a suction catheter that decreases the tendency of mucus and bacteria to adhere to the inner surfaces of the thereof. The endotracheal tube and the catheter may have a hydrophobic surface exhibiting the lotus effect, which may be formed either by femtosecond laser etching or by a coating of ploy (ethylene oxide). Alternatively, the endotracheal tube and the catheter may have a lumen coated with a photocatalyst. The endotracheal tube may also have a light source and a fiberoptic bundle mounted thereon, the optical fibers extending into the lumen to illuminate the photocatalyst.

Description

SELF-CLEANING AND STERILIZING ENDOTRACHEAL
AND TRACHEOSTOMY TUBE
TECHNICAL FIELD
The present invention relates to endotracheal or tracheostomy tubes and suction catheters used with such tubes, and particularly to a self-cleaning and sterilizing endotracheal or tracheostomy tube, and an associated suction catheter for use with the endotracheal or tracheostomy tube.
BACKGROUND ART In human beings, mucociliary action regulates the flow of mucus across the layers of epithelial cells within air passages. When a person experiences breathing difficulty or occlusion, an endotracheal tube is often inserted within the person's air passage. The endotracheal tube, however, interferes with the cilia of the epithelial cells, thus disrupting the mucociliary action. This often causes the accumulation of mucus about or within the endotracheal tube. This accumulation of mucus not only occludes the endotracheal tube passage, but can result in the accumulation and adhesion of bacteria and other microbes to the endotracheal tube, with resulting pulmonary infections.
Suction catheters are typically provided, either separately or in combination with the endotracheal tube, for removal of the accumulated mucus. Although the function of the suction catheter is to remove the mucus, excess mucus may adhere to the surface of the suction catheter, which results in impaired functioning thereof and may result in unwanted mucus remaining on the endotracheal tube. This may result in contamination of both the suction catheter and the endotracheal tube and in the inefficient operation of one or both. Furthermore, while a suction catheter is effective in removing watery mucous, the suction catheter is ineffective at removing mucous that has collected and dried on the wall of the endotracheal tubing, or on the catheter itself.
Thus, a self-cleaning and sterilizing endotracheal tube solving the aforementioned problems is desired.
DISCLOSURE OF INVENTION The self-cleaning and sterilizing endotracheal tube provides a combination endotracheal tube and suction catheter, which decreases the tendency of mucus and bacteria to adhere to the inner surfaces of the endotracheal tube and the suction catheter. The endotracheal tube defines a lumen for maintaining a patient's airway. The endotracheal tube is made from a flexible nano-composite polymer, such as polyvinyl chloride or silicone rubber, the lower portion of the tube being adapted for passage into the patient's trachea.
The suction catheter is a flexible tube made from the same material as the endotracheal tube, and can be passed through the lumen of the endotracheal tube while still leaving room for the passage of air through the endotracheal tube in an annular passage around the catheter. A fitting may be attached to the upper end of the catheter equipped with various ports so that the catheter may alternatively be connected to a vacuum source to provide suction, an irrigation port for lavage, for passage of an endoscope, etc.
The inner surfaces of the suction catheter and the endotracheal tube may be made self- cleaning and sterilizing several different ways. The inner surfaces may be provided with a "lotus effect" either by laser etching the tubing and catheter, or a mold used to form the tubing and catheter, with a femtosecond laser, or by coating the tubing with a hydrophobic material that produces the same effect. The lotus effect refers to the structure of the lotus leaf, which is covered with tiny pillars. Water drops are carried up the pillars, form a spherical shape, and fall down the pillars, carrying away any accumulated dirt. The same surface effect can be achieved with laser etching, or by applying certain hydrophobic coatings, such as poly (ethylene oxide).
Alternatively, the inner surfaces of the endotracheal tube and the catheter may be coated with a photocatalytic material with antimicrobial properties when exposed to ultraviolet light. Such materials may include titanium oxide, silicon oxide, zinc oxide, zirconium oxide, cadmium sulfate, metal oxides or combinations thereof. A light source, such as a light emitting diode (LED), which may be a UV LED, is attached to an upper portion of the endotracheal tube. Light emitted by the light source is carried by a fiberoptic bundle. The fibers pass through the endotracheal tube and illuminate the photocatalytic material in one of two ways.
In a first embodiment, an uncoated portion of the fibers extends axially within the lumen of the endotracheal tube, emitting light radially. In this embodiment, the lumen is lined with a UV reflective barrier and the photocatalytic material is transparent. In a second embodiment, the fibers are coated, but terminate at different lengths, providing point sources that are directed radially inward into the lumen of the endotracheal tube. The photocatalytic material need not be transparent in this embodiment. In either embodiment, the lumen of the suction catheter is also coated with a photocatalytic material. The suction catheter is positioned outside the endotracheal tube when not in use, and may be exposed to UV or solar visible light externally and/or intraluminally. Self-cleaning results from decreased adherence of biomatter to the walls of the endotracheal tube and suction catheter upon exposure to UV light, by the photocatalytic production of substances toxic to bacteria and other microbes, and/or by exposure to UV radiation at wavelengths known to exhibit antimicrobial activity (185 nm, 254 nm, and 265 nm). It should be understood that this is a preferred range of wavelength, and that any wavelength range may be utilized, including wavelengths from ultraviolet spectra, visible light spectra or any other suitable spectra, dependent upon the particular needs and desires of the user.
The endotracheal tube and suction catheter may also be made self-cleaning and sterilizing by a combination of the hydrophobic surface and the fiberoptic-photocatalytic coatings, if desired. The scope of the present invention also extends to a tracheostomy tube, which has the same appearance and structure as the endotracheal tube, but is shorter in length, being designed for insertion into a tracheostomy stoma below the larynx.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an environmental perspective view of a self-cleaning and sterilizing endotracheal tube according to the present invention.
Fig. 2 is an environmental perspective view of the self-cleaning and sterilizing endotracheal tube according to the present invention with a suction catheter inserted therein.
Fig. 3 is a partial perspective view of the self-cleaning and sterilizing endotracheal tube according to the present invention, broken away and partially in section to show details of the invention.
Fig. 4 is an environmental perspective view of an alternative embodiment of the self- cleaning and sterilizing endotracheal tube according to the present invention.
Fig. 5A is a partial perspective view of the endotracheal tube of Fig. 4, broken away and partially in section to show details thereof.
Fig. 5B shows a partial, microscopic view of a hydrophobic surface formed on the inner surfaces of the endotracheal tube and suction catheter according to an embodiment of the present invention.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
BEST MODES FOR CARRYING OUT THE INVENTION The present invention is directed towards a self-cleaning and sterilizing endotracheal tube, which may include a combination endotracheal tube and suction catheter 10 that decreases the tendency of mucus and bacteria to adhere to the inner surfaces of the endotracheal tube and the suction catheter. As best shown in Fig. 2, the combination 10 includes an endotracheal tube 32 and a suction catheter 18. As shown in Fig. 1, a fitting may be attached to the suction catheter with ports for connection of a vacuum tube 14 (which may have a fluted gripping surface 46) for the application of suction, an irrigation tube 12 for lavage, and an endotracheal tube adapter for insertion of an endoscope or other device through the catheter. The endotracheal tube 32 has a lower portion adapted for insertion into a patient's trachea and defines a lumen for maintaining patentcy of the patient's airways. The diameter of the endotracheal tube lumen is large enough to permit passage of the suction catheter 14 therethrough and maintain the passage of air through an annular passage between the catheter 14 and the endotracheal tube 32. In the preferred embodiment, suction catheter 14 and lower portion 32 are formed from flexible nano-composite polymers, which will be comfortable for the patient, and which will not degrade or corrode in the presence of bodily fluids. Such materials may include polyvinyl chloride or silicone rubber. Further, as best shown in Fig. 1, the lower end of the endotracheal tube 32 is beveled, allowing for easy and comfortable insertion within the patient's trachea, the lower end 30 of the suction catheter 18 extending through the lower end of endotracheal tube 32. It should be understood that the endotracheal tube may be shaped, sized or formed from materials adapted for use in maintaining the patient's airways, and that the scope of the present invention also extends to a tracheostomy tube, which has the same structure as the endotracheal tube 32, but is shorter in length, being adapted for insertion through a tracheosotmy stoma below the larynx.
The endotracheal tube 32 may be made self-cleaning and sterilizing by providing the inner surface 44 of the tube 32 defining the lumen with a hydrophobic surface. Similarly, the suction catheter 18 may be made self-cleaning and sterilizing by providing the inner surface 34 defining the lumen of the suction catheter 18 with a hydrophobic surface in order to reduce the tendency of mucus and bacteria to adhere thereto.
Such a hydrophobic surface may be formed to exhibit the "lotus effect." The lotus effect refers to the structure of the lotus leaf, which is covered with tiny pillars. Water drops are carried up the pillars, form a spherical shape, and fall down the pillars, carrying away any accumulated dirt. Such a surface is shown in the microscopic view of Fig. 5B, with alternating rows of peaks 60 and valleys 62 defining the pillars. The hydrophobic surface may be formed by laser etching the interior surfaces 44 and 34 of the tube 32 and the catheter 18, respectively, with a femtosecond laser forming perpendicular lines, or by shaping a mold for extrusion or injection molding of the tube 32 and catheter 18 with femtosecond laser pulses. Alternatively, the hydrophobic surface may be formed by coating the inner surfaces 44 and 34 with a hydrophobic material, such as poly (ethylene oxide), which forms chains of polymer defining the pillars in the lumens of the endotracheal tube 32 and suction catheter 18.
Alternatively, the inner surfaces may be coated with a photocatalytic material with antimicrobial properties when exposed to ultraviolet light, or other selective ranges of electromagnetic radiation. Such antibacterial coating materials may include, for example, titanium oxide, silicon oxide, zinc oxide, zirconium oxide, cadmium sulfate, other metal oxides or combinations thereof. It is well known that doping the above materials with nitrogen or sulfur allows for photocatalysis thereof in the presence of solar or visible light. It should be understood that the photocatalytic surface may be combined with the hydrophobic surface of Fig. 5B.
In order to provide for photocatalysis within the endotracheal tube 32, an illumination source 22 is mounted to the exterior of the endotracheal tube 32 by a bracket attached to the tube 32 by an arm extending from an upper portion of the tube 32. The illumination source 22 may comprise an LED. The illumination source 22 may comprise a source of ultraviolet light, such as one or more ultraviolet light emitting diodes. The illumination source may further comprise a light source capable of emitting ultraviolet light at wavelengths known to exhibit antimicrobial activity, such as 185 nm, 254 nm and 265 nm, or at wavelengths known to induce optimal photocatalytic activity in the particular coating used, such as 254 nm for titanium dioxide. A power cord 20 is provided for connection with a suitable source of electrical current.
A fiberoptic bundle is further provided, with each optical fiber having an upper end and a lower end. The upper ends 26 thereof are in direct optical communication with the illumination source 22, and are shown in Fig. 2 as being bundled together within fiberoptic cable harnesses 24. The fibers pass through the endotracheal tube 32 and provide illumination to the photocatalytic coating in one of two ways.
In the embodiment shown in Fig. 3, the lower ends 36 of the optical fibers are uncoated, and extend axially along the inner wall 44 of the endotracheal tube 32. In this embodiment, the light projects along a substantially radial direction through the walls of the optical fibers. In this embodiment, the photocatalytic coating is transparent, and a UV reflector 38 is disposed between the fibers 36 and the exterior of the tube 32.
Alternatively, as shown in Figs. 4 and 5A, optical fibers may have different lengths with the lower ends 42 of the optical fibers 40 being directed radially to form point sources of light directed into the lumen of the tube 32. In this embodiment, the fibers are coated throughout their length, and may be attached to or embedded within the wall of the tube 32.
In this embodiment, there is no UV reflector disposed in the wall of the tube 32, and the photocatalytic coating need not be transparent.
The tube 32 is rendered self-cleaning and sterilizing by illuminating the photocatalyst, either through decreasing adherence of biomatter to the walls of the tube 32 by UV radiation, by production of substances toxic to bacteria through photocatalytic activity, and/or by irradiation with UV light at wavelengths known to exhibit antimicrobial activity.
When not in use, the suction catheter 18 is preferably removed from the endotracheal tube 38. The suction catheter 14 may be sterilized through irradiation with ultraviolet light externally and/or intraluminally, or by solar or visible light when the photocatalyst has been doped with nitrogen or sulfur. Further, although shown as being applied to an endotracheal tube, it should be understood that the above arrangement may further be used with a tracheostomy tube or the like.
It will be understood that the tube 32 may be rendered self-cleaning and sterilizing through a combination of a hydrophobic surface exhibiting the lotus effect and through a fiberoptic endotracheal tube illuminating a photocatalyst, if desired. Further, it should be understood that the endotracheal tube shown in the Figures is for exemplary purposes only, and that the present invention may be applied to any suitable endotracheal tube or tracheostomy tube, dependent upon the needs and desires of the user. It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims

1. A self-cleaning and sterilizing endotracheal tube, comprising: an elongate tube formed of flexible nano-composite polymer material having an upper portion and a lower portion, the tube defining a lumen, the lower portion being adapted for insertion into a patient's trachea in order to maintain patentcy of the patient's airway; and means for rendering the tube self-cleaning and sterilizing in order to prevent narrowing of the lumen and buildup of mucous and bacteria in the lumen.
2. The self-cleaning and sterilizing endotracheal tube according to claim 1, wherein said means for rendering the tube self-cleaning and sterilizing comprises a hydrophobic surface exhibiting a lotus effect formed in the lumen of the tube.
3. The self-cleaning and sterilizing endotracheal tube according to claim 2, wherein said hydrophobic surface is formed by femtosecond laser etched perpendicular lines formed in the surface.
4. The self-cleaning and sterilizing endotracheal tube according to claim 2, wherein said hydrophobic surface comprises a coating formed from chains of poly (ethylene oxide) disposed in the lumen of said tube.
5. The self-cleaning and sterilizing endotracheal tube according to claim 1, wherein said means for rendering the tube self-cleaning and sterilizing comprises: a light source mounted on said tube; a fiberoptic bundle having fibers extending into the lumen; and a photocatalyst coated disposed on inner surfaces defining the lumen of the tube.
6. The self-cleaning and sterilizing endotracheal tube according to claim 1, wherein said light source comprises a source of ultraviolet light.
7. The self-cleaning and sterilizing endotracheal tube according to claim 1, wherein said source of ultraviolet light emits UV radiation at an antimicrobial wavelength selected from the group consisting of 185 nm, 254 nm, and 265 nm.
8. The self-cleaning and sterilizing endotracheal tube according to claim 6, wherein said light source comprises an LED.
9. The self-cleaning and sterilizing endotracheal tube according to claim 6, wherein said light source comprises an ultraviolet LED.
10. The self-cleaning and sterilizing endotracheal tube according to claim 6, wherein the fibers extending into the lumen of the tube include an uncoated portion extending axially within the lumen of the tube, the uncoated portion emitting light radially into the lumen.
11. The self-cleaning and sterilizing endotracheal tube according to claim 10, further comprising a UV reflector disposed between the uncoated portion of the fibers and an exterior surface of the tube.
12. The self-cleaning and sterilizing endotracheal tube according to claim 10, wherein said photocatalytic coating is transparent.
13. The self-cleaning and sterilizing endotracheal tube according to claim 6, wherein the fibers extending into the lumen of the tube are coated and have different lengths, the fibers having ends directed radially into the lumen of the tube, defining point sources of light.
14. The self-cleaning and sterilizing endotracheal tube according to claim 6, wherein said photocatalyst is selected from the group consisting of titanium oxide, silicon oxide, zinc oxide, zirconium oxide, and cadmium sulfate.
15. The self-cleaning and sterilizing endotracheal tube according to claim 6, further comprising an arm extending from said tube, said light source being mounted on said arm.
16. The self-cleaning and sterilizing endotracheal tube according to claim 1, further comprising a suction catheter removably inserted into said tube, the suction catheter defining a lumen.
17. The self-cleaning and sterilizing endotracheal tube according to claim 15, wherein the lumen of said catheter has a hydrophobic surface exhibiting a lotus effect, said hydrophobic surface being formed by femtosecond laser etched perpendicular lines formed in the surface.
18. The self-cleaning and sterilizing endotracheal tube according to claim 15, wherein the lumen of said catheter has a hydrophobic surface exhibiting a lotus effect, said hydrophobic surface comprising a coating formed from chains of poly (ethylene oxide) disposed in the lumen of said tube.
19. The self-cleaning and sterilizing endotracheal tube according to claim 15, further comprising a photocatalyst coated disposed on inner surfaces defining the lumen of said catheter.
20. The self-cleaning and sterilizing endotracheal tube according to claim 19, wherein said photocatalyst is selected from the group consisting of titanium oxide, silicon oxide, zinc oxide, zirconium oxide, and cadmium sulfate, said photocatalyst being doped with nitrogen or sulfur.
PCT/US2008/011947 2008-10-20 2008-10-20 Self-cleaning and sterilizing endotracheal and tracheostomy tube WO2010047672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2008/011947 WO2010047672A1 (en) 2008-10-20 2008-10-20 Self-cleaning and sterilizing endotracheal and tracheostomy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/011947 WO2010047672A1 (en) 2008-10-20 2008-10-20 Self-cleaning and sterilizing endotracheal and tracheostomy tube

Publications (1)

Publication Number Publication Date
WO2010047672A1 true WO2010047672A1 (en) 2010-04-29

Family

ID=42119533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/011947 WO2010047672A1 (en) 2008-10-20 2008-10-20 Self-cleaning and sterilizing endotracheal and tracheostomy tube

Country Status (1)

Country Link
WO (1) WO2010047672A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
EP3291879A4 (en) * 2015-04-30 2019-01-16 Light Line Medical, Inc. Methods and apparatus to deliver therapeutic non-ultraviolet electromagnetic radiation for an endotracheal tube
EP3411117A4 (en) * 2016-02-05 2019-10-16 Light Line Medical, Inc. Method and apparatus for removable catheter visual light therapeutic system
US11326140B2 (en) 2019-10-22 2022-05-10 Biospherix Ltd. Aseptic cell processing and production with no chemical biocides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687714A (en) * 1995-10-10 1997-11-18 The United States Of America As Represented By The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
US6443147B1 (en) * 1997-12-19 2002-09-03 Jean-Paul Matter Respiratory circuit with in vivo sterilization
US7258120B2 (en) * 2002-05-29 2007-08-21 University Of Florida Research Foundation, Inc. Endotracheal tube apparatus and method for using the same to reduce the risk of infections
US20080078406A1 (en) * 2006-09-29 2008-04-03 Jessica Clayton Endotracheal tube and technique for using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687714A (en) * 1995-10-10 1997-11-18 The United States Of America As Represented By The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
US6443147B1 (en) * 1997-12-19 2002-09-03 Jean-Paul Matter Respiratory circuit with in vivo sterilization
US7258120B2 (en) * 2002-05-29 2007-08-21 University Of Florida Research Foundation, Inc. Endotracheal tube apparatus and method for using the same to reduce the risk of infections
US20080078406A1 (en) * 2006-09-29 2008-04-03 Jessica Clayton Endotracheal tube and technique for using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3291879A4 (en) * 2015-04-30 2019-01-16 Light Line Medical, Inc. Methods and apparatus to deliver therapeutic non-ultraviolet electromagnetic radiation for an endotracheal tube
US10870015B2 (en) 2015-04-30 2020-12-22 Light Line Medical, Inc. Methods and apparatus to deliver therapeutic non-ultraviolet electromagnetic radiation for an endotracheal tube
EP3760281A1 (en) * 2015-04-30 2021-01-06 Light Line Medical, Inc. Apparatus to deliver therapeutic non-ultraviolet electromagnetic radiation for an endotracheal tube
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
EP3411117A4 (en) * 2016-02-05 2019-10-16 Light Line Medical, Inc. Method and apparatus for removable catheter visual light therapeutic system
US11326140B2 (en) 2019-10-22 2022-05-10 Biospherix Ltd. Aseptic cell processing and production with no chemical biocides

Similar Documents

Publication Publication Date Title
US8381728B2 (en) Self-cleaning and sterilizing endotracheal and tracheostomy tube
JP6495393B2 (en) Optical fiber antibacterial UV treatment system
US10617774B2 (en) Cover with disinfecting illuminated surface
US10543058B2 (en) Medical device disinfecting system and method
US10245339B2 (en) Apparatus and method of sterilizing lumens in medical instruments
US8480722B2 (en) Tubular device delivering light and radiation into a patient
US20190192814A1 (en) Ultraviolet Sterilizing Drainage Catheter
EP3001808B1 (en) Visible light photo-disinfection patch
US20120161032A1 (en) Catheter insertion sterilization
WO2010047672A1 (en) Self-cleaning and sterilizing endotracheal and tracheostomy tube
EP2542269A1 (en) Assembly and method for disinfecting lumens of devices
WO1999032181A1 (en) Respiratory circuit with in vivo sterilization
US20090101152A1 (en) High surface area anti-microbial coated endotracheal tube
US20140378792A1 (en) Anti-fouling sleeve for indwelling catheters
WO2011083378A1 (en) Suction device structured to provide uv light therapy and oral/oropharyngeal bacterial reduction
US20200289689A1 (en) Disinfecting Methods and Apparatus
WO2011083381A1 (en) Uv bacteria reduction via artificial airway
CN212730545U (en) Clinical drainage device for Intensive Care Unit (ICU) critical medical science department
JP4238697B2 (en) Electric vacuum cleaner
US20220118131A1 (en) Device to prevent catheter associated urinary tract infection
CN111388698A (en) Filter element and protective product
EP4333912A2 (en) Device for disinfecting an air flow via uv-c radiation and assisted ventilation system comprising such a device
WO2012052908A1 (en) Tracheal tube
CN101366955A (en) Photocatalysis disinfection method for reducing endotracheal tube wall bacteria planting during machine aeration period
KR200329808Y1 (en) A Bidet able sterilization of nozzle using of photo catalyst and UV light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877599

Country of ref document: EP

Kind code of ref document: A1