WO2011043637A2 - 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치 - Google Patents

이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2011043637A2
WO2011043637A2 PCT/KR2010/006950 KR2010006950W WO2011043637A2 WO 2011043637 A2 WO2011043637 A2 WO 2011043637A2 KR 2010006950 W KR2010006950 W KR 2010006950W WO 2011043637 A2 WO2011043637 A2 WO 2011043637A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
bsr
terminal
scheduling request
transmitting
Prior art date
Application number
PCT/KR2010/006950
Other languages
English (en)
French (fr)
Other versions
WO2011043637A3 (ko
Inventor
김성훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201080045338.9A priority Critical patent/CN102668680B/zh
Priority to AU2010304077A priority patent/AU2010304077B2/en
Priority to RU2012118758/07A priority patent/RU2516385C2/ru
Priority to EP10822282.9A priority patent/EP2487981B1/en
Priority to US13/499,855 priority patent/US8743814B2/en
Priority to EP14186195.5A priority patent/EP2846596B1/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to JP2012533094A priority patent/JP5497902B2/ja
Priority to CA2777037A priority patent/CA2777037C/en
Publication of WO2011043637A2 publication Critical patent/WO2011043637A2/ko
Publication of WO2011043637A3 publication Critical patent/WO2011043637A3/ko
Priority to US14/262,034 priority patent/US20140301312A1/en
Priority to US16/675,984 priority patent/US20200145872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to scheduling in a mobile communication system. More particularly, the present invention relates to a method and apparatus for transmitting a scheduling request signal of a terminal in a mobile communication system.
  • the mobile communication system is to provide a communication service while ensuring the mobility of the user.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to rapid technological advances.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps, which is higher than currently provided data rate, with a target of commercialization in 2010.
  • various methods are discussed. For example, a method of simplifying a network structure to reduce the number of nodes located on a communication path or approaching wireless protocols as close to a wireless channel as possible. It is under discussion.
  • a data service determines an amount of radio resources allocated to one terminal according to the amount of data to be transmitted and a channel condition. Therefore, in a wireless communication system such as a mobile communication system, management such as allocating transmission resources is performed in consideration of the amount of resources to be transmitted by the scheduler, the situation of the channel, and the amount of data. This is the same in LTE, which is one of the next generation mobile communication systems. To this end, the scheduler located in the base station manages radio transmission resources and allocates them to the terminals appropriately.
  • a wireless communication system such as a mobile communication system
  • it is classified into forward transmission and reverse transmission according to a data transmission direction.
  • the forward direction means the direction from the base station to the terminal
  • the reverse direction means the direction from the terminal to the base station.
  • the scheduler of the base station can perform scheduling smoothly using the information.
  • the scheduler of the base station may be performed in a state in which the current buffer state of the terminal may not be accurately determined, and thus, there is a difficulty in reverse transmission in that radio resource allocation may not be appropriately assigned to the terminal.
  • the LTE system reports the buffer status of the current terminal to the base station using the "Buffer Status Report Control Element".
  • the buffer status report control information is set such that the terminal is transmitted to the base station when a specific condition is satisfied.
  • the specific condition includes a case where newly generated high-priority data to be transmitted or a predetermined timer expires.
  • a buffer status report (hereinafter referred to as a BSR) when new data having a high priority occurs is referred to as a normal BSR.
  • the terminal transmits 1-bit information called a Dedicated Scheduling Request (D-SR) to the base station to request transmission resources for BSR transmission. do. That is, the D-SR is used for requesting a base station a radio resource for transmitting a regular BSR.
  • D-SR Dedicated Scheduling Request
  • One aspect of the present invention provides a method and apparatus for efficiently transmitting a scheduling request signal by a terminal in a mobile communication system.
  • another aspect of the present invention provides a method and apparatus for efficiently allocating a resource for transmitting a buffer status report in a mobile communication system.
  • the method for transmitting a scheduling request signal of a terminal includes a dedicated scheduling request for requesting a resource for BSR transmission when a buffer status report (BSR) is triggered. Triggering the SR) process, checking whether the buffer status report is canceled, and triggering the D-SR process if the buffer status report is not canceled.
  • BSR buffer status report
  • the apparatus for transmitting a scheduling request signal of a terminal dedicates a scheduling request for a resource request for BSR transmission.
  • Trigger SR check whether the buffer status report is canceled, and if the buffer status report is not canceled, the SR / BSR controller for triggering the D-SR process.
  • the method for transmitting a scheduling request signal of a terminal may include: when a Dedicate Scheduling Request (D-SR) process for a resource request for buffer status report (BSR) transmission is triggered; Initializing a counter value, increasing the counter value by one time before a predetermined time of allowing the D-SR transmission, and transmitting the D-SR at the time of allowing the D-SR transmission.
  • D-SR Dedicate Scheduling Request
  • BSR buffer status report
  • the scheduling request signal transmission apparatus of the terminal may start a Dedicate Scheduling Request (D-SR) process for requesting a resource for buffer status report (BSR) transmission.
  • D-SR Dedicate Scheduling Request
  • An SR / BSR controller which initializes a counter value and increases the counter value by one at a time before the allowable time of the D-SR transmission, and a transmission / reception for transmitting the D-SR at the time of allowing the D-SR transmission Contains wealth.
  • the unnecessary scheduling request signal is not transmitted in the mobile communication system, thereby efficiently using radio resources, reducing unnecessary power waste of the terminal, and reducing backward interference to increase the efficiency of the communication system.
  • 1 is a view for explaining the structure of an LTE mobile communication system
  • FIG. 2 is a diagram illustrating a radio protocol structure of an LTE system
  • BSR buffer status report
  • D-SR dedicated scheduling request
  • FIG. 5 is a diagram illustrating a scheduling request signal transmission operation of a terminal according to the first embodiment of the present invention
  • FIG. 6 is a view illustrating a problem of a prior art related to a second embodiment of the present invention and a process of transmitting a scheduling request signal of a terminal according to the second embodiment of the present invention
  • FIG. 7 is a view illustrating a scheduling request signal transmission operation of a terminal according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram of a terminal device according to the first and second embodiments of the present invention.
  • the present invention provides a method and apparatus for preventing unnecessary malfunction in the UE transmits the D-SR.
  • FIG. 1 is a diagram illustrating a structure of an LTE mobile communication system.
  • a radio access network of an LTE mobile communication system includes a next-generation base station (hereinafter referred to as an Evolved Node B, ENB or Node B) 105, 110, 115, and 120, and a mobility management entity (MME) 125.
  • a serving-gateway (S-GW) 130 is included.
  • the user equipment (hereinafter referred to as UE) 135 is connected to the network through the ENB 105 and the S-GW 130 to which the corresponding terminal is connected.
  • the ENBs 105 to 120 correspond to Node-Bs of the existing UMTS system.
  • the ENB 105 is connected to the UE 135 by radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, which collects the UE's status information and performs scheduling.
  • VoIP Voice over IP
  • LTE uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology in a bandwidth of up to 20 MHz.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125.
  • the MME 125 is responsible for various control functions for wireless connection and is connected to a plurality of base stations as a device.
  • FIG. 2 is a diagram illustrating a radio protocol structure of an LTE system.
  • a wireless protocol of an LTE system includes packet data convergence protocols 205 and 240 (PDCP), radio link control 210 and 235 (RMC), and medium access control 215 and 230 (MAC).
  • the PDCP Packet Data Convergence Protocol
  • RLC radio link control
  • PDCP PDU Packet Data Unit
  • the MACs 215 and 230 are connected to several RLC layer devices configured in one UE, and perform multiplexing of RLC PDUs into MAC PDUs and demultiplexing RLC PDUs from MAC PDUs.
  • the physical layers 220 and 225 channel-code and modulate higher layer data into OFDM symbols and transmit them through a wireless channel, or demodulate and channel decode the OFDM symbols received through the wireless channel and transmit them to a higher layer.
  • BSR buffer status report
  • D-SR dedicated scheduling request
  • the base station 310 may set a D-SR transmission resource to the terminal 305.
  • the D-SR transmission resource is a resource allocated by the base station to the terminal to transmit the D-SR to the base station.
  • the base station 310 may allocate a predetermined period to the terminal 305. Accordingly, in step 315, the base station 310 transmits a control message including the D-SR transmission resource configuration information to the terminal 305.
  • the terminal 305 may know, through the control message, which transmission resource the D-SR transmission resource for the terminal 305 is set to and which subframe is available for use.
  • step 320 it is assumed that a regular BSR is triggered in the terminal 305 at a point in time after step 315.
  • a scheduling request (SR) transmission process is also triggered.
  • the SR transmission process refers to a process of transmitting a D-SR to the base station until the terminal is allocated a radio resource for BSR transmission from the base station. That is, when the SR transmission process is triggered, the terminal 305 transmits the D-SR to the base station 310 until the SR transmission process is cancelled.
  • the terminal 305 Since the terminal 305 knows the subframe allocated to its D-SR transmission resource through the control message received in step 315, the terminal 305 transmits the D-SR in the allocated subframe. . The terminal 305 repeatedly transmits the D-SR to the base station until the resource for BSR transmission is allocated. If it is assumed in step 345 that the terminal 305 has been allocated the resource for BSR transmission, in step 350 transmits the BSR to the base station 310 by using the BSR transmission resources.
  • the terminal 305 When the terminal 305 transmits the BSR to the base station, the terminal 305 cancels the SR transmission process triggered in step 325 and no longer transmits the D-SR.
  • the base station 310 may not be able to receive the D-SR transmitted by the terminal 305 due to some cause, such as incorrectly setting a reverse transmission power value during the D-SR transmission.
  • the terminal 305 repeatedly transmits the D-SR to the base station indefinitely. In this case, problems such as increased power consumption and backward interference of the terminal 305 occur.
  • the current LTE standard limits the number of D-SR transmissions of a UE to a predetermined threshold or less (dsr-transmax), and the UE sets the D-SR to the threshold value (dsr-transmax). Even after transmitting the number of times, if the base station does not receive a resource for BSR transmission, the UE stops D-SR transmission and starts a random access procedure for BSR transmission.
  • the terminal transmits the D-SR to the base station by the threshold (dsr-transmax)
  • the base station did not receive the reverse grant, that is, the terminal did not receive the resource for BSR transmission is the reverse of the terminal This may indicate a serious error in the transmission settings. Therefore, in this case, the terminal releases the dedicated uplink transmission resource including the D-SR transmission resource.
  • the terminal transmits the D-SR to the base station by the number of times of the threshold (dsr-transmax) but fails to receive the reverse grant from the base station is referred to as "D-SR transmission failure".
  • the terminal operates a predetermined counter in which a variable called SR_COUNTER is set to determine whether the D-SR transmission has failed.
  • the SR_COUNTER value is initialized to zero when the SR is triggered and incremented by 1 each time the D-SR is sent.
  • the UE determines that a D-SR transmission failure has occurred, releases a dedicated backward transmission resource including the D-SR transmission resource and performs a random access procedure. Perform.
  • a series of operations of releasing a dedicated uplink transmission resource including a D-SR transmission resource and starting a random access process will be referred to as a "following procedure of a D-SR transmission failure".
  • the terminal performs the D-SR transmission failure follow-up immediately after confirming whether the reverse grant is received after transmitting the dsr-transmax th D-SR. That is, after the terminal transmits the last D-SR and before the base station receives the last D-SR and allocates the reverse grant, the terminal performs a follow-up action of the D-SR transmission failure.
  • the transmission of the last D-SR is a waste of unnecessary resources and backwards. There is a problem that causes only increased interference and waste of power of the terminal. This problem is described in more detail in FIG. 4.
  • FIG. 4 is a diagram showing the problems of the prior art related to the first embodiment of the present invention.
  • one rectangle represents a subframe having a size of 1 msec.
  • Subframes for the D-SR transmission resources allocated to the UE are indicated by arrows 405, 410, 415, 420, 430.
  • an SR transmission process is triggered at an arbitrary time point. In FIG. 4 this is indicated by reference numeral 435.
  • the UE initializes SR_COUNTER to 0 in step 440 and waits until a subframe allocated for the available D-SR transmission resource.
  • step 445 the UE compares SR_COUNTER with dsr-transmax, which is the maximum allowable number of transmissions of D-SR, to determine whether to perform D-SR transmission in the surf frame 410 allocated to be available as a D-SR transmission resource. If SR_COUNTER is smaller than dsr-transmax, that is, if the number of transmissions of the SR has not reached the maximum number of transmission allowances, the UE increases the SR_COUNTER by 1 in step 450 and transmits the D-SR in step 455.
  • the UE repeats the operation of increasing the SR_COUNTER by 1 and comparing the SR_COUNTER and the dsr-transmax for each subframe where the D-SR transmission resource is available, and increasing the SR_COUNTER by 1 when the SR_COUNTER is small. For example, if dsr-transmax is set to 3, since the SR_COUNTER at the corresponding time is 2 in subframe 420, the SR is transmitted and the SR_COUNTER is increased by one.
  • SR_COUNTER becomes 3, and this time is equal to the value of SR_COUNTER and dsr-transmax. Therefore, when the SR_COUNTER is greater than or equal to dsr-transmax, the UE performs a D-SR transmission failure subsequent procedure, that is, a D-SR transmission resource. Release and perform random access for resources for BSR transmission. That is, the subframe 420 results in the subsequent follow-up of the D-SR transmission failure even before the base station responds to the SR transmitted by the UE.
  • the first embodiment of the present invention is to solve the problem described in the description of FIG. Previously, after transmitting D-SR, SR_COUNTER was increased and SR_COUNTER and dsr-transmax were compared, and when SR_COUNTER was greater than or equal to dsr-transmax, the follow-up action was performed.
  • the SR_COUNTER is increased before the time of transmitting the D-SR before the predetermined time. Thereafter, SR_COUNTER is compared with dsr-transmax, and when the result of the comparison is greater than dsr-transmax, the D-SR failure follow-up is performed.
  • the first embodiment of the present invention solves the above problems by changing the start time point of the D-SR failure follow-up action.
  • the UE transmits the D-SR when the SR_COUNTER value and the dsr-transmax value are the same, but does not start the D-SR failure follow-up.
  • the terminal increases the SR_COUNTER by 1 at a point in time before the next available subframe for the D-SR transmission resource, so that the condition that the SR_COUNTER is greater than dsr-transmax is established, and the terminal does not transmit the D-SR. D-SR failure follow-up can be performed.
  • FIG. 5 is a diagram illustrating a scheduling request signal transmission operation of a terminal according to the first embodiment of the present invention.
  • the UE When the SR transmission process is triggered in step 505, for example, a normal BSR occurs and the SR transmission process is triggered in step 510, the UE initializes the SR_COUNTER to zero. In step 515, the UE waits until a predetermined time point close to the available subframe for the D-SR transmission resource to determine whether to transmit the D-SR or the like.
  • the predetermined time point may be set to a time point earlier than the available subframe for the D-SR transmission resource by the processing delay of the terminal required to determine whether to transmit the SR or perform a subsequent operation according to the SR transmission failure. Can be changed.
  • step 520 the UE first increases SR_COUNTER by 1 before determining whether to transmit D-SR. As described above, by increasing the SR_COUNTER prior to the process of determining whether to perform D-SR transmission or follow-up on D-SR transmission failure, the UE does not transmit unnecessary D-SR before performing follow-up on D-SR transmission failure. You may not.
  • the UE updates SR_COUNTER to 4 at a point in time preceding the subframe 430 and closes to the subframe 430, and compares the SR_COUNTER with dsr-transmax.
  • SR_COUNTER is larger than dsr-transmax
  • the UE performs subsequent operations in subframe 430. That is, instead of transmitting the last D-SR immediately after taking the next operation, the terminal waits until the available subframe time point for the D-SR transmission resource and takes the subsequent operation.
  • step 525 the UE compares SR_COUNTER and dsr-transmax. If SR_COUNTER is less than or equal to dsr-transmax, the process proceeds to step 545. If SR_COUNTER is greater than dsr-transmax, the process proceeds to step 530. Step 530 is for follow-up of D-SR transmission failure and step 545 is for D-SR transmission.
  • step 530 is performed. However, in the present invention, if SR_COUNTER is greater than dsr-transmax, step 530 is performed. On the other hand, if dsr-transmax is set to a value larger than that of the prior art, the conventional determination procedure may be used as it is. That is, in this case, if SR_COUNTER is less than dsr-transmax in step 525, the process proceeds to step 545. If SR_COUNTER is equal to or greater than dsr-transmax, the process may proceed to step 530. In this case, however, since the (dsr-transmax-1) th D-SR transmission is the last D-SR transmission, dsr-transmax should be set to a value larger by 1 than the conventional scheme.
  • Step 530 means that the D-SR transmission has been performed up to a predetermined maximum number of times, but the terminal has not received a response, that is, a reverse grant. Therefore, the UE performs the follow-up action of the D-SR transmission failure. That is, in step 530, various dedicated uplink transmission resources including SR transmission resources are released. In step 535, a random access process is started, and in step 540, all SR transmission processes in progress are canceled.
  • Step 545 means that the number of D-SR transmissions does not reach a predetermined maximum number of times, and thus the UE transmits D-SRs.
  • step 550 it is checked whether the SR transmission process continues.
  • the ongoing SR transmission process means that the SR transmission process is not canceled after being triggered.
  • the SR transmission process may be canceled by a D-SR failure follow-up as in step 540, or may be canceled by transmitting a regular BSR.
  • step 515 the UE proceeds to step 515 to continue the SR transmission process. If the SR transmission process is not in progress, that is, the SR transmission process is canceled by transmitting the BSR after the SR transmission process is triggered. If so, the terminal proceeds to step 555 to terminate the SR transmission process.
  • FIG. 6 is a view illustrating a problem of the prior art related to the second embodiment of the present invention and a process of transmitting a scheduling request signal of a terminal according to the second embodiment of the present invention.
  • the SR transmission process is also triggered in order to be allocated resources for regular BSR transmission.
  • an exceptional situation may occur in which a D-SR is not transmitted.
  • the D-SR is transmitted. If the SR is successfully transmitted and received, the UE receives a reverse grant in an arbitrary subframe in step 615. Meanwhile, in step 625, the UE performs backward transmission after four subframes from the subframe in which the reverse grant is received.
  • the terminal configures a MAC PDU to be transmitted in the reverse direction when the reverse grant is received, and the MAC PDU includes a BSR.
  • the MAC PDU includes a BSR.
  • a new normal BSR occurs 635 between the time 620 when the configuration of the MAC PDU is completed and the time 625 when the MAC PDU of the configuration is actually transmitted.
  • the new normal BSR cannot be included in the MAC PDU transmitted at the time point 625.
  • the SR transmission process triggered at 605 is canceled at step 630.
  • the SR transmission process for the newly generated regular BSR in step 635 is canceled without starting the D-SR transmission.
  • the current LTE standard stipulates that the existing SR transmission process is canceled only when the BSR reflecting the most recent buffer state is transmitted.
  • This solution is connected to the SR transmission process for the newly generated normal BSR in step 635 without canceling the SR transmission process triggered for the previous BSR in step 605 in the situation described with reference to FIG. 6. Therefore, the SR_COUNTER value is not initialized and the SR_COUNTER used in the SR transmission process of the previous step 605 for the BSR is used as it is. This may result in the D-SR transmission failure follow-up being executed too soon because the maximum number of allowable transmissions of the D-SR for the new BSR in step 635 is reduced.
  • the SR transmission process (that is, the SR transmission process of step 605 in FIG. 6) being canceled is canceled at the moment of transmitting the MAC PDU in which the BSR is stored. If there is no SR transmission currently in progress even though the BSR is triggered, a new SR transmission process is triggered.
  • the UE cancels the SR transmission process in progress.
  • a BSR ie, BSR in step 635
  • BSR BSR in step 635
  • a new SR transmission process is triggered. That is, the terminal newly triggers the SR transmission process for transmission of the newly generated regular BSR after canceling the existing SR transmission process in step 630 (635).
  • FIG. 7 is a diagram illustrating a scheduling request signal transmission operation of a terminal according to a second embodiment of the present invention.
  • the UE triggers an SR transmission process in step 710. That is, the UE transmits the D-SR when the SR transmission resource is available and generates and transmits a MAC PDU including the BSR when the reverse grant is received and retransmits the D-SR if the reverse grant is not received. Do this.
  • the UE monitors whether the BSR triggered in step 715 is canceled while performing the above operation. For example, the UE may monitor whether the triggered BSR has not been canceled for each transmission time interval (TTI). On the other hand, if the BSR reflecting the most recent buffer state after the BSR is triggered is included in the MAC PDU (for transmission), the triggered BSR process is canceled. If the triggered BSR is canceled, the operation ends.
  • TTI transmission time interval
  • the terminal proceeds to step 720 and checks whether there is an SR transmission process currently in progress. For reference, when the triggered BSR process is not canceled, the BSR reflecting the most recent buffer state is not yet included in the MAC PDU, or the BSR is included in the MAC PDU but the BSR reflects the current buffer state of the UE. If not, the triggered BSR is not canceled.
  • step 720 if there is a SR transmission process currently in progress, the UE proceeds to step 715 and continues monitoring SR cancellation while continuing the SR transmission process. If there is no SR transmission process currently in operation 720, the UE proceeds to operation 725 to trigger a new SR transmission process. The process returns to step 715 to monitor whether the BSR is canceled. If the BSR is canceled in step 715, the terminal terminates the operation.
  • FIG. 8 is a block diagram illustrating a terminal device according to the first and second embodiments of the present invention.
  • the terminal apparatus includes a multiplexing and demultiplexing apparatus 805, an HARQ processor 810, an SR / BSR controller 815, a MAC controller 820, and a transceiver 825.
  • the SR / BSR control unit 815 monitors whether upper layer data is generated or the like and determines whether to trigger a BSR.
  • the SR / BSR controller 815 according to the first embodiment of the present invention triggers an SR transmission process and operates SR_COUNTER and dsr-transmax to perform D-SR transmission and follow-up action of D-SR transmission failure.
  • the control unit 825 transmits the D-SR or performs a random access operation according to the determination result.
  • the SR / BSR controller 815 determines whether to cancel the BSR, and triggers a new SR transmission process if there is no SR transmission process in progress even though there is a BSR that has not been cancelled.
  • the MAC controller 820 interprets scheduling information received through the forward and reverse control channels and controls the transceiver 825 to receive forward data or transmit reverse data.
  • the multiplexing and demultiplexing apparatus 805 controls to generate data to be transmitted in the reverse direction.
  • the SR / BSR controller 815 notifies the SR / BSR controller 815 when the reverse grant is received so that the SR / BSR controller 815 can determine the cancellation of the SR transmission process and the BSR cancellation.
  • the transceiver 825 is an apparatus for transmitting / receiving MAC PDUs or transmitting / receiving control information through a wireless channel, and transmitting / receiving HARQ packets.
  • the HARQ processor 810 is a set of soft buffers configured to perform an HARQ operation and is identified by a HARQ process identifier.
  • the multiplexing and demultiplexing apparatus 805 concatenates the data delivered in multiple logical channels to form a MAC PDU or demultiplexes the MAC PDUs into MAC SDUs and delivers them to the appropriate logical channel.

Abstract

본 발명은 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법 및 장치에 관한 것이다. 본 발명이 제공하는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법은, 버퍼 상태 보고(Buffer Status Report: BSR)이 트리거되면, 상기 BSR 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정을 트리거하는 과정과, 상기 버퍼 상태 보고의 취소 여부를 검사하는 과정과, 상기 버퍼 상태 보고가 취소되지 않았다면 상기 D-SR 과정을 트리거하는 과정을 포함한다. 이로서 본 발명에서는 단말이 버퍼 상태 보고 전송용 자원을 효율적으로 할당받을 수 있다.

Description

이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치
본 발명은 이동통신 시스템에서 스케줄링에 관련된 것이다. 더 상세하게는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법 및 장치에 관한 것이다.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 통신 서비스를 제공하기 위한 것이다. 이러한 이동통신 시스템은 비약적인 기술 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다.
근래에는 차세대 이동통신 시스템 중 하나로 3GPP에서 LTE(Long Term Evolution)에 대한 표준화 작업이 진행 중이다. LTE는 2010년 정도를 상용화 목표로 해서, 현재 제공되고 있는 데이터 전송률보다 높은 최대 100 Mbps 정도의 전송 속도를 가지는 고속의 패킷 기반 통신을 구현하는 기술이다. 이러한 고속의 통신을 지원하기 위하여 여러 가지 방안이 논의되고 있는데, 예를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수를 줄이는 방안 또는 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 논의 중이다.
한편, 데이터 서비스는 음성 서비스와 달리 전송하고자 하는 데이터의 양과 채널 상황에 따라 한 단말에게 할당되는 무선 자원의 양이 결정된다. 따라서 이동통신 시스템과 같은 무선 통신 시스템에서는 스케줄러에서 전송하고자 하는 자원의 양과 채널의 상황 및 데이터의 양 등을 고려하여 전송 자원을 할당하는 등의 관리가 이루어진다. 이는 차세대 이동통신 시스템 중 하나인 LTE에서도 동일하게 이루어지며 이를 위하여 기지국에 위치한 스케줄러가 무선 전송 자원을 관리하여 단말에 적절히 할당한다.
이동통신 시스템과 같은 무선 통신 시스템에서는 데이터의 전송 방향에 따라 순방향 전송과 역방향 전송으로 구분된다. 순방향이라 함은 기지국에서 단말로의 방향을 의미하며, 역방향이라 함은 단말에서 기지국으로의 방향을 의미한다.
순방향 전송의 경우, 기지국은 현재의 채널 상황, 할당 가능한 무선 자원의 양 및 전송할 데이터의 양을 정확히 파악할 수 있으므로, 기지국의 스케줄러는 상기 정보들을 이용하여 원활하게 스케줄링을 수행할 수 있다. 그러나 역방향 전송의 경우, 기지국의 스케줄러는 단말의 현재 버퍼 상태를 정확하게 파악하지 못한 상태에서 수행될 수도 있기 때문에 단말에 무선 자원 할당을 적절히 할 수 없을 수 있다는 측면에서 역방향 전송의 어려움이 있다.
이러한 역방향 전송의 어려움을 해결하기 위하여, LTE 시스템에서는 "버퍼 상태 보고 제어 정보(Buffer Status Report Control Element)"를 이용해서 단말은 기지국에게 현재 단말의 버퍼 상태를 보고한다.
상기 버퍼 상태 보고 제어 정보는 특정 조건이 만족되는 경우 단말이 기지국에 전송되도록 설정된다. 상기 특정 조건이 만족되는 경우의 예는, 전송하고자 하는 우선 순위가 높은 데이터가 새로 발생하는 경우, 또는 소정의 타이머가 만료된 경우 등을 들 수 있다.
상기 우선 순위가 높은 새로 데이터가 발생한 경우의 버퍼 상태 보고(Buffer Status Report: 이하 BSR로 칭한다.)는 정규 BSR이라 한다. 단말은 상기 정규 BSR을 가능하면 신속하게 기지국으로 전송하기 위해서 정규 BSR이 발생하면 전용 스케줄링 요청(Dedicate Scheduling Request, 이하 D-SR)이라는 1 비트 정보를 기지국으로 전송하여 BSR 전송을 위한 전송 자원을 요청한다. 즉, 상기 D-SR은 정규 BSR을 전송하기 위한 무선 자원을 기지국에게 요청하기 위한 용도로 사용되는 것이다.
본 발명의 일 측면은 이동 통신 시스템에서 단말이 효율적으로 스케줄링 요청 신호를 전송하는 방법 및 장치를 제공한다.
또한, 본 발명의 다른 측면은 이동 통신 시스템에서 단말이 버퍼 상태 보고 전송용 자원을 효율적으로 할당받기 위한 방법 및 장치를 제공한다.
본 발명이 제공하는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법은, 버퍼 상태 보고(Buffer Status Report: BSR)이 트리거되면, 상기 BSR 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정을 트리거하는 과정과, 상기 버퍼 상태 보고의 취소 여부를 검사하는 과정과, 상기 버퍼 상태 보고가 취소되지 않았다면 상기 D-SR 과정을 트리거하는 과정을 포함한다.
본 발명이 제공하는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 장치는, 버퍼 상태 보고(Buffer Status Report: BSR)이 트리거되면, 상기 BSR 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정을 트리거하고, 상기 버퍼 상태 보고의 취소 여부를 검사하고, 상기 버퍼 상태 보고가 취소되지 않았다면 상기 D-SR 과정을 트리거하는 SR/BSR 제어부를 포함한다.
본 발명이 제공하는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법은, 버퍼 상태 보고(Buffer Status Report: BSR) 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정이 트리거되면 카운터 값을 초기화하는 과정과, 상기 D-SR 전송의 허용 시점보다 소정 시점 이전 시점에서 상기 카운터 값을 1 증가시키는 과정과, 상기 D-SR 전송의 허용 시점에 상기 D-SR을 전송하는 과정을 포함한다.
본 발명이 제공하는 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 장치는, 버퍼 상태 보고(Buffer Status Report: BSR) 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정이 시작되면 카운터 값을 초기화하고, 상기 D-SR 전송의 허용 시점보다 소정 시점 이전 시점에서 상기 카운터 값을 1 증가시키는 SR/BSR 제어부와, 상기 D-SR 전송의 허용 시점에 상기 D-SR을 전송하는 송수신부를 포함한다.
본 발명의 구성에 따른 효과를 설명하면 다음과 같다.
본 발명은 이동 통신 시스템에서 불필요한 스케줄링 요청 신호를 전송하지 않음으로써, 무선 자원을 효율적으로 사용하고, 단말의 불필요한 전력 낭비를 감소시키고, 역방향 간섭을 감소시켜 통신 시스템의 효율을 높일 수 있다.
도 1은 LTE 이동 통신 시스템의 구조를 설명하는 도면,
도 2는 LTE 시스템의 무선 프로토콜 구조를 설명하는 도면,
도 3은 LTE 이동 통신 시스템에서 버퍼 상태 보고(BSR) 및 전용 스케줄링 요청(D-SR)을 설명하는 도면,
도 4는 본 발명의 제1 실시예에 관련된 종래 기술의 문제점을 도시한 도면,
도 5는 본 발명의 제1 실시예에 따른 단말의 스케줄링 요청 신호 전송 동작을 설명하는 도면,
도 6은 본 발명의 제2 실시예에 관련된 종래 기술의 문제점과 본 발명의 제2 실시예에 따른 단말의 스케줄링 요청 신호 전송 과정을 설명하는 도면,
도 7은 본 발명의 제2 실시예에 따른 단말의 스케줄링 요청 신호 전송 동작을 설명하는 도면,
도 8은 본 발명의 제1 및 제2 실시예들에 따른 단말 장치의 블록 구성도.
이하에서 본 발명의 바람직한 실시 예들을 첨부한 도면을 참조하여 상세히 설명한다. 도면들 중 동일한 구성 요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
본 발명에서는 단말이 D-SR을 전송함에 있어서 불필요한 오동작을 방지하는 방법 및 장치를 제시한다.
본 발명의 상세한 설명에 앞서, LTE 이동 통신 시스템에 대해서 간략히 설명한다.
도 1은 LTE 이동 통신 시스템의 구조를 설명하는 도면이다.
도 1을 참조하면, LTE 이동 통신 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB 또는 Node B라 한다)(105, 110, 115, 120)과 MME (Mobility Management Entity)(125) 및 S-GW(Serving-Gateway)(130)를 포함한다. 사용자 단말(User Equipment, 이하 UE라 칭한다)(135)은 해당 단말이 연결된 ENB(105) 및 S-GW(130)를 통해 네트워크에 접속한다.
ENB(105 ~ 120)는 기존의 UMTS 시스템의 노드 B(Node-B)에 대응된다. ENB(105)는 UE(135)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 상태 정보를 취합해서 스케줄링을 하는데, 이 스케줄링 기능을 ENB(105 ~ 120)가 담당한다.
하나의 ENB는 통상 다수의 셀들을 제어한다. 최대 100 Mbps의 전송속도를 구현하기 위해서 LTE는 최대 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다.
S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME(125)는 무선 연결을 위한 각종 제어 기능을 담당하며 장치로 다수의 기지국들과 연결된다.
도 2는 LTE 시스템의 무선 프로토콜 구조를 설명하는 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 PDCP(Packet Data Convergence Protocol 205, 240), RLC(Radio Link Control 210, 235), MAC (Medium Access Control 215,230)으로 이루어진다. PDCP(Packet Data Convergence Protocol)(205, 240)는 IP 헤더 압축/복원 등의 동작을 담당하고, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(210, 235)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. MAC(215,230)은 하나의 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. 물리 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고 OFDM 심볼로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심볼을 복조하고 채널 복호하여 상위 계층으로 전달한다.
도 3은 LTE 이동 통신 시스템에서 버퍼 상태 보고(BSR) 및 전용 스케줄링 요청(D-SR)을 설명하는 도면이다.
기지국(310)은 단말(305)에게 D-SR 전송 자원을 설정할 수 있다. D-SR 전송 자원이란 단말이 기지국에게 D-SR을 전송하기 위해 기지국이 단말에 할당하는 자원으로, 기지국(310)이 단말(305)에게 소정 주기 할당할 수 있다. 이에 따라 315단계에 기지국(310)은 단말(305)에게 D-SR 전송 자원 설정 정보가 포함된 제어 메시지를 전송한다. 단말(305)은 상기 제어 메시지를 통하여, 상기 단말(305)을 위한 D-SR 전송 자원이 어떤 전송 자원에 설정되어 있으며 어떤 서브 프레임에서 사용 가능하도록 설정되었는지를 알 수 있다.
320단계는 상기 315단계 이후의 어느 시점에서 단말(305)에 정규 BSR이 트리거되는 상황을 가정한 것이다. 325단계는 상기 정규 BSR이 트리거된 이후 스케줄링 요청(Scheduling Request: SR) 전송 과정도 함께 트리거된 것을 나타낸다. 상기 SR 전송 과정이란 단말이 BSR 전송용 무선 자원을 기지국으로부터 할당받을 때까지 D-SR을 기지국으로 전송하는 과정을 말한다. 즉, SR 전송 과정이 트리거되면 단말(305)은 상기 SR 전송 과정이 취소될 때까지 기지국(310)에 D-SR을 전송한다.
단말(305)은 상기 315 단계에서 수신한 제어 메시지를 통하여 자신의 D-SR 전송 자원에 할당된 서브 프레임을 알 수 있으므로, 상기 단말(305)는 상기 할당된 서브 프레임에서 D-SR을 전송한다. 단말(305)은 BSR 전송용 자원을 할당받을 때까지 기지국으로 D-SR을 반복 전송한다. 345단계에서 단말(305)이 BSR 전송용 자원을 할당받은 것으로 가정하면, 350단계에서 상기 BSR 전송용 자원을 이용하여 BSR을 기지국(310)으로 전송한다.
단말(305)은 이렇게 BSR을 기지국으로 전송하면 상기 325 단계에서 트리거된 SR 전송 과정을 취소하고 더 이상 D-SR을 전송하지 않는다.
그런데 상기 D-SR 전송 시 역방향 전송 전력 값이 잘못 설정되는 등의 어떠한 원인에 의하여, 기지국(310)은 상기 단말(305)이 전송한 D-SR을 수신하지 못할 수도 있다. 이 경우 단말(305)이 D-SR을 기지국으로 무한히 반복하여 전송하게 된다. 이러한 경우 단말(305)의 전력 소모 및 역방향 간섭이 증가하는 등의 문제가 생긴다.
이러한 문제를 해결하기 위하여, 현재 LTE 표준 규격에서는 단말의 D-SR 전송 횟수를 소정의 임계값(dsr-transmax) 이하로 제한하고 있으며, 단말이 D-SR을 상기 임계값(dsr-transmax)의 횟수만큼 전송한 이후에도 기지국으로부터 BSR 전송용 자원을 할당받지 못하면 단말은 D-SR 전송을 중단하고 BSR 전송을 위해서 랜덤 액세스 과정을 시작한다.
단말이 D-SR을 상기 임계값(dsr-transmax)만큼 기지국으로 전송하였는데도, 기지국이 역방향 그랜트를 수신하지 못하였다는 것, 즉, 단말이 BSR 전송용 자원을 할당받지 못했다는 것은 단말의 역방향 전송 설정에 심각한 오류가 있을 수 있음을 시사한다. 따라서 단말은 이러한 경우에 D-SR 전송 자원을 포함한 전용 역방향 전송 자원을 해제(release)한다. 설명의 편의상 이하에서는 단말이 D-SR을 상기 임계값(dsr-transmax)의 횟수만큼 기지국으로 전송하였으나 기지국으로부터 역방향 그랜트를 수신하지 못한 경우를 "D-SR 전송 실패"로 칭하기로 한다.
단말은 D-SR 전송 실패인지 여부를 판단하기 위해서 SR_COUNTER라는 변수가 설정된 소정의 카운터를 운용한다. SR_COUNTER의 값은 SR이 트리거되면 0으로 초기화되고 D-SR이 전송될 때마다 1씩 증가한다. 단말은 SR_COUNTER가 상기 D-SR 전송에 대한 임계값(dsr-transmax)에 도달하면 D-SR 전송 실패가 일어난 것으로 판단하고, D-SR 전송 자원을 포함한 전용 역방향 전송 자원을 해제하고 랜덤 액세스 과정을 수행한다. 이하에서 설명의 편의상, D-SR 전송 자원을 포함한 전용 역방향 전송 자원을 해제하고 랜덤 액세스 과정을 시작하는 일련의 동작을 "D-SR 전송 실패 후속 절차"로 칭하기로 한다.
한편, 현재의 LTE 표준 규격에서는, 단말이 상기 dsr-transmax 번째 D-SR을 전송한 후 역방향 그랜트 수신 여부를 확인하지 않고 바로 D-SR 전송 실패 후속 조치를 수행한다. 즉, 단말이 마지막 D-SR을 전송한 이후 기지국이 상기 마지막 D-SR을 수신하여 역방향 그랜트를 할당하기 이전에, 단말은 D-SR 전송 실패 후속 조치를 실행한다. 이렇게 되면 단말은 상기 전송한 마지막 D-SR 전송에 대한 기지국의 역방향 그랜트를 확인하지 않고 D-SR 전송 실패 후속 절차를 수행하는 결과가 되므로, 상기 마지막 D-SR의 전송은 불필요한 자원의 낭비와 역방향 간섭 증가 및 단말의 전력 낭비만을 초래하게 되는 문제가 생긴다. 도 4에서 이러한 문제점을 더 상세히 설명한다.
도 4는 본 발명의 제1 실시예에 관련된 종래 기술의 문제점을 도시한 도면이다.
도 4에서 하나의 사각형은 1 msec 크기의 서브 프레임을 나타낸다. 단말에게 할당된 D-SR 전송 자원을 위한 서브 프레임은 화살표(405, 410, 415, 420, 430)로 표시되었다.
임의의 시점에 단말에 SR 전송 과정이 트리거되었다고 가정한다. 도 4에서는 이를 참조 번호 435에서 나타내었다. 이처럼 435단계에서 SR 전송 과정이 트리거되면, 440단계에서 단말은 SR_COUNTER를 0으로 초기화하고, 가용한 D-SR 전송 자원을 위해 할당된 서브 프레임까지 대기한다.
445단계에서 단말은 D-SR 전송 자원으로 가용하도록 할당된 서프 프레임 410에서 D-SR 전송을 수행할지를 결정하기 위하여, SR_COUNTER를 D-SR 최대 허용 전송 회수인 dsr-transmax와 비교한다. 비교 결과 SR_COUNTER가 dsr-transmax보다 작으면, 즉, SR의 전송 횟수가 최대 전송 허용 회수에 도달하지 않았다면, 450단계에서 단말은 SR_COUNTER를 1 증가시키고, 455단계에서 D-SR을 전송한다.
이러한 방식으로 단말은 SR 전송 과정이 진행 중이면 D-SR 전송 자원이 가용한 서브 프레임마다 SR_COUNTER와 dsr-transmax를 비교해서 SR_COUNTER가 작은 경우 SR_COUNTER를 1 증가시키고 SR을 전송하는 동작을 반복한다. 일 예로, dsr-transmax가 3으로 설정되었다면 서브 프레임 420에서 해당 시점의 SR_COUNTER가 2이므로 SR을 전송하고 SR_COUNTER를 1 증가시킨다.
다음 서브 프레임 425에서는 SR_COUNTER가 3이 되며 이 때는 SR_COUNTER의 값과 dsr-transmax와 동일하므로, 단말은 SR_COUNTER가 dsr-transmax보다 크거나 같은 경우 D-SR 전송 실패 후속 절차, 즉 D-SR 전송 자원을 해제하고 BSR 전송용 자원을 위한 랜덤 액세스를 수행한다. 즉, 서브 프레임 420에서 단말이 전송한 SR에 대해 기지국이 응답하기도 전에 D-SR 전송 실패 후속 조치를 수행하는 결과가 되는 것이다.
이러한 문제는 단말이 D-SR을 전송하면 그에 대한 기지국의 응답, 즉 역방향 그랜트의 수신 여부를 일정 기간 동안 대기하는 것이 바람직하지만, 상술한 기존의 LTE 표준 규격에서의 동작은 단말이 마지막 D-SR을 전송한 이후의 바로 다음 서브 프레임에서 곧바로 D-SR 전송 실패 후속 조치를 취하기 때문에 생긴다.
본 발명의 제1 실시예는 상기 도 4의 설명에서 설명된 문제점을 해결하기 위한 것이다. 기존에는 D-SR을 전송한 이후 SR_COUNTER를 증가시키고 SR_COUNTER와 dsr-transmax를 비교하여 SR_COUNTER가 dsr-transmax보다 크거나 같은 경우에 바로 D-SR 전송 실패 후속 조치를 수행하였다.
그러나 본 발명의 제1 실시예에서는 기존의 방식과는 달리 D-SR을 전송하는 시점보다 소정 시간 앞선 시점에 SR_COUNTER를 먼저 증가시킨다. 이후 SR_COUNTER와 dsr-transmax를 비교하고,, 비교 결과 SR_COUNTER가 dsr-transmax보다 큰 경우에 D-SR 실패 후속 조치를 수행한다. 이렇게 본 발명의 제1 실시예는 D-SR 실패 후속 조치의 시작 시점을 변경하여 상기한 문제점을 해결한다.
상술한 본 발명의 제1 실시예의 동작에 따르면 단말은 SR_COUNTER 값과 dsr-transmax 값이 동일해지는 시점에는 D-SR을 전송하지만, D-SR 실패 후속 조치는 시작하지 않는다. 또한, 단말은 D-SR 전송 자원을 위한 가용한 다음 서브 프레임보다 소정 시간 앞선 시점에서 SR_COUNTER를 1 증가시키므로 SR_COUNTER가 dsr-transmax보다 큰 조건이 성립되도록 하여, 단말은 D-SR 전송은 하지 않으면서 D-SR 실패 후속 조치를 수행할 수 있다.
결과적으로 마지막 D-SR을 전송하고 곧 바로 D-SR 실패 후속 조치를 취하는 것이 아니라, D-SR 전송 자원을 위한 가용한 다음 서브 프레임까지 대기한 후 D-SR 실패 후속 조치 수행 여부를 판단함으로써, 불필요한 D-SR이 전송되는 문제점을 해결할 수 있다.
도 5는 본 발명의 제1 실시예에 따른 단말의 스케줄링 요청 신호 전송 동작을 설명하는 도면이다.
505 단계에서 SR 전송 과정, 일 예로, 정규 BSR이 발생하여 SR 전송 과정이 트리거되면 510 단계에서 단말은 SR_COUNTER를 0으로 초기화한다. 515 단계에서 단말은 D-SR 전송 여부 등을 결정하기 위해서 일단 D-SR 전송 자원을 위한 가용한 서브 프레임과 가까운 소정의 시점까지 대기한다. 상기 소정의 시점은 D-SR 전송 자원을 위한 가용한 서브 프레임보다, SR 전송 여부 혹은 SR 전송 실패에 따른 후속 동작 수행 여부 판단에 소요되는 단말의 처리 지연만큼 앞선 시점으로 설정될 수 있으며, 이 시점은 변경이 가능하다.
520 단계에서 단말은 D-SR 전송 여부 판단에 앞서 먼저 SR_COUNTER를 1 증가시킨다. 앞서 설명한 바와 같이 D-SR 전송 여부 및 D-SR 전송 실패 후속 조치 수행 여부 판단 과정에 앞서 SR_COUNTER를 먼저 증가시킴으로써, 단말은 D-SR 전송 실패 후속 조치를 수행하기 이전에 불필요한 D-SR을 전송하지 않을 수 있다.
상기 도 4를 예로 설명하면, 단말은 서브 프레임 430보다 앞선 시점이면서 서브 프레임 430과 가까운 소정의 시점에 SR_COUNTER를 4로 갱신하고 SR_COUNTER와 dsr-transmax를 비교한다. 이 경우 SR_COUNTER가 dsr-transmax보다 크기 때문에 단말은 서브 프레임 430에서 후속 동작을 수행한다. 즉, 마지막 D-SR을 전송하고 곧 바로 후속 동작을 취하는 것이 아니라 D-SR 전송 자원을 위한 가용한 서브 프레임 시점까지 대기한 후 후속 동작을 취한다.
525 단계에서 단말은 SR_COUNTER과 dsr-transmax를 비교한다. SR_COUNTER가 dsr-transmax보다 작거나 같으면 545 단계로 진행하고, SR_COUNTER가 dsr-transmax 보다 크면 530 단계로 진행한다. 530 단계는 D-SR 전송 실패 후속 조치를 위한 것이고 545 단계는 D-SR 전송을 위한 것이다.
기존에는 SR_COUNTER가 dsr-transmax와 같거나 크면 530 단계의 동작을 수행하였지만, 본 발명에서는 SR_COUNTER가 dsr-transmax 보다 큰 경우에 530 단계로 진행한다. 한편, dsr-transmax를 종래 기술에 비해 1 큰 값으로 설정한다면 기존 방식의 판단 절차를 그대로 사용할 수도 있다. 즉, 이 경우 525 단계에서 SR_COUNTER가 dsr-transmax보다 작으면 545 단계로 진행하고, SR_COUNTER가 dsr-transmax와 같거나 크면 530 단계로 진행하도록 할 수도 있다. 다만 이 경우, (dsr-transmax-1)번째 D-SR 전송이 마지막 D-SR 전송이므로 dsr-transmax를 기존 방식에 비해 1만큼 큰 값으로 설정하여야 한다.
530 단계로 진행한다는 것은 D-SR 전송을 소정의 최대 회수까지 수행하였지만 단말이 그에 대한 응답, 즉 역방향 그랜트를 수신하지 못하였다는 것을 의미한다. 따라서 단말은 D-SR 전송 실패 후속 조치를 수행한다. 즉, 530 단계에서 SR 전송 자원을 포함한 각종 전용 역방향 전송 자원을 해제하고, 535 단계에서 랜덤 액세스 과정을 시작하고, 540 단계에서 진행 중인 SR 전송 과정을 모두 취소한다.
545 단계로 진행한다는 것은 D-SR 전송 회수가 소정의 최대 회수에 도달하지 않았다는 것을 의미하므로, 단말은 D-SR을 전송한다. 그리고 550 단계에서 SR 전송 과정이 계속 진행 중인지 검사한다. SR 전송 과정이 계속 진행 중이라는 것은 SR 전송 과정이 트리거된 후 취소되지 않은 것을 의미한다. SR 전송 과정은 540 단계와 같이 D-SR 실패 후속 조치에 의하여 취소된 것일 수도 있고, 정규 BSR이 전송됨으로써 취소될 수도 있다.
만약 SR 전송 과정이 여전히 진행 중이라면 단말은 515 단계로 진행해서 SR 전송 과정을 계속 수행하고, SR 전송 과정이 진행 중이 아니라면, 즉, SR 전송 과정이 트리거된 후 BSR이 전송됨으로써 SR 전송 과정이 취소되었다면 단말은 555 단계로 진행해서 SR 전송 과정을 종료한다.
이하에서는 본 발명의 제2 실시예에 따른 단말의 스케줄링 요청 신호 전송 과정을 설명한다.
도 6은 본 발명의 제2 실시예에 관련된 종래 기술의 문제점과 본 발명의 제2 실시예에 따른 단말의 스케줄링 요청 신호 전송 과정을 설명하는 도면이다.
앞서 설명한 바와 같이 정규 BSR이 트리거되면, 정규 BSR 전송용 자원을 할당 받기 위해서 SR 전송 과정도 함께 트리거된다. 그런데 정규 BSR이 트리거되더라도 D-SR이 전송되지 않는 예외적인 상황이 발생할 수도 있다.
일 예로, 도 6의 605단계에서 임의의 시점에 정규 BSR이 트리거되고 SR 전송 과정이 트리거되어 610단계에서 D-SR 전송 자원을 위한 가용한 서브 프레임에서 D-SR이 전송된 경우, 상기 D-SR이 성공적으로 송수신되었다면 615단계에서 단말은 임의의 서브 프레임에서 역방향 그랜트를 수신한다. 한편, 625단계에서 단말은 역방향 그랜트가 수신된 서브 프레임으로부터 4개의 서브 프레임 이후에 역방향 전송을 수행한다.
단말은 역방향 그랜트가 수신되면 역방향으로 전송할 MAC PDU를 구성하는데, 상기 MAC PDU에는 BSR이 포함된다. 한편, 상기 MAC PDU의 구성이 완료되는 시점(620)과 상기 구성이 완료된 MAC PDU가 실제로 전송되는 시점(625) 사이에 새로운 정규 BSR이 발생(635)하는 상황을 가정하자.
이 경우 상기 새로운 정규 BSR은 상기 시점 625에서 전송되는 MAC PDU에 포함될 수 없다. 하지만 상기 시점 625에서 BSR이 포함된 MAC PDU가 전송되면 630단계에서 상기 605단계에서 트리거된 SR 전송 과정은 취소된다. 이 경우 상기 635단계에서 새로 발생한 정규 BSR에 대한 SR 전송 과정은 D-SR 전송을 시작하지도 않고 취소되는 문제가 발생한다.
상기 문제점을 해결하기 위해 현재의 LTE 표준 규격에서는 가장 최근의 버퍼 상태를 반영한 BSR이 전송되는 경우에만 기존의 SR 전송 과정을 취소하도록 규정하고 있다. 이러한 해결 방안은 도 6에서 설명된 상황에서 605단계의 이전 BSR을 위하여 트리거된 SR 전송 과정을 취소하지 않고, 635단계에서 새로 발생한 정규 BSR을 위한 SR 전송 과정으로 연결된다. 따라서 SR_COUNTER 값이 초기화되지 않고 이전의 BSR을 위한 605단계의 SR 전송 과정에서 사용된 SR_COUNTER가 그대로 사용된다. 이는 상기 635단계의 새로운 BSR에 대한 D-SR의 최대 전송 허용 횟수가 감소하는 결과가 되기 때문에 D-SR 전송 실패 후속 조치가 너무 빨리 실행되는 결과가 초래될 수 있다.
이러한 문제점을 해결하기 위하여, 본 발명의 2 실시예에서는 BSR이 수납된 MAC PDU를 전송하는 순간 현재 진행 중인 SR 전송 과정(즉, 도 6에서 605단계의 SR 전송 과정)을 취소하고, 새로운 정규의 BSR이 트리거된 상태임에도 불구하고 현재 진행 중인 SR 전송 과정이 없다면 새로운 SR 전송 과정을 트리거하도록 한다.
일 예로, 상기 도 6의 시점 630에서 단말은 BSR이 수납된 MAC PDU를 전송하면 진행 중이던 SR 전송 과정을 취소한다. 한편, 시점 630에 아직 취소되지 않은 BSR(즉, 635단계의 BSR)이 존재하지만 현재 진행 중인 SR 전송 과정이 없다면 새로운 SR 전송 과정을 트리거한다. 즉, 단말은 기존 630단계의 SR 전송 과정을 취소한 후에 새로 발생한 정규 BSR의 전송을 위한 SR 전송 과정을 새롭게 트리거한다(635).
도 7은 본 발명의 제2 실시예에 따른 단말의 스케줄링 요청 신호 전송 동작을 설명하는 도면이다.
705 단계에서 정규 BSR이 트리거되면, 단말은 710 단계에서 SR 전송 과정을 트리거한다. 즉, 단말은 SR 전송 자원이 가용한 시점에 D-SR을 전송하고 역방향 그랜트가 수신되면 BSR이 포함된 MAC PDU를 생성하여 전송하고, 역방향 그랜트가 수신되지 않으면 D-SR을 재전송하는 등의 동작을 수행한다.
단말은 상기 동작을 수행하면서 715 단계에서 트리거된 BSR이 취소되었는지 여부를 감시한다. 일 예로, 단말은 트리거된 BSR이 취소되지 않았는지를 매 전송 시간 구간(Transmission Time Interval: TTI)마다 감시할 수 있다. 한편, BSR이 트리거된 후 가장 최근의 버퍼 상태를 반영한 BSR이 (전송을 위해서) MAC PDU에 포함되면 상기 트리거된 BSR 과정은 취소된다. 만일 트리거된 BSR이 취소되었다면 동작을 종료한다.
반면 트리거된 BSR이 취소되지 않았다면 단말은 720 단계로 진행하여 현재 진행 중인 SR 전송 과정이 있는지 검사한다. 참고로 상기 트리거된 BSR 과정이 취소되지 않는 경우는, 가장 최근의 버퍼 상태를 반영한 BSR이 아직 MAC PDU에 포함되지 않거나, 또는 BSR이 MAC PDU에 포함되었지만 상기 BSR이 단말의 현재 버퍼 상태를 반영하고 있지 않으면 상기 트리거된 BSR은 취소되지 않는다.
일반적인 경우 취소되지 않은 BSR이 있다면 진행 중인 SR 전송 과정도 있어야 하지만, 도 6의 625 및 630단계의 동작처럼 이전의 버퍼 상태를 반영한 BSR이 전송되면서 SR 전송 과정이 취소된다면, 취소되지 않은 BSR은 있지만 진행 중인 SR 전송 과정은 없는 경우가 있을 수 있다.
따라서 720 단계에서는 현재 진행 중인 SR 전송 과정이 있다면 단말은 715 단계로 진행해서 SR 전송 과정을 계속 진행하면서 BSR 취소 여부를 계속 감시한다. 720 단계에서 현재 진행 중인 SR 전송 과정이 없다면 단말은 725 단계로 진행해서 새로운 SR 전송 과정을 트리거한다. 그리고 715 단계로 되돌아가서 BSR의 취소 여부를 감시한다. 715 단계에서 BSR이 취소되면 단말은 동작을 종료한다.
도 8은 본 발명의 제1 및 제2 실시예들에 따른 단말 장치의 블록 구성도이다.
도 8의 단말 장치 블록 구성도에서 상위 계층 장치는 도시하지 않았음에 유의해야 한다.
도 8을 참조하면 단말 장치는 다중화 및 역다중화 장치(805), HARQ 프로세서(810), SR/BSR 제어부 (815), MAC 제어부 (820), 송수신부(825)를 포함한다.
SR/BSR 제어부(815)는 상위 계층 데이터 발생 여부 등을 감시해서 BSR 트리거 여부를 판단한다. 본 발명의 제1 실시예에 따른 SR/BSR 제어부(815)는 BSR이 트리거되면 SR 전송 과정을 트리거하고 SR_COUNTER 및 dsr-transmax를 운용해서 D-SR 전송 여부 및 D-SR 전송 실패 후속 조치 수행 여부를 판단하고 판단 결과에 따라 송수신부(825)가 D-SR을 전송하거나 랜덤 액세스 동작을 수행하도록 제어한다. 또한, 본 발명의 제2 실시예에 따른 SR/BSR 제어부(815)는 BSR 취소 여부를 판단하고, 취소되지 않은 BSR이 있음에도 진행 중인 SR 전송 과정이 없다면 새로운 SR 전송 과정을 트리거한다.
MAC 제어부 (820)는 순방향 및 역방향 제어 채널을 통해 수신된 스케줄링 정보를 해석해서 송수신부(825)가 순방향 데이터를 수신하거나 역방향 데이터를 전송하도록 제어한다.
다중화 및 역다중화 장치(805)가 역방향으로 전송할 데이터를 생성하도록 제어한다. 그리고 SR/BSR 제어부(815)가 SR 전송 과정 취소 및 BSR 취소를 판단할 수 있도록 역방향 그랜트가 수신되면 이를 SR/BSR 제어부(815)에 통보한다.
송수신부(825)는 무선 채널을 통해 MAC PDU를 송수신하거나 제어 정보를 송수신하고, HARQ 패킷을 송수신하는 장치이다. HARQ 프로세서(810)는 HARQ 동작을 수행하기 위해서 구성되는 연성 버퍼들의 집합이며, HARQ 프로세스 식별자로 식별된다.
다중화 및 역다중화 장치(805)는 다수의 논리 채널에서 전달된 데이터를 연접해서 MAC PDU를 구성하거나 MAC PDU를 MAC SDU로 역다중화해서 적절한 논리 채널로 전달한다.

Claims (12)

  1. 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법에 있어서,
    버퍼 상태 보고(Buffer Status Report: BSR)이 트리거되면, 상기 BSR 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정을 트리거하는 과정과,
    상기 버퍼 상태 보고의 취소 여부를 검사하는 과정과,
    상기 버퍼 상태 보고가 취소되지 않았다면 상기 D-SR 과정을 트리거하는 과정을 포함하는 단말의 스케줄링 요청 신호 전송 방법.
  2. 제 1항에 있어서, 상기 D-SR 과정을 다시 트리거하는 과정을 포함
    상기 버퍼 상태 보고가 취소되지 않고 현재 진행 중인 D-SR 과정이 없으면, 상기 D-SR 과정을 트리거함을 특징으로 하는 단말의 스케줄링 요청 신호 전송 방법.
  3. 제 1항에 있어서, 상기 버퍼 상태 보고의 취소 여부를 검사하는 과정은,
    매 전송 시간 구간(Transmission Time Interval: TTI)마다 수행됨을 특징으로 하는 단말의 스케줄링 요청 신호 전송 방법.
  4. 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법에 있어서,
    버퍼 상태 보고(Buffer Status Report: BSR)이 트리거되면, 상기 BSR 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정을 트리거하고, 상기 버퍼 상태 보고의 취소 여부를 검사하고, 상기 버퍼 상태 보고가 취소되지 않았다면 상기 D-SR 과정을 트리거하는 SR/BSR 제어부를 포함하는 단말의 스케줄링 요청 신호 전송 장치.
  5. 제 4항에 있어서, 상기 SR/BSR 제어부는,
    상기 버퍼 상태 보고가 취소되지 않고 현재 진행 중인 D-SR 과정이 없으면, 상기 D-SR 과정을 트리거함을 특징으로 하는 단말의 스케줄링 요청 신호 전송 장치.
  6. 제 4항에 있어서, 상기 SR/BSR 제어부는,
    매 전송 시간 구간(Transmission Time Interval: TTI)마다 상기 버퍼 상태 보고의 취소 여부를 검사함을 특징으로 하는 단말의 스케줄링 요청 신호 전송 장치.
  7. 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 방법에 있어서,
    버퍼 상태 보고(Buffer Status Report: BSR) 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정이 트리거되면 카운터 값을 초기화하는 과정과,
    상기 D-SR 전송의 허용 시점보다 소정 시점 이전 시점에서 상기 카운터 값을 1 증가시키는 과정과,
    상기 D-SR 전송의 허용 시점에 상기 D-SR을 전송하는 과정을 포함하는 단말의 스케줄링 요청 신호 전송 방법.
  8. 제 7항에 있어서, 상기 증가된 카운터 값이 미리 결정된 최대 전송 허용 값보다 큰 경우 상기 D-SR의 전송을 중단하는 과정을 포함하는 단말의 스케줄링 요청 신호 전송 방법.
  9. 제 7항에 있어서, 상기 증가된 카운터 값이 미리 결정된 최대 전송 허용 값보다 작거나 같은 경우,
    상기 D-SR 전송 과정이 진행 중이면, 상기 카운터 값을 1 증가시키는 과정과 상기 D-SR을 전송하는 과정을 반복하는 단말의 스케줄링 요청 신호 전송 방법.
  10. 이동 통신 시스템에서 단말의 스케줄링 요청 신호 전송 장치에 있어서,
    버퍼 상태 보고(Buffer Status Report: BSR) 전송용 자원 요청을 위한 전용 스케줄링 요청(Dedicate Scheduling Request: D-SR) 과정이 시작되면 카운터 값을 초기화하고, 상기 D-SR 전송의 허용 시점보다 소정 시점 이전 시점에서 상기 카운터 값을 1 증가시키는 SR/BSR 제어부와,
    상기 D-SR 전송의 허용 시점에 상기 D-SR을 전송하는 송수신부를 포함하는 단말의 스케줄링 요청 신호 전송 장치.
  11. 제 10항에 있어서, 상기 SR/BSR 제어부는,
    상기 증가된 카운터 값이 미리 결정된 최대 전송 허용 값보다 큰 경우 상기 D-SR의 전송을 중단함을 특징으로 하는 단말의 스케줄링 요청 신호 전송 방법.
  12. 제 10항에 있어서, SR/BSR 제어부는,
    상기 증가된 카운터 값이 미리 결정된 최대 전송 허용 값보다 작거나 같은 경우, 상기 D-SR 전송 과정이 진행 중이면, 상기 카운터 값을 1 증가시킴과 상기 D-SR을 전송함을 반복함을 특징으로 하는 단말의 스케줄링 요청 신호 전송 장치.
PCT/KR2010/006950 2009-10-09 2010-10-11 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치 WO2011043637A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2010304077A AU2010304077B2 (en) 2009-10-09 2010-10-11 Method and apparatus for transmitting scheduling request signal in mobile communication system
RU2012118758/07A RU2516385C2 (ru) 2009-10-09 2010-10-11 Способ и устройство для передачи сигнала запроса планирования в системе мобильной связи
EP10822282.9A EP2487981B1 (en) 2009-10-09 2010-10-11 Method and apparatus for transmitting scheduling request signal in mobile communication system
US13/499,855 US8743814B2 (en) 2009-10-09 2010-10-11 Method and apparatus for transmitting scheduling request signal in mobile communication system
EP14186195.5A EP2846596B1 (en) 2009-10-09 2010-10-11 Method and system for transmitting scheduling request signal in mobile communication system
CN201080045338.9A CN102668680B (zh) 2009-10-09 2010-10-11 移动通信系统中用于发送调度请求信号的方法和装置
JP2012533094A JP5497902B2 (ja) 2009-10-09 2010-10-11 移動通信システムにおけるスケジューリング要請信号を送信する方法及び装置
CA2777037A CA2777037C (en) 2009-10-09 2010-10-11 Method and apparatus for transmitting scheduling request signal in mobile communication system
US14/262,034 US20140301312A1 (en) 2009-10-09 2014-04-25 Method and apparatus for transmitting scheduling request signal in mobile communication system
US16/675,984 US20200145872A1 (en) 2009-10-09 2019-11-06 Method and apparatus for transmitting scheduling request signal in mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0096484 2009-10-09
KR1020090096484A KR101623977B1 (ko) 2009-10-09 2009-10-09 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/499,855 A-371-Of-International US8743814B2 (en) 2009-10-09 2010-10-11 Method and apparatus for transmitting scheduling request signal in mobile communication system
US14/262,034 Continuation US20140301312A1 (en) 2009-10-09 2014-04-25 Method and apparatus for transmitting scheduling request signal in mobile communication system

Publications (2)

Publication Number Publication Date
WO2011043637A2 true WO2011043637A2 (ko) 2011-04-14
WO2011043637A3 WO2011043637A3 (ko) 2011-10-27

Family

ID=43857311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006950 WO2011043637A2 (ko) 2009-10-09 2010-10-11 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치

Country Status (9)

Country Link
US (3) US8743814B2 (ko)
EP (2) EP2487981B1 (ko)
JP (2) JP5497902B2 (ko)
KR (1) KR101623977B1 (ko)
CN (2) CN102668680B (ko)
AU (2) AU2010304077B2 (ko)
CA (1) CA2777037C (ko)
RU (2) RU2569321C2 (ko)
WO (1) WO2011043637A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172618A1 (ko) * 2012-05-14 2013-11-21 삼성전자 주식회사 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
WO2017010761A1 (ko) * 2015-07-13 2017-01-19 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2017078468A1 (ko) * 2015-11-05 2017-05-11 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
US11696280B2 (en) * 2020-07-02 2023-07-04 Qualcomm Incorporated On-demand scheduling request design

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060367A1 (en) * 2011-10-27 2013-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Caching in wireless communication networks
WO2013166669A1 (en) * 2012-05-09 2013-11-14 Renesas Mobile Corporation Method and apparatus for prioritizing an uplink resource request
WO2014047862A1 (en) * 2012-09-28 2014-04-03 Broadcom Corporation Methods, devices and computer program products for scheduling request transmission
CN104160773B (zh) * 2013-03-15 2016-11-16 华为技术有限公司 信息上报方法、装置及系统
KR102123434B1 (ko) * 2013-08-09 2020-06-17 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 스케쥴링 요청 방법 및 장치
US11432305B2 (en) 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US11153875B2 (en) 2014-05-19 2021-10-19 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
US20150341938A1 (en) * 2014-05-22 2015-11-26 Qualcomm Incorporated Uplink operation for rlc communications
US9462607B2 (en) * 2014-08-28 2016-10-04 Intel IP Corporation Apparatus, method and system of multi-user uplink transmission
CN106717052B (zh) * 2014-09-25 2020-05-19 Lg 电子株式会社 无线通信系统中取消触发的prose bsr的方法和装置
WO2017007148A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Method for cancelling a buffer status report or a scheduling request in dual connectivity and a device therefor
CN106535246B (zh) * 2015-09-11 2021-03-16 中兴通讯股份有限公司 一种缓冲区状态报告的上报方法、装置及系统
US10674529B2 (en) 2016-03-02 2020-06-02 Lg Electronics Inc. Method for transmitting a scheduling request in a wireless communication system and a device therefor
US10244490B2 (en) 2016-04-05 2019-03-26 Qualcomm Incorporated Scheduling request transmission to request resources for a buffer status report
WO2018093169A1 (en) 2016-11-17 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for activating/deactivating cells with scalable transmission time intervals in wireless communication system using cell aggregation
CN116437465A (zh) 2017-03-24 2023-07-14 北京三星通信技术研究有限公司 窄带物联网系统中调度请求上报的方法和装置
CN108810925A (zh) * 2017-05-04 2018-11-13 夏普株式会社 用于处理调度请求的方法和设备
EP3527026B1 (en) * 2017-05-04 2020-07-01 Ofinno, LLC Scheduling request in a wireless device and wireless network
US11310810B2 (en) 2017-06-15 2022-04-19 Samsung Electronics Co., Ltd. Method and apparatus for performing scheduling request to support plurality of services efficiently
KR102394123B1 (ko) * 2017-06-16 2022-05-04 삼성전자 주식회사 차세대 이동 통신 시스템에서 복수 개의 스케쥴링 요청을 전송하는 방법 및 장치
US20190053264A1 (en) * 2017-08-09 2019-02-14 Mediatek Inc. Apparatuses and methods for a user equipment (ue) to handle multiple scheduling request (sr) procedures
CN109392128B (zh) * 2017-08-10 2023-08-29 夏普株式会社 基站、用户设备和相关方法
CN109391408B (zh) * 2017-08-10 2021-08-06 普天信息技术有限公司 一种正交频分复用系统中调度请求指示传输方法
CN109561511A (zh) * 2017-09-27 2019-04-02 夏普株式会社 无线通信方法和设备
CN109587803B (zh) * 2017-09-28 2021-05-18 华为技术有限公司 一种通信处理方法和装置
CN110881223B (zh) 2017-09-29 2022-04-29 华为技术有限公司 调度请求的处理方法和终端设备
PL3716678T3 (pl) * 2017-11-20 2023-12-04 Beijing Xiaomi Mobile Software Co., Ltd. Sposób i urządzenie do żądania zasobu transmisji łącza wysyłania
CN110149674A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 一种路由更新方法及设备
CN110720244B (zh) * 2018-04-02 2021-02-26 Oppo广东移动通信有限公司 调度请求取消方法和终端设备
US11277193B2 (en) * 2019-05-31 2022-03-15 Qualcomm Incorporated Beam selection procedures for multi-stream environments
CN112566265B (zh) * 2019-09-26 2022-08-12 大唐移动通信设备有限公司 一种调度请求触发方法、信息配置方法、终端及网络设备
WO2024010103A1 (ko) * 2022-07-04 2024-01-11 엘지전자 주식회사 무선 통신 시스템에서 자원 요청을 수행하는 방법 및 장치

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895165B2 (ja) * 2001-12-03 2007-03-22 株式会社エヌ・ティ・ティ・ドコモ 通信制御システム、通信制御方法、通信基地局及び移動端末
KR100689354B1 (ko) 2003-09-02 2007-03-02 삼성전자주식회사 이동통신 시스템에서 이동국의 상태 정보 제공 방법
KR101084134B1 (ko) 2005-05-03 2011-11-17 엘지전자 주식회사 이동통신 시스템에서, 제어 정보 전송 방법
KR101119104B1 (ko) * 2005-08-23 2012-03-19 엘지전자 주식회사 이동통신 시스템에서의 메시지 전송 방법 및 그 단말
KR100886536B1 (ko) 2006-06-22 2009-03-02 삼성전자주식회사 이동통신시스템에서의 스케쥴링 요청의 전송 방법 및 이를위한 단말 장치
US20100254321A1 (en) 2006-11-15 2010-10-07 Soeng-Hun Kim Method and appratus for buffer status report in mobile communication system
CN105813219B (zh) * 2007-06-19 2019-06-28 奥普蒂斯蜂窝技术有限责任公司 电信系统中调度资源的方法和系统
KR100937432B1 (ko) * 2007-09-13 2010-01-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
TW200926860A (en) * 2007-10-29 2009-06-16 Sunplus Mmobile Inc Method for providing a buffer status report in a mobile communication network
JP5115186B2 (ja) * 2007-12-27 2013-01-09 富士通株式会社 無線通信システムにおける制御方法
US8243667B2 (en) 2008-01-28 2012-08-14 Lg Electronics Inc. Method for transmitting scheduling request effectively in wireless communication system
US8483146B2 (en) * 2008-02-01 2013-07-09 Lg Electronics Inc. Method for performing efficient BSR procedure using SPS resource
KR101494907B1 (ko) 2008-02-01 2015-02-23 엘지전자 주식회사 기할당된 무선 자원을 이용한 효율적인 Buffer Status Report(BSR) 과정 수행 방법
EP2094038B1 (en) 2008-02-20 2015-11-04 Amazon Technologies, Inc. Apparatus and method for constructing a data unit that includes a buffer status report
WO2009116939A2 (en) * 2008-03-21 2009-09-24 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting unnecessary scheduling requests for uplink grants
JP5307232B2 (ja) * 2008-05-07 2013-10-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) バッファ状態レポート(bsr)の送信により起動される不連続受信(drx)タイマー
EP2131517A3 (en) * 2008-06-03 2010-01-20 Innovative Sonic Limited Method and apparatus for improving HARQ uplink transmission
US8873522B2 (en) * 2008-08-11 2014-10-28 Qualcomm Incorporated Processing measurement gaps in a wireless communication system
US9167594B2 (en) * 2008-09-22 2015-10-20 Htc Corporation Method and related device of a trigger mechanism of buffer status report and scheduling request in a wireless communication system
US8649320B2 (en) * 2008-09-22 2014-02-11 Htc Corporation Method and related device of scheduling request behavior in a wireless communication system
US8873474B2 (en) * 2008-10-17 2014-10-28 Telefonaktiebolaget L M Ericsson (Publ) Method and mobile terminal providing priority-based uplink scheduling information
US8559962B2 (en) * 2009-01-22 2013-10-15 Innovative Sonic Limited Method and apparatus for improving reconfiguration procedure for scheduling request
EP2237633A1 (en) * 2009-04-03 2010-10-06 Panasonic Corporation Buffer status reporting in a mobile communication system
CN101932019B (zh) * 2009-06-19 2015-06-03 中兴通讯股份有限公司 一种实现上报缓冲区状态报告的方法、终端及网络系统
TW201110754A (en) * 2009-06-29 2011-03-16 Innovative Sonic Corp Method and apparatus for handling scheduling information report in wireless communication system
JP5607991B2 (ja) 2009-09-02 2014-10-15 創新音▲速▼股▲ふん▼有限公司 Bsrの方法及び通信装置
RU2504126C1 (ru) 2009-10-01 2014-01-10 Нокиа Сименс Нетуоркс Ой Способ и устройство для управления планированием
US20120255492A1 (en) * 2011-04-06 2012-10-11 Atomic Energy Council-Institute Of Nuclear Enetgy Research Large Area Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition Apparatus
US9065545B2 (en) * 2012-03-12 2015-06-23 Blackberry Limited Handling scheduling request collisions with an ACK/NACK repetition signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2487981A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172618A1 (ko) * 2012-05-14 2013-11-21 삼성전자 주식회사 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
US10045248B2 (en) 2012-05-14 2018-08-07 Samsung Electronics Co., Ltd. Method and device for processing buffer state report in wireless communication system using inter-ENB carrier aggregation technology
US10616793B2 (en) 2012-05-14 2020-04-07 Samsung Electronics Co., Ltd. Method and device for processing buffer state report in wireless communication system using inter-ENB carrier aggregation technology
US11277767B2 (en) 2012-05-14 2022-03-15 Samsung Electronics Co., Ltd. Method and device for processing buffer state report in wireless communication system using inter-ENB carrier aggregation technology
US11843969B2 (en) 2012-05-14 2023-12-12 Samsung Electronics Co., Ltd. Method and device for processing buffer state report in wireless communication system using inter-eNB carrier aggregation technology
WO2017010761A1 (ko) * 2015-07-13 2017-01-19 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
US10390357B2 (en) 2015-07-13 2019-08-20 Lg Electronics Inc. Method and apparatus for transmitting or receiving data in wireless communication system
WO2017078468A1 (ko) * 2015-11-05 2017-05-11 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
US11696280B2 (en) * 2020-07-02 2023-07-04 Qualcomm Incorporated On-demand scheduling request design

Also Published As

Publication number Publication date
KR20110039160A (ko) 2011-04-15
CN104244421A (zh) 2014-12-24
RU2014101044A (ru) 2015-07-20
CA2777037C (en) 2015-04-07
RU2569321C2 (ru) 2015-11-20
CN102668680B (zh) 2015-08-05
JP5497902B2 (ja) 2014-05-21
JP2014147079A (ja) 2014-08-14
CN104244421B (zh) 2018-03-13
CA2777037A1 (en) 2011-04-14
AU2010304077A1 (en) 2012-05-24
US20120195281A1 (en) 2012-08-02
AU2014203780A1 (en) 2014-07-31
RU2516385C2 (ru) 2014-05-20
EP2487981B1 (en) 2018-08-29
AU2014203780B2 (en) 2016-04-21
EP2846596B1 (en) 2019-07-24
EP2846596A1 (en) 2015-03-11
US20200145872A1 (en) 2020-05-07
JP2013507085A (ja) 2013-02-28
WO2011043637A3 (ko) 2011-10-27
JP6086448B2 (ja) 2017-03-01
US20140301312A1 (en) 2014-10-09
KR101623977B1 (ko) 2016-05-24
US8743814B2 (en) 2014-06-03
AU2010304077B2 (en) 2014-04-10
RU2012118758A (ru) 2013-11-20
CN102668680A (zh) 2012-09-12
EP2487981A4 (en) 2015-02-25
EP2487981A2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2011043637A2 (ko) 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치
WO2011071317A2 (ko) 이동통신 시스템에서 경쟁 기반 액세스를 수행하는 방법 및 장치
WO2012128511A2 (ko) 무선 통신 시스템에서 버퍼상태보고를 전송하는 방법 및 장치
WO2010027175A2 (en) Method of requesting radio resource in wireless communication system
WO2012096485A2 (en) Random access method and apparatus of ue in mobile communication system
WO2010087590A2 (en) Signal transmission scheme for efficient management of common enhanced dedicated channel
WO2015142138A1 (ko) 통신 시스템에서 단말의 버퍼 상태 보고 방법 및 장치
WO2011059229A2 (en) Apparatus and method for discontinuous data reception in wireless communication system
WO2011049359A4 (en) Power headroom reporting method and device for wireless communication system
WO2010107246A2 (en) Method and apparatus for transmitting a power headroom report of a ue in a wireless communication system
WO2011028072A2 (en) Method of controlling a monitoring operation of physical downlink channel in wireless communication system
WO2012138135A2 (en) Method and apparatus for controlling random access in wireless communication system supporting carrier aggregation
WO2012096502A2 (en) Secondary carrier activation/deactivation method and apparatus for mobile communication system supporting carrier aggregation
WO2011126261A2 (ko) 이동통신시스템에서 역방향 송수신 방법 및 장치
WO2012060671A2 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 부차 반송파의 활성화 방법 및 장치
WO2011040788A2 (ko) 이동통신 시스템에서 harq 피드백을 처리하는 방법 및 장치
WO2019031796A1 (en) METHOD FOR MANAGING PRE-CONFIGURED UPLINK RESOURCES BASED ON LBT PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
WO2012020976A2 (en) Method and apparatus for configuring power headroom information in mobile communication system supporting carrier aggregation
WO2010123254A2 (en) Method of maintaining a quality of service (qos) in a wireless communication system
WO2013025016A2 (ko) 시분할 무선 통신 시스템에서 단말의 신호 송수신 방법 및 장치
WO2013172618A1 (ko) 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
WO2019139361A1 (en) Method and apparatus for transmitting signals based on configured grant in wireless communication system
WO2009139572A2 (ko) 휴대 단말기의 비연속 수신 수행 방법 및 장치
KR101624937B1 (ko) 무선 통신 시스템에서 단말의 버퍼 상태 보고 정보 생성 방법 및 이를 위한 장치
WO2021145686A1 (ko) 무선통신시스템에서 무선자원의 우선순위 값을 결정하는 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045338.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010822282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499855

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012533094

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2777037

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 845/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010304077

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2012118758

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010304077

Country of ref document: AU

Date of ref document: 20101011

Kind code of ref document: A