WO2010134868A1 - Method of producing and the use of microfibrillated paper - Google Patents

Method of producing and the use of microfibrillated paper Download PDF

Info

Publication number
WO2010134868A1
WO2010134868A1 PCT/SE2010/050290 SE2010050290W WO2010134868A1 WO 2010134868 A1 WO2010134868 A1 WO 2010134868A1 SE 2010050290 W SE2010050290 W SE 2010050290W WO 2010134868 A1 WO2010134868 A1 WO 2010134868A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
paper according
nanofibrils
paper
producing
Prior art date
Application number
PCT/SE2010/050290
Other languages
French (fr)
Inventor
Marielle Henriksson
Lars Berglund
Vincent Bulone
Qi Zhou
Original Assignee
Swetree Technologies Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swetree Technologies Ab filed Critical Swetree Technologies Ab
Priority to EP10778009.0A priority Critical patent/EP2432933A4/en
Publication of WO2010134868A1 publication Critical patent/WO2010134868A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a microfibrillated cellulose structure for increased toughness of paper and a method of producing the paper.
  • microfibrillated cellulose refers to nanofibrils obtained from plant fibres (plant cells) by mechanical or chemical means, often a combination of chemical pre- treatment and mechanical disintegration, or from bacterial produced fibres. Such "microfibrillated cellulose” has a diameter typically less than 40 nm and is several micrometers in length and is termed nanofibrils in the following.
  • Cellulose is the main reinforcing constituent in plant cell walls. It is present in the form of aligned ⁇ ( l ,4)-D-glucan molecules in extended chain conformation assembled into nanofibrils of high modulus and tensile strength.
  • cellulose materials are based on plant cells, for instance in the form of wood pulp, but it can also be derived from bacteria.
  • cellulose tends to be motivated by low cost.
  • it is promising to utilize it as a nanostructured high-performance constituent in the form of nanofibrils.
  • Nanocomposites were prepared from a water suspension of cellulose nanofibrils (tunicate whiskers) and a water-based thermoplastic latex. Favier et al. (Poly. Adv. Tech., 1995, 6, 351 ; Macromolecules, 1995, 28, 6365) demonstrated that the addition of as little as 6% tunicate whiskers is sufficient to form a network that will strongly increase the storage modulus above the glass transition temperature. Tunicate whiskers have high modulus, and form strong interfibrillar bonds between cellulose surfaces so that the network provides substantial stiffening to the rubbery matrix.
  • Several reviews have been published on the subject of cellulose nanocomposites.
  • Lateral dimension in the nanometer scale and lengths in the micrometer range are key geometrical parameters that make cellulose fibrils potential excellent building blocks for construction of strong and tough materials.
  • the reason for this could be their small diameter, high axial ratio (length /diameter), their semi-crystalline structure of extended chains causing intrinsically high mechanical properties.
  • Such long entangled individual cellulose fibrils can be obtained through various disintegration processes, such as chemical modification and mechanical shearing, enzymatic treatment and homogenization using high-pressure homogenizers, steam explosion, ultra-fine friction grinder (supermasscolloider ® ), and counter collision.
  • ribbons that consist of aggregates of bacterial cellulose fibrils can be modified during biosynthesis by the simple addition of water-soluble polymers in the culture medium of the bacterium.
  • the effect of nanostructure change on the mechanical properties of bacterial cellulose /polysaccharide nanocomposite has not been investigated in great detail so far.
  • the object of the present invention is to present a paper comprising microfibrillated cellulose structures and a method of producing the same that overcome the drawbacks of the prior art.
  • This object is achieved in a first aspect by the method as claimed in claim 1 wherein the method comprises the following steps: providing modified nanofibrils of cellulose wherein the modification comprises one of the treatments coating, formation of charge groups, mechanical beating and enzymatic degradation; providing a suspension of said modified nanofibrils at a concentration of less than 0.5 weight%; said nanofibrils being well dispersed in the suspension; filtering, dewatering and drying the nanofibrils.
  • the modification of the nanofibrils can be performed simultaneously as the nanofibrils are provided but it can also be done as a separate step.
  • the modified nanofibrils are provided through one or more treatments of cellulose, preferably more than one treatment. These treatments may be, but are not limited to, enzymatic degradation and/or mechanical beating of the cellulose and coating and/or formation of charged groups on the nanofibrils.
  • the cellulose derived from plants for example trees and in another embodiment it is derived from bacteria, for example Acetobacter xylinus or Acetobacter aceti.
  • One embodiment of the method according to the present invention comprises the formation of charged groups on the nanofibrils. These charged groups may be anionic, cationic or zwitterionic groups and they may be found on the surface at all time or they may be activated prior to or during the production of paper.
  • Another embodiment comprises the treatment of the nanofibrils with radicals to form the charged groups. This can be done for example by using 2,2,6,6- tetramethyl- 1 -piperidinyloxy (TEMPO) radicals or any other suitable radical containing or radical forming substance.
  • TEMPO 2,2,6,6- tetramethyl- 1 -piperidinyloxy
  • Another embodiment comprises the use of glycidyltrimethylammonium chloride or any other suitable cationic agent at a suitable pH.
  • Yet another embodiment involves the treatment with halogen acids to create charged groups. These halogen acids can for example be acetic chloride.
  • the method of the present invention comprises coating or grafting at least one polymer onto the nanofibrils from the bacterial cellulose.
  • the method of the present invention comprises using microfibrillated cellulose with a lateral dimension of approximately 15 nm or less.
  • Another embodiment of the method according to the invention comprises using microfibrillated cellulose with a lateral dimension of a narrow distribution, i.e. in a range of 15-25 nm.
  • Another embodiment of the present invention comprises nanofibrils of cellulose with an average degree of polymerisation of approximately at least 800.
  • One embodiment of the method according to the present invention involves further formation of porous structure in the paper. This may be accomplished via for example phase inversion, salt and/ or sugar leaching, freeze drying or any kind of phase separation suitable for the purpose.
  • a paper as claimed in claim 12 is provided, namely comprising a structure of modified cellulose nanofibrils wherein the nanofibrils are well dispersed.
  • In one embodiment is the cellulose derived from plants and in another from bacteria.
  • Another embodiment comprises the modification of the cellulose nanofibrils charged groups on said fibrils and yet another embodiment comprises the modification and coating of at least one polymer.
  • These polymers may be of water soluble polysaccharide type or any other suitable type of polymer of variable length.
  • the well dispersed nanofibrils leads to an extremely strong paper and the thickness of the paper in one embodiment is 40 ⁇ m or less. Another embodiment is that the paper exhibits a tensile strength of at least 250 MPa.
  • the paper may contain a porosity of at least 15%.
  • Fig. 1 FE-SEM micrographs of freeze-dried BC.
  • Fig. 2 Weight average molecular mass distribution curves.
  • Fig. 3 FE-SEM micrographs of the surfaces of cellulose nanopaper films.
  • Fig. 4 Tensile stress-strain curves of the bacterial cellulose (BC) nanopaper films.
  • lateral dimension is defined as the largest cross-sectional width of a fibril. For a cylindrically shaped fibril, the lateral dimension would be its diameter.
  • modified is defined as a material treated or changed via one or more treatments to obtain chemical and /or structural modifications.
  • treatments can be chemical treatments, such as hydrolysis, degradation, grafting, side group attachment or coating; enzymatic treatments, such as enzymatic degradation; or physical treatments, such as mechanical beating.
  • well dispersed is defined as when cellulose nanofibrils remain in a suspension for at least 6 months after centrifuging at 800 £ for 5 minutes.
  • the present invention provides a procedure to produce a paper with highly improved mechanical properties. Without wishing to be bound by any theory, it is believed that incorporation of charged groups or formation of coatings onto the nanofibrils of cellulose will lead to well dispersed nanofibrils. The incorporation of charged groups and the formation of coatings are proposed to form loose bundles of nanofibrils which in turn results in for example increased tensile strength.
  • the charged groups can be formed via radicals or via reaction with halogen acids.
  • a preferred radical is the 2,2,6,6-tetramethyl- l-piperidinyloxy radical, but other suitable radicals or radical forming substances may also be used such as azo- compounds (for example azobis-isobutyro nitrile), peroxides or persulphates.
  • Suitable radical containing or radical forming substances are known to a person skilled in the art.
  • Glycidyltrimethylammonium chloride at basic pH is one example on how to create cationic groups. The formation of these charged groups is preferably performed initially in the paper forming production.
  • the fibrils of the present invention have also a relatively small lateral dimension and a relatively narrow size distribution of the lateral dimension.
  • the average lateral dimension of a fibril may be as low as 15 nm or less and the distribution range can be as low as 15-25 nm. This also contributes to the high dispersion of the fibrils.
  • the molecular weight of the cellulose is also important to the mechanical properties of the final paper. High molecular weight causes increased entanglement which in turn increases for example strain at failure and yield stress.
  • the degree of polymerisation i.e. the number of ⁇ ( l ,4)-D-glucos repeating units, especially for the plant derived cellulose nanofibrils is preferably above 400, more preferably above 800 and most preferred above 1000.
  • the molecular weight and degree of polymerisation can be measured using for example Size Exclusion Chromatography (SEC).
  • a preferred strategy to provide modified nanofibrils of cellulose is to treat pulp or cellulose with enzymatic degradation and/or mechanical beating and/or formation of charged groups.
  • a preferred treatment of the nanofibrils is the enzymatic degradation and/or the mechanical beating.
  • the enzymatic degradation can be performed using a variety of enzymes known to a person skilled in the art but most preferred is to use endoglucanase.
  • the mechanical beating can be carried out by using a laboratory beater or any other suitable instrument or tool.
  • the preparations of the porous structures are environmentally friendly routes starting from nanofibril -water suspensions.
  • the water is removed so that a cellulose nanofibril network is formed.
  • Cellulose nanofibrils of different average molar mass may be used, and other solvents than water may be introduced so that the porosity can be varied in the films.
  • Other solvents could for example be different alcohols or other highly or partly water mixable solvents.
  • Another way of creating a porous structure is through phase inversion where the nanofibril -water suspension is placed in a solvent that does not dissolve the nanofibrils but causes the fibrils to precipitate.
  • Phase separation can also be accomplished via temperature or pressure or a combination thereof.
  • a further example of a phase separation technique is freeze drying. The mentioned water suspension may be replaced with any mixture that keeps the cellulose nanofibrils in suspension.
  • One preferred method of producing the paper comprises the following steps: providing modified nanofibrils of cellulose and optionally modifying them; providing a suspension of said modified nanofibrils at a concentration of less than 0.5 weight%; filtering, dewatering and drying the microfibrillated cellulose. Preferably the concentration should be between 0.1 and 0.3 weight%. These steps may be performed in a variety of manners.
  • the nanofibrils are modified by formation of charged groups it can be performed using TEMPO radicals.
  • the treatment is executed in a water suspension together with sodium bromide, or any other suitable salt. It is preferred that the water suspension is kept basic during the reaction.
  • the cellulose may be further oxidised using NaClO or any other suitable oxidising salt, preferably at an acidic pH.
  • the TEMPO -mediated oxidation of the cellulose may be performed according to Saito et al. (Biomacromolecules, 2006, 7(6), 1687- 1691). During the treatment the nanofibrils become well dispersed in the suspension.
  • the filtering and dewatering can be performed using a selection of filters, with different pore sizes, and techniques, all known to a person skilled in the art.
  • the final paper can be transparent and exhibits very low thermal expansion, see M Bergenstrahle, LA Berglund, K Mazeau, J Phys Chem B (2007), 1 1 1 , 9138 for details.
  • the thermal expansion may be as low as 0.5-7 nm/K* 10 5 .
  • One way of coating or grafting a nanofibril is by producing bacterial cellulose (BC) in the presence of an appropriate polymer.
  • the modified cellulose can be a hydroxylaliphaticcellulose such as hydroxylethylcellulose (HEC), hydroxylpropylcellulose, hydroxylbutylcellulose and so on.
  • HEC hydroxylethylcellulose
  • the structure and formation of the bacterial cellulose network can be affected by spontaneous interference of polymers added with cellulose assembly. Addition of carboxymethylcellulose, methylcellulose, glucomannan, pectin, arabinoxylan or xylan in the culture medium of Acetobacter xylinus has been shown to influence the properties of the nascent BC, in particular its crystallite dimension, crystallinity and water content.
  • Xyloglucan/BC composite hydrogel has been prepared and used as a model to study the effect of plant cell wall enzymes on its mechanical properties.
  • Figure 1 shows FE-SEM micrographs of freeze-dried BC produced in the presence of 2 % w/v HEC in the culture medium (a) and the control BC (b). Transmission electron micrographs of a loose bundle of aggregated BC fibrils produced in the presence of 2 % w/v HEC in the culture medium (c) and ribbons of the control BC (d). 0.2 % w/v water suspensions of c and d observed at rest between crossed polarizers were shown in e and f, respectively.
  • Figure 3 shows FE- SEM micrographs of the surfaces of cellulose nanopaper films prepared from water suspensions of BC microfibrils, a, control BC; b, BC produced in the presence of 2 % w/v HEC.
  • c drawing illustrate the structure of a ribbon of cellulose fibril aggregates from a, and compartmentalized bacterial cellulose fibril aggregates with soft matrix (HEC) nanocoating from b mimicking tendon ultrastructure.
  • HEC soft matrix
  • Purified and freeze-dried control BC fleeces ( ⁇ 150 mg) were obtained as described in Example 3. About 25% of the D-glucose present in the culture medium was utilized by the bacterium and incorporated into cellulose after 7 days of culture. The bacteria can be cultured under both static and dynamic conditions.
  • the yield of the BC fleeces obtained by growing the bacterium in the presence of HEC increased with the amount of HEC present in the culture medium.
  • relative yields of 128%, 138%, 155% and 190% with respect to the control BC cultures 100% were obtained in the presence of 0.5, 1.0, 2.0 and 4.0% (w/v) HEC, respectively.
  • the weight average molecular mass (M w ) of BC produced in the presence of HEC in the culture medium was comparable to that of the control BC (M w of 2.1 x 10 6 ), with a polydispersity index (M w /M n , where M n is the number-average molecular mass) of 1.9.
  • HEC self- assembles with the cellulose fibrils, which co-aggregate into larger fibril aggregates during biosynthesis, i.e. the BC fibrils are coated with HEC, thereby altering the structure of the cellulose crystals.
  • the formation of BC ribbons is hindered and loose bundles of nanofibril aggregates are compartmentalized.
  • the cellulose nanopaper films prepared from the water suspension of the well dispersed cellulose nanofibrils show dramatically increased tensile strength and work to fracture compared to the control BC, and compared to previous studies on BC sheets and wood-based cellulose nanopapers.
  • the key might be the novel biomimetic nanostructural composites concept of nanofibrils compartmentalized by thin coatings of a polysaccharide (HEC).
  • HEC polysaccharide
  • This preparation approach for uniquely structured nanocomposites represents a low-energy and cost-effective process method for building high-strength cellulose-based nanocomposite materials.
  • FIG. 4 shows tensile stress-strain curves of the BC nanopaper films prepared from microfibrils obtained from the BC produced with HEC in the culture medium (a), from the control BC (b) or from a blend of control BC and HEC (c). As seen the tensile strength is at least 250 MPa for the BC produced with HEC in the culture medium. Tensile tests were performed, if nothing else is stated, using a Universal Materials Testing Machine from Instron, USA, equipped with a 500 N load cell. The cross-head speed was set to 4 mm/min.
  • microfibrillated cellulose used herein are termed DP-X where X corresponds to the average degree of polymerization (DP) of the specific MFC sample, estimated from viscosity data.
  • Oxidation and formation of charged groups on the cellulose fibrils may for example be conducted on cellulose (2 g) suspended in water (150 ml) containing TEMPO (2,2,6,6-tetramethyl-l-piperidinyloxy) (0.025 g) and sodium bromide (0.25 g).
  • the pH was adjusted by adding NaClO and was then maintained at 10.5.
  • To terminate the reaction the pH was lowered through addition of HCl to a pH of around 7. The whole procedure was performed at room temperature. The product was thoroughly washed with water.
  • the MFC was prepared from softwood dissolving pulp.
  • the pulp was subjected to a pre-treatment step, in 4Og batches, followed by disintegration into MFC by a homogenization process with a Microfluidizer M-1 10EH, Microfluidics Inc., USA. There is no upper limit for the amount that can be processed in the Microfluidizer (flow speed is about 400 ml/min).
  • the pre-treatment step the pulp is exposed to a combination of enzymatic degradation and mechanical beating in a laboratory beater.
  • the enzyme used is an endoglucanase, Novozym 476, manufactured by Novozymes A/ S, Denmark, believed to preferably degrade cellulose in disordered regions.
  • DP-800 was delivered from Innventia and is prepared by a similar method as above.
  • the pulp used was bleached sulphite softwood (Domsj ⁇ ECO Bright) which has higher hemicellulose content than the dissolving pulp.
  • DP-1 100 is prepared from the same kind of softwood dissolving pulp as above. The pulp is carboxymethylated in a chemical pre-treatment step and then run once through the Microfluidizer.
  • the DP- 1 100 sample has the highest average molar mass, but also shows some other differences compared with samples based on enzymatic pre-treatment.
  • the degree of dispersion of nanofibrils is higher (higher suspension viscosity and more transparent suspension) and the cellulose surface contains carboxylic acid groups due to the chemical pre-treatment.
  • Cellulose nanopaper films were prepared by vacuum-filtration of a 0.2% (by weight) MFC suspension. Prior to filtration the suspension was stirred for 48 h to ensure well dispersed nanofibrils. All films, except DP-800, were filtrated on a glass filter funnel (1 1.5 cm in diameter) using Munktell filter paper, grade OOH, Munktell Filter AB, Sweden. Films prepared of DP-800 were filtrated on a glass filter funnel (7.2 cm in diameter) using filter membrane, 0.65 ⁇ m DVPP, Millipore, USA. After filtration, the wet films were stacked between filter papers and then dried at 55 0 C for 48 h at about 10 kPa applied pressure. This resulted in MFC films with thicknesses in the range 60-80 ⁇ m.
  • Porous films are prepared by solvent exchange on the filtered film before drying. After filtration the wet film was immersed in methanol, ethanol or acetone for 2 h. The solvent was replaced by fresh solvent and the film was left for another 24 h. Then the film was dried in the same way as described above. This resulted in films of various porosities and thicknesses in the range of 40-90 ⁇ m.
  • the Acetobacter aceti strain was pre-cultivated in the Hestrin-Schramm (HS) medium for 7 days at 27 0 C, and 5 mL of this pre-culture was used to inoculate 30 mL of fresh HS medium.
  • a series of BCHEC samples were prepared in the presence of 0.5, 1.0, 2.0, and 4.0% (w/v) HEC (Aldrich cat # 308633; average M w 250,000) in the culture medium.
  • the control BC was obtained by cultivating the bacterium in the absence of HEC in the medium.
  • the control BC and BCHEC fleeces were harvested after 7 days of culture at 27 0 C under static conditions. They were treated with 0.
  • Aqueous suspensions of BC microfibrils with a solid content of 0.2% were obtained by homogenizing the control BC or the BCHEC fleeces with a Waring® blender. Typically, 400 mL of the water suspensions were vacuum filtered on a glass filter funnel (7.2 cm in diameter) using a 0.65- ⁇ m DVPP filter membrane from Millipore. After filtration, the wet films were stacked between filter papers and dried at 55 0 C for 48 h under a 10-kPa applied pressure.

Abstract

The present invention relates to a method of producing a cellulose based paper, the paper itself and the use thereof where the paper exhibits enhanced mechanical properties. The method involves providing a suspension of well dispersed modified cellulose at a low concentration. The properties and the chemical structure of the paper make it suitable for in vivo applications such as implant material.

Description

METHOD OF PRODUCING AND THE USE OF MICROFIBRILLATED PAPER
FIELD OF TECHNOLOGY
The present invention relates to a microfibrillated cellulose structure for increased toughness of paper and a method of producing the paper.
BACKGROUND
The term "microfibrillated cellulose" refers to nanofibrils obtained from plant fibres (plant cells) by mechanical or chemical means, often a combination of chemical pre- treatment and mechanical disintegration, or from bacterial produced fibres. Such "microfibrillated cellulose" has a diameter typically less than 40 nm and is several micrometers in length and is termed nanofibrils in the following. Cellulose is the main reinforcing constituent in plant cell walls. It is present in the form of aligned β( l ,4)-D-glucan molecules in extended chain conformation assembled into nanofibrils of high modulus and tensile strength. Often, cellulose materials are based on plant cells, for instance in the form of wood pulp, but it can also be derived from bacteria. Despite good inherent properties of cellulose, the use of materials and products from cellulose tends to be motivated by low cost. Even in light of the recent interest in biocomposite materials, cellulose tends to be viewed as "filler" and it usually embrittles the polymer matrix. This disadvantage is balanced by its availability as a low cost constituent obtainable from renewable resources. However, in order to fully realize the potential of cellulose, it is promising to utilize it as a nanostructured high-performance constituent in the form of nanofibrils.
The importance of cellulose nanofibril network formation was first demonstrated in polymer nanocomposites. Nanocomposites were prepared from a water suspension of cellulose nanofibrils (tunicate whiskers) and a water-based thermoplastic latex. Favier et al. (Poly. Adv. Tech., 1995, 6, 351 ; Macromolecules, 1995, 28, 6365) demonstrated that the addition of as little as 6% tunicate whiskers is sufficient to form a network that will strongly increase the storage modulus above the glass transition temperature. Tunicate whiskers have high modulus, and form strong interfibrillar bonds between cellulose surfaces so that the network provides substantial stiffening to the rubbery matrix. Several reviews have been published on the subject of cellulose nanocomposites. The first studies on cellulose nanocomposites of high cellulose content, are published by Nakagaito and Yano (Appl. Phys. A: Mater. Sci. Process. 2005, 80, 155). A porous network of microfibrillated cellulose from wood pulp is impregnated by liquid low molar mass poly-phenol formaldehyde (PF) precursors which are subsequently polymerized. The materials show high modulus and strength, but are quite brittle. Materials based on melamine-formaldehyde show similar brittleness. However, Nakagaito and Yano illustrate that cellulose nanofibril networks have potential as high-performance materials and not only as low cost biocomposites. This observation is strengthened by the use of nanostructured cellulose networks in biomedical applications and in transparent materials for high-technology applications.
Lateral dimension in the nanometer scale and lengths in the micrometer range are key geometrical parameters that make cellulose fibrils potential excellent building blocks for construction of strong and tough materials. The reason for this could be their small diameter, high axial ratio (length /diameter), their semi-crystalline structure of extended chains causing intrinsically high mechanical properties. Such long entangled individual cellulose fibrils can be obtained through various disintegration processes, such as chemical modification and mechanical shearing, enzymatic treatment and homogenization using high-pressure homogenizers, steam explosion, ultra-fine friction grinder (supermasscolloider®), and counter collision.
Compared to cellulose nanofibrils from wood, ribbons that consist of aggregates of bacterial cellulose fibrils can be modified during biosynthesis by the simple addition of water-soluble polymers in the culture medium of the bacterium. However, the effect of nanostructure change on the mechanical properties of bacterial cellulose /polysaccharide nanocomposite has not been investigated in great detail so far.
SUMMARY OF THE INVENTION
The object of the present invention is to present a paper comprising microfibrillated cellulose structures and a method of producing the same that overcome the drawbacks of the prior art. This object is achieved in a first aspect by the method as claimed in claim 1 wherein the method comprises the following steps: providing modified nanofibrils of cellulose wherein the modification comprises one of the treatments coating, formation of charge groups, mechanical beating and enzymatic degradation; providing a suspension of said modified nanofibrils at a concentration of less than 0.5 weight%; said nanofibrils being well dispersed in the suspension; filtering, dewatering and drying the nanofibrils.
The modification of the nanofibrils can be performed simultaneously as the nanofibrils are provided but it can also be done as a separate step.
In a preferred embodiment of the present invention, the modified nanofibrils are provided through one or more treatments of cellulose, preferably more than one treatment. These treatments may be, but are not limited to, enzymatic degradation and/or mechanical beating of the cellulose and coating and/or formation of charged groups on the nanofibrils.
In one embodiment of the present invention is the cellulose derived from plants, for example trees and in another embodiment it is derived from bacteria, for example Acetobacter xylinus or Acetobacter aceti.
One embodiment of the method according to the present invention comprises the formation of charged groups on the nanofibrils. These charged groups may be anionic, cationic or zwitterionic groups and they may be found on the surface at all time or they may be activated prior to or during the production of paper.
Another embodiment comprises the treatment of the nanofibrils with radicals to form the charged groups. This can be done for example by using 2,2,6,6- tetramethyl- 1 -piperidinyloxy (TEMPO) radicals or any other suitable radical containing or radical forming substance. Another embodiment comprises the use of glycidyltrimethylammonium chloride or any other suitable cationic agent at a suitable pH. Yet another embodiment involves the treatment with halogen acids to create charged groups. These halogen acids can for example be acetic chloride.
In yet another embodiment the method of the present invention comprises coating or grafting at least one polymer onto the nanofibrils from the bacterial cellulose.
In yet another embodiment the method of the present invention comprises using microfibrillated cellulose with a lateral dimension of approximately 15 nm or less.
Another embodiment of the method according to the invention comprises using microfibrillated cellulose with a lateral dimension of a narrow distribution, i.e. in a range of 15-25 nm.
Another embodiment of the present invention comprises nanofibrils of cellulose with an average degree of polymerisation of approximately at least 800.
One embodiment of the method according to the present invention involves further formation of porous structure in the paper. This may be accomplished via for example phase inversion, salt and/ or sugar leaching, freeze drying or any kind of phase separation suitable for the purpose.
In a further aspect of the invention a paper as claimed in claim 12 is provided, namely comprising a structure of modified cellulose nanofibrils wherein the nanofibrils are well dispersed.
In one embodiment is the cellulose derived from plants and in another from bacteria.
Another embodiment comprises the modification of the cellulose nanofibrils charged groups on said fibrils and yet another embodiment comprises the modification and coating of at least one polymer. These polymers may be of water soluble polysaccharide type or any other suitable type of polymer of variable length.
The well dispersed nanofibrils leads to an extremely strong paper and the thickness of the paper in one embodiment is 40 μm or less. Another embodiment is that the paper exhibits a tensile strength of at least 250 MPa. The paper may contain a porosity of at least 15%.
DESCRIPTION OF DRAWINGS
Fig. 1: FE-SEM micrographs of freeze-dried BC.
Fig. 2: Weight average molecular mass distribution curves.
Fig. 3: FE-SEM micrographs of the surfaces of cellulose nanopaper films.
Fig. 4: Tensile stress-strain curves of the bacterial cellulose (BC) nanopaper films.
DETAILED DESCRIPTION OF THE INVENTION
In the present application the term "lateral dimension" is defined as the largest cross-sectional width of a fibril. For a cylindrically shaped fibril, the lateral dimension would be its diameter.
In the present application the term "modified" is defined as a material treated or changed via one or more treatments to obtain chemical and /or structural modifications. These treatments can be chemical treatments, such as hydrolysis, degradation, grafting, side group attachment or coating; enzymatic treatments, such as enzymatic degradation; or physical treatments, such as mechanical beating.
In the present application the term "well dispersed" is defined as when cellulose nanofibrils remain in a suspension for at least 6 months after centrifuging at 800 £ for 5 minutes.
The present invention provides a procedure to produce a paper with highly improved mechanical properties. Without wishing to be bound by any theory, it is believed that incorporation of charged groups or formation of coatings onto the nanofibrils of cellulose will lead to well dispersed nanofibrils. The incorporation of charged groups and the formation of coatings are proposed to form loose bundles of nanofibrils which in turn results in for example increased tensile strength.
The charged groups can be formed via radicals or via reaction with halogen acids. A preferred radical is the 2,2,6,6-tetramethyl- l-piperidinyloxy radical, but other suitable radicals or radical forming substances may also be used such as azo- compounds (for example azobis-isobutyro nitrile), peroxides or persulphates. Suitable radical containing or radical forming substances are known to a person skilled in the art. Glycidyltrimethylammonium chloride at basic pH is one example on how to create cationic groups. The formation of these charged groups is preferably performed initially in the paper forming production.
The fibrils of the present invention have also a relatively small lateral dimension and a relatively narrow size distribution of the lateral dimension. The average lateral dimension of a fibril may be as low as 15 nm or less and the distribution range can be as low as 15-25 nm. This also contributes to the high dispersion of the fibrils.
The molecular weight of the cellulose is also important to the mechanical properties of the final paper. High molecular weight causes increased entanglement which in turn increases for example strain at failure and yield stress. The degree of polymerisation, i.e. the number of β( l ,4)-D-glucos repeating units, especially for the plant derived cellulose nanofibrils is preferably above 400, more preferably above 800 and most preferred above 1000. The molecular weight and degree of polymerisation can be measured using for example Size Exclusion Chromatography (SEC).
A preferred strategy to provide modified nanofibrils of cellulose is to treat pulp or cellulose with enzymatic degradation and/or mechanical beating and/or formation of charged groups.
A preferred treatment of the nanofibrils is the enzymatic degradation and/or the mechanical beating. The enzymatic degradation can be performed using a variety of enzymes known to a person skilled in the art but most preferred is to use endoglucanase. The mechanical beating can be carried out by using a laboratory beater or any other suitable instrument or tool.
The preparations of the porous structures are environmentally friendly routes starting from nanofibril -water suspensions. During one step the water is removed so that a cellulose nanofibril network is formed. Cellulose nanofibrils of different average molar mass may be used, and other solvents than water may be introduced so that the porosity can be varied in the films. Other solvents could for example be different alcohols or other highly or partly water mixable solvents. Another way of creating a porous structure is through phase inversion where the nanofibril -water suspension is placed in a solvent that does not dissolve the nanofibrils but causes the fibrils to precipitate. Phase separation can also be accomplished via temperature or pressure or a combination thereof. A further example of a phase separation technique is freeze drying. The mentioned water suspension may be replaced with any mixture that keeps the cellulose nanofibrils in suspension.
One preferred method of producing the paper comprises the following steps: providing modified nanofibrils of cellulose and optionally modifying them; providing a suspension of said modified nanofibrils at a concentration of less than 0.5 weight%; filtering, dewatering and drying the microfibrillated cellulose. Preferably the concentration should be between 0.1 and 0.3 weight%. These steps may be performed in a variety of manners. When the nanofibrils are modified by formation of charged groups it can be performed using TEMPO radicals. The treatment is executed in a water suspension together with sodium bromide, or any other suitable salt. It is preferred that the water suspension is kept basic during the reaction. Optionally, the cellulose may be further oxidised using NaClO or any other suitable oxidising salt, preferably at an acidic pH. The TEMPO -mediated oxidation of the cellulose may be performed according to Saito et al. (Biomacromolecules, 2006, 7(6), 1687- 1691). During the treatment the nanofibrils become well dispersed in the suspension.
The filtering and dewatering can be performed using a selection of filters, with different pore sizes, and techniques, all known to a person skilled in the art. The final paper can be transparent and exhibits very low thermal expansion, see M Bergenstrahle, LA Berglund, K Mazeau, J Phys Chem B (2007), 1 1 1 , 9138 for details. The thermal expansion may be as low as 0.5-7 nm/K* 105.
One way of coating or grafting a nanofibril is by producing bacterial cellulose (BC) in the presence of an appropriate polymer. The modified cellulose can be a hydroxylaliphaticcellulose such as hydroxylethylcellulose (HEC), hydroxylpropylcellulose, hydroxylbutylcellulose and so on. The structure and formation of the bacterial cellulose network can be affected by spontaneous interference of polymers added with cellulose assembly. Addition of carboxymethylcellulose, methylcellulose, glucomannan, pectin, arabinoxylan or xylan in the culture medium of Acetobacter xylinus has been shown to influence the properties of the nascent BC, in particular its crystallite dimension, crystallinity and water content. Xyloglucan/BC composite hydrogel has been prepared and used as a model to study the effect of plant cell wall enzymes on its mechanical properties. Figure 1 shows FE-SEM micrographs of freeze-dried BC produced in the presence of 2 % w/v HEC in the culture medium (a) and the control BC (b). Transmission electron micrographs of a loose bundle of aggregated BC fibrils produced in the presence of 2 % w/v HEC in the culture medium (c) and ribbons of the control BC (d). 0.2 % w/v water suspensions of c and d observed at rest between crossed polarizers were shown in e and f, respectively. Figure 3 shows FE- SEM micrographs of the surfaces of cellulose nanopaper films prepared from water suspensions of BC microfibrils, a, control BC; b, BC produced in the presence of 2 % w/v HEC. c, drawing illustrate the structure of a ribbon of cellulose fibril aggregates from a, and compartmentalized bacterial cellulose fibril aggregates with soft matrix (HEC) nanocoating from b mimicking tendon ultrastructure.
Purified and freeze-dried control BC fleeces (~ 150 mg) were obtained as described in Example 3. About 25% of the D-glucose present in the culture medium was utilized by the bacterium and incorporated into cellulose after 7 days of culture. The bacteria can be cultured under both static and dynamic conditions.
Interestingly, the yield of the BC fleeces obtained by growing the bacterium in the presence of HEC (BCHEC) increased with the amount of HEC present in the culture medium. Typically, relative yields of 128%, 138%, 155% and 190% with respect to the control BC cultures ( 100%) were obtained in the presence of 0.5, 1.0, 2.0 and 4.0% (w/v) HEC, respectively. The weight average molecular mass (Mw) of BC produced in the presence of HEC in the culture medium was comparable to that of the control BC (Mw of 2.1 x 106), with a polydispersity index (Mw/Mn, where Mn is the number-average molecular mass) of 1.9. Lower molecular weight fractions of HEC (Mw of 5.9 x 104, Mw/Mn of 1.6) were incorporated into BC as shown by size exclusion chromatography, Figure 2. From the ratios between the peak areas of the chromatograms, it can be estimated that the amount of incorporated HEC was of 18 % and 19 % for the fleeces prepared in the presence of 2 % and 4 % (w/v) HEC in the culture medium, respectively.
Without wishing to be bound by any theory it can be proposed that HEC self- assembles with the cellulose fibrils, which co-aggregate into larger fibril aggregates during biosynthesis, i.e. the BC fibrils are coated with HEC, thereby altering the structure of the cellulose crystals. As a consequence, the formation of BC ribbons is hindered and loose bundles of nanofibril aggregates are compartmentalized. The same reasoning
The cellulose nanopaper films prepared from the water suspension of the well dispersed cellulose nanofibrils show dramatically increased tensile strength and work to fracture compared to the control BC, and compared to previous studies on BC sheets and wood-based cellulose nanopapers. The key might be the novel biomimetic nanostructural composites concept of nanofibrils compartmentalized by thin coatings of a polysaccharide (HEC). As individual nanofibrils fracture during the latter part of the strain-hardening region, catastrophic fracture is delayed by the crack-deflecting function of the thin nanofibril coating. This preparation approach for uniquely structured nanocomposites represents a low-energy and cost-effective process method for building high-strength cellulose-based nanocomposite materials.
These high strength papers can be used in a variety of areas. Besides paper and filter paper, they can be used in a wide range of biomedical applications due to their biocompatible structures. Implant material such as vascular graft, scaffold for tissue growth and/ or as a drug delivery vehicle are some areas where this material would be suitable. It has also potential as a membrane in speaker systems and in batteries, for example lithium ion batteries. Figure 4 shows tensile stress-strain curves of the BC nanopaper films prepared from microfibrils obtained from the BC produced with HEC in the culture medium (a), from the control BC (b) or from a blend of control BC and HEC (c). As seen the tensile strength is at least 250 MPa for the BC produced with HEC in the culture medium. Tensile tests were performed, if nothing else is stated, using a Universal Materials Testing Machine from Instron, USA, equipped with a 500 N load cell. The cross-head speed was set to 4 mm/min.
EXAMPLES
Example 1
Preparation of MFC
The different kinds of microfibrillated cellulose (MFC) used herein are termed DP-X where X corresponds to the average degree of polymerization (DP) of the specific MFC sample, estimated from viscosity data.
Oxidation and formation of charged groups on the cellulose fibrils may for example be conducted on cellulose (2 g) suspended in water (150 ml) containing TEMPO (2,2,6,6-tetramethyl-l-piperidinyloxy) (0.025 g) and sodium bromide (0.25 g). The pH was adjusted by adding NaClO and was then maintained at 10.5. To terminate the reaction the pH was lowered through addition of HCl to a pH of around 7. The whole procedure was performed at room temperature. The product was thoroughly washed with water.
The MFC was prepared from softwood dissolving pulp. The pulp was subjected to a pre-treatment step, in 4Og batches, followed by disintegration into MFC by a homogenization process with a Microfluidizer M-1 10EH, Microfluidics Inc., USA. There is no upper limit for the amount that can be processed in the Microfluidizer (flow speed is about 400 ml/min). In the pre-treatment step the pulp is exposed to a combination of enzymatic degradation and mechanical beating in a laboratory beater. The enzyme used is an endoglucanase, Novozym 476, manufactured by Novozymes A/ S, Denmark, believed to preferably degrade cellulose in disordered regions. This way to prepare MFC is based on the method explained in detail by Henriksson et al (Eur. Polym. J., 43, page 3434, 2007) with a few modifications. During the enzymatic treatment a phosphate buffer prepared from 1 1 mM NaH2PO4 and 9 mM Na2HPO4 with pH 7 was used. The fibres were incubated at 50 0C for 2 h, washed and thereafter incubated at 90 0C in order to stop the enzyme activity. Different concentrations of enzymes used in the pre-treatment step correspond to different degrees of polymerization for the resulting MFC. The enzyme concentrations used per gram pulp fibres were 5 μl, 5 μl and 0.2 μl. This resulted in MFC with average DP of 410, 580, and 820, respectively. The reason why the same concentration, 5 μl per gram pulp fibres, resulted in two different average DP's is that for the DP 410 case, the enzyme activity was not stopped immediately after incubation. After pre-treatment, the pulp was passed 12 times through the Micro fluidizer in order to produce cellulose nanofibrils. During the first three passes, chambers with dimensions of 400 μm (first chamber) and 200 μm (second chamber) were used. The pressure was 950 bar. During the 9 last passes, chambers with dimensions of 200 μm (first) and 100 μm (second) were used. During these passes, the pressure was 1650 bar. The MFC's termed DP-410, DP-580, and DP-820 are prepared by this method.
DP-800 was delivered from Innventia and is prepared by a similar method as above. The pulp used was bleached sulphite softwood (Domsjό ECO Bright) which has higher hemicellulose content than the dissolving pulp. DP-1 100 is prepared from the same kind of softwood dissolving pulp as above. The pulp is carboxymethylated in a chemical pre-treatment step and then run once through the Microfluidizer.
The DP- 1 100 sample has the highest average molar mass, but also shows some other differences compared with samples based on enzymatic pre-treatment. The degree of dispersion of nanofibrils is higher (higher suspension viscosity and more transparent suspension) and the cellulose surface contains carboxylic acid groups due to the chemical pre-treatment.
Example 2
Preparation of porous cellulose nanopaper
Cellulose nanopaper films were prepared by vacuum-filtration of a 0.2% (by weight) MFC suspension. Prior to filtration the suspension was stirred for 48 h to ensure well dispersed nanofibrils. All films, except DP-800, were filtrated on a glass filter funnel (1 1.5 cm in diameter) using Munktell filter paper, grade OOH, Munktell Filter AB, Sweden. Films prepared of DP-800 were filtrated on a glass filter funnel (7.2 cm in diameter) using filter membrane, 0.65 μm DVPP, Millipore, USA. After filtration, the wet films were stacked between filter papers and then dried at 55 0C for 48 h at about 10 kPa applied pressure. This resulted in MFC films with thicknesses in the range 60-80 μm.
Porous films are prepared by solvent exchange on the filtered film before drying. After filtration the wet film was immersed in methanol, ethanol or acetone for 2 h. The solvent was replaced by fresh solvent and the film was left for another 24 h. Then the film was dried in the same way as described above. This resulted in films of various porosities and thicknesses in the range of 40-90 μm.
Uniaxial tensile tests were performed to determine the mechanical properties of the produced papers.
Example 3
Preparation of cellulose nanopaper using bacterial nanofibrils
The Acetobacter aceti strain was pre-cultivated in the Hestrin-Schramm (HS) medium for 7 days at 27 0C, and 5 mL of this pre-culture was used to inoculate 30 mL of fresh HS medium. A series of BCHEC samples were prepared in the presence of 0.5, 1.0, 2.0, and 4.0% (w/v) HEC (Aldrich cat # 308633; average Mw 250,000) in the culture medium. The control BC was obtained by cultivating the bacterium in the absence of HEC in the medium. The control BC and BCHEC fleeces were harvested after 7 days of culture at 27 0C under static conditions. They were treated with 0. 1 M NaOH at 80 0C for 3 h and washed with de-ionized water. This process was repeated 3 times and the BC fleeces were finally washed with de-ionized water for several days until neutrality was reached. Aqueous suspensions of BC microfibrils with a solid content of 0.2% were obtained by homogenizing the control BC or the BCHEC fleeces with a Waring® blender. Typically, 400 mL of the water suspensions were vacuum filtered on a glass filter funnel (7.2 cm in diameter) using a 0.65-μm DVPP filter membrane from Millipore. After filtration, the wet films were stacked between filter papers and dried at 55 0C for 48 h under a 10-kPa applied pressure. This resulted in BC nanopaper films with thicknesses in the range 40-70 μm. Tensile tests for bacterial cellulose nanopaper films were performed at 50% relative humidity and 23 0C, using an Instron 5567 universal testing machine equipped with a load cell of 100 N. The films were cut in thin rectangular strips of 5 x 60 mm. The gauge length was 40 mm for all samples and the strain rate was of 10% min 1. Stress-strain curves were plotted and the Young's modulus was determined from the slope of the low strain region. The strength and strain-to-failure were also determined for each specimen. Toughness is defined as work to fracture and is calculated as the area under the stress-strain curve. Mechanical tensile data were averaged from at least three specimens.

Claims

1. A method of producing a paper comprising the following steps: providing modified nanofibrils of cellulose wherein the modification comprises one of the treatments coating, formation of charge groups, mechanical beating and enzymatic degradation; providing a suspension of said modified nanofibrils at a concentration of less than 0.5 weight%; said nanofibrils being well dispersed in the suspension; filtering, dewatering and drying the nanofibrils.
2. The method of producing a paper according to claim 1 wherein the modified nanofibrils comprise charged groups.
3. The method of producing paper according to claim 2 wherein the charged groups are anionic, cationic or zwitterionic.
4. The method of producing paper according to any of claims 2-3 wherein the formation of charged groups is a result of treatment with radicals or halogen acids.
5. The method of producing paper according to any of claims 2-4 wherein the formation of charged groups is a result of treatment with 2,2,6,6-tetramethyl- l - piperidinyloxy radicals.
6. The method of producing paper according to claim 1 wherein the cellulose is derived from plants.
7. The method of producing paper according to claim 1 wherein the cellulose is produced by bacteria.
8. The method of producing paper according to claim 7 wherein the bacteria are cultured under dynamic conditions.
9. The method of producing paper according to claim 7 wherein the bacteria are cultured under static conditions.
10. The method of producing a paper according to any of claims 7-9 wherein the modified nanofibrils comprise a coating of at least one polymer.
1 1. The method of producing paper according to claim 10 wherein the polymer is present in the culture medium.
12. The method of producing paper according to any of claims 10- 1 1 wherein the polymer is a water soluble polysaccharide.
13. The method of producing paper according to any of claims 10- 12 wherein the polymer is a hydroxyaliphatic cellulose.
14. The method of producing paper according to any of the preceding claims wherein the nanofibrils or cellulose fibres have been treated with enzymes and/ or by mechanical beating.
15. The method of producing paper according to any of the preceding claims wherein the nanofibrils have a lateral dimension of 15 nm or less.
16. The method of producing paper according to any of the preceding claims wherein the distribution of lateral dimensions of the nanofibrils is 15-25 nm.
17. A paper comprising a structure of cellulose nanofibrils characterized in that the nanofibrils are modified and aggregated to bundles.
18. The paper according to claim 17 wherein the cellulose is derived from plants.
19. The paper according to any of claims 17- 18 wherein the cellulose nanofibrils comprise charged groups.
20. The paper according to claim 19 wherein the charged groups are anionic, cationic or zwitterionic.
21. The paper according to any of claims 18-20 wherein the average degree of polymerisation for the cellulose is more than 400, preferably more than 800 and most preferably more than 1000.
22. The paper according to claim 17 wherein the cellulose is derived from bacteria.
23. The paper according to claim 22 wherein the cellulose nanofibrils are coated with at least one polymer.
24. The paper according to any of claim 23 wherein the polymer is a water soluble polysaccharide.
25. The paper according to any of claims 23-24 wherein the polymer is a hydroxyaliphatic cellulose.
26. The paper according to any of claims 17-25 wherein the nanofibrils have a lateral dimension of 15 nm or less.
27. The paper according to any of claims 17-26 wherein the lateral dimension distribution of the nanofibrils is 15-25 nm.
28. The paper according to any of claims 17-27 wherein the paper has a thickness of 40 μm or less.
29. The paper according to any of claims 17-28 wherein the paper has a tensile strength of at least 250 MPa.
30. A bacterial modified cellulose comprising nanofibrils wherein the fibrils are coated with a polymer
31. A bacterial modified cellulose according to claim 30 wherein the polymer is a polysaccharide, preferably a hydroxylaliphaticcellulose.
32. Use of the paper claimed in any of the claims 17-29 as paper or filter paper.
33. The use of the paper claimed in any of the claims 17-29 as biodegradable scaffold, suture, implant material or drug delivery vehicle.
34. The use of the paper claimed in any of the claims 17-29 as speaker membrane, battery membrane or bullet proof material.
PCT/SE2010/050290 2009-05-18 2010-03-16 Method of producing and the use of microfibrillated paper WO2010134868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10778009.0A EP2432933A4 (en) 2009-05-18 2010-03-16 Method of producing and the use of microfibrillated paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0950345 2009-05-18
SE0950345-9 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134868A1 true WO2010134868A1 (en) 2010-11-25

Family

ID=43126375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2010/050290 WO2010134868A1 (en) 2009-05-18 2010-03-16 Method of producing and the use of microfibrillated paper

Country Status (2)

Country Link
EP (1) EP2432933A4 (en)
WO (1) WO2010134868A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043039A1 (en) * 2009-02-13 2012-02-23 Upm-Kymmene Oyj Method for producing modified cellulose
EP2428610A1 (en) * 2010-09-13 2012-03-14 Södra Skogsägarna ekonomisk förening Modified cellulose fibres
WO2012134378A1 (en) * 2011-03-25 2012-10-04 Swetree Technologies Ab Cellulose-based materials comprising nanofibrillated cellulose from native cellulose
JP2013042405A (en) * 2011-08-18 2013-02-28 Foster Electric Co Ltd Method for manufacturing diaphragm for electroacoustic transducer, diaphragm produced by the same, and electroacoustic transducer provided with diaphragm
EP2639351A1 (en) * 2012-03-13 2013-09-18 Södra Skogsägarna ekonomisk förening Retention of cellulose fibres
CN103329310A (en) * 2011-10-13 2013-09-25 特种东海制纸株式会社 Microporous membrane and manufacturing method therefor
CN103403235A (en) * 2011-02-10 2013-11-20 芬欧汇川集团公司 Method for processing nanofibrillar cellulose
WO2014049207A1 (en) * 2012-09-25 2014-04-03 Greenbutton Oy Robust material, method of producing the same as well as uses thereof
US8735000B2 (en) 2011-10-13 2014-05-27 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
US8765308B2 (en) 2011-10-13 2014-07-01 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
WO2014164127A1 (en) * 2013-03-09 2014-10-09 Donaldson Company, Inc. Nonwoven filtration media including microfibrillated cellulose fibers
US8900758B2 (en) 2011-10-13 2014-12-02 Tokushu Tokai Paper Co., Ltd. Separator for electrochemical device and process for preparing the same
WO2015020962A1 (en) * 2013-08-08 2015-02-12 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
WO2015020965A1 (en) * 2013-08-08 2015-02-12 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
WO2015050806A1 (en) * 2013-10-01 2015-04-09 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention, wet strength, and dry strength in papermaking process
US9034145B2 (en) 2013-08-08 2015-05-19 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention, wet strength, and dry strength in papermaking process
CN104650246A (en) * 2013-11-19 2015-05-27 金东纸业(江苏)股份有限公司 Cationic nano-cellulose preparing method
EP2872244A4 (en) * 2012-07-10 2016-03-09 Cellutech Ab Nfc stabilized foam
WO2016071573A1 (en) 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
US9428865B2 (en) 2014-06-12 2016-08-30 North Carolina State University Paper-strength agents and methods for improving pulp products
US9656914B2 (en) 2013-05-01 2017-05-23 Ecolab Usa Inc. Rheology modifying agents for slurries
US20170167079A1 (en) * 2014-05-21 2017-06-15 Cellucomp Ltd. Cellulose microfibrils
US9834730B2 (en) 2014-01-23 2017-12-05 Ecolab Usa Inc. Use of emulsion polymers to flocculate solids in organic liquids
CN107583472A (en) * 2017-09-27 2018-01-16 南京林业大学 A kind of preparation method of nano-cellulose/filter paper combined filtration membrane material
US10570347B2 (en) 2015-10-15 2020-02-25 Ecolab Usa Inc. Nanocrystalline cellulose and polymer-grafted nanocrystalline cellulose as rheology modifying agents for magnesium oxide and lime slurries
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries
CN111944065A (en) * 2019-05-14 2020-11-17 中国科学技术大学 Biomass board and preparation method thereof
US10975499B2 (en) 2012-08-24 2021-04-13 Domtar Paper Company, Llc Surface enhanced pulp fibers, methods of making surface enhanced pulp fibers, products incorporating surface enhanced pulp fibers, and methods of making products incorporating surface enhanced pulp fibers
US11441271B2 (en) 2018-02-05 2022-09-13 Domtar Paper Company Llc Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US11473245B2 (en) 2016-08-01 2022-10-18 Domtar Paper Company Llc Surface enhanced pulp fibers at a substrate surface
US11499269B2 (en) 2016-10-18 2022-11-15 Domtar Paper Company Llc Method for production of filler loaded surface enhanced pulp fibers
US11608596B2 (en) 2019-03-26 2023-03-21 Domtar Paper Company, Llc Paper products subjected to a surface treatment comprising enzyme-treated surface enhanced pulp fibers and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964983A (en) * 1995-02-08 1999-10-12 General Sucriere Microfibrillated cellulose and method for preparing a microfibrillated cellulose
US6602994B1 (en) * 1999-02-10 2003-08-05 Hercules Incorporated Derivatized microfibrillar polysaccharide
WO2007088974A1 (en) * 2006-02-02 2007-08-09 Kyushu University, National University Corporation Method of imparting water repellency and oil resistance with use of cellulose nanofiber
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
WO2010001829A1 (en) * 2008-06-30 2010-01-07 国立大学法人京都大学 Nanofiber sheet and production method of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964983A (en) * 1995-02-08 1999-10-12 General Sucriere Microfibrillated cellulose and method for preparing a microfibrillated cellulose
US6602994B1 (en) * 1999-02-10 2003-08-05 Hercules Incorporated Derivatized microfibrillar polysaccharide
WO2007088974A1 (en) * 2006-02-02 2007-08-09 Kyushu University, National University Corporation Method of imparting water repellency and oil resistance with use of cellulose nanofiber
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
WO2010001829A1 (en) * 2008-06-30 2010-01-07 国立大学法人京都大学 Nanofiber sheet and production method of same

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
BROWN E.E. ET AL: "Bioengineering Bacterial Cellulose/Poly(ethylene oxide) Nanocomposites", BIOMACROMOLECULES, vol. 8, 2007, pages 3074 - 3081, XP003026923 *
DATABASE WPI Week 200762, Derwent World Patents Index; AN 2007-663981, XP003026925 *
DATABASE WPI Week 200970, Derwent World Patents Index; AN 2009-P53611, XP003026934 *
DATABASE WPI Week 201006, Derwent World Patents Index; AN 2010-A36810, XP003026935 *
FUKUZUMI H. ET AL: "Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation", BIOMACROMOLECULES, vol. 10, 2009, pages 162 - 165, XP003026931 *
HAIGLER C.H. ET AL: "Alteration of In Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives", J. OF CELL BIOLOGY, vol. 94, 1982, pages 64 - 69, XP003026922 *
HENRIKSSON M. ET AL: "Cellulose Nanopaper Structures of High Toughness", BIOMACROMOLECULES, vol. 9, 2008, pages 1579 - 1585, XP003026919 *
HENRIKSSON M. ET AL: "Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde", J. OF APPL. POL. SCI., vol. 106, 2007, pages 2817 - 2824, XP003026924 *
HESSLER N. ET AL: "Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives", CELLULOSE, vol. 16, 2009, pages 899 - 910, XP019728351 *
LI J. ET AL: "Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds", MAT. SCI. AND ENG. C, vol. 29, 2009, pages 1635 - 1642, XP026107130 *
MYLLYTIE P. ET AL: "Effect of polymers on aggregation of cellulose fibrils and its implication on strength development in wet paper web", NORD. PULP AND PAPER RES. J., vol. 24, no. 2, 2009, pages 125 - 134, XP003026933 *
NAKAGAITO A.N. ET AL: "Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure", APPL. PHYS. A, vol. 80, 2005, pages 155 - 159, XP002579203 *
NAKAGAITO A.N. ET AL: "Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process", COMPOSITES SCI. AND TECHN., vol. 69, 2009, pages 1293 - 1297, XP026021849 *
NOGI M. ET AL: "Optically Transparent Nanofiber Paper", ADV. MAT., vol. 21, 2009, pages 1595 - 1598, XP003026932 *
PAAKKO M. ET AL: "Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels", BIOMACROMOLECULES, vol. 8, 2007, pages 1934 - 1941, XP003026928 *
PHISALAPHONG M. ET AL: "Biosynthesis and characterization of bacteria cellulose-chitosan film", CARBOHYDRATE POLYMERS, vol. 74, 2008, pages 482 - 488, XP023904796 *
SAITO T. ET AL: "Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose", BIOMACROMOLECULES, vol. 8, 2007, pages 2485 - 2491, XP003026920 *
See also references of EP2432933A4 *
SVAGAN A.J. ET AL: "Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils", ADV. MAT., vol. 20, 2008, pages 1263 - 1269, XP003026927 *
SVAGAN A.J. ET AL: "Biomimetic Polysaccharide Nanocomposites of High Cellulose Content and High Toughness", BIOMACROMOLECULES, vol. 8, 2007, pages 2556 - 2563, XP003026926 *
SYVERUD K. ET AL: "Strength and barrier properties of MFC films", CELLULOSE, vol. 16, 2009, pages 75 - 85, XP019640463 *
TOKOH C. ET AL: "Cellulose synthesized by Acetobacter xylinum in the presence ot acetyl glucomannan", CELLULOSE, vol. 5, 1998, pages 249 - 261, XP003026921 *
YAMANAKA S. ET AL: "The structure and mechanical properties of sheets prepared from bacterial cellulose", J. OF MATER. SCI., vol. 24, 1989, pages 3141 - 3145, XP008037354 *
ZHOU Q. ET AL: "BIOMIMETIC DESIGN OF CELLULOSE-BASED NANOSTRUCTURED COMPOSITES USING BACTERIAL CULTURES", POLYMER PREPRINTS, vol. 50, no. 2, 2009, pages 7 - 8, XP003026929 *
ZHOU Q. ET AL: "Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating", SOFT MATTER, vol. 5, 2009, pages 4124 - 4130, XP003026930 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043039A1 (en) * 2009-02-13 2012-02-23 Upm-Kymmene Oyj Method for producing modified cellulose
US9181653B2 (en) 2009-02-13 2015-11-10 Upm-Kymmene Oyj Method for producing modified cellulose
EP2428610A1 (en) * 2010-09-13 2012-03-14 Södra Skogsägarna ekonomisk förening Modified cellulose fibres
WO2012034997A1 (en) * 2010-09-13 2012-03-22 Södra Skogsägarna Ekonomisk Förening Modified cellulose fibres
CN103403235A (en) * 2011-02-10 2013-11-20 芬欧汇川集团公司 Method for processing nanofibrillar cellulose
US9469696B2 (en) 2011-02-10 2016-10-18 Upm-Kymmeme Corporation Method for processing nanofibrillar cellulose and product obtained by the method
WO2012134378A1 (en) * 2011-03-25 2012-10-04 Swetree Technologies Ab Cellulose-based materials comprising nanofibrillated cellulose from native cellulose
CN103562284A (en) * 2011-03-25 2014-02-05 丝路技术公司 Cellulose-based materials comprising nanofibrillated cellulose from native cellulose
JP2013042405A (en) * 2011-08-18 2013-02-28 Foster Electric Co Ltd Method for manufacturing diaphragm for electroacoustic transducer, diaphragm produced by the same, and electroacoustic transducer provided with diaphragm
US8900758B2 (en) 2011-10-13 2014-12-02 Tokushu Tokai Paper Co., Ltd. Separator for electrochemical device and process for preparing the same
EP2645452A4 (en) * 2011-10-13 2013-10-09 Tokushu Tokai Paper Co Ltd Microporous membrane and manufacturing method therefor
US8735000B2 (en) 2011-10-13 2014-05-27 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
US8765308B2 (en) 2011-10-13 2014-07-01 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
EP2645452A1 (en) * 2011-10-13 2013-10-02 Tokushu Tokai Paper Co., Ltd. Microporous membrane and manufacturing method therefor
CN103329310A (en) * 2011-10-13 2013-09-25 特种东海制纸株式会社 Microporous membrane and manufacturing method therefor
US9023535B2 (en) 2011-10-13 2015-05-05 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
EP2639351A1 (en) * 2012-03-13 2013-09-18 Södra Skogsägarna ekonomisk förening Retention of cellulose fibres
US9556325B2 (en) 2012-07-10 2017-01-31 Cellutech Ab NFC stabilized foam
EP2872244A4 (en) * 2012-07-10 2016-03-09 Cellutech Ab Nfc stabilized foam
US10975499B2 (en) 2012-08-24 2021-04-13 Domtar Paper Company, Llc Surface enhanced pulp fibers, methods of making surface enhanced pulp fibers, products incorporating surface enhanced pulp fibers, and methods of making products incorporating surface enhanced pulp fibers
WO2014049207A1 (en) * 2012-09-25 2014-04-03 Greenbutton Oy Robust material, method of producing the same as well as uses thereof
US10421033B2 (en) 2013-03-09 2019-09-24 Donaldson Company, Inc. Nonwoven filtration media including microfibrillated cellulose fibers
US11819788B2 (en) 2013-03-09 2023-11-21 Donaldson Company, Inc. Nonwoven filtration media including microfibrillated cellulose fibers
WO2014164127A1 (en) * 2013-03-09 2014-10-09 Donaldson Company, Inc. Nonwoven filtration media including microfibrillated cellulose fibers
US10905990B2 (en) 2013-03-09 2021-02-02 Donaldson Company, Inc. Nonwoven filtration media including microfibrillated cellulose fibers
US10017624B2 (en) 2013-05-01 2018-07-10 Ecolab Usa Inc. Rheology modifying agents for slurries
US9656914B2 (en) 2013-05-01 2017-05-23 Ecolab Usa Inc. Rheology modifying agents for slurries
US9034145B2 (en) 2013-08-08 2015-05-19 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention, wet strength, and dry strength in papermaking process
US9303360B2 (en) 2013-08-08 2016-04-05 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
US9410288B2 (en) 2013-08-08 2016-08-09 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
WO2015020965A1 (en) * 2013-08-08 2015-02-12 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
WO2015020962A1 (en) * 2013-08-08 2015-02-12 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
US10132040B2 (en) 2013-08-08 2018-11-20 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
WO2015050806A1 (en) * 2013-10-01 2015-04-09 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention, wet strength, and dry strength in papermaking process
CN104650246A (en) * 2013-11-19 2015-05-27 金东纸业(江苏)股份有限公司 Cationic nano-cellulose preparing method
US9834730B2 (en) 2014-01-23 2017-12-05 Ecolab Usa Inc. Use of emulsion polymers to flocculate solids in organic liquids
US20170167079A1 (en) * 2014-05-21 2017-06-15 Cellucomp Ltd. Cellulose microfibrils
US10753041B2 (en) * 2014-05-21 2020-08-25 Cellucomp Ltd. Cellulose microfibrils
US9428865B2 (en) 2014-06-12 2016-08-30 North Carolina State University Paper-strength agents and methods for improving pulp products
WO2016071573A1 (en) 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
US10570347B2 (en) 2015-10-15 2020-02-25 Ecolab Usa Inc. Nanocrystalline cellulose and polymer-grafted nanocrystalline cellulose as rheology modifying agents for magnesium oxide and lime slurries
US11473245B2 (en) 2016-08-01 2022-10-18 Domtar Paper Company Llc Surface enhanced pulp fibers at a substrate surface
US11499269B2 (en) 2016-10-18 2022-11-15 Domtar Paper Company Llc Method for production of filler loaded surface enhanced pulp fibers
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries
CN107583472A (en) * 2017-09-27 2018-01-16 南京林业大学 A kind of preparation method of nano-cellulose/filter paper combined filtration membrane material
US11441271B2 (en) 2018-02-05 2022-09-13 Domtar Paper Company Llc Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US11608596B2 (en) 2019-03-26 2023-03-21 Domtar Paper Company, Llc Paper products subjected to a surface treatment comprising enzyme-treated surface enhanced pulp fibers and methods of making the same
CN111944065A (en) * 2019-05-14 2020-11-17 中国科学技术大学 Biomass board and preparation method thereof
CN111944065B (en) * 2019-05-14 2022-04-19 中国科学技术大学 Biomass board and preparation method thereof

Also Published As

Publication number Publication date
EP2432933A1 (en) 2012-03-28
EP2432933A4 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US20100065236A1 (en) Method of producing and the use of microfibrillated paper
WO2010134868A1 (en) Method of producing and the use of microfibrillated paper
Li et al. Review of recent development on preparation, properties, and applications of cellulose-based functional materials
Noremylia et al. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review
Butchosa et al. Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity
Menon et al. Extraction and modification of cellulose nanofibers derived from biomass for environmental application
Börjesson et al. Crystalline nanocellulose—preparation, modification, and properties
dos Santos et al. The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications
Klemm et al. Nanocelluloses: a new family of nature‐based materials
Henriksson et al. Cellulose nanopaper structures of high toughness
Charreau et al. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose
Heinze et al. Production and characteristics of cellulose from different sources
Zhou et al. Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating
EP2547372B1 (en) Multi-phase bacterially-synthesized-nanocellulose biomaterials and method for producing same
Rol et al. Production of cationic nanofibrils of cellulose by twin-screw extrusion
CA2811380C (en) Method for improving the removal of water
Samyn Polydopamine and cellulose: two biomaterials with excellent compatibility and applicability
WO2007147428A1 (en) Copolymer, modified polymer carbohydrate material, modified bulk polymer, composite material, and methods of preparation
Camargos et al. Structure–property relationships of cellulose nanocrystals and nanofibrils: implications for the design and performance of nanocomposites and all-nanocellulose systems
Barhoum et al. Nanocelluloses as new generation materials: Natural resources, structure-related properties, engineering nanostructures, and technical challenges
Pahlevan et al. Mechanical properties of TEMPO-oxidised bacterial cellulose-amino acid biomaterials
Zhu et al. Surface chemistry of nanocellulose
Cherian et al. Harnessing nature's hidden material: Nano-Cellulose
Liu et al. Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions
Nagalakshmaiah et al. Cellulose nanocrystals-based nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10778009

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010778009

Country of ref document: EP