WO2010077616A3 - Multiple stack deposition for epitaxial lift off - Google Patents

Multiple stack deposition for epitaxial lift off Download PDF

Info

Publication number
WO2010077616A3
WO2010077616A3 PCT/US2009/067027 US2009067027W WO2010077616A3 WO 2010077616 A3 WO2010077616 A3 WO 2010077616A3 US 2009067027 W US2009067027 W US 2009067027W WO 2010077616 A3 WO2010077616 A3 WO 2010077616A3
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial
disposed over
sacrificial layer
substrate
thin film
Prior art date
Application number
PCT/US2009/067027
Other languages
French (fr)
Other versions
WO2010077616A2 (en
Inventor
Gang He
Andreas Hegedus
Original Assignee
Alta Devices, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alta Devices, Inc. filed Critical Alta Devices, Inc.
Priority to CN2009801559689A priority Critical patent/CN102301450A/en
Priority to EP09836686.7A priority patent/EP2374146A4/en
Publication of WO2010077616A2 publication Critical patent/WO2010077616A2/en
Publication of WO2010077616A3 publication Critical patent/WO2010077616A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Embodiments of the invention are provided for a thin film stack containing a plurality of epitaxial stacks disposed on a substrate and a method for forming such a thin film stack. In one embodiment, the epitaxial stack contains a first sacrificial layer disposed over the substrate, a first epitaxial film disposed over the first sacrificial layer, a second sacrificial layer disposed over the first epitaxial film, and a second epitaxial film disposed over the second sacrificial layer. The thin film stack may further contain additional epitaxial films disposed over sacrificial layers. Generally, the epitaxial films contain gallium arsenide alloys and the sacrificial layers contain aluminum arsenide alloys. Methods provide the removal of the epitaxial films from the substrate by etching away the sacrificial layers during an epitaxial lift off (ELO) process. The epitaxial films are useful as photovoltaic cells, laser diodes, or other devices or materials.
PCT/US2009/067027 2008-12-08 2009-12-07 Multiple stack deposition for epitaxial lift off WO2010077616A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801559689A CN102301450A (en) 2008-12-08 2009-12-07 Multiple stack deposition for epitaxial lift off
EP09836686.7A EP2374146A4 (en) 2008-12-08 2009-12-07 Multiple stack deposition for epitaxial lift off

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12068708P 2008-12-08 2008-12-08
US61/120,687 2008-12-08

Publications (2)

Publication Number Publication Date
WO2010077616A2 WO2010077616A2 (en) 2010-07-08
WO2010077616A3 true WO2010077616A3 (en) 2010-08-26

Family

ID=42239097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/067027 WO2010077616A2 (en) 2008-12-08 2009-12-07 Multiple stack deposition for epitaxial lift off

Country Status (6)

Country Link
US (1) US9068278B2 (en)
EP (1) EP2374146A4 (en)
KR (1) KR20110099029A (en)
CN (1) CN102301450A (en)
TW (1) TW201030812A (en)
WO (1) WO2010077616A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932123B2 (en) * 2006-09-20 2011-04-26 The Board Of Trustees Of The University Of Illinois Release strategies for making transferable semiconductor structures, devices and device components
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
JP6117199B2 (en) * 2011-06-28 2017-04-19 サン‐ゴバン、クリストー、エ、デテクトゥールSaint−Gobain Cristaux & Detecteurs Semiconductor substrate and method of forming the same
US9175393B1 (en) 2011-08-31 2015-11-03 Alta Devices, Inc. Tiled showerhead for a semiconductor chemical vapor deposition reactor
US9212422B2 (en) 2011-08-31 2015-12-15 Alta Devices, Inc. CVD reactor with gas flow virtual walls
US10066297B2 (en) 2011-08-31 2018-09-04 Alta Devices, Inc. Tiled showerhead for a semiconductor chemical vapor deposition reactor
US8492187B2 (en) * 2011-09-29 2013-07-23 International Business Machines Corporation High throughput epitaxial liftoff for releasing multiple semiconductor device layers from a single base substrate
US9267205B1 (en) 2012-05-30 2016-02-23 Alta Devices, Inc. Fastener system for supporting a liner plate in a gas showerhead reactor
TW201417149A (en) * 2012-10-31 2014-05-01 Lg Innotek Co Ltd Epitaxial wafer
US9624597B2 (en) 2013-06-13 2017-04-18 Yan Ye Methods and apparatuses for delaminating process pieces
US9831363B2 (en) * 2014-06-19 2017-11-28 John Farah Laser epitaxial lift-off of high efficiency solar cell
US9105286B2 (en) 2013-07-30 2015-08-11 HGST Netherlands B.V. Method using epitaxial transfer to integrate HAMR photonic integrated circuit (PIC) into recording head wafer
CN104241205B (en) * 2014-09-18 2017-04-26 厦门乾照光电股份有限公司 Epitaxial structure with strippable substrate and application of epitaxial structure
US10761554B2 (en) * 2017-09-04 2020-09-01 Excalibur Almaz Usa, Inc. Propulsive devices that comprise selectively reflective epitaxial surfaces
DE102017125217A1 (en) * 2017-10-27 2019-05-02 Osram Opto Semiconductors Gmbh Method for producing at least one optoelectronic component and optoelectronic component
US20220328311A1 (en) * 2019-09-04 2022-10-13 Massachusetts Institute Of Technology Multi-regional epitaxial growth and related systems and articles
WO2022047170A1 (en) * 2020-08-27 2022-03-03 Utica Leaseco, Llc Fixture design for epitaxial lift-off systems with high etch selectivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846931A (en) * 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US5753134A (en) * 1994-01-04 1998-05-19 Siemens Aktiengesellschaft Method for producing a layer with reduced mechanical stresses
US20080299746A1 (en) * 2005-08-25 2008-12-04 Takafumi Yao Semiconductor Substrate Fabrication Method

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993533A (en) * 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
EP0191505A3 (en) * 1980-04-10 1986-09-10 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US4445965A (en) * 1980-12-01 1984-05-01 Carnegie-Mellon University Method for making thin film cadmium telluride and related semiconductors for solar cells
US4883561A (en) * 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5073230A (en) * 1990-04-17 1991-12-17 Arizona Board Of Regents Acting On Behalf Of Arizona State University Means and methods of lifting and relocating an epitaxial device layer
US5122852A (en) * 1990-04-23 1992-06-16 Bell Communications Research, Inc. Grafted-crystal-film integrated optics and optoelectronic devices
US5201996A (en) * 1990-04-30 1993-04-13 Bell Communications Research, Inc. Patterning method for epitaxial lift-off processing
US5071670A (en) * 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5258325A (en) * 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5256562A (en) * 1990-12-31 1993-10-26 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5528397A (en) * 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US5221637A (en) * 1991-05-31 1993-06-22 Interuniversitair Micro Elektronica Centrum Vzw Mesa release and deposition (MRD) method for stress relief in heteroepitaxially grown GaAs on Si
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US5827751A (en) * 1991-12-06 1998-10-27 Picogiga Societe Anonyme Method of making semiconductor components, in particular on GaAs of InP, with the substrate being recovered chemically
US5465009A (en) * 1992-04-08 1995-11-07 Georgia Tech Research Corporation Processes and apparatus for lift-off and bonding of materials and devices
US5286335A (en) * 1992-04-08 1994-02-15 Georgia Tech Research Corporation Processes for lift-off and deposition of thin film materials
WO1993021663A1 (en) * 1992-04-08 1993-10-28 Georgia Tech Research Corporation Process for lift-off of thin film materials from a growth substrate
FR2690279B1 (en) * 1992-04-15 1997-10-03 Picogiga Sa MULTISPECTRAL PHOTOVOLTAUIC COMPONENT.
FR2690278A1 (en) * 1992-04-15 1993-10-22 Picogiga Sa Multispectral photovoltaic component with cell stack, and production method.
JP3218414B2 (en) * 1992-07-15 2001-10-15 キヤノン株式会社 Micro tip, method of manufacturing the same, probe unit and information processing apparatus using the micro tip
US5276345A (en) * 1992-10-30 1994-01-04 California Institute Of Technology Composite GaAs-on-quartz substrate for integration of millimeter-wave passive and active device circuitry
JPH06267848A (en) * 1993-03-10 1994-09-22 Shin Etsu Handotai Co Ltd Epitaxial wafer and its manufacture
US5344517A (en) * 1993-04-22 1994-09-06 Bandgap Technology Corporation Method for lift-off of epitaxial layers and applications thereof
US5528719A (en) * 1993-10-26 1996-06-18 Sumitomo Metal Mining Company Limited Optical fiber guide structure and method of fabricating same
GB9401770D0 (en) * 1994-01-31 1994-03-23 Philips Electronics Uk Ltd Manufacture of electronic devices comprising thin-film circuits
US5641381A (en) * 1995-03-27 1997-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preferentially etched epitaxial liftoff of InP material
DE19640594B4 (en) * 1996-10-01 2016-08-04 Osram Gmbh module
US6033974A (en) * 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6291313B1 (en) * 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US6548382B1 (en) * 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
DE19803013B4 (en) * 1998-01-27 2005-02-03 Robert Bosch Gmbh A method for detaching an epitaxial layer or a layer system and subsequent application to an alternative support
US6222210B1 (en) * 1998-04-14 2001-04-24 The United States Of America As Represented By The Secretary Of The Air Force Complementary heterostructure integrated single metal transistor apparatus
US6346459B1 (en) * 1999-02-05 2002-02-12 Silicon Wafer Technologies, Inc. Process for lift off and transfer of semiconductor devices onto an alien substrate
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6387829B1 (en) * 1999-06-18 2002-05-14 Silicon Wafer Technologies, Inc. Separation process for silicon-on-insulator wafer fabrication
FR2795865B1 (en) * 1999-06-30 2001-08-17 Commissariat Energie Atomique METHOD FOR MAKING A THIN FILM USING PRESSURIZATION
US6221740B1 (en) * 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
US6500732B1 (en) * 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US6263941B1 (en) * 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
EP1212787B1 (en) * 1999-08-10 2014-10-08 Silicon Genesis Corporation A cleaving process to fabricate multilayered substrates using low implantation doses
US6214733B1 (en) * 1999-11-17 2001-04-10 Elo Technologies, Inc. Process for lift off and handling of thin film materials
US6352909B1 (en) * 2000-01-06 2002-03-05 Silicon Wafer Technologies, Inc. Process for lift-off of a layer from a substrate
JP2001274528A (en) * 2000-01-21 2001-10-05 Fujitsu Ltd Inter-substrate transfer method for thin film device
US6287891B1 (en) * 2000-04-05 2001-09-11 Hrl Laboratories, Llc Method for transferring semiconductor device layers to different substrates
NL1016431C2 (en) * 2000-10-18 2002-04-22 Univ Nijmegen Method for separating a film and a substrate.
US7045878B2 (en) * 2001-05-18 2006-05-16 Reveo, Inc. Selectively bonded thin film layer and substrate layer for processing of useful devices
US7198671B2 (en) * 2001-07-11 2007-04-03 Matsushita Electric Industrial Co., Ltd. Layered substrates for epitaxial processing, and device
US7163826B2 (en) * 2001-09-12 2007-01-16 Reveo, Inc Method of fabricating multi layer devices on buried oxide layer substrates
US6953735B2 (en) * 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
JP2004047691A (en) * 2002-07-11 2004-02-12 Seiko Epson Corp Method for manufacturing semiconductor device, electrooptic device and electronic apparatus
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7229901B2 (en) * 2004-12-16 2007-06-12 Wisconsin Alumni Research Foundation Fabrication of strained heterojunction structures
US20090161713A1 (en) 2005-06-08 2009-06-25 Firecomms Limited Surface emitting optical devices
US7153761B1 (en) * 2005-10-03 2006-12-26 Los Alamos National Security, Llc Method of transferring a thin crystalline semiconductor layer
US7638410B2 (en) * 2005-10-03 2009-12-29 Los Alamos National Security, Llc Method of transferring strained semiconductor structure
JP2011522426A (en) * 2008-05-30 2011-07-28 アルタ デバイセズ,インコーポレイテッド Epitaxial lift-off stack and method
WO2009155119A2 (en) * 2008-05-30 2009-12-23 Alta Devices, Inc. Methods and apparatus for a chemical vapor deposition reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846931A (en) * 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US5753134A (en) * 1994-01-04 1998-05-19 Siemens Aktiengesellschaft Method for producing a layer with reduced mechanical stresses
US20080299746A1 (en) * 2005-08-25 2008-12-04 Takafumi Yao Semiconductor Substrate Fabrication Method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2374146A4 *

Also Published As

Publication number Publication date
KR20110099029A (en) 2011-09-05
US20100147370A1 (en) 2010-06-17
EP2374146A4 (en) 2013-07-17
CN102301450A (en) 2011-12-28
US9068278B2 (en) 2015-06-30
WO2010077616A2 (en) 2010-07-08
EP2374146A2 (en) 2011-10-12
TW201030812A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
WO2010077616A3 (en) Multiple stack deposition for epitaxial lift off
WO2011047176A3 (en) Textured metallic back reflector
US8703521B2 (en) Multijunction photovoltaic cell fabrication
WO2009155122A3 (en) Epitaxial lift off stacks and methods
WO2007149991A3 (en) Dielectric deposition and etch back processes for bottom up gapfill
WO2010099544A3 (en) Tiled substrates for deposition and epitaxial lift off processes
WO2010042577A3 (en) Advanced platform for processing crystalline silicon solar cells
WO2010151857A3 (en) Method for forming iii-v semiconductor structures including aluminum-silicon nitride passivation
WO2008136504A1 (en) Method for manufacturing group iii nitride semiconductor light-emitting device
TW200729343A (en) Method for fabricating controlled stress silicon nitride films
WO2008016650A3 (en) Methods of forming carbon-containing silicon epitaxial layers
WO2010102089A3 (en) Methods for depositing layers having reduced interfacial contamination
WO2009005825A8 (en) Methods for fabricating thin film iii-v compound solar cell
WO2011071717A3 (en) Backside stress compensation for gallium nitride or other nitride-based semiconductor devices
WO2009042028A3 (en) Lanthanide dielectric with controlled interfaces
CN102177572A (en) Mesa etch method and composition for epitaxial lift off
WO2006081315A3 (en) Method of eliminating curl for devices on thin flexible substrates, and devices made thereby
JP2012504875A5 (en)
US20140141571A1 (en) Integrated circuit manufacturing for low-profile and flexible devices
TW200610071A (en) Wafer stacking package method
WO2010065457A3 (en) Method of providing a semiconductor device with a dielectric layer and semiconductor device thereof
WO2011084269A3 (en) Stress compensation for large area gallium nitride or other nitride-based structures on semiconductor substrates
CN107624197A (en) The extension that the mitigation carried out by prepatterned table top strains is peeled off
TW200725818A (en) Wafer-level chip package process
EP2381477A3 (en) Method for increasing the working surface area of a photovoltaic (pv)module and associated substrates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155968.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836686

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2009836686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009836686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015616

Country of ref document: KR

Kind code of ref document: A