Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationWO2010121256 A1
Type de publicationDemande
Numéro de demandePCT/US2010/031615
Date de publication21 oct. 2010
Date de dépôt19 avr. 2010
Date de priorité17 avr. 2009
Autre référence de publicationEP2419034A1, EP2419034A4, EP2419034B1, US8187307, US20090264929, US20120209328
Numéro de publicationPCT/2010/31615, PCT/US/10/031615, PCT/US/10/31615, PCT/US/2010/031615, PCT/US/2010/31615, PCT/US10/031615, PCT/US10/31615, PCT/US10031615, PCT/US1031615, PCT/US2010/031615, PCT/US2010/31615, PCT/US2010031615, PCT/US201031615, WO 2010/121256 A1, WO 2010121256 A1, WO 2010121256A1, WO-A1-2010121256, WO2010/121256A1, WO2010121256 A1, WO2010121256A1
InventeursTodd Alamin, Ian Bennett, Louis Fielding, Colin Cahill, Manish Kothari
DéposantSimpirica Spine, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  Patentscope, Espacenet
Structures and methods for constraining spinal processes with single connector
WO 2010121256 A1
Résumé
Spinous process constraint structures include a first attachment element for placement over a first spinous process and a second attachment element for placement over a second spinous process. The attachment elements are joined by a single connector which may optionally include a compliance member for providing controlled elasticity between the spinous processes.
Revendications  (Le texte OCR peut contenir des erreurs.)
WHAT IS CLAIMED IS:
L A spinous process constraint structure comprising: a first attachment element adapted to be coupled to a first spinous process; a second attachment element adapted to be coupled to a second spinous process or a sacrum; and
a single connector joining the first attachment element and the second attachment element, said single connector providing a connection between said attachment elements having an elastic stiffness in tension in the range from 7.5 N/mm to 50 N/mm, preferably in the range from 10 N/mm to 25 N/mm, more preferably in the range from 10 N/mm to 15 N/mm.
2. A constraint structure as in claim 1 , wherein said connector further provides an elastic stiffness in compression below 3 N/mm, preferably below 0.5 N/mm.
3. A constraint structure as in claim 1 , wherein at least one of the first and second attachment elements is adapted to be placed around the spinous process without fixed attachment.
4. A constraint structure as in claim 3, wherein the first attachment element is adapted to be placed over a superior surface of a superior spinous process and the second attachment element is adapted to be placed under an inferior surface of an inferior spinous process.
5. A constraint structure as in claim 3, wherein the first attachment element is adapted to be placed over a spinous process and the second attachment element is adapted to be fixedly secured to a sacrum.
6. A constraint structure as in any one of claims 1 to 4, wherein the first and second attachment elements are open hook structures, usually joining the hooks in an S- pattern.
7. A constraint structure as in claim 6, wherein the structure comprises a continuous metal or polymeric component shaped into the S-pattern.
8. A constraint structure as in any one of claims 1 to 4, wherein the first and second attachment elements are open hook structure and the connector is an axial member joining the hooks in a C-pattern.
9. A constraint structure as in claim 1 or 2, wherein at least one of the first and second attachment elements is adapted to be fixedly attached to the spinous process or sacrum.
10. A constraint structure as in claim 9, wherein the first attachment element is adapted to be fixedly attached to a superior spinous process and a second attachment element is adapted to be non-fixedly attached to an inferior spinous process or sacrum.
11. A constraint structure as in claim 9, wherein the first attachment element is adapted to be fixedly attached to an inferior spinous process and the second attachment element is adapted to be non-fixedly secured to a superior spinous process.
12. A constraint structure as in claim 9, 10, or 11, wherein the first and second attachment elements are loop structures which fully circumscribe the spinous process.
13. A constraint structure as in any one of the preceding claims, wherein the single connector comprises a transverse element positioned transversely through the space between the spinous processes.
14. A constraint structure as in any one of the preceding claims, wherein the single connector comprises an axial member positioned to lie parallel to the sides of the spinous processes, further comprising a reinforcement member to inhibit deformation of the axial member when placed under an axial tension by spinal flexion.
15. A constraint structure as in claim 14, wherein the reinforcement member comprises a sleeve disposed coaxially over the axial member.
16. A constraint structure as in any one of the preceding claims, further comprising at least one compliance member on the single connector, wherein the connector has a superior segment above the compliance member and an inferior segment below the compliance member.
17. A constraint structure as in any one of the preceding claims, wherein the single connector comprises an elastomeric body positionable over the supraspinous ligament, usually wherein the elastomeric body is adapted to be sutured to the supraspinous ligament.
18. A constraint structure as in claim 6 or 7, wherein the hook structures are pivotally attached to the single connector to allow closure of the hook over the spinous process after the axial member has been aligned beside the spinous processes.
19. A constraint structure as in claim 9, 10, or 11, wherein the at least one attachment element comprises a pin, bolt or screw, preferably a pin, which can be secured laterally through the spinous process or sacrum.
20. A constraint structure as in claim 9, 10, or 11, wherein the attachment structures each comprise a clamp which is securable over a posterior face of the spinous process, wherein the single connector comprises an axial member which lies laterally beside the spinous processes when the clamps are secured over the spinous processes.
21. A constraint as in claim 1 or 2, wherein the single connector comprises a flexible element that extends at least partly between the two attachment members, wherein the flexible member collapses under compression, wherein the flexible member is compliant to provide said elastic stiffness in tension, or wherein the flexible member is non-compliant under tension and located in series with a compliance member that provides the elastic stiffness in tension.
Description  (Le texte OCR peut contenir des erreurs.)

STRUCTURES AND METHODS FOR CONSTRAINING SPINAL PROCESSES WITH SINGLE CONNECTOR

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention. The present invention relates generally to medical methods and apparatus. More particularly, the present invention relates to methods and devices for restricting spinal flexion in patients having back pain or other spinal conditions.

[0002] A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S1 junctions of the spine (Fig. 1). Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. arching backwards). Discogenic pain can be quite disabling, and for some patients, can dramatically affect their ability to work and otherwise enjoy their lives. [0003] This pain experienced by patients with discogenic low back pain can be thought of as flexion instability, and is related to flexion instability that is manifested in other conditions. The most prevalent of these is spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion. The device described here should as such also be useful for these other spinal disorders associated with segmental flexion, for which the prevention or control of spinal segmental flexion is desired.

[0004] Current treatment alternatives for patients diagnosed with chronic discogenic pain are quite limited. Many patients follow a conservative treatment path, such as physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections, but typically continue to suffer with a significant degree of pain. Other patients elect to undergo spinal fusion surgery, which commonly requires discectomy (removal of the disk) together with fusion of adjacent vertebra. Fusion is not usually recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and of questionable effectiveness. Despite its drawbacks, however, spinal fusion for discogenic pain remains common due to the lack of viable alternatives. [0005] Recently, a less invasive and potentially more effective treatment for discogenic pain has been proposed. A spinal implant has been designed which inhibits spinal flexion while allowing substantially unrestricted spinal extension. The implant is placed over one or more adjacent pairs of spinal processes and provides an elastic restraint to the spreading apart of the spinal processes which occurs during flexion. Such devices and methods for their use are described in U.S. Patent Application 2005/02161017A1, published on September 29, 2005, and having common inventors with the present application.

[0006] As illustrated in Fig. 2, an implant 10 as described in the '017 application, typically comprises an upper strap component 12 and a lower strap component 14 joined by a pair of compliant members 16. The upper strap 12 is shown disposed over the top of the spinous process SP4 of L4 while the lower strap 14 is shown extending over the bottom of the spinous process SP5 of L5. The compliant member 16 will typically include an internal element, such as a spring of rubber block, which is attached to the straps 12 and 14 in such a way that the straps may be "elastically" or "compliantly" pulled apart as the spinous processes SP4 and SP5 move apart during flexion. In this way, the implant provides an elastic tension on the spinal processes which provides a force that resists flexion. The force increases as the processes move further apart. Usually, the straps themselves will be essentially non-compliant so that the degree of elasticity or compliance may be controlled and provided solely by the compliance members 16. [0007] Ideally, the compliance members 16 will remain horizontally aligned and spaced generally between the spinous processes SP4 and SP5. In some instances, however, the desired symmetry may be lost if the implant structure 10 becomes circumferentially displaced about the spinous processes SP4 and SP5. Such displacement can affect the ability of the implant to provide a uniform, symmetric elastic force to inhibit flexion of the spinous processes of a spinal segment in accordance with the desired treatment. Also, the symmetric designs illustrated in Fig. 2 can be difficult to deliver from the side which would be a preferred approach in percutaneous delivery techniques.

[0008] For these reasons, it would be desirable to provide improved spinal implants and methods for their use in inhibiting flexion in patients suffering from discogenic pain. It would be particularly desirable if the improved devices would provide the desired elastic forces to the spinous processes with minimal risk of displacement or loss of symmetry of the device over time. It would be further desirable if the designs facilitated percutaneous delivery from the side and other approaches. Additionally, it would be advantageous if the implants and implantation methods could be performed with minimum tissue disruption via percutaneous and open surgical procedures. At least some of these objectives will be met by the invention as described hereinbelow. [0009] 2. Description of the Background Art. US 2005/0216017Al has been described above. US 2006/0271055 describes a spacer having superior and inferior anchors and a spacer element therebetween. Other patents and published applications of interest include: U.S. Patent Nos. 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,609,634; 5,645,599; 5,725,582; 5,902,305; Re. 36,221 ; 5,928,232; 5,935,133; 5,964,769; 5,989,256; 6,053,921; 6,312,431 ; 6,364,883; 6,378,289; 6,391,030; 6,468,309; 6,436,099; 6,451,019; 6,582,433; 6,605,091; 6,626,944; 6,629,975; 6,652,527; 6,652,585; 6,656,185; 6,669,729; 6,682,533; 6,689,140; 6,712,819; 6,689,168; 6,695,852; 6,716,245; 6,761,720; 6,835,205; Published U.S. Patent Application Nos. US 2002/0151978; US 2004/0024458; US 2004/0106995; US 2004/0116927; US 2004/0117017; US 2004/0127989; US 2004/0172132; US 2005/0033435; US 2005/0049708; US 2006/0069447; Published PCT Application Nos. WO 01/28442 Al ; WO 02/03882 A2; WO 02/051326 Al; WO 02/071960 Al ; WO 03/045262 Al; WO 2004/052246 Al ; WO 2004/073532 Al ; and Published Foreign Application Nos. EP 0322334 Al ; and FR 2 681 525 Al .

BRIEF SUMMARY OF THE INVENTION

[0010] The present invention provides spinal implants and methods for restricting flexion of spinal segments for the treatment of discogenic pain and other spinal conditions, such as spondylolisthesis, where a physician may desire to control segmental flexion. Systems according to the present invention include spinous process constraint structures comprising a first attachment element adapted to be placed over a first spinous process, a second attachment element adapted to be placed over a second spinous process, and a single connector joining the first attachment element and the second attachment element. By "single connector," it is meant that the connector joins a single point or location on the first attachment element to a single point or location on the second attachment element. In contrast, the prior connectors shown in Fig. 2, for example, provide a pair of connection points and two connectors for joining the upper component 12 to the lower strap component 14. Use of the single connector for joining the first and second attachment elements reduces the likelihood that the attachment members will become displaced such that the desired symmetric attachment geometry becomes asymmetric. A single connector also reduces the need to balance the elastic forces being applied to the opposite sides of the spinous processes. The single connector will also simplify alignment of the implant during implantation, thus simplifying percutaneous implantation and potentially minimizing tissue disruption in both percutaneous and other implantation protocols.

[0011] The single connector may comprise a single elastic member, where the single elastic member may itself comprise a continuous length of elastic material having uniform or nonuniform elastic properties along said length. Alternatively, the connector may comprise an elastic member including two or more separate components, for example inelastic or non- compliant straps, cables, or other flexible members attached to a compliance member which provides the desired elasticity. Different embodiments for the compliance members are described in co-pending, commonly owned application number 12/106,103 (Attorney Docket No. 026398-00041 OUS), filed on April 18, 2008, the full disclosure of which is incorporated herein by reference. Regardless of the particular structure, the single connector and/or elastic member will provide an elastic stiffness in tension between the attachment members in the range from 7.5 N/mm to 50 N/mm, preferably from 10 N/mm to 25 N/mm, and usually in the range from 10 N/mm to 15 N/mm. In addition to providing such elastic stiffness in tension, the single connector and/or elastic member will be constructed to provide little or no elastic stiffness in compression. Usually, the elastic stiffness in compression will be below 3 N/mm, preferably below 0.5 N/mm. The ability of the constraint structures of the present invention to provide a targeted elastic stiffness in tension while providing little or no elastic stiffness in compression allows for treatment of patient's having spinal segments where the kinematics are improved by application of the elastic force to the spine in flexion while providing little or no elastic resistance to extension.

[0012] The first and second attachment elements may have similar or different geometries. Exemplary geometries include open hook structures which may be placed about the spinous processes and which have a single attachment point for connection to the single connector. The attachment elements may also be loop structures which fully circumscribe the spinous process, where the loop is provided with a single connection point for connection to the single connector. Often, the attachment elements will be placed over the spinous process without further attachment. In other instances, however, it may be desirable to provide a secondary attachment to the spinous process, such as staples, pins, screws, sutures, adhesives, energy-mediated attachments (such as laser welding), or the like. In some instances, one of the two attachment elements may be adhered to the adjacent spinous process while the other of the attachment elements may be simply placed over the adjacent spinous process without adherence. [0013] The constraint structures of the present invention may comprise separate components which are joined or connectable together. For example, each of the first attachment element, the second attachment element, and the single connector may be formed separately and interconnected by conventional techniques, such as screwing, welding, linking with male and female attachment members, strapping, soldering, or any other such fastening technique. In other instances, any two or more of the components of the constraints of the present invention may be integrally or monolithically formed from a common structural member. For example, a pair of hook-like elements may be integrally formed with an intermediate connector by forming the components from a single rod, wire, cable, polymer substrate, or the like. [0014] The constraint structures of the present invention may be symmetric or asymmetric. For example, when loops or other attachment elements circumscribe the spinous processes the connector may comprise a single axial member lying on the midline or mid-plane which bisects the spinous processes. Such a symmetric structure is advantageous since it applies an axial force generally free from lateral components to the loops which constrain the spinous processes.

[0015] In other instances, however, it will be desirable to position the single connector on a side of the spinous processes so that the connector does not need to pass through the region between the spinous processes. Such asymmetric constraint structures thus reduce or eliminate the need to penetrate the interspinous/supraspinous ligaments lessening patient trauma and facilitating placement protocols. For such asymmetric designs, the attachment member may be a simple pin, screw, or other fastener which penetrates the body of the spinous process, but will more usually be a hook, loop, or other member which can attach to the spinous process without necessarily penetrating therethrough. For example, when using hooks, the upper attachment member can be placed over a superior surface of the superior spinous process while a lower hook member may be placed around the inferior surface of the inferior spinous process. [0016] When a single connector lies asymmetrically relative to the plane of the spinous processes, the connector will place the attachment members under a rotational load, often causing the single connector to bow inward toward the spinous process plane. Such deformation of the single connector will also tend to rotate and displace the attachment members, particularly those which are not fixedly attached to the spinous processes. In order to reduce such deformation and improve the stability of the spinous process constraints, a reinforcement member may be placed on or over the single connector, particularly within the region between the spinous processes. For example, a reinforcement sleeve may be placed coaxially over at least a portion of the single connector. Alternatively, and particularly when a compliance member is included in the single connector (as described in more detail below) the reinforcement member may be a slide assembly which is attached to the connector at a superior location and an inferior location and which can extend and contract together with elongation and contraction of the single connector while still maintaining alignment between the superior and inferior segments thereof. [0017] In another aspect of the present invention, the attachment members may be hinged or pivotally connected to the single connector to facilitate introduction and implantation of the constraint structure in a patient. For example, superior and inferior hooks may be pivotally attached at the upper and lower ends of a single connector so that the hooks may be folded to reduce the profile of the constraint as it is being introduced into position adjacent to the spinous processes. Once in position, the hooks or other attachment members may then be pivoted or otherwise moved into place around the spinous processes to provide the desired constraint.

[0018] In yet another specific aspect of the present invention, the attachment members may comprise clamps or similar structures which may be placed over posterior surfaces of the spinous processes to hold a single connector therebetween. Such posterior access is advantageous since it reduces the need to disrupt the /supraspinous ligament. Thus the use of clamps or attachment members which are placed over the posterior surface of the spinous processes is particularly advantageous when used in connection with an asymmetric single connector so that the penetration of the supraspinous/ ligaments is minimized. [0019] The spinous process constraints of the present invention may further comprise a compliance member disposed within or as part of the single connector. The compliance member may have any structure which provides for the desired elasticity in the connector to permit the first and second attachment elements to spread apart as the spinal segment undergoes flexion. Suitable compliance members are described in published U.S. Application No. 2005/0216017 Al, which has been previously incorporated herein by reference. [0020] In other embodiments, the single connector may comprise an elastomeric body which is disposed between the first and second attachment elements. In some instances, the elastomeric body may be positionable over the supraspinous ligament, and in certain of those cases such elastomeric bodies may be adapted to be sutured or otherwise attached to the supraspinous ligament. [0021] In a further aspect of the present invention, methods for restricting flexion of a spinal segment comprise positioning a first attachment element on a first spinous process and positioning a second attachment element on a second spinous process, wherein the attachment members are joined by a single connector. The attachment members may be positioned in an open surgical procedure through the supraspinous ligament or may be percutaneously implanted, optionally from a single sided posterior approach avoiding the need to penetrate the supraspinous ligament. In a specific embodiment, the elements are joined with an elastic member, where the elastic member is preferably positioned over the supraspinous ligament. In particular embodiments, the methods further comprise attaching the elastic member to the supraspinous ligament, for example by suturing. Usually, the methods further comprise penetrating the supraspinous ligament to permit passage of the attachment element(s) and/or the elastic member therethrough. Still further optionally, the attachment members may be attached to the spinous processes, typically by stapling or any of the other attachment modalities described above.

BRIEF DESCRIPTION OF THE DRAWINGS [0022] Fig. 1 is a schematic diagram illustrating the lumbar region of the spine including the spinous processes (SP), facet joints (FJ), lamina (L), transverse processes (TP), and sacrum (S).

[0023] Fig. 2 illustrates a spinal implant of the type described in US 2005/0216017Al.

[0024] Fig. 3 illustrates an exemplary embodiment of a spinous process constraint structure constructed in accordance with the principles of the present invention. [0025] Figs. 4-11 are schematic illustrations of additional exemplary embodiments of the spinous process constraint structures of the present invention, where the adjacent spinous processes are shown in section.

[0026] Figs. 8 A and 8B illustrate use of a reinforcement member on a single connector which does not include a compliance member, while Figs. 9A and 9B illustrate use of a reinforcement member on a single connector which includes a compliance member.

[0027] Fig. 12 illustrates a further alternative embodiment of a spinal constraint structure of the present invention shown with a first attachment member placed over the spinous process of L5 and a lower attachment member attached to the sacrum. [0028] Figs. 13 and 14 illustrate yet another embodiment of a spinous process constraint structure of the present invention where the attachment members are placed over adjacent spinous processes with the single connector passing through and over the supraspinous ligament.

[0029] Figs. 15 A and 15B illustrate a spinous process constraint having a pair of clamps suitable for engaging posterior surfaces of a pair of adjacent spinous processes.

[0030] Figs. 16A and 16B illustrate a connector similar to that shown in Figs. 15A and 15B which further includes a compliance member. In Fig. 16B, placement of the constraint adjacent to the supraspinous/interspinous ligaments is illustrated.

[0031] Fig. 17 illustrates a further exemplary embodiment of a spinous process constraint according to the present invention, shown with an asymmetric axial member connected using pins to the spinous processes.

[0032] Fig. 18 illustrates a spinous process constraint similar to that shown in Fig. 17, further including a compliance member.

[0033] Fig. 19 illustrates a spinous process constraint according to the present invention having pivoted hooks for attachment of adjacent spinous processes.

[0034] Fig. 20 illustrates a spinous process constraint similar to that shown in Fig. 19, but further including a compliance member. DETAILED DESCRIPTION OF THE INVENTION

[0035] Referring now to Fig. 3, a spinous process constraint structure 20 constructed in accordance with the principles of the present invention comprises a first or upper attachment member 22 and a second or lower attachment member 24. The first and second attachment members are connected by a single connector 26, shown in the form of an elastic rod or cable. Usually, the attachment members 22 and 24 will be non-distensible, and will be firmly placed over the spinous processes, shown as the spinous process SP4 of L4 and the spinous process SP5 of L5. The connector 26 will be elastically distensible so that it will comprise an elastic constraining force as a spinal segment undergoes flexion which causes the spinous processes SP4 and SP5 to spread vertically apart. While being elastic in tension, the single connector 26 will have a very low column strength so that it exerts very little force on the spinous processes SP4 and SP5 when the spinal segment is in extension and the processes move vertically toward one another. As used herein, the phrase "spinal segment" is synonymous with the phrase "functional spinal unit (FSU)" and intended to mean the smallest physiological motion unit of the spine that exhibits biomechanical characteristics similar to those of the entire spine. A spinal segment or FSU consists of two adjacent vertebrae, the intervertebral disc and all adjoining ligaments between them and excludes other connecting tissues such as muscles. The three-joint complex that results is sometimes referred to as the "articular triad." Another term for the FSU is spinal motion segment. These definitions are taken from White AA, Panjabi MM. (1990), Clinical Biomechanics of the Spine, Philadelphia, JB Lippincott.

[0036] The first and second attachment members 22 and 24 may be wrapped around the associated spinous process SP4 and SP5 without further adherence or fastening. In some cases, however, it may be desirable to staple, suture, glue, or otherwise attach the attachment members to the underlying spinous process. It will also be appreciated that in many instances the attachment members may have a seam or closure which allows them to be wrapped around the spinous process and closed in situ thereover during an implantation procedure. It will be further appreciated that the single connector 26 may be preattached to either or both of the attachment members 22 and 24. In other instances, however, it may be desirable to attach the connector 26 to either or both of the attachment members 22 and 24 during the implantation procedure in order to permit the length of the connector to be adjusted. In particular, it will be desirable that the length of the connector 26 be selected so that the connector is generally fully extended but not under significant tension when the spinal segment is in its neutral (non-flexion and non-extension) condition. In such cases, the connector 26 will begin to apply tension on the spinous processes 22 and 24 as soon as they begin to undergo flexion while collapsing and applying no force on the spinous processes as they undergo extension. Fig. 4 is a schematic cross-sectional view of the spinous process constraint structure 20 of Fig. 3.

[0037] Fig. 5 illustrates an alternative spinous process constraint structure 30 having first and second attachment members 32 and 34, similar to those described in connection with Figs. 3 and 4, and joined by a single connector 36 having a compliance member 38. In this embodiment, the single connector 36 may be formed from a non-distensible material where the desired elasticity is provided by the compliance member 38.

[0038] Referring now to Fig. 6, a spinous process constraint structure 40 having a first or upper hook-like attachment member 42 and a second or lower hook-like attachment member 44 is illustrated. The first and second attachment members 42 and 44 are connected by a single contiguous or integral connector 46, which is transversely oriented in the space between the upper spinous process SP4 and the lower spinous process SP5. The constraint structure 40 may be formed from a spring-like metal, such as spring steel or nickel-titanium alloy, or alternatively may be formed from an elastomeric polymer. In some instances, the hook-like attachment members could be reinforced or otherwise modified to be substantially non-compliant, while the connector 46 could be modified to enhance its elasticity, for example having a serpentine or coil spring structure.

[0039] Referring now to Fig. 7, a further spinous process constraint system 50 comprises upper and lower hook-like attachment members 52 and 54 joined by a single connector 56. The upper and lower attachment members 52 and 54 as well as the connector section 56 may be formed from metal or polymer and will typically be non-distensible. The desired elasticity between the attachment members is provided by a compliance member 58.

[0040] Referring now to Fig. 8, yet another spinous process constraint system 60 comprises first and second hook-like attachment members 62 and 64. Instead of being connected in an S-shaped pattern, as shown in Fig. 6, the hook members 62 and 64 are connected in a C- shaped pattern, as shown in Fig. 8. Other aspects of the constraint system 60 may be similar to those described with respect to constraint 40 of Fig. 6.

[0041] The spinous process constraint 60 of Fig. 8 will have a tendency to deform when placed under an axial load as the spinous processes undergo a flexion causing movement in the direction of arrow 65. Typically, a region 66 of the constraint will tend to bow inwardly which causes the superior and inferior hook members 62 and 64 to displace laterally, increasing the risk that they will shift from their intended positions on the spinous processes. In order to alleviate this condition, a reinforcement member 67 can be placed over a portion of the single connector 63 between the hooks 62 and 64. The reinforcement member may be a simple sleeve constructed from a relatively rigid material, such as a metal or rigid polymer, having a central passage which is placed over the single connector. Other reinforcement structures would also be possible. Additionally, the sleeve embodiment shown in Fig. 8B could be modified to be used with constraint embodiments including compliance members as described elsewhere in this application.

[0042] Similarly, as shown in Fig. 9, a spinous process constraint system 70 comprises first and second hook-like attachment members 72 and 74 arranged in C-shaped pattern, generally as shown in Fig. 8, further comprises compliance member 78 attached to superior and inferior segments of the single connector 76 (which is preferably non-compliant). Other aspects of the system may be generally as described in connection with the constraint structure 50 of Fig. 7.

[0043] The spinous process constraint 70 of Fig. 9 can also undergo deformation when subjected to an axial load, as shown in Fig. 9A. A reinforcement assembly 73 specifically adapted for constraints having compliance members 78 is illustrated in Fig. 9B. The reinforcement assembly 73 connects to a superior segment 75 of the single connector 76 and includes a slide rod 71 extending toward an inferior segment 77 of the single connector 76. The slide rod 71 is received in a bearing structure 79 attached to the interior segment 77 which allows the rod to translate as the segments 73 and 77 move toward and away from each other as the spine undergoes extension and flexion. The reinforcement assembly 71 helps maintain the proper alignment between the superior and inferior segments 75 and 77 to prevent the bowing and deformation illustrated in Fig. 9A.

[0044] In still another embodiment, a spinous process constraint system 80, as shown in Fig. 10, comprises a loop or encircling first attachment member 82 and a loop or encircling second attachment member 84. The attachment members 82 and 84 are joined by a connector 86 which, instead of being attached at the center of the attachment members, is attached laterally to one side. It will be appreciated that the connector 86 could just as well have been attached laterally on the opposite side. [0045] Referring now to Fig. 11 , spinous process constraint system 90 comprises upper and lower attachment members 92 and 94 which are similar to those described with respect to constraint structure 80 of Fig. 10. A single connector 96 is typically formed from a non- distensible material, and the desired elasticity is provided by a compliance member 98 provided along the length of the single connector 96.

[0046] As described thus far, spinous process constraint systems have been intended to be placed on adjacent spinous processes. It will be appreciated that the constraint systems could be placed on spinous processes which are non-adjacent; e.g., separated by one or more additional spinous processes. It will be further appreciated that the spinous process constraint systems could be attached at a first or upper end to the spinous process SP5 of L5 and at a second or lower end to the sacrum S, as shown in Fig. 12. As the sacrum will often not include a process or other structure sufficient for attachment, when attachment member as described previously, spinous process constraint system 100 may include a first or upper attachment member 102 similar to any of those described previously, and a second or lower attachment member 104 which is modified to attach to the sacrum, e.g., by looping through a hole H formed in the structure of the sacrum. Other attachment members suitable for attaching to the sacrum are described in copending Application No. 11/827,980, filed on July 13, 2007, the full disclosure of which is incorporated herein by reference. A single connector 106 is provided between the upper and lower attachment members 102 and 104, optionally including a compliance member 108 to provide the desired elasticity.

[0047] Referring now to Figs. 13 and 14, yet another alternative spinous process constraint system and method for its implementation are described. The spinous processes constraint system 110 includes a first or upper attachment member 112 and a second or lower attachment member 114. The upper and lower attachment members are joined by an elastic component, typically an elastomeric body 116 which is configured to be placed over the surface of the supraspinous ligament SSL, as shown in Fig. 14. The advantage of the constraint structure 110 is that it will minimally disrupt the structure of the supraspinous ligament, typically requiring only minor penetrations to allow the placement of the attachment members 112 and 114. Optionally, the elastomeric body 116 may be attached to the supraspinous ligament SSL, for example by sutures 118, or adhesives, staples, or by other conventional attachment means. Similarly, because the elastomeric body 116 will be exerting a rearward force on the attachment members 112 and 114, it will typically be desirable to staple, pin, suture, glue, or otherwise attach the attachment members to the spinous processes SP4 and SP5. While pins 120 are shown, it will be appreciated that any of the other attachment means could also be used.

[0048] Referring to Figs. 15A and 15B, a spinous process constraint structure 140 comprises a superior clamp 142, an inferior clamp 144, and a single connector comprising an axial member 146 therebetween. The axial member 146 may have any of the structures described previously to provide the desired elasticity and modulation of flexion. The clamps 142 and 144 are formed so that they may be placed over the posterior surfaces PS of the spinous processes to be constrained, as shown in Fig. 15B. By employing clamps which are located over the posterior surfaces and further employing a laterally displaced axial member 146 which is on the side of the spinous processes, the need to penetrate or otherwise disturb the supraspinous and interspinous ligaments is minimized.

[0049] Referring to Fig. 16A and 16B, a spinous process constraint 150 having a superior clamp structure 152 and an inferior clamp structure 154 is illustrated. The constraint 150 is similar to that illustrated in Figs. 15A and 15B, but further includes a compliance member 156 which joins a superior segment 158 and inferior segment 160 of a single connector between the clamps 152 and 154. Placement of the spinous process constraint 150 on spinous processes SP4 and SP5 is illustrated in Fig. 16B. The clamps 152 and 154 placed over the posterior surfaces PS of the spinous processes so that minimum intrusion is made into the interspinous and supraspinous ligaments ISL/SSL. Similarly, as the single connector and compliance member 156 are on one side of the spinous processes, intrusion into the interspinous and supraspinous ligaments is further reduced.

[0050] Other asymmetric spinous process constraint structures may be constructed in accordance with the principles of the present invention. As shown in Fig. 17, for example, a single connector 180 may be connected between pins 182 and 184 which are penetrated through the bodies of superior and inferior spinous processes. The single connector 180 may also include a compliance member 182, as shown in Fig. 18.

[0051] As shown in Figs. 19 and 20, a spinous process constraint may comprise a single, continuous structure 200 having a superior hook 202 and an inferior hook 204. The superior and inferior hooks 202 and 204 are pivotally attached to an axial portion of the constraint therebetween. The constraint 200 may be introduced to a position laterally adjacent to the spinous processes SP with the hooks 202 and 204 in retracted configuration. Once the constraint is in place on one side of the spinous processes, hooks 202 and 204 may be pivoted back over the superior and inferior surfaces of the spinous processes, as illustrated. A similar spinous process constraint structure 210 having a compliance member 212 is illustrated in Fig. 20. Introduction of the constraint structure 210 may be performed in the same manner as constraint structure 200. [0052] While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
WO2001028442A113 oct. 200026 avr. 2001Spine NextIntervertebral implant
WO2002003882A212 juil. 200117 janv. 2002Spine NextShock-absorbing intervertebral implant
WO2002051326A120 déc. 20014 juil. 2002Spine NextIntervertebral implant with deformable wedge
WO2002071960A113 mars 200219 sept. 2002Spine NextSelf locking fixable intervertebral implant
WO2003045262A228 nov. 20025 juin 2003Spine NextIntervertebral implant with elastically deformable wedge
WO2004052246A18 déc. 200324 juin 2004Sdgi Holdings, Inc.System and method for blocking and/or retaining a prosthetic spinal implant
WO2004073532A129 déc. 20032 sept. 2004Abbott SpineUnit for treatment of the degeneration of an intervertebral disc
WO2005112835A218 mai 20051 déc. 2005Depuy Spine, Inc.Functional spinal unit prosthetic
EP0322334A18 déc. 198828 juin 1989Cremascoli FranceProsthesis implanted between vertebral spinous processes
FR2681525A1 Titre non disponible
US496660026 janv. 198930 oct. 1990Songer Robert JSurgical securance method
US501149420 avr. 199030 avr. 1991Clemson UniversitySoft tissue implant with micron-scale surface texture to optimize anchorage
US50928662 févr. 19903 mars 1992Breard Francis HFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US51163409 août 199026 mai 1992Songer Robert JSurgical securance apparatus
US528286324 juil. 19921 févr. 1994Charles V. BurtonFlexible stabilization system for a vertebral column
US53953742 sept. 19937 mars 1995Danek Medical, Inc.Orthopedic cabling method and apparatus
US541565814 déc. 199316 mai 1995Pioneer Laboratories, Inc.Surgical cable loop connector
US541566124 mars 199316 mai 1995University Of MiamiImplantable spinal assist device
US544936121 avr. 199312 sept. 1995Amei Technologies Inc.Orthopedic cable tensioner
US545672230 juil. 199310 oct. 1995Smith & Nephew Richards Inc.Load bearing polymeric cable
US546254224 janv. 199431 oct. 1995United States Surgical CorporationSternum buckle with serrated strap
US549631818 août 19935 mars 1996Advanced Spine Fixation Systems, Inc.Interspinous segmental spine fixation device
US554069816 sept. 199330 juil. 1996Amei Technologies Inc.System and method for securing a medical cable
US560963430 juin 199311 mars 1997Voydeville; GillesIntervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US564559922 avr. 19968 juil. 1997FixanoInterspinal vertebral implant
US572558218 août 199310 mars 1998Surgicraft LimitedSurgical implants
US590230510 juil. 199711 mai 1999Aesculap Ag & Co. KgSurgical tensioning device
US59282324 avr. 199627 juil. 1999Advanced Spine Fixation Systems, IncorporatedSpinal fixation system
US593513315 déc. 199810 août 1999Spinal Concepts, Inc.Surgical cable system and method
US596476926 août 199712 oct. 1999Spinal Concepts, Inc.Surgical cable system and method
US598925619 janv. 199923 nov. 1999Spineology, Inc.Bone fixation cable ferrule
US605392126 mai 199825 avr. 2000Spinal Concepts, Inc.Surgical cable system and method
US631243124 avr. 20006 nov. 2001Wilson T. AsforaVertebrae linking system
US636488323 févr. 20012 avr. 2002Albert N. SantilliSpinous process clamp for spinal fusion and method of operation
US637828919 nov. 199930 avr. 2002Pioneer Surgical TechnologyMethods and apparatus for clamping surgical wires or cables
US639103015 déc. 199821 mai 2002Spinal Concepts, Inc.Surgical cable system and method
US643609920 oct. 199920 août 2002Sdgi Holdings, Inc.Adjustable spinal tether
US645101926 mai 200017 sept. 2002St. Francis Medical Technologies, Inc.Supplemental spine fixation device and method
US64683098 nov. 200022 oct. 2002Cleveland Clinic FoundationMethod and apparatus for stabilizing adjacent bones
US65824339 avr. 200124 juin 2003St. Francis Medical Technologies, Inc.Spine fixation device and method
US660509130 juin 200012 août 2003Pioneer Laboratories, Inc.Surgical cable assembly and method
US662694419 févr. 199930 sept. 2003Jean TaylorInterspinous prosthesis
US662997520 déc. 19997 oct. 2003Pioneer Laboratories, Icn.Multiple lumen crimp
US665252718 oct. 200125 nov. 2003St. Francis Medical Technologies, Inc.Supplemental spine fixation device and method
US665258519 févr. 200225 nov. 2003Sdgi Holdings, Inc.Flexible spine stabilization system
US665618524 oct. 20012 déc. 2003Spineology Inc.Tension band clip
US666972911 févr. 200330 déc. 2003Kingsley Richard ChinApparatus and method for the replacement of posterior vertebral elements
US668253323 juil. 199927 janv. 2004Spinal Concepts, Inc.Surgical cable system and method
US66891401 oct. 200110 févr. 2004Howmedica Osteonics Corp.System and method for spinal reconstruction
US668916822 juil. 200210 févr. 2004The Cleveland Clinic FoundationMethod and apparatus for stabilizing adjacent bones
US669585231 oct. 200124 févr. 2004Spineology, Inc.Tension tools for tension band clip
US671281918 oct. 200130 mars 2004St. Francis Medical Technologies, Inc.Mating insertion instruments for spinal implants and methods of use
US67162456 juil. 20016 avr. 2004Spine NextIntersomatic implant
US676172013 oct. 200013 juil. 2004Spine NextIntervertebral implant
US68352057 mars 200228 déc. 2004Spinalabs, LlcDevices and methods for the treatment of spinal disorders
US10610308 Titre non disponible
US82798007 Titre non disponible
US200201519789 janv. 200217 oct. 2002Fred ZacoutoSkeletal implant
US2004002445820 déc. 20015 févr. 2004Jacques SenegasIntervertebral implant with deformable wedge
US2004010699512 juil. 20013 juin 2004Regis Le CouedicShock-absorbing intervertebral implant
US2004011692730 nov. 200117 juin 2004Henry GrafIntervertebral stabilizing device
US2004011701713 mars 200217 juin 2004Denis PasquetSelf locking fixable intervertebral implant
US2004012798931 déc. 20021 juil. 2004Andrew DoorisProsthetic facet joint ligament
US200401721325 févr. 20042 sept. 2004Ginn Richard S.Apparatus and methods for treating spinal discs
US2005003343512 déc. 200310 févr. 2005Spine NextIntervertebral disk prosthesis
US2005004970815 oct. 20043 mars 2005Atkinson Robert E.Devices and methods for the treatment of spinal disorders
US200502160179 mars 200529 sept. 2005Louie FieldingSpinal implant and method for restricting spinal flexion
US2006006944716 juin 200530 mars 2006Disilvestro Mark RAdjustable, remote-controllable orthopaedic prosthesis and associated method
US2006027105512 mai 200530 nov. 2006Jeffery ThramannSpinal stabilization
US20080009866 *13 juil. 200710 janv. 2008Todd AlaminMethods and systems for constraint of spinous processes with attachment
US20080281423 *9 mai 200713 nov. 2008Ebi, L.P.Interspinous implant
US20080319487 *18 avr. 200825 déc. 2008Simpirica Spine, Inc.Methods and Devices for Controlled Flexion Restriction of Spinal Segments
USRE3622115 mai 19961 juin 1999Breard; Francis HenriFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
Citations hors brevets
Référence
1 *See also references of EP2419034A4
Classifications
Classification internationaleA61B17/70
Classification coopérativeA61B17/842, A61B17/7062, A61B17/7055
Classification européenneA61B17/70P
Événements juridiques
DateCodeÉvénementDescription
8 déc. 2010121Ep: the epo has been informed by wipo that ep was designated in this application
Ref document number: 10765340
Country of ref document: EP
Kind code of ref document: A1
14 oct. 2011WWEWipo information: entry into national phase
Ref document number: 2012505996
Country of ref document: JP
14 oct. 2011ENPEntry into the national phase in:
Ref document number: 2012505996
Country of ref document: JP
Kind code of ref document: A
17 oct. 2011NENPNon-entry into the national phase in:
Ref country code: DE