WO2010139241A1 - 多通道功率控制电路和方法 - Google Patents

多通道功率控制电路和方法 Download PDF

Info

Publication number
WO2010139241A1
WO2010139241A1 PCT/CN2010/073050 CN2010073050W WO2010139241A1 WO 2010139241 A1 WO2010139241 A1 WO 2010139241A1 CN 2010073050 W CN2010073050 W CN 2010073050W WO 2010139241 A1 WO2010139241 A1 WO 2010139241A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
clock cycle
channel
input
module
Prior art date
Application number
PCT/CN2010/073050
Other languages
English (en)
French (fr)
Inventor
阮德金
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to BRPI1010170A priority Critical patent/BRPI1010170A2/pt
Priority to RU2011153114/08A priority patent/RU2487469C1/ru
Priority to US13/257,973 priority patent/US8842986B2/en
Priority to AU2010256175A priority patent/AU2010256175B2/en
Priority to EP10782945.9A priority patent/EP2439843B1/en
Publication of WO2010139241A1 publication Critical patent/WO2010139241A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present invention relates to the field of communication device technologies, and in particular, to a multi-channel power control circuit and method.
  • an Optical Add/Drop Unit Board (OAD) is often used to implement add/drop multiplexing of optical signals.
  • the optical path principle is shown in FIG.
  • the role of OAD in the optical transmission system is to be responsible for the up-and-down splitting and splitting of one band.
  • Al, A2, A3, and A4 are the upper optical ports of the four specific wavelength signals of OAD, and the local service is uplinked to the system through these four optical ports.
  • Dl, D2, D3, and D4 are the downstream optical ports of the four specific wavelength signals of OAD.
  • the services transmitted in the system are downlinked to the local through these four optical ports, and IN and OUT are respectively input and output optical ports of OAD. .
  • the on-off service is realized by a multiplexer module fixed on the OAD board, which integrates a Positive Intrinsic Negative Diode (PIN) tube.
  • PIN Positive Intrinsic Negative Diode
  • the optical signal passing through the optical path on the eight-way can be converted into a current signal.
  • the current signal is small and needs to be amplified by the latter stage before being used.
  • the signal strength of different optical ports may vary greatly. If the gain of the amplifying circuit remains fixed, it may cause strong signal saturation or weak signal loss, resulting in signal distortion. Therefore, the gain of the amplifier circuit must vary with the strength of the input signal. In this way, it is necessary to detect the strength of each channel signal. For multi-channel signal detection circuits, in the prior art, a separate set of detection circuits is used for each channel, and a large number of refractory containers and active devices are required, so the circuit is complicated. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a multi-channel power control circuit and method with simple circuit.
  • a multi-channel power control circuit comprising:
  • the single channel selection module is configured to: input a channel selection signal of a previous clock cycle by the first input terminal; input at least one channel signal of the last clock cycle of the second input terminal; and output the channel according to the previous clock cycle of the output terminal Selecting a channel signal of a previous clock cycle selected by the signal from the at least one channel signal of the last clock cycle;
  • the gain module is configured to: the first input terminal inputs the amplification factor control signal of the previous clock cycle; the second input terminal inputs the one channel channel signal selected by the previous clock cycle; and the output terminal outputs according to the previous clock cycle Amplifying the first signal obtained by amplifying the one channel signal selected by the previous clock cycle;
  • an analog-to-digital conversion module configured to: input the first signal by the input end; and output a second signal obtained by performing analog-to-digital conversion on the first signal;
  • a gain control module configured to: the input end inputs the second signal; the first output end is connected to the first input end of the single channel selection module, and outputs the channel selection signal and the next clock of a previous clock cycle
  • the channel selection signal of the cycle, the channel selection signal of the next clock cycle is the same as the channel selection signal of the previous clock cycle; the second output terminal is connected to the first input end of the gain module, and outputs the previous one.
  • the selected one channel signal of the next clock cycle is amplified.
  • the gain module includes:
  • a first amplifier configured to: connect a positive phase input terminal to an output end of the single channel selection module; and connect an inverting input terminal to the first end of the voltage dividing resistor and the first end of the at least one feedback resistor; Connecting the input of the analog to digital conversion module;
  • the at least one first input is respectively connected to the second end of the at least one feedback resistor; the second input is connected to the second output of the gain control module;
  • the gain module includes:
  • a first amplifier configured to: a positive phase input terminal connected to an output end of the single channel selection module; an inverting input terminal respectively connected to the first end of the voltage dividing resistor and the first end of the at least one feedback resistor; Selecting an analog switch, the method is configured to: connect at least one first input terminal to the second end of the at least one feedback resistor; the second input terminal is coupled to the second output end of the gain control module;
  • a second amplifier configured to: connect a non-inverting input to an output of the first amplifier; an inverting input to an output of the second amplifier; and an output to an input of the analog to digital conversion module ;
  • the second end of the voltage dividing resistor is grounded, and the number of the feedback resistors is the same as the number of the first input ends of the first plurality of analog switches.
  • the gain module includes:
  • a first amplifier configured to: a positive phase input terminal connected to an output end of the single channel selection module; an inverting input terminal respectively connected to the first end of the voltage dividing resistor and the first end of the at least one feedback resistor;
  • An analog switch is selected, which is configured to: at least one first input terminal is respectively connected to the second end of the at least one feedback resistor; the second input terminal is connected to the second output end of the gain control module; Connecting the output of the first amplifier;
  • a second plurality of analog switches configured to: at least one first input terminal is respectively connected to the second end of the at least one feedback resistor; the second input terminal is connected to the second output end of the gain control module; The end is connected to the input end of the analog to digital conversion module;
  • the second end of the voltage dividing resistor is grounded, the number of the feedback resistors is the same as the number of the first input ends of the first multiple selection analog switch, and the first input of the second multiple selection analog switch The number of terminals is the same as the number of first inputs of the first plurality of analog switches.
  • the gain module includes:
  • a first amplifier configured to: a positive phase input terminal connected to an output end of the single channel selection module; an inverting input terminal respectively connected to the first end of the voltage dividing resistor and the first end of the at least one feedback resistor;
  • An analog switch is selected, which is configured to: at least one first input terminal is respectively connected to the second end of the at least one feedback resistor; the second input end and the second output end of the gain control module Connecting; the output is connected to the output of the first amplifier;
  • the at least one first input is respectively connected to the second end of the at least one feedback resistor; the second input is connected to the second output of the gain control module;
  • a second amplifier configured to: connect a non-inverting input to an output of the second multi-selective analog switch; an inverting input coupled to an output of the second amplifier; and an output of the second amplifier
  • the input end of the analog-to-digital conversion module is connected; wherein, the second end of the voltage dividing resistor is grounded, and the number of the feedback resistor is the same as the number of the first input end of the first multi-selective analog switch,
  • the number of first inputs of the second plurality of analog switches is the same as the number of first inputs of the first plurality of analog switches.
  • the magnification factor k is set to a power of two.
  • the single channel selection module is further configured to: the second input terminal is connected to an output end of the multiplexer module of the external optical add/drop multiplexer board.
  • the resistance between the at least one feedback resistor is different.
  • the channel selection signal is a signal that sequentially selects each of the received at least one channel signals.
  • a multi-channel power control method comprising:
  • the one channel signal of the selected next clock cycle is amplified according to the amplification control signal of the next clock cycle, wherein the selected one channel signal and the next clock of the previous clock cycle
  • the selected one channel signal of the cycle is the same way.
  • the single channel selection module selects one channel signal of the previous clock cycle according to the channel selection signal of the previous clock cycle from at least one channel signal received in the previous clock cycle;
  • the amplification control signal of the previous clock cycle amplifies the selected one channel signal of the previous clock cycle to obtain a first signal; and the analog-to-digital conversion module performs analog-to-digital conversion on the first signal to obtain a second signal.
  • the gain control module generates a magnification control signal for the next clock cycle based on the second signal.
  • the channel selection signal of the next clock cycle is the same as the channel selection signal of the previous clock cycle, so that the selected one channel signal of the previous clock cycle and the one channel signal selected by the next clock cycle are the same.
  • the single channel selection module selects the same channel signal as the channel signal selected in the previous clock cycle; the gain module controls the signal according to the amplification factor of the next clock cycle to the selected next clock cycle.
  • One channel signal is amplified.
  • the signal can be amplified by the appropriate amplification factor in the next clock cycle.
  • the multi-channel signal input by the single channel selection module it is not necessary to set a separate detection circuit for each channel signal, but to share the multi-channel power control circuit, and the circuit is relatively simple to implement.
  • FIG. 1 is a schematic diagram of an optical path of an OAD board in the prior art
  • FIG. 2 is a schematic diagram of connection of an embodiment of a multi-channel power control circuit according to the present invention
  • FIG. 3 is a schematic diagram of connection of another embodiment of a multi-channel power control circuit according to the present invention
  • FIG. 5 is a schematic diagram of connection of another embodiment of a multi-channel power control circuit according to the present invention
  • FIG. 6 is a schematic diagram of a multi-channel power control circuit according to the present invention
  • FIG. 7 is a schematic flowchart diagram of an embodiment of a multi-channel power control method according to the present invention.
  • Embodiments of the present invention provide a multi-channel power control circuit and method for the prior art problem of using a separate set of detection circuits for each channel resulting in a complicated circuit.
  • an embodiment of the multi-channel power control circuit 10 of the present invention includes: a single channel selection module 11, a gain module 12, an analog to digital conversion module 13, and a gain control module 14. a single channel selection module 11 , the first input terminal inputs a channel selection signal of a previous clock cycle; the second input terminal inputs at least one channel signal of a previous clock cycle; and the output terminal outputs the channel selection signal according to a previous clock cycle
  • the at least one channel signal of the last clock cycle selects one channel signal of the previous clock cycle; the gain module 12, the first input terminal inputs the amplification factor control signal of the previous clock cycle; the second input terminal inputs the previous clock
  • An analog-to-digital conversion module 13 the input end inputs the first signal; the output end outputs a second signal obtained by performing analog-to-digital conversion on the first signal;
  • a gain control module 14 the input terminal inputs the second signal; the first output terminal is connected to the first input end of the single channel selection module 11 for outputting the channel selection signal and the next clock of the previous clock cycle
  • the channel selection signal of the cycle, the channel selection signal of the next clock cycle is the same as the channel selection signal of the previous clock cycle; the second output terminal is connected to the first input end of the gain module 12, Outputting the amplification control signal of a previous clock cycle, and outputting the amplification control signal for a next clock cycle generated according to the second signal, causing the gain module 12 to perform amplification according to a next clock cycle
  • the multiple control signal amplifies the selected one channel signal for the next clock cycle.
  • the gain module 12 uses the default amplification factor, that is, the gain control module 14 outputs the default or pre- First setting the amplification control signal, and then determining the amplification control signal outputted in the next clock cycle according to the input second signal of the previous clock cycle to control the gain module of the next clock cycle
  • the single channel selection module 11 selects one channel signal of the previous clock cycle according to the channel selection signal of the previous clock cycle from at least one channel signal received in the previous clock cycle; the gain module 12 amplifying the selected one channel signal of the last clock cycle according to the amplification control signal of the previous clock cycle to obtain a first signal; and the analog to digital conversion module 13 performs analog to digital conversion on the first signal to obtain The second signal; the gain control module 14 generates a magnification control signal for the next clock cycle based on the second signal.
  • the channel selection signal of the next clock cycle is the same as the channel selection signal of the previous clock cycle, so that the selected one channel signal of the previous clock cycle and the one channel signal selected by the next clock cycle are the same.
  • the single channel selection module selects the same channel signal as the channel signal selected in the previous clock cycle; the gain module 12 controls the signal to the selected next clock cycle according to the amplification factor of the next clock cycle.
  • the channel signal is amplified for amplification.
  • the signal can be amplified by the appropriate amplification factor in the next clock cycle.
  • the single channel selection module is a third multiple selection analog switch 1C, and the analog to digital conversion module is A/D (mode / number) Converter 4, the gain control module is a Field Programmable Gate Array (FPGA) 3 or a dedicated gain control chip.
  • FPGA Field Programmable Gate Array
  • the gain module 13 includes:
  • a first amplifier 2? a non-inverting input end of the first amplifier 2? is connected to an output end of the single-channel selection module, and an inverting input end of the first amplifier 2? is respectively connected to a first end of the voltage dividing resistor R0 and a first end of the at least one feedback resistor Rf, the output of the first amplifier being coupled to an input of the analog to digital conversion module;
  • a first plurality of analog switches 1A at least one first input of the first plurality of analog switches 1A is respectively connected to a second end of the at least one feedback resistor Rf, and the first plurality of analog switches are a second input of 1 A is coupled to a second output of the gain control module;
  • the second end of the voltage dividing resistor R0 is grounded, the number of the feedback resistors Rf is the same as the number of the first input terminals of the first plurality of analog switches 1A, and the resistance between the feedback resistors Rf is different.
  • the third plurality of analog switches 1C inputs at least one channel signal, which in this embodiment are CHI, CH2, CH3, CH4, CH5, CH6, CH7, CH8, and inputs at least one channel from FPAG 3.
  • the channel selection signals are respectively CH_SEL0, CH_SEL1, CHSEL2 in the embodiment, and the output end of the single channel selection module 11 outputs a channel signal CH selected from the channel signals according to the channel selection signal. — V.
  • a non-inverting input terminal is connected to an output end of the single-channel selection module, that is, an input channel signal CH_V is input, and an inverting input terminal is respectively connected to the first end of the voltage dividing resistor R0 and at least one feedback resistor
  • the first end of the Rf in this embodiment, the feedback resistor Rf includes R1 (resistance is 0 ohms, not shown), R2, R3, R4, R5, the output of the first amplifier 2A and the analog to digital conversion
  • the input of the module is connected, that is, the amplified signal CH_GAIN is output.
  • the feedback resistor Rf can also be set more.
  • the maximum number of feedback resistors Rf can be set and the number of amplification control signals can be a power of two. If the feedback resistor Rf is eight, the number of amplification control signals can be three.
  • the first plurality of analog switches 1A at least one first input terminal (GAIN1, GAIN2, GAIN3, GAIN4, GAIN5 in the embodiment) and the at least one feedback resistor Rf (in this embodiment, R1, The second end of the R2, R3, R4, and R5 is connected, and the signal input by the second input end of the first multi-selective analog switch 1A is the amplification control signal of the gain control module, that is, the first multi-selective analog switch
  • the second input of 1A inputs the second chip select signals SEL0, SEL1, SEL2.
  • the second end of the voltage dividing resistor R0 is grounded, the number of the feedback resistors Rf is the same as the number of the first input terminals of the first plurality of analog switches 1A, and the resistance between the feedback resistors Rf is different.
  • the A/D converter 4 the input end of the A/D converter 4 inputs the amplified signal, that is, the first signal CH_GAIN, and the output end of the A/D converter 4 outputs the amplified signal modulus. Converted letter No., the second signal AD_OUT.
  • the input terminal inputs the signal converted by the amplified signal modulus, that is, the second signal AD OUT, and outputs the channel selection signal, which is CH_SEL0, CH_SEL1, and CHSEL2 in this embodiment, respectively. And outputting the amplification control signal of the previous clock cycle and the next clock cycle, in this embodiment, SEL0, SEL1, and SEL2, and the amplification control signal of the next clock cycle is generated according to the magnitude value of the second signal.
  • the gain control module inputs a second signal, generates a magnification control signal for the next clock cycle according to the magnitude of the second signal, and gives the first multiple selection analog switch 1 A
  • the amplification control signal of the next clock cycle is output, so that the amplification control signal of the next clock cycle can select the feedback resistor Rf of different resistance values, so that the amplification factor of the amplified signal output by the amplifier is different.
  • the amplification factor greater than the second threshold is selected; when the amplified signal modulus is converted, the signal is greater than or equal to the first width For the value, select a magnification that is less than or equal to the second threshold.
  • the calculation formula of the amplification factor of the next clock cycle is:
  • Ron is an on-resistance of the multi-selection 1 analog switch
  • Rf is a resistor selected from the at least one feedback resistor Rf according to the amplification factor control signal of the next clock cycle
  • R0 is a voltage dividing resistor.
  • the single channel selection module is a third multiple selection analog switch 1C, and the analog to digital conversion module is A/D (mode / number) Converter 4, the gain control module is a Field Programmable Gate Array (FPGA) 3 , or a dedicated gain control chip.
  • the gain module 13 includes:
  • a first amplifier 2A the non-inverting input end of the first amplifier 2A is connected to the output end of the single-channel selection module, and the selected one channel signal is input, and the inverting input ends of the first amplifier 2A are respectively Connecting a first end of the voltage dividing resistor R0 and a first end of the at least one feedback resistor Rf; a first plurality of analog switches 1A, at least one first input end of the first plurality of analog switches 1A and the a second end of the at least one feedback resistor Rf is connected, and a second input end of the first multi-selective analog switch 1A is connected to a second output end of the gain control module; a second amplifier 2B, a non-inverting input terminal of the second amplifier 2B is connected to an output end of the first amplifier 2A, and an inverting input end of the second amplifier 2B is connected to an output end of the second amplifier 2B.
  • An output end of the second amplifier 2B is connected to an input end of the analog-to-digital conversion module; a second end of the voltage dividing resistor R0 is grounded, and the number of the feedback resistor Rf is different from the first multiple-selection analog switch The number of first inputs of 1A is the same, and the resistance between the feedback resistors Rf is different.
  • the embodiment in FIG. 4 is different from the embodiment in FIG. 3 in that the amplified signal CH_GAIN outputted by the first amplifier 2A in FIG. 4 is not directly connected to the input end of the analog-to-digital conversion module, but is passed through
  • the second amplifier 2B that is, the signal CH_GAIN is input to the second amplifier 2B, and the second amplifier 2B outputs the signal CH_ADI to the input terminal of the A/D converter 4.
  • the second amplifier 2B has a magnification of 1 and functions to stabilize the voltage.
  • the single channel selection module is a third multiple selection analog switch 1C, and the analog to digital conversion module is A/D (mode / number) Converter 4, the gain control module is FPGA3, and it can also be a dedicated gain control chip.
  • the gain module 13 includes:
  • a non-inverting input terminal is connected to an output end of the single-channel selection module, and an inverting input terminal is respectively connected to a first end of the voltage dividing resistor R0 and a first end of the at least one feedback resistor Rf;
  • a first plurality of analog switches 1A at least one first input of the first plurality of analog switches 1A is respectively connected to a second end of the at least one feedback resistor Rf, the first multiple selected analog switch a second input end of the 1A is connected to a second output end of the gain control module, and an output end of the first multi-selective analog switch 1A is connected to an output end of the first amplifier 2A;
  • a second plurality of analog switches 1B at least one first input of the second plurality of analog switches 1B is respectively connected to a second end of the at least one feedback resistor Rf, and the second plurality of analog switches a second input end of the 1B is connected to a second output end of the gain control module, and an output end of the second multi-selective analog switch 1B is connected to an input end of the analog-to-digital conversion module;
  • the second end of the voltage dividing resistor R0 is grounded, the number of the feedback resistors Rf is the same as the number of the first input ends of the first plurality of analog switches 1A, and the second plurality of analog switches 1B is The number of one input is the same as the number of the first input of the first multiple selection analog switch 1A, The resistance between the feedback resistors Rf is different.
  • the function of the third multiple selection analog switch 1C is to select one signal from eight input channels (which may also be other number of input channels) to be sent to a subsequent amplifying circuit for amplification, and the input of the single channel selection module is multi-channel.
  • the channel signal is from the output end of the multiplexer module of the optical add/drop multiplex board, that is, the eight signals CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8 outputted by the multiplexer module on the OAD board.
  • One signal is sent to the subsequent circuit for amplification.
  • the third multiple select analog switch 1C channel select signal CH_SEL0, CH_SEL1, CH SEL2 is provided by FPGA 3.
  • the third multi-selection analog switch 1C can use MAX4051 of Maxim Integrated Products, which is an 8-to-1 analog switch, and can also use other chips.
  • the function of the gain module is to perform gain amplification on the signal sent from the third multi-selection analog switch 1C of the previous stage, and the first amplifier 2 ⁇ , the first multi-select 1 analog switch 1 ⁇ , the second multi-select 1 analog switch 1B, and Five different resistance resistors R1 (resistance 0 ohms, not shown), R2, R3, R4, R5 and a voltage divider resistor R0 are formed.
  • the non-inverting input terminal of the first amplifier 2A is connected to the output signal CH_V of the third multi-select 1 analog switch 1A, and the inverting input terminal of the first amplifier 2A is respectively connected to the first multi-selection by a feedback resistor Rf that bridges different resistance values.
  • the analog switch 1 A is connected to the five input terminals of the second multi-select 1 analog switch 1B, and the amplification control signals SEL0, SEL1, SEL2 of the first multi-select 1 analog switch 1A and the second multi-select 1 analog switch 1B are used by the FPGA 3 provide.
  • the combination of the three signals SEL0, SEL1, SEL2 provides eight different gains for amplifier 2A.
  • a 5-level amplification is designed.
  • the output signal CH_GAIN of the first amplifier 2A is not directly sent to the input terminal of the A/D converter 4, but is input from the multi-selection analog switch 1B through the multi-selection 1 analog switch 1A.
  • the signal is obtained because the first multi-select 1 analog switch 1A has a channel on-resistance of about 80-130 ohms.
  • This on-resistance affects the gain circuit's influence on the amplification accuracy, so that the processing can be free of on-resistance. influences. That is, in order to avoid the influence of the on-resistance of the first multi-selection analog switch 1A on the amplification accuracy, the signal sent to the input terminal of the A/D converter 4 is not directly extracted from the CH-GAIN of the output terminal of the first amplifier 2A. However, the port of the first multi-select 1 analog switch 1 A is taken out and then sent through the second multi-select 1 analog switch 1B.
  • the input of the first amplifier 2A can be regarded as infinite, therefore, the first multiple selection 1 analog switch 1A and The on-resistance Ron of the second multiple-selection analog switch 1B does not affect the amplification accuracy.
  • the principle of selecting the magnification factor k is: use a large amplification factor for small signals and a small amplification factor for large signals.
  • the amplification factor k is determined by the magnitude of the input signal CH_V of the amplifier 2A. If the input signal CH_V is small, a larger k value is selected, and conversely, a smaller k value is selected.
  • the first amplifier 2A can use the op amp OPA4277A, and the first multi-select 1 analog switch 1 A and the second multi-select 1 analog switch 1B can use Maxim Integrated Products' 8-to-1 analog switch MAX4051. Other alternative chips can also be used.
  • the channel select signals SEL0, SEL1, SEL2 of the first multi-select 1 analog switch 1A and the second multi-select 1 analog switch 1B are all provided by the FPGA 3.
  • the FPGA 3 is based on the AD_OUT converted signal of the amplified signal modulus output from the AD converter 4. When the AD OUT is lower than a certain order and there is still a larger gain position, the selection is larger.
  • the magnification k is selected by selecting a different feedback resistor Rf to change the amplification factor k by the signals SELO, SEL1, SEL2 connected to the first multiple selection 1 analog switch 1A. After the signal CH-V is amplified, the output of the multi-selection 1 analog switch 1C is sent to the A/D converter 4 for A/D conversion.
  • the A/D converter 4 performs A/D conversion on the gain-amplified signal, and the gain-amplified signal is sent to the A/D conversion circuit through the signal output terminal CH_ADI of the amplifier 2B, and after A/D conversion.
  • the output signal AD_OUT is processed by FPGA 3, and its chip select signal (AD_CS), clock signal (AD_CLK) and some other control signals (AD-RDY, AD DI) are provided by FPGA 3.
  • the A/D converter 4 can use the 10-bit serial AD conversion chip ADC10738, or other chips, and the input terminal is connected to the output signal CH ADI of the second multi-select 1 analog switch, after A.
  • the /D converted output signal AD_OUT is sent to FPGA 3 for processing.
  • Field Programmable Gate Array (FPGA) 3 is used for three multi-select 1 analog switches (1A, IB) And 1C) providing a channel selection signal; that is, providing a channel selection signal CH_SEL0, CHSEL1, CHSEL2 to the third multi-selection 1 analog switch 1C, and a first multiple selection 1 analog switch 1A and a second multiple selection 1 simulation
  • the switch 1B provides the amplification control signals SEL0, SEL1, SEL2 of the previous clock cycle and the next clock cycle; the control signal AD_RDY, the chip select signal AD_CS, and the clock signal AD_CLK are supplied to the A/D converter 4, etc.
  • the FPGA 3 can use the LFE2-12E-5FN484C chip of the Lattice Semiconductor, which provides the control and communication interface for the entire circuit of the present invention, and can also use other chips.
  • the gain control module is FPGA3, and it can also be a dedicated gain control chip.
  • the gain module 13 includes:
  • a non-inverting input terminal of the first amplifier 2A is connected to an output end of the single-channel selection module, and an inverting input terminal of the first amplifier 2A is respectively connected to a first end of the voltage dividing resistor R0 and at least a first end of a feedback resistor Rf;
  • a first plurality of analog switches 1A at least one first input of the first plurality of analog switches 1A is respectively connected to a second end of the at least one feedback resistor Rf, the first multiple selected analog switch 1A is connected to the second output end of the gain control module, and an output end of the first multi-selective analog switch 1 A is connected to an output end of the first amplifier 2A;
  • a second plurality of analog switches 1B at least one first input of the second plurality of analog switches 1B is respectively connected to a second end of the at least one feedback resistor Rf, and the second plurality of analog switches a second input of 1B is coupled to a second output of the gain control module;
  • a second amplifier 2B a non-inverting input terminal of the second amplifier 2B is connected to an output end of the second multi-selective analog switch 1B, an inverting input terminal of the second amplifier 2B is opposite to the second amplifier 2B The output end is connected, and the output end of the second amplifier 2B is connected to the input end of the analog-to-digital conversion module;
  • the second end of the voltage dividing resistor R0 is grounded, the number of the feedback resistors Rf is the same as the number of the first input ends of the first multi-selective analog switch 1A, and the second plurality of analog switches 1B are The number of first inputs is the same as the number of first inputs of the first plurality of analog switches 1A, and the resistance between the feedback resistors Rf is different.
  • the embodiment in FIG. 6 is different from the embodiment in FIG. 5 in that the signal CH_VI outputted by the second multi-selection 1 analog switch in FIG. 6 is not directly connected to the input end of the analog-to-digital conversion module, but is passed through
  • the second amplifier 2B that is, the signal CH_VI is input to the second amplifier 2B, and the second amplifier 2B outputs the signal CH_ADI to the input terminal of the A/D converter 4.
  • the second amplifier 2B can use the op amp OPA4277B, and the second amplifier 2B has a magnification of 1 to stabilize the voltage.
  • the gain of the amplifying circuit varies with the strength of the input signal, and the use of the resistance ratio is small, so that the oscillation reliability and the anti-interference ability are not easily generated.
  • the invention has the advantages of simple circuit, low cost and automatic gain amplifying function, and is particularly suitable for the multi-channel optical power detecting circuit in the optical transmission system.
  • the invention also has the advantages of improving the conversion precision of the small signal and improving the dynamic range of the optical power detecting circuit.
  • the invention can be used for multi-channel optical power detection in optical transmission systems, and can also be used for multi-channel signal detection in other circuits.
  • the gain control module of the present invention is a field programmable gate array chip or a dedicated gain control chip.
  • a multi-channel power control method includes: Step 701: Select, according to a channel selection signal of a previous clock cycle, a received channel signal of at least one clock cycle.
  • Step 702 the signal pair selection is selected according to the amplification factor of the previous clock cycle The one channel signal of the previous clock cycle is amplified to obtain a first signal;
  • Step 703 Perform analog-to-digital conversion on the first signal to obtain a second signal.
  • Step 704 Generate, according to the second signal, an amplification control signal of a next clock cycle, so that the next clock cycle is performed according to the amplification factor control signal of the next clock cycle to the selected next clock cycle.
  • a channel signal is amplified, wherein one channel signal selected in the previous clock cycle and the selected channel signal in the next clock cycle are the same.
  • the selected one channel signal of the previous clock cycle is amplified by the amplification factor control signal of the previous clock cycle, and the amplification factor control signal of the previous clock cycle may be the default or The default signal can also be a preset signal, and according to The second signal determines the amplification control signal of the next clock cycle to control the amplification factor of one channel signal of the next clock cycle selected in the next clock cycle.
  • the appropriate amplification factor can be used in the next clock cycle. Amplify the signal.
  • the single channel selection module it is not necessary to set a separate detection circuit for each channel signal, but to share the multi-channel power control circuit, and the circuit is relatively simple to implement.
  • the steps of the foregoing embodiments may be implemented by a program to instruct related hardware, and the program may be stored in a computer readable storage medium.
  • the method includes the steps of the foregoing method embodiment, such as: a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (No. RAM) and so on.
  • the present invention provides a multi-channel signal for a single-channel selection module, and does not need to provide a separate detection circuit for each channel signal, but a multi-channel power control circuit, and the circuit is relatively simple to implement.

Description

多通道功率控制电路和方法
技术领域
本发明涉及通信设备技术领域, 尤其涉及多通道功率控制电路和方法。
背景技术
光传输系统中, 经常用到光分插复用板( Optical Add/Drop Unit Board, OAD ) , 以实现光波信号的分插复用, 其光路原理如图 1所示。 OAD在光传 输系统中的作用是负责一个波段的上下路合分波, Al、 A2、 A3、 A4为 OAD 四个特定波长信号的上路光口, 本地业务通过这四个光口上行到系统中进行 传输, Dl、 D2、 D3、 D4为 OAD四个特定波长信号的下路光口, 系统中传 输的业务通过这四个光口下行到本地, IN、 OUT分别为 OAD的输入、 输出 光口。 在实际的网络系统中, 需要分别对上下路光口 Al、 A2、 A3、 A4、 Dl、 D2、 D3、 D4的信号光功率进行检测。 上下路业务的功能由固定在 OAD板上 的一个合分波模块实现, 该模块内部集成光电转换二极 ( Positive Intrinsic Negative diode , PIN )管。 通过 PIN管, 可以把通过八路上下路光口的光信 号转换成电流信号, 一般此电流信号很小, 需要经过后级放大后才能使用。
由于受到信号强度、 PIN管光电转换效率和信号插损等因素的影响, 不 同上下路光口的信号强度会有很大差异。如果放大电路的增益维持固定不变, 则可能使强信号饱和或是弱信号丟失, 导致信号失真。 因此, 放大电路的增 益必须随输入信号的强弱而变化, 这样, 需要检测每路通道信号的强弱。 对 于多通道信号检测电路, 现有技术中, 对每个通道使用一套独立的检测电路, 需要用到大量的阻容器和有源器, 因此电路比较复杂。 发明内容
本发明要解决的技术问题是提供一种电路简单的多通道功率控制电路和 方法。
为解决上述技术问题, 本发明的实施例提供技术方案如下: 一方面, 提供一种多通道功率控制电路, 所述控制电路包括:
单通道选择模块, 其设置为: 第一输入端输入上一时钟周期的通道选择 信号; 第二输入端输入上一时钟周期的至少一路通道信号; 输出端输出根据 上一时钟周期的所述通道选择信号从上一时钟周期的所述至少一路通道信号 选择出的上一时钟周期的一路通道信号;
增益模块, 其设置为: 第一输入端输入上一时钟周期的放大倍数控制信 号; 第二输入端输入上一时钟周期选择出的所述一路通道信号; 输出端输出 根据上一时钟周期的所述放大倍数控制信号对上一时钟周期选择出的所述一 路通道信号进行放大而得到的第一信号;
模数转换模块, 其设置为: 输入端输入所述第一信号; 输出端输出对所 述第一信号执行模数转换而得到的第二信号; 以及
增益控制模块, 其设置为: 输入端输入所述第二信号; 第一输出端与所 述单通道选择模块的第一输入端连接, 输出上一时钟周期的所述通道选择信 号和下一时钟周期的所述通道选择信号 , 下一时钟周期的所述通道选择信号 与上一时钟周期的所述通道选择信号相同; 第二输出端与所述增益模块的第 一输入端连接, 输出上一时钟周期的所述放大倍数控制信号, 以及输出根据 所述第二信号产生的下一时钟周期的所述放大倍数控制信号, 使所述增益模 块根据下一时钟周期的所述放大倍数控制信号对下一时钟周期的选择出的一 路通道信号进行放大。
所述增益模块包括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 输出端与所述模数转换模块的输入端连接; 以及
第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接;
其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同。 所述增益模块包括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 以及
第二放大器, 其设置为: 正相输入端连接所述第一放大器的输出端; 反 相输入端与所述第二放大器的输出端连接; 输出端与所述模数转换模块的输 入端连接;
其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同。
所述增益模块包括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述第一放大器的输出端连接; 以及
第二多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述模数转换模块的输入端连接;
其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同, 所述第二多选一模拟开关的第一输 入端的数量与所述第一多选一模拟开关的第一输入端的数量相同。
所述增益模块包括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述第一放大器的输出端连接;
第二多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 以及
第二放大器, 其设置为: 正相输入端连接所述第二多选一模拟开关的输 出端; 反相输入端与所述第二放大器的输出端连接, 所述第二放大器的输出 端与所述模数转换模块的输入端连接; 其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同, 所述第二多选一模拟开关的第一输 入端的数量与所述第一多选一模拟开关的第一输入端的数量相同。
下一时钟周期的所述放大倍数控制信号的放大倍数 k=l+Rf/R0, Rf为根 据下一时钟周期的所述放大倍数控制信号从所述至少一个反馈电阻中选择的 电阻, R0为所述分压电阻。
所述放大倍数 k设置为 2的幂次方数。
所述单通道选择模块还设置为: 第二输入端与外接的光分插复用板上的 合分波模块的输出端连接。
所述至少一个反馈电阻的数量大于 1时, 所述至少一个反馈电阻之间的 阻值不同。
所述通道选择信号为依次将所述接收到的至少一路通道信号中的每路信 号循环选择出的信号。
另一方面, 提供一种多通道功率控制方法, 该方法包括:
根据上一时钟周期的通道选择信号从接收到的至少一路上一时钟周期的 通道信号选择出上一时钟周期的一路通道信号;
根据上一时钟周期的放大倍数控制信号对选择出的上一时钟周期的所述 一路通道信号进行放大, 得到第一信号;
对所述第一信号执行模数转换, 得到第二信号; 以及
根据所述第二信号产生下一时钟周期的放大倍数控制信号, 使得下一时 钟周期时, 根据所述下一时钟周期的放大倍数控制信号对选择出的下一时钟 周期的所述一路通道信号进行放大, 其中, 上一时钟周期的选择出的一路通 道信号和下一时钟周期的选择出的一路通道信号为同一路。
本发明的实施例具有以下有益效果:
上述方案中, 在上一时钟周期时, 单通道选择模块根据上一时钟周期的 通道选择信号从上一时钟周期接收到的至少一路通道信号选择出上一时钟周 期的一路通道信号; 增益模块根据上一时钟周期的放大倍数控制信号对选择 出的上一时钟周期的所述一路通道信号进行放大, 得到第一信号; 模数转换 模块对所述第一信号执行模数转换, 得到第二信号; 增益控制模块根据所述 第二信号产生下一时钟周期的放大倍数控制信号。
下一时钟周期的所述通道选择信号与上一时钟周期的所述通道选择信号 相同, 因此上一时钟周期的选择出的一路通道信号和下一时钟周期选择出的 一路通道信号为同一路。 在下一时钟周期, 单通道选择模块选择出与上一时 钟周期选择出的通道信号相同的一路通道信号; 增益模块根据下一时钟周期 的放大倍数控制信号对选择出的下一时钟周期的所述一路通道信号进行放 大。 这样, 对于选择出的该路通道信号来讲, 在下一个时钟周期, 能够釆用 合适的放大倍数对信号进行放大。 对于单通道选择模块输入的多通道信号, 不需要为每路通道信号设置一套独立的检测电路, 而是共用多通道功率控制 电路, 电路实现起来比较简单。
附图概述
图 1为现有技术中 OAD板的光路原理图;
图 2为本发明所述的多通道功率控制电路的一实施例的连接示意图; 图 3为本发明所述的多通道功率控制电路的另一实施例的连接示意图; 图 4为本发明所述的多通道功率控制电路的另一实施例的连接示意图; 图 5为本发明所述的多通道功率控制电路的另一实施例的连接示意图; 图 6为本发明所述的多通道功率控制电路的另一实施例的连接示意图; 图 7为本发明所述的多通道功率控制方法的一实施例的流程示意图。 本发明的较佳实施方式
为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下 面将结合附图及具体实施例进行详细描述。
本发明的实施例针对现有技术中对于对每个通道使用一套独立的检测电 路而导致电路复杂的问题, 提供一种多通道功率控制电路和方法。
如图 2所示,为本发明所述的多通道功率控制电路 10的一实施例,包括: 单通道选择模块 11、 增益模块 12、 模数转换模块 13、 增益控制模块 14。 单通道选择模块 11 , 第一输入端输入上一时钟周期的通道选择信号; 第 二输入端输入上一时钟周期的至少一路通道信号; 输出端输出根据上一时钟 周期的所述通道选择信号从上一时钟周期的所述至少一路通道信号选择出的 上一时钟周期的一路通道信号; 增益模块 12, 第一输入端输入上一时钟周期的放大倍数控制信号; 第二 输入端输入上一时钟周期选择出的所述一路通道信号; 输出端输出根据上一 时钟周期的所述放大倍数控制信号对上一时钟周期选择出的所述一路通道信 号进行放大而得到的第一信号;
模数转换模块 13 , 输入端输入所述第一信号; 输出端输出对所述第一信 号执行模数转换而得到的第二信号;
增益控制模块 14, 输入端输入所述第二信号; 第一输出端与所述单通道 选择模块 11的第一输入端连接,用于输出上一时钟周期的所述通道选择信号 和下一时钟周期的所述通道选择信号, 下一时钟周期的所述通道选择信号与 上一时钟周期的所述通道选择信号相同;第二输出端与所述增益模块 12的第 一输入端连接, 用于输出上一时钟周期的所述放大倍数控制信号, 以及输出 根据所述第二信号产生的下一时钟周期的所述放大倍数控制信号, 使所述增 益模块 12根据下一时钟周期的所述放大倍数控制信号对下一时钟周期的选 择出的一路通道信号进行放大。
在多通道功率控制电路的初始工作时, 也就是在上一时钟周期, 增益模 块 12釆用默认的放大倍数, 也就是说, 增益控制模块 14输出缺省的或者预 先设置的放大倍数控制信号, 然后根据输入的上一时钟周期的第二信号, 确 定下一时钟周期输出的放大倍数控制信号, 以控制下一时钟周期的增益模块
12的放大倍数。
上述方案中, 在上一时钟周期时, 单通道选择模块 11根据上一时钟周期 的通道选择信号从上一时钟周期接收到的至少一路通道信号选择出上一时钟 周期的一路通道信号;增益模块 12根据上一时钟周期的放大倍数控制信号对 选择出的上一时钟周期的所述一路通道信号进行放大, 得到第一信号; 模数 转换模块 13 对所述第一信号执行模数转换, 得到第二信号; 增益控制模块 14根据所述第二信号产生下一时钟周期的放大倍数控制信号。 下一时钟周期的所述通道选择信号与上一时钟周期的所述通道选择信号 相同, 因此上一时钟周期的选择出的一路通道信号和下一时钟周期选择出的 一路通道信号为同一路。 在下一时钟周期, 单通道选择模块选择出与上一时 钟周期选择出的通道信号相同的一路通道信号;增益模块 12根据下一时钟周 期的放大倍数控制信号对选择出的下一时钟周期的所述一路通道信号进行放 大。 这样, 对于选择出的该路通道信号来讲, 在下一个时钟周期, 能够釆用 合适的放大倍数对信号进行放大。 对于单通道选择模块输入的多通道信号, 不需要为每路通道信号设置一套独立的检测电路, 而是共用多通道功率控制 电路, 电路实现起来比较简单。
如图 3所示, 为本发明所述的多通道功率控制电路 10的另一实施例, 其 中, 单通道选择模块为第三多选一模拟开关 1C, 模数转换模块为 A/D (模 / 数) 转换器 4 , 增益控制模块为现场可编程门阵列芯片 (FPGA, Field Programmable Gate Array ) 3 , 也可以为专用的增益控制芯片。
所述增益模块 13包括:
第一放大器 2Α, 所述第一放大器 2Α的正相输入端与所述单通道选择模 块的输出端连接, 所述第一放大器 2Α的反相输入端分别连接分压电阻 R0的 第一端和至少一个反馈电阻 Rf的第一端,所述第一放大器的输出端与所述模 数转换模块的输入端连接;
第一多选一模拟开关 1A, 所述第一多选一模拟开关 1A的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,第一多选一模拟开关 1 A的第二输入端与所述增益控制模块的第二输出端连接;
所述分压电阻 R0的第二端接地, 所述反馈电阻 Rf的数量与所述第一多 选一模拟开关 1A的第一输入端的数量相同, 所述反馈电阻 Rf之间的阻值不 同。
以下结合图 3描述本发明实施例的工作原理。
在上一时钟周期,第三多选一模拟开关 1C输入至少一路通道信号,本实 施例中分别为 CHI , CH2, CH3 , CH4, CH5 , CH6, CH7 , CH8, 并且输入 来自 FPAG 3 的至少一路通道选择信号,本实施例中分别为 CH— SEL0、 CH— SEL1、 CH SEL2, 所述单通道选择模块 11 的输出端输出根据所述通道 选择信号从所述通道信号中选择的一路通道信号 CH— V。
第一放大器 2A, 正相输入端连接所述单通道选择模块的输出端,即输入 选择的一路通道信号 CH— V,反相输入端分别连接分压电阻 R0的第一端和至 少一个反馈电阻 Rf的第一端, 该实施例中, 反馈电阻 Rf包括 R1 (电阻为 0 欧, 未示出) 、 R2、 R3、 R4、 R5 , 所述第一放大器 2A的输出端与所述模数 转换模块的输入端连接, 即输出放大后的信号 CH— GAIN。本领域技术人员可 以理解, 反馈电阻 Rf还可以设置更多。 反馈电阻 Rf可以设置的最大数量和 放大倍数控制信号的数量可以为 2的幂次方数的关系, 即如果反馈电阻 Rf为 8个, 则放大倍数控制信号的数量可以为 3路。
第一多选一模拟开关 1A,至少一个第一输入端(本实施例中,为 GAIN1、 GAIN2、 GAIN3、 GAIN4、 GAIN5 )分别与所述至少一个反馈电阻 Rf (本实 施例中, 为 Rl、 R2、 R3、 R4、 R5 )的第二端连接, 第一多选一模拟开关 1A 的第二输入端输入的信号为所述增益控制模块的放大倍数控制信号, 即第一 多选一模拟开关 1A的第二输入端输入第二片选信号 SEL0、 SEL1、 SEL2。
所述分压电阻 R0的第二端接地, 所述反馈电阻 Rf的数量与所述第一多 选一模拟开关 1A的第一输入端的数量相同, 所述反馈电阻 Rf之间的阻值不 同。
A/D转换器 4, A/D转换器 4的输入端输入所述放大后的信号, 即第一信 号 CH— GAIN, A/D转换器 4的输出端输出所述放大后的信号模数转化后的信 号, 即第二信号 AD— OUT。
FPGA 3 , 输入端输入所述放大后的信号模数转化后的信号, 即第二信号 AD OUT,输出所述通道选择信号,本实施例中分别为 CH— SEL0、 CH— SEL1、 CH SEL2, 并且输出上一时钟周期和下一时钟周期的放大倍数控制信号, 本 实施例中为 SEL0、 SEL1、 SEL2, 所述下一时钟周期的放大倍数控制信号根 据第二信号的大小值产生。 本实施例中, 在上一时钟周期, 增益控制模块输入第二信号, 根据所述 第二信号的大小值产生下一时钟周期的放大倍数控制信号, 并给第一多选一 模拟开关 1 A输出下一时钟周期的放大倍数控制信号,使下一时钟周期的放大 倍数控制信号可以选择不同阻值的反馈电阻 Rf, 从而使放大器输出的放大信 号的放大倍数不同。当所述放大后的信号模数转化后的信号小于第一阔值时, 则选择大于第二阔值的放大倍数; 当所述放大后的信号模数转化后的信号大 于或等于第一阔值时, 则选择小于或等于第二阔值的放大倍数。 也就是说, 对于大信号, 釆用小的放大倍数, 对于小信号, 釆用大的放大倍数。 该实施 例中, 下一时钟周期的放大倍数的计算公式为: 电路放大倍数为: k=l+(Rf+Ron)/R0。 其中, Ron为多选 1模拟开关的导通电阻, Rf为根据所述 下一时钟周期的放大倍数控制信号从所述至少一个反馈电阻 Rf 中选择的电 阻, R0为分压电阻。
如图 4所示, 为本发明所述的多通道功率控制电路 10的另一实施例, 其 中, 单通道选择模块为第三多选一模拟开关 1C, 模数转换模块为 A/D (模 / 数)转换器 4, 增益控制模块为现场可编程门阵列芯片 ( Field Programmable Gate Array, FPGA ) 3 , 也可以为专用的增益控制芯片。 所述增益模块 13包 括:
第一放大器 2A, 所述第一放大器 2A的正相输入端与所述单通道选择模 块的输出端连接,输入选择出的所述一路通道信号,所述第一放大器 2A的反 相输入端分别连接分压电阻 R0的第一端和至少一个反馈电阻 Rf的第一端; 第一多选一模拟开关 1A, 所述第一多选一模拟开关 1A的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,所述第一多选一模拟 开关 1A的第二输入端与所述增益控制模块的第二输出端连接; 第二放大器 2B, 所述第二放大器 2B的正相输入端连接所述第一放大器 2A的输出端, 所述第二放大器 2B的反相输入端与所述第二放大器 2B的输 出端连接, 所述第二放大器 2B的输出端与所述模数转换模块的输入端连接; 所述分压电阻 R0的第二端接地, 所述反馈电阻 Rf的数量与所述第一多 选一模拟开关 1A的第一输入端的数量相同, 所述反馈电阻 Rf之间的阻值不 同。
图 4中实施例与图 3中实施例相比, 不同之处在于, 图 4中第一放大器 2A输出的放大后的信号 CH— GAIN不是直接接入模数转换模块的输入端, 而 是通过第二放大器 2B, 即将信号 CH— GAIN输入第二放大器 2B,第二放大器 2B将信号 CH— ADI输出到 A/D转换器 4的输入端。 第二放大器 2B的放大倍 数为 1 , 起到稳定电压的作用。
如图 5所示, 为本发明所述的多通道功率控制电路 10的另一实施例, 其 中, 单通道选择模块为第三多选一模拟开关 1C, 模数转换模块为 A/D (模 / 数)转换器 4, 增益控制模块为 FPGA3 , 也可以为专用的增益控制芯片。 所 述增益模块 13包括:
第一放大器 2A, 正相输入端连接所述单通道选择模块的输出端, 反相输 入端分别连接分压电阻 R0的第一端和至少一个反馈电阻 Rf的第一端;
第一多选一模拟开关 1A, 所述第一多选一模拟开关 1A的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,所述第一多选一模拟 开关 1A的第二输入端与所述增益控制模块的第二输出端连接,所述第一多选 一模拟开关 1A的输出端与所述第一放大器 2A的输出端连接;
第二多选一模拟开关 1B, 所述第二多选一模拟开关 1B的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,所述第二多选一模拟 开关 1B的第二输入端与所述增益控制模块的第二输出端连接,所述第二多选 一模拟开关 1B的输出端与所述模数转换模块的输入端连接;
所述分压电阻 R0的第二端接地, 所述反馈电阻 Rf的数量与所述第一多 选一模拟开关 1A的第一输入端的数量相同, 所述第二多选一模拟开关 1B的 第一输入端的数量与所述第一多选一模拟开关 1A的第一输入端的数量相同, 所述反馈电阻 Rf之间的阻值不同。
以下结合图 5描述本发明实施例的工作原理。
第三多选一模拟开关 1C的作用是从八个输入通道(也可以为其他数量的 输入通道) 中选择一路信号送到后续的放大电路进行放大, 所述单通道选择 模块的输入的多路通道信号来自光分插复用板的合分波模块的输出端, 即为 OAD板上的合分波模块输出的八路信号 CH1、 CH2、 CH3、 CH4、 CH5、 CH6、 CH7、 CH8, 选择其中一路信号送入后续电路进行放大。 第三多选一模拟开 关 1C的通道选择信号 CH— SEL0、 CH— SEL1、 CH SEL2由 FPGA 3提供。 本 实施例中, 第三多选一模拟开关 1C 可以釆用美信集成产品公司 (Maxim Integrated Products )的 MAX4051 , 其是一个 8选 1的模拟开关, 也可以釆用 其他芯片。
增益模块的作用是将前一级的第三多选一模拟开关 1C送过来的信号进 行增益放大, 由第一放大器 2Α、 第一多选 1模拟开关 1Α、 第二多选 1模拟 开关 1B和五个不同阻值的电阻 R1 (阻值为 0欧姆, 未示出)、 R2、 R3、 R4、 R5和一个分压电阻 R0构成。 第一放大器 2A的正相输入端连接第三多选 1 模拟开关 1A的输出信号 CH— V, 第一放大器 2A的反相输入端通过桥接不同 阻值的反馈电阻 Rf分别与第一多选 1模拟开关 1 A和第二多选 1模拟开关 1B 的五个输入端连接, 第一多选 1模拟开关 1A和第二多选 1模拟开关 1B的放 大倍数控制信号 SEL0、 SEL1、 SEL2由 FPGA 3提供。 SEL0、 SEL1、 SEL2 三个信号的组合可以为放大器 2A提供八种不同增益。本实施例中,为方便单 板进行处理, 设计了 5级放大。 在这部分电路中, 没有直接把第一放大器 2A 的输出信号 CH— GAIN送到 A/D转换器 4的输入端, 而是通过多选 1模拟开 关 1A从多选 1模拟开关 1B的输入端获得信号, 这是因为第一多选 1模拟开 关 1A有大约 80-130欧姆的通道导通电阻, 这个导通电阻会影响增益电路对 放大精度的影响, 这样处理就可以不受导通电阻的影响。 也就是说, 为了避 免第一多选 1模拟开关 1A的导通电阻对放大精度的影响,送往 A/D转换器 4 的输入端的信号未直接从第一放大器 2A的输出端的 CH— GAIN 引出, 而是 由第一多选 1模拟开关 1 A的端口引出后通过第二多选 1模拟开关 1B送入。 而第一放大器 2A输入端可看作是无穷大, 因此, 第一多选 1模拟开关 1A和 第二多选 1模拟开关 1B的导通电阻 Ron不会影响放大精度。 下一时钟周期 的放大倍数控制信号的放大倍数为: k=l+Rf/R0。 其中, Rf 为根据所述下一 时钟周期的放大倍数控制信号从所述至少一个反馈电阻 Rf中选择的电阻, R0 为分压电阻。 选择放大倍数 k的原则为: 对于小信号釆用大的放大倍数、 对 于大信号釆用小的放大倍数。 放大倍数 k由放大器 2A的输入信号 CH— V的 大小决定, 如果输入信号 CH— V较小, 则选择较大的 k值, 反之, 选择较小 的 k值。
其中, 第一放大器 2A可以使用运放 OPA4277A, 第一多选 1模拟开关 1 A和第二多选 1模拟开关 1B可以釆用美信集成产品公司 ( Maxim Integrated Products ) 的 8选 1模拟开关 MAX4051 , 也可以釆用其他替代芯片。 放大倍 数 k可以设置为 2的幂次方数, 例如放大倍数 k分别为 1、 4、 16、 64、 256。 这样在处理数据时, 只需进行移位运算即可, 单板可釆用 2字节数(UINT整 型)来存储 AD— OUT的值, 在本发明中, 取值分别为 R1=0欧姆、 R2=6千欧 姆、 R3=30千欧姆、 R4=126千欧姆、 R5=510千欧姆; R0为接地电阻, 阻值 为 2千欧姆。 在硬件上, 第一多选 1模拟开关 1A和第二多选 1模拟开关 1B 的通道选择信号 SEL0、 SEL1、 SEL2都由 FPGA 3提供。 FPGA 3根据 AD转 换器 4 输出的放大后的信号模数转化后的信号 AD— OUT 为判断依据, 当 AD OUT低于某一数量级而仍有更大的增益档位可选时, 选择更大的放大倍 数 k,倍率的选择是通过与第一多选 1模拟开关 1A连接的信号 SELO, SEL1 , SEL2来选择不同的反馈电阻 Rf以改变放大倍数 k。 信号 CH— V经过增益放 大后由多选 1模拟开关 1C的输出端送到 A/D转换器 4进行 A/D转换。
A/D转换器 4是对经过增益放大后的信号进行 A/D转换, 经过增益放大 后的信号通过放大器 2B的信号输出端 CH— ADI送入 A/D转换电路,经过 A/D 转换后输出信号 AD— OUT到 FPGA 3进行处理, 其片选信号( AD— CS ) 、 时 钟信号 (AD— CLK )和其他一些控制信号 (AD— RDY、 AD DI ) 由 FPGA 3 提供。本实施例中, A/D转换器 4可以釆用 10位串行 AD转换芯片 ADC10738, 也可以釆用其他芯片, 其输入端连接第二多选 1 模拟开关的输出端信号 CH ADI , 经过 A/D转换后的输出信号 AD— OUT送到 FPGA 3进行处理。
现场可编程门阵列(FPGA ) 3的作用是对三个多选 1模拟开关 ( 1A、 IB 和 1C )提供通道选择信号; 即, 对第三多选 1模拟开关 1C提供通道选择信 号 CH— SEL0、 CH SEL1、 CH SEL2 , 对第一多选 1模拟开关 1 A和第二多选 1模拟开关 1B提供上一时钟周期和下一时钟周期的放大倍数控制信号 SEL0、 SEL1、 SEL2; 对 A/D转换器 4提供控制信号 AD— RDY、 片选信号 AD— CS和 时钟信号 AD— CLK等;根据 A/D转换后输出的上一时钟周期的信号 AD— OUT 送入的值进行判断以选择下一时钟周期的最佳增益档位, 即选择下一时钟周 期的最佳的增益放大倍数 K。 本实施例中, FPGA 3可以釆用 lattice莱迪思半 导体公司的芯片 LFE2-12E-5FN484C,为本发明中整个电路提供控制和通信接 口, 也可以釆用其他芯片。
如图 6所示, 为本发明所述的多通道功率控制电路 10的另一实施例, 其 中, 单通道选择模块为第三多选一模拟开关 1C, 模数转换模块为 A/D (模 / 数)转换器 4, 增益控制模块为 FPGA3 , 也可以为专用的增益控制芯片。 所 述增益模块 13包括:
第一放大器 2A, 所述第一放大器 2A的正相输入端连接所述单通道选择 模块的输出端, 所述第一放大器 2A的反相输入端分别连接分压电阻 R0的第 一端和至少一个反馈电阻 Rf的第一端;
第一多选一模拟开关 1A, 所述第一多选一模拟开关 1A的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,所述第一多选一模拟 开关 1A与所述增益控制模块的第二输出端连接, 所述第一多选一模拟开关 1 A的输出端与所述第一放大器 2A的输出端连接;
第二多选一模拟开关 1B, 所述第二多选一模拟开关 1B的至少一个第一 输入端分别与所述至少一个反馈电阻 Rf的第二端连接,所述第二多选一模拟 开关 1B的第二输入端与所述增益控制模块的第二输出端连接;
第二放大器 2B, 所述第二放大器 2B的正相输入端连接所述第二多选一 模拟开关 1B的输出端, 所述第二放大器 2B的反相输入端与所述第二放大器 2B的输出端连接, 所述第二放大器 2B的输出端与所述模数转换模块的输入 端连接;
所述分压电阻 R0的第二端接地, 所述反馈电阻 Rf的数量与所述第一多 选一模拟开关 1A的第一输入端的数量相同, 所述第二多选一模拟开关 1B的 第一输入端的数量与所述第一多选一模拟开关 1A的第一输入端的数量相同, 所述反馈电阻 Rf之间的阻值不同。
图 6中实施例与图 5中实施例相比, 不同之处在于, 图 6中第二多选 1 模拟开关输出的信号 CH— VI不是直接接入模数转换模块的输入端, 而是通过 第二放大器 2B, 即将信号 CH— VI输入第二放大器 2B, 第二放大器 2B将信 号 CH— ADI输出到 A/D转换器 4的输入端。 第二放大器 2B可以使用运放 OPA4277B, 第二放大器 2B的放大倍数为 1 , 起到稳定电压的作用。
本发明电路中, 放大电路的增益随输入信号的强弱而变化, 使用电阻比 较少, 因此不容易产生振荡可靠性和抗干扰能力较好。 本发明电路简单、 成 本低、 带自动增益放大功能, 特别适用于光传输系统中的多通道光功率检测 电路。 本发明还有提高小信号的转换精度, 提高光功率检测电路的动态范围 等优点。 本发明可用于光传输系统中的多通道光功率检测, 还可用于其他电 路中的多通道信号检测。 本发明所述的增益控制模块为现场可编程门阵列芯 片或者为专用的增益控制芯片。
如图 7所示, 为本发明所示的一种多通道功率控制方法, 包括: 步骤 701 , 根据上一时钟周期的通道选择信号从接收到的至少一路上一 时钟周期的通道信号选择出上一时钟周期的一路通道信号; 上一时钟周期与 下一时钟周期是相邻的, 也就是说, 上一时钟周期即当前时钟周期; 步骤 702, 根据上一时钟周期的放大倍数控制信号对选择出的上一时钟 周期的所述一路通道信号进行放大, 得到第一信号;
步骤 703 , 对所述第一信号执行模数转换, 得到第二信号;
步骤 704, 根据所述第二信号产生下一时钟周期的放大倍数控制信号, 使得下一时钟周期时, 根据所述下一时钟周期的放大倍数控制信号对选择出 的下一时钟周期的所述一路通道信号进行放大, 其中, 上一时钟周期的选择 出的一路通道信号和下一时钟周期的选择出的一路通道信号为同一路。
上述方案中, 在上一时钟周期, 釆用上一时钟周期的放大倍数控制信号 对选择出的上一时钟周期的一路通道信号进行放大, 上一时钟周期的放大倍 数控制信号可以为缺省或者默认的信号, 也可以为预先设置的信号, 并根据 第二信号, 确定下一时钟周期的放大倍数控制信号, 以控制下一时钟周期选 择出的下一时钟周期的一路通道信号的放大倍数。
由于上一时钟周期的选择出的一路通道信号和下一时钟周期选择出的一 路通道信号为同一路, 对于选择出的该路通道信号来讲, 在下一个时钟周期, 能够釆用合适的放大倍数对信号进行放大。 对于单通道选择模块输入的多通 道信号, 不需要为每路通道信号设置一套独立的检测电路, 而是共用多通道 功率控制电路, 电路实现起来比较简单。
本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算 机可读取存储介质中, 该程序在执行时, 包括如上述方法实施例的步骤, 所 述的存储介质,如:磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM ) 或随机存 ϋ己忆体 ( Random Access Memory, RAM )等。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。
工业实用性 本发明对于单通道选择模块输入的多通道信号, 不需要为每路通道信号 设置一套独立的检测电路, 而是共用多通道功率控制电路, 电路实现起来比 较简单。

Claims

权 利 要 求 书
1. 一种多通道功率控制电路, 所述控制电路包括:
单通道选择模块, 其设置为: 第一输入端输入上一时钟周期的通道选择 信号; 第二输入端输入上一时钟周期的至少一路通道信号; 输出端输出根据 上一时钟周期的所述通道选择信号从上一时钟周期的所述至少一路通道信号 选择出的上一时钟周期的一路通道信号;
增益模块, 其设置为: 第一输入端输入上一时钟周期的放大倍数控制信 号; 第二输入端输入上一时钟周期选择出的所述一路通道信号; 输出端输出 根据上一时钟周期的所述放大倍数控制信号对上一时钟周期选择出的所述一 路通道信号进行放大而得到的第一信号;
模数转换模块, 其设置为: 输入端输入所述第一信号; 输出端输出对所 述第一信号执行模数转换而得到的第二信号; 以及
增益控制模块, 其设置为: 输入端输入所述第二信号; 第一输出端与所 述单通道选择模块的第一输入端连接, 输出上一时钟周期的所述通道选择信 号和下一时钟周期的所述通道选择信号, 下一时钟周期的所述通道选择信号 与上一时钟周期的所述通道选择信号相同; 第二输出端与所述增益模块的第 一输入端连接, 输出上一时钟周期的所述放大倍数控制信号, 以及输出根据 所述第二信号产生的下一时钟周期的所述放大倍数控制信号, 使所述增益模 块根据下一时钟周期的所述放大倍数控制信号对下一时钟周期的选择出的一 路通道信号进行放大。
2. 根据权利要求 1所述的多通道功率控制电路, 其中, 所述增益模块包 括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 输出端与所述模数转换模块的输入端连接; 以及
第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同。
3. 根据权利要求 1所述的多通道功率控制电路, 其中, 所述增益模块包 括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 以及
第二放大器, 其设置为: 正相输入端连接所述第一放大器的输出端; 反 相输入端与所述第二放大器的输出端连接; 输出端与所述模数转换模块的输 入端连接;
其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同。
4. 根据权利要求 1所述的多通道功率控制电路, 其中, 所述增益模块包 括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述第一放大器的输出端连接; 以及
第二多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述模数转换模块的输入端连接;
其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同, 所述第二多选一模拟开关的第一输 入端的数量与所述第一多选一模拟开关的第一输入端的数量相同。
5. 根据权利要求 1所述的多通道功率控制电路, 其中, 所述增益模块包 括:
第一放大器, 其设置为: 正相输入端与所述单通道选择模块的输出端连 接; 反相输入端分别连接分压电阻的第一端和至少一个反馈电阻的第一端; 第一多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 输出端与所述第一放大器的输出端连接;
第二多选一模拟开关, 其设置为: 至少一个第一输入端分别与所述至少 一个反馈电阻的第二端连接; 第二输入端与所述增益控制模块的第二输出端 连接; 以及
第二放大器, 其设置为: 正相输入端连接所述第二多选一模拟开关的输 出端; 反相输入端与所述第二放大器的输出端连接, 所述第二放大器的输出 端与所述模数转换模块的输入端连接; 其中, 所述分压电阻的第二端接地, 所述反馈电阻的数量与所述第一多 选一模拟开关的第一输入端的数量相同, 所述第二多选一模拟开关的第一输 入端的数量与所述第一多选一模拟开关的第一输入端的数量相同。
6. 根据权利要求 4或 5所述的多通道功率控制电路, 其中,
下一时钟周期的所述放大倍数控制信号的放大倍数 k=l+Rf/R0, Rf为根 据下一时钟周期的所述放大倍数控制信号从所述至少一个反馈电阻中选择的 电阻, R0为所述分压电阻。
7. 根据权利要求 6所述的多通道功率控制电路, 其中, 所述放大倍数 k 设置为 2的幂次方数。
8. 根据权利要求 1至 5任一项所述的多通道功率控制电路, 其中, 所述单通道选择模块还设置为: 第二输入端与外接的光分插复用板上的 合分波模块的输出端连接。
9. 根据权利要求 2至 5中任一项所述的多通道功率控制电路, 其中, 所 述至少一个反馈电阻的数量大于 1时, 所述至少一个反馈电阻之间的阻值不 同。
10. 根据权利要求 1至 5任一项所述的多通道功率控制电路, 其中, 所述通道选择信号为依次将所述接收到的至少一路通道信号中的每路信 号循环选择出的信号。
11. 一种多通道功率控制方法, 该方法包括:
根据上一时钟周期的通道选择信号从接收到的至少一路上一时钟周期的 通道信号选择出上一时钟周期的一路通道信号;
根据上一时钟周期的放大倍数控制信号对选择出的上一时钟周期的所述 一路通道信号进行放大, 得到第一信号;
对所述第一信号执行模数转换, 得到第二信号; 以及
根据所述第二信号产生下一时钟周期的放大倍数控制信号, 使得下一时 钟周期时, 根据所述下一时钟周期的放大倍数控制信号对选择出的下一时钟 周期的所述一路通道信号进行放大, 其中, 上一时钟周期的选择出的一路通 道信号和下一时钟周期的选择出的一路通道信号为同一路。
PCT/CN2010/073050 2009-06-05 2010-05-21 多通道功率控制电路和方法 WO2010139241A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1010170A BRPI1010170A2 (pt) 2009-06-05 2010-05-21 "circuito para controlar a potência multicanal e método para controlar a potência multicanal"
RU2011153114/08A RU2487469C1 (ru) 2009-06-05 2010-05-21 Схема и способ управления мощностью в множестве каналов
US13/257,973 US8842986B2 (en) 2009-06-05 2010-05-21 Circuit and method for controlling multi-channel power
AU2010256175A AU2010256175B2 (en) 2009-06-05 2010-05-21 Circuit and method for controlling multi-channel power
EP10782945.9A EP2439843B1 (en) 2009-06-05 2010-05-21 Circuit and method for controlling multi-channel power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910086489 CN101577530B (zh) 2009-06-05 2009-06-05 多通道功率控制电路和方法
CN200910086489.8 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010139241A1 true WO2010139241A1 (zh) 2010-12-09

Family

ID=41272342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073050 WO2010139241A1 (zh) 2009-06-05 2010-05-21 多通道功率控制电路和方法

Country Status (7)

Country Link
US (1) US8842986B2 (zh)
EP (1) EP2439843B1 (zh)
CN (1) CN101577530B (zh)
AU (1) AU2010256175B2 (zh)
BR (1) BRPI1010170A2 (zh)
RU (1) RU2487469C1 (zh)
WO (1) WO2010139241A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577530B (zh) 2009-06-05 2012-09-05 中兴通讯股份有限公司 多通道功率控制电路和方法
CN101895267B (zh) * 2010-08-19 2013-06-12 河南科技大学 双通道模数联合型可变增益数据采集的增益预置方法
CN105187035A (zh) * 2015-07-31 2015-12-23 武汉光迅科技股份有限公司 一种基于液晶技术的多通道波长选择开关驱动电路
CN110579623A (zh) * 2019-10-28 2019-12-17 广州极飞科技有限公司 风参数测量装置、方法和系统
CN111313853B (zh) * 2020-04-09 2023-07-21 西安芯辉光电科技有限公司 一种双模式多通道跨阻放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663152A (zh) * 2002-06-20 2005-08-31 Eci电信公司 光传输跨距的功率控制方法和系统
US20070274725A1 (en) * 2006-03-31 2007-11-29 Fujitsu Limited Optical transmission apparatus
CN101350661A (zh) * 2008-09-04 2009-01-21 上海东洲罗顿通信技术有限公司 多信道数字选频技术
CN101577530A (zh) * 2009-06-05 2009-11-11 中兴通讯股份有限公司 多通道功率控制电路和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627857A (en) * 1995-09-15 1997-05-06 Qualcomm Incorporated Linearized digital automatic gain control
GB9518922D0 (en) * 1995-09-15 1995-11-15 Integrated Optical Components Controlling optical signals
RU2242091C2 (ru) * 1999-10-02 2004-12-10 Самсунг Электроникс Ко., Лтд. Устройство и способ стробирования данных, передаваемых по каналу управления в системе связи мдкр
JP2001203414A (ja) * 2000-01-18 2001-07-27 Fujitsu Ltd 光信号対雑音比測定方法、並びに、該測定方法を利用した光信号対雑音比測定装置、プリエンファシス方法、光通信システム、測定回路、および、制御装置
EP1130802A1 (en) * 2000-03-02 2001-09-05 Telefonaktiebolaget Lm Ericsson Power stabilisation in an optical communication system
US7564866B2 (en) * 2000-07-21 2009-07-21 Broadcom Corporation Methods and systems for digitally processing optical data signals
WO2002019572A1 (fr) * 2000-08-31 2002-03-07 Fujitsu Limited Procede de demarrage d'un systeme de communication optique, procede d'agrandissement/de reduction de canaux, et support enregistre lisible par un ordinateur
TW513867B (en) * 2001-08-14 2002-12-11 Technology Thesaurus Corp Automatic optical channel synchronization switching method and device therefor
JP3893290B2 (ja) * 2002-01-09 2007-03-14 キヤノン株式会社 コンデンサ充電装置およびカメラのストロボ充電装置
US7957641B2 (en) * 2002-02-08 2011-06-07 Ciena Corporation Method of WDM channel tagging and monitoring, and apparatus
US7139486B2 (en) * 2002-12-05 2006-11-21 Tropic Networks Inc. Method and apparatus for optical add/drop multiplexing in optical networks
ES2259888B1 (es) * 2004-10-27 2007-10-01 Fagor, S. Coop. Cabecera de recepcion de tv, con un circuito de control automatico de los niveles de salida.
US7215202B2 (en) * 2005-02-25 2007-05-08 Texas Instruments Incorporated Programmable gain amplifier and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663152A (zh) * 2002-06-20 2005-08-31 Eci电信公司 光传输跨距的功率控制方法和系统
US20070274725A1 (en) * 2006-03-31 2007-11-29 Fujitsu Limited Optical transmission apparatus
CN101350661A (zh) * 2008-09-04 2009-01-21 上海东洲罗顿通信技术有限公司 多信道数字选频技术
CN101577530A (zh) * 2009-06-05 2009-11-11 中兴通讯股份有限公司 多通道功率控制电路和方法

Also Published As

Publication number Publication date
RU2487469C1 (ru) 2013-07-10
BRPI1010170A2 (pt) 2016-03-29
EP2439843B1 (en) 2017-07-05
US20120154012A1 (en) 2012-06-21
AU2010256175B2 (en) 2013-06-27
EP2439843A1 (en) 2012-04-11
AU2010256175A1 (en) 2012-01-19
US8842986B2 (en) 2014-09-23
EP2439843A4 (en) 2014-11-26
CN101577530B (zh) 2012-09-05
CN101577530A (zh) 2009-11-11

Similar Documents

Publication Publication Date Title
WO2010139241A1 (zh) 多通道功率控制电路和方法
US7912380B2 (en) Optical receiver
US6947630B2 (en) Control method and control apparatus for variable wavelength optical filter
EP1351383A2 (en) Analog multiplexer and variable gain amplifier for intermediate frequency applications
JPH10511534A (ja) 無線周波数通信システムにおいて使用する増幅回路および増幅器の制御方法
WO2007102189A1 (ja) 光受信器
JP2007036329A (ja) 増幅回路およびトランスインピーダンスアンプ
JPH07303119A (ja) サンプリングされたデータ出力と背景光をキャンセルできるパケットデータ受信器
EP1351399B1 (en) Combined multiplexer and switched gain circuit
JP2009260472A (ja) 電力増幅器
US6819175B2 (en) Feed forward amplifying circuit
US7620331B2 (en) Receiver circuit having an optical receiving device
US11835554B2 (en) Current sensing circuitry
EP1351400A2 (en) Quad switched gain circuit
US8242838B2 (en) Amplifier with wide gain range
US9374114B2 (en) Receiver apparatus with blocker detection path parallel with receiver path and associated blocker detection method
US20050194518A1 (en) Photoelectric conversion apparatus and photoelectric conversion system using the same
CN114152337B (zh) 光检测装置及系统
US20220240014A1 (en) Audio circuit
JPH1168707A (ja) 光通信システム
JP2010258858A (ja) フィードフォワード型agc回路
JP2000295590A (ja) Catvシステムのhfcシステム
JP2001337115A (ja) 信号振幅検出回路
JPH11340763A (ja) 利得制御回路
JP2002044031A (ja) 光サブキャリア伝送装置の光受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13257973

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010256175

Country of ref document: AU

Ref document number: 9660/CHENP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010782945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010782945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011153114

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010256175

Country of ref document: AU

Date of ref document: 20100521

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010170

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010170

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111202