WO2011046244A1 - Iii-nitride surface grating reflector - Google Patents

Iii-nitride surface grating reflector Download PDF

Info

Publication number
WO2011046244A1
WO2011046244A1 PCT/KR2009/005996 KR2009005996W WO2011046244A1 WO 2011046244 A1 WO2011046244 A1 WO 2011046244A1 KR 2009005996 W KR2009005996 W KR 2009005996W WO 2011046244 A1 WO2011046244 A1 WO 2011046244A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
grating
incident light
light
Prior art date
Application number
PCT/KR2009/005996
Other languages
French (fr)
Korean (ko)
Inventor
전헌수
이준희
안성모
장호준
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020127010505A priority Critical patent/KR101377397B1/en
Priority to PCT/KR2009/005996 priority patent/WO2011046244A1/en
Publication of WO2011046244A1 publication Critical patent/WO2011046244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present disclosure generally relates to surface grating reflectors, and more particularly to group III nitride surface grating reflectors.
  • VCSELs surface emitting semiconductor lasers
  • RCLEDs resonant cavity light emitting diodes
  • 'DBR' distributed Bragg reflector
  • the group III nitride material system which is representative of short-wavelength light emitting materials, has a large difference in the lattice constant between group III nitride and AlN, but a small difference in refractive index, which requires a very special technique to produce a high reflectance DBR.
  • the thickness becomes thick. It is also conceivable to use a dielectric DBR instead of a semiconductor DBR, but in that case, it is difficult to inject electricity or dissipate heat.
  • One aspect of the disclosed technology includes a substrate and a group III nitride layer disposed on one surface of the substrate and having a one-dimensional diffraction grating pattern structure formed on a surface thereof, wherein the grating pattern structure has a concave-convex shape in which floors and valleys are periodically disposed.
  • the incident light enters the surface of the lattice pattern structure by having a cross-section of the first light transmitted through the floor portion and the second light passing through the valley portion among the incident light incident from the inside of the III-nitride. It provides a group III nitride surface grating reflector that is reflected at.
  • Another aspect of the disclosed technology provides a light emitting device comprising the group III nitride surface lattice reflector.
  • Another aspect of the disclosed technology includes a substrate and a III-nitride layer disposed on one surface of the substrate and having a lattice pattern structure formed on the surface, wherein the lattice pattern structure is two-dimensionally periodically arranged with a parquet portion and a valley portion.
  • the grating has a polygonal shape, and among the incident light incident from the inside of the group III nitride, the first light passing through the floor portion and the second light passing through the valley portion cancel each other, thereby causing the incident light to form the grating pattern structure. It provides a group III nitride surface grating reflector that is reflected at the surface of.
  • Another aspect of the disclosed technology provides a light emitting device comprising the group III nitride surface grating reflector.
  • the grating pattern having a concave-convex shape in cross section includes a structure in which the grating pattern is periodically repeated. It has a high reflectance for incident light in a particular wavelength band, and particularly exhibits excellent reflectance for TE polarized light. In addition, the wavelength band of incident light showing high reflectivity of about 0.8 or more is wide, about 90 nm.
  • the group III nitride surface grating reflector of the present disclosure includes a two-dimensional lattice pattern structure in which the ridge portion and the valley portion are periodically arranged two-dimensionally.
  • the incident light may have a high reflectance regardless of whether it is TE polarized light or TM polarized light.
  • FIG. 1A is a perspective view illustrating a group III nitride surface grating reflector of the present disclosure.
  • 1B is a diagram showing a cross section of the GaN surface lattice reflector of the present disclosure.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a GaN surface grating reflector according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating a holographic lithography system for fabricating a GaN surface grating reflector of the present disclosure.
  • FIG. 4 is a scanning electron micrograph of a group III nitride surface grating reflector patterned using holographic lithography.
  • FIG. 5 is a diagram showing an electric field distribution when a transverse electric field (TE) polarized incident light having a wavelength of 450 nm is incident on a GaN surface grating reflector.
  • TE transverse electric field
  • FIG. 6 is a graph showing reflection spectra according to the polarization direction calculated by the RCWA method with respect to the preferable Group III nitride grid pattern structure.
  • FIG. 7 is a diagram illustrating a change in the zeroth order reflectance of incident light according to the period of the grating or the height of the grating calculated by the RCWA method.
  • FIG 8 is a view showing a change in the zero-order reflectance of the incident light according to the fill factor of the grating or the tilt angle of the grating calculated by the RCWA method.
  • FIG. 9 is a reflectance measurement system for incident light traveling toward air or vacuum inside a Group III nitride layer of a GaN surface grating reflector.
  • FIG. 10 is a graph showing the reflectance of a GaN surface grating reflector measured using a reflectance measuring system.
  • FIG. 1A is a perspective view illustrating a group III nitride surface grating reflector of the present disclosure.
  • a group III nitride layer 104 is disposed on one surface of the substrate 102.
  • Group III nitrides may be, for example, GaN, AlGaN or InGaN.
  • the group III nitride surface lattice reflector 100 will be described for GaN in the group III nitride.
  • a lattice pattern structure P is formed on the surface of the GaN layer 104.
  • the grid pattern structure P has a concave-convex cross section in which the floor portion 110 and the valley 120 portion are periodically arranged. That is, the lattice pattern structure P has a form such that a plurality of bars are arranged in parallel on at least a part of the surface of the GaN layer 104.
  • period ( ⁇ ) is the sum of the width (w 2) of the width (w 1) with the bone parts 120 in the top portions 110.
  • the surface of the grid pattern structure P may be in contact with air or placed in a vacuum.
  • the substrate 102 may be, for example, a substrate made of sapphire, silicon, gallium nitride, gallium arsenide, silicon carbide, zinc oxide, or glass.
  • the GaN surface grating reflector 100 may have a high reflectance at the surface of the grating pattern structure P.
  • the reason why the GaN surface grating reflector of the present disclosure reflects incident light can be explained as follows.
  • 1B is a diagram showing a cross section of the GaN surface lattice reflector of the present disclosure.
  • the incident light 130 passing through the GaN layer 104 passes through the grating pattern structure P, the wavelength of the incident light 130 and the period ⁇ of the grating pattern structure P are shown.
  • light may be diffracted at various angles.
  • Properly designed grating patterns can suppress high order diffraction in which incident light transmits or reflects at an angle different from the incident angle, and ensures that only zero-order diffraction exists where the incident light transmits or reflects at the same angle as the incident angle.
  • the incident light can have a wavelength of about 300 nm to about 700 nm.
  • phase difference may be determined according to structural parameters that determine the geometry of the lattice pattern structure P.
  • FIG. thus, by appropriately adjusting structural parameters such as floor height (h) or filling factor (F), it is possible to fully reflect incident waves of a particular wavelength passing through the GaN layer 104.
  • the fill factor is the ratio of the width of the floor (w 1 ) to the period of the lattice ( ⁇ ).
  • the GaN lattice pattern of the GaN surface lattice reflector may be implemented as a two-dimensional lattice pattern structure without being limited to a structure in which the valleys 120 extend in one direction. That is, the two-dimensional lattice pattern structure may be implemented in a form in which the floor portion and the valley portion are periodically arranged in two dimensions. As an example the grid may be triangular or square in shape.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a GaN surface grating reflector according to an embodiment of the present disclosure.
  • a GaN layer is formed on a substrate in S200.
  • the substrate may be, for example, a sapphire substrate.
  • the GaN layer may be grown to a thickness of several microns using, for example, metal-organic chemical-vapor-deposition (hereinafter referred to as MOCVD).
  • MOCVD metal-organic chemical-vapor-deposition
  • a SiO 2 layer is formed on the GaN layer.
  • the SiO 2 layer may be grown by, for example, plasma-enhanced chemical vapor deposition.
  • the SiO 2 layer is used as a mask for forming a lattice pattern of the GaN layer.
  • a Cr layer is formed on the SiO 2 layer.
  • the Cr layer is used as a mask for etching SiO 2 layer.
  • the Cr layer may be grown by e-gun evaporation, for example.
  • the Cr layer is made of a line pattern using holographic lithography and etched to form a lattice pattern.
  • a holographic lithography system for fabricating a GaN surface grating reflector of the present disclosure.
  • Holographic lithography makes it easier to fabricate one- and two-dimensional periodic IC nanostructures in large areas at a fraction of the cost and time required compared to e-beam lithography.
  • a holographic lithography system includes a helium-cadmium laser generator 350, mirrors 330a, 330b, and 330c, a shutter 340, an optical expander 320, a lens 310, and a sample stage 360. Include.
  • the laser 305 emitted from the 325 nm helium-cadmium (He-Cd) laser generator 350 is reflected by the mirror 330b and passed through the shutter.
  • the shutter 340 may adjust an exposure time of a laser irradiated to the sample 300 as an electronic shutter.
  • the laser passing through the shutter 340 is reflected by the mirror 330b and spreads through the optical expander 320.
  • the laser spreads through the optical expander 320 is made into parallel light with the collimator 310 and then incident to the sample stage 360.
  • the laser directly irradiated onto the sample 300 and the laser reflected from the mirror 330c installed perpendicular to the sample 300 enter the sample 300 to interfere with the surface of the sample 300 to form a one-dimensional grating pattern.
  • the grating can be patterned over a large area of the sample 300 using holographic lithography using the interference of two lasers.
  • the SiO 2 layer is referred to as reactive ion etching (RIE) in S240.
  • RIE reactive ion etching
  • a GaN surface lattice reflector can be fabricated by forming a lattice pattern in the GaN layer by inductively-coupled plasma RIE (hereinafter referred to as " ICPRIE ") using a lattice SiO 2 layer in S250. Can be.
  • FIG. 4 shows a scanning electron micrograph of a GaN surface grating reflector patterned using holographic lithography as described above.
  • 4A is a photograph observed from the side of the GaN surface grating reflector
  • FIG. 4B is a photograph observed from the top of the GaN surface grating reflector. From Figs. 4A and 4B, the lattice structure having a periodic pattern can be observed.
  • the reflectance measurement for the GaN surface grating reflector made by the above-described method can be performed in the following manner.
  • FIG. 5 is a diagram showing an electric field distribution when a transverse electric field (TE) polarized incident light having a wavelength of 450 nm is incident on a GaN surface grating reflector.
  • TE polarized light means light in which the electric field of light and the valley direction ('l' in Fig. 1 (a)) of the lattice pattern structure are parallel.
  • the distribution of the electric field may be analyzed using a finite-difference time-domain (hereinafter referred to as 'FDTD') method.
  • 'FDTD' finite-difference time-domain
  • the electric field is strongly concentrated locally on the surface of the GaN grid pattern.
  • Areas 'A' and 'B' are light passing through the floor and valley of the grid respectively. Referring to FIG. 5B, each light has the same phase before passing through the grid pattern. However, the phase difference occurs by ⁇ between the light passing through the grid floor and the light passing through the valley of the grid while passing through the grid pattern. As a result, the sum of the electric fields of light passing through the 'A' and 'B' regions respectively becomes zero. Therefore, it can be seen that the above description is consistent with the above description that a high reflection can be obtained by the destructive interference phenomenon of light passing through the floor and valley portions of the lattice pattern structure.
  • the phase difference may be determined by structural parameters of the grating pattern structure.
  • the structural parameters may include the period ( ⁇ ), the filling rate (F), the height (h), and the inclination angle ( ⁇ ) of the lattice described above with reference to FIG. 1.
  • the angle of inclination ( ⁇ ) of the lattice refers to the angle formed between the normal line across the valley portion of the lattice and the lattice side.
  • the angle of inclination ⁇ of the lattice is 0 degrees
  • the cross section of the lattice pattern structure becomes a rectangular shape, and when it is 0 degrees or more, it becomes a trapezoidal shape.
  • the structural parameters can be variously modified according to the required use.
  • the period ⁇ should be shorter than the wavelength ⁇ of the incident light. Preferably ⁇ / 2 ⁇ ⁇ . For example, when the wavelength of the incident light is about 450 nm, the preferred period ⁇ may be about 400 nm to about 450 nm.
  • the height h of the floor portion should be around ⁇ / 2 (n GaN ⁇ 1) when the fill factor is about 0.5 ( ⁇ : wavelength of incident light, n GaN : refractive index of GaN).
  • the height h may be about 80 to about 150 nm, preferably about 95 nm to about 125 nm.
  • the filling rate F may be about 0.1 to about 0.7, preferably about 0.2 to about 0.45.
  • the inclination angle ⁇ of the grating may be about 0 to about 40 degrees, preferably about 0 Degrees to about 30 degrees.
  • the reflectance When satisfying each range, the reflectance may be about 90% or more.
  • a preferred GaN lattice pattern structure for example, wavelength ⁇ of about 450 nm
  • FIG. 6 is a graph showing reflection spectra according to the polarization direction calculated by the RCWA method with respect to the preferable Group III nitride grid pattern structure.
  • FIG. 6 In this RCWA calculation, it is assumed that the dispersion of reflection index according to the wavelength of group III nitride follows the Selmeier equation.
  • '0th R', '1st R', and '2nd R' refer to the zeroth order diffraction reflectivity, the first order diffraction reflectance, and the second order diffraction reflectance of the incident light, respectively.
  • the zeroth-order diffraction reflectance means the reflectance of incident light when the incident angle and the reflection angle of the incident light are the same.
  • the diffraction reflectivity of the first order or more means the reflectance of incident light when the incident angle and the reflection angle of the incident light are not the same.
  • "0th T” and “1st T” mean 0th diffraction transmittance and 1st diffraction transmittance of incident light, respectively.
  • the zero-order diffraction transmittance means the transmittance of incident light when the incident direction of the incident light and the transmission direction are parallel.
  • the first or more diffraction transmittance means the transmittance of incident light when the incident direction of the incident light and the transmission direction are not parallel. Referring to FIG. 6 (a), the diffraction reflectance of the 0th order is close to 1 near the wavelength of about 450 nm with TE polarized light.
  • the diffraction reflectivity of the first order or higher of the TE polarization is effectively suppressed.
  • a reflector having a fairly wide band can be obtained, with a spectral band having a zeroth order diffraction reflectance of about 80% or more and a spectral band of about 90% having a zeroth order diffraction reflectance of about 60%. This is wider than the typical gain of InGaN quantum wells, which are commonly used as short wavelength semiconductor materials.
  • the reflectivity of the 0th order is close to 0 in the vicinity of the wavelength of 450 nm with TM polarized light.
  • TM polarized light refers to light in which the magnetic field of light and the valley direction of the lattice pattern structure ('l' in FIG. 1A) are parallel. It can also be seen that the first order diffraction reflectivity of the TM polarization is not effectively suppressed. From the above results, it can be seen that the group III nitride surface lattice reflector of the present disclosure can act as a good reflector selectively for TE polarization.
  • FIG. 7 is a diagram illustrating a change in the zeroth order diffraction reflectance of incident light according to the period of the grating or the height of the grating calculated by the RCWA method. Coordinates with the same zero-order diffraction reflectance are connected to each other to form a contour line.
  • FIG. 7A a change in reflectance according to the period of the grating is illustrated.
  • the period of the grid is the width of one floor plus the width of the valleys. It can be seen that as the period of the grating increases, the region having the highest reflectance-the region having the reflectance of about 0.9 or more-moves toward the long wavelength and the reflectance of the incident light decreases. It can be seen that the change in reflectance according to the change in the period of the grating is not large compared to other parameters.
  • the change in reflectance according to the height h of the grating is shown. It can be seen that the region with a high reflectivity-the region with a reflectance of about 0.9 or more-appears around the 114 nm of the grating height.
  • FIG. 8 is a view showing a change in the zero-order reflectance of the incident light according to the fill factor of the grating or the tilt angle of the grating calculated by the RCWA method. Coordinates with the same zero-order diffraction reflectance are connected to each other to form a contour line. Referring to FIG. 8A, the change in reflectance according to the filling factor F of the grating is shown. In the case of the filling ratio of the lattice, the reflectance is high at the optimum value of about 0.4 or less, but the reflectance rapidly decreases from about 0.45. In addition, areas with high reflectance are also relatively narrow compared to other parameters.
  • FIG. 8B a change in reflectance according to the inclination angle ⁇ of the grating is shown.
  • the angle of inclination of the grid refers to the angle formed between the normals of the valleys of the grid and the sides of the grid. It can be seen that the change in reflectance of the grating angle from 0 ° to about 30 ° is not relatively large compared to other parameters. Inferred from the results shown in FIGS. 7 and 8, the fill factor of the grating is a relatively important variable in determining the reflectance.
  • the reflectance measuring system 900 includes a xenon lamp 910, a lens 920, a pinhole 930, a polarizer 940, a beam splitter 960, and a spectrometer 970.
  • Light emitted from the xenon lamp 910 and passed through the lens 920 is incident to the substrate of the sample 950 using the beam separator 960.
  • the polarizer 940 and the pinhole 930 only light in a specific polarization direction may be incident perpendicularly to the sample 950.
  • the light reflected from the sample 950 may be incident on the spectrometer 970 to measure reflectance according to the wavelength.
  • the measured results can be normalized using an aluminum mirror.
  • FIG. 10 is a graph showing the reflectance of a GaN surface grating reflector measured using a reflectance measuring system.
  • 'TE-exp' is the result of measuring reflectance using a reflectance measuring system for TE polarized light.
  • 'TE-RCWA' is the result of calculating the reflectance using the RCWA method for TE polarized light.
  • 'TM-exp' is the result of measuring reflectance using a reflectivity measuring system for TM polarized light.
  • 'TM-RCWA' is the result of calculating the reflectance using the RCWA method for TM polarized light. Referring to FIG. 10, it can be seen that the reflectance of TE polarized light having a wavelength of about 450 nm is close to about 1, which is very high.
  • the reflectance When the wavelength of the TE polarized incident light is about 0 nm or more and about 510 nm or less, the reflectance may be about 80% or more. On the other hand, the reflectance of TM polarized light is almost 0.4 or less. Thus, it can be seen that the GaN surface grating reflector is an excellent reflector for TE polarization. Meanwhile, in the case of the group III nitride surface grating reflector including the two-dimensional lattice structure in which the ridge portion and the valley portion are periodically two-dimensionally arranged, the incident light may have a high reflectance regardless of whether TE or TM polarization is incident.
  • the GaN surface grating reflector of the present disclosure may be mounted in a GaN based optical device that requires high reflectance.
  • the GaN surface grating reflector may be mounted and applied to a resonant-cavity light-emitting diode or a vertical-cavity light-emitting diode.
  • a cross-sectional grating pattern having a concave-convex shape includes a structure in which a periodic pattern is repeated. It has a high reflectance for incident light in a particular wavelength band, and particularly exhibits excellent reflectance for TE polarized light.
  • the wavelength band of incident light showing high reflectivity of about 0.8 or more is wide, about 90 nm.
  • the group III nitride surface grating reflector of the present disclosure includes a two-dimensional lattice pattern structure in which the ridge portion and the valley portion are periodically arranged two-dimensionally.
  • the incident light may have a high reflectance regardless of whether it is TE polarized light or TM polarized light.

Abstract

Disclosed is a III-nitride surface grating reflector. As one embodiment, the III-nitride surface grating reflector comprises: a substrate; and a III-nitride layer which is disposed on the one side of the substrate, and is formed with a structure of a one-dimensional diffraction grating pattern on the surface, wherein the structure of the grating pattern has an uneven cross section on which crests and troughs are arranged periodically, and among the lights incident from the inside of the III-nitride layer, a first light that passes through the crests and the second light that passes through the troughs mutually cause destructive interference whereby the incident lights are reflected on the surface of the structure of the grating pattern.

Description

Ⅲ족 질화물 표면 격자 반사체Group III nitride surface grating reflector
본 개시는 대체로 표면 격자 반사체에 관한 것으로, 더욱 상세하게는 Ⅲ족 질화물 표면 격자 반사체에 관한 것이다.FIELD The present disclosure generally relates to surface grating reflectors, and more particularly to group III nitride surface grating reflectors.
여러 가지 광전자기기-특히 면 발광형 반도체 레이저(VCSEL), 공진 공동 발광 다이오드(RCLED)-에서 반사체는 중요한 부분을 차지하는데, 그 재료로 일반적으로는 Ag, Al과 같은 금속을 사용하거나, 혹은 높은 반사율을 얻기 위하여 서로 다른 굴절률을 가진 두 물질의 주기적인 층으로 이루어진 분산 브래그 반사체(distributed Bragg Reflector, 이하 ‘DBR’이라 함)가 사용된다. 그러나 단파장 영역에서 금속은 흡수가 높아져 금속을 이용한 거울은 높은 반사율을 제공할 수 없다. DBR의 경우 단파장 발광 소재의 대표격인 Ⅲ족 질화물 소재 시스템에서는 Ⅲ족 질화물과 AlN의 격자 상수의 차이는 큰 반면 굴절률의 차이는 크지 않아 높은 반사율을 가지는 DBR을 제작하는데 매우 특별한 기술을 필요로 할 뿐만 아니라 두께가 두꺼워지게 되는 단점이 있다. 반도체 DBR 대신 유전체 DBR을 사용하는 것도 생각할 수 있으나 그럴 경우 전기 주입이나 열방출이 어려워지는 단점이 있다.In many optoelectronic devices, particularly surface emitting semiconductor lasers (VCSELs) and resonant cavity light emitting diodes (RCLEDs), reflectors are an important part of the material, typically using metals such as Ag, Al, or high To obtain the reflectance, a distributed Bragg reflector (hereinafter referred to as 'DBR') composed of periodic layers of two materials with different refractive indices is used. However, in the short wavelength region, the metal has a higher absorption, so the mirror using metal cannot provide high reflectance. In the case of DBR, the group III nitride material system, which is representative of short-wavelength light emitting materials, has a large difference in the lattice constant between group III nitride and AlN, but a small difference in refractive index, which requires a very special technique to produce a high reflectance DBR. There is a disadvantage that the thickness becomes thick. It is also conceivable to use a dielectric DBR instead of a semiconductor DBR, but in that case, it is difficult to inject electricity or dissipate heat.
개시된 기술의 일 측면은 기판 및 상기 기판의 일면 위에 배치되며 1차원 회절 격자 패턴 구조가 표면에 형성된 Ⅲ족 질화물 층을 포함하되, 상기 격자 패턴 구조는 마루 부분과 골 부분이 주기적으로 배치된 요철 형상의 단면을 가지며, 상기 Ⅲ족 질화물 내부로부터 입사한 입사광 중 상기 마루 부분을 투과하는 제 1 광과 상기 골 부분을 투과하는 제 2 광이 서로 상쇄간섭을 일으킴으로써 상기 입사광이 상기 격자 패턴 구조의 표면에서 반사되는 Ⅲ족 질화물 표면 격자 반사체를 제공한다.One aspect of the disclosed technology includes a substrate and a group III nitride layer disposed on one surface of the substrate and having a one-dimensional diffraction grating pattern structure formed on a surface thereof, wherein the grating pattern structure has a concave-convex shape in which floors and valleys are periodically disposed. The incident light enters the surface of the lattice pattern structure by having a cross-section of the first light transmitted through the floor portion and the second light passing through the valley portion among the incident light incident from the inside of the III-nitride. It provides a group III nitride surface grating reflector that is reflected at.
개시된 기술의 다른 측면은 상기 Ⅲ족 질화물 표면 격자 반사체를 포함하는 발광소자를 제공한다.Another aspect of the disclosed technology provides a light emitting device comprising the group III nitride surface lattice reflector.
개시된 기술의 또 다른 측면은 기판 및 상기 기판의 일면 위에 배치되며 격자 패턴의 구조가 표면에 형성된 Ⅲ족 질화물 층을 포함하되, 상기 격자 패턴 구조는 마루 부분과 골 부분이 2차원적으로 주기적 배열되고 상기 격자는 다각형 형태이며, 상기 Ⅲ족 질화물 내부로부터 입사한 입사광 중 상기 마루 부분을 투과하는 제 1 광과 상기 골 부분을 투과하는 제 2 광이 서로 상쇄간섭을 일으킴으로써 상기 입사광이 상기 격자 패턴 구조의 표면에서 반사되는 Ⅲ족 질화물 표면 격자 반사체를 제공한다.Another aspect of the disclosed technology includes a substrate and a III-nitride layer disposed on one surface of the substrate and having a lattice pattern structure formed on the surface, wherein the lattice pattern structure is two-dimensionally periodically arranged with a parquet portion and a valley portion. The grating has a polygonal shape, and among the incident light incident from the inside of the group III nitride, the first light passing through the floor portion and the second light passing through the valley portion cancel each other, thereby causing the incident light to form the grating pattern structure. It provides a group III nitride surface grating reflector that is reflected at the surface of.
개시된 기술의 또 다른 측면은 상기 Ⅲ족 질화물 표면 격자 반사체를 포함하는 발광소자를 제공한다.Another aspect of the disclosed technology provides a light emitting device comprising the group III nitride surface grating reflector.
본 개시의 Ⅲ족 질화물 표면 격자 반사체의 일 실시예에 따르면, 단면이 요철 모양인 격자 패턴이 주기적으로 반복되는 구조를 포함하고 있다. 특정 파장대의 입사광에 대해 높은 반사율을 가지고, 특히 TE 편광에 대하여 탁월한 반사율을 나타낸다. 또한 약 0.8 이상의 높은 반사율을 보이는 입사광의 파장대가 약 90 nm로 넓다.According to an embodiment of the group III nitride surface grating reflector of the present disclosure, the grating pattern having a concave-convex shape in cross section includes a structure in which the grating pattern is periodically repeated. It has a high reflectance for incident light in a particular wavelength band, and particularly exhibits excellent reflectance for TE polarized light. In addition, the wavelength band of incident light showing high reflectivity of about 0.8 or more is wide, about 90 nm.
또한 본 개시의 Ⅲ족 질화물 표면 격자 반사체의 다른 실시예에 따르면, 마루 부분과 골 부분이 2차원적으로 주기적 배열되는 2차원 격자 패턴 구조를 포함하고 있다. 이 경우 입사광이 TE편광 또는 TM편광 여부에 관계없이 높은 반사율을 가질 수 있다.Further, according to another embodiment of the group III nitride surface grating reflector of the present disclosure, it includes a two-dimensional lattice pattern structure in which the ridge portion and the valley portion are periodically arranged two-dimensionally. In this case, the incident light may have a high reflectance regardless of whether it is TE polarized light or TM polarized light.
도 1의 (a)는 본 개시의 Ⅲ족 질화물 표면 격자 반사체를 나타내는 사시도이다. 1A is a perspective view illustrating a group III nitride surface grating reflector of the present disclosure.
도 1의 (b)는 본 개시의 GaN 표면 격자 반사체의 단면을 나타내는 도면이다. 1B is a diagram showing a cross section of the GaN surface lattice reflector of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 GaN 표면 격자 반사체의 제조방법을 나타내는 흐름도이다. 2 is a flowchart illustrating a method of manufacturing a GaN surface grating reflector according to an embodiment of the present disclosure.
도 3은 본 개시의 GaN 표면 격자 반사체를 제조하기 위한 홀로그래픽 리소그래피 시스템을 나타내는 개략적으로 나타내는 도면이다. FIG. 3 is a schematic diagram illustrating a holographic lithography system for fabricating a GaN surface grating reflector of the present disclosure.
도 4에 홀로그래픽 리소그래피를 이용하여 패터닝한 Ⅲ족 질화물 표면 격자 반사체의 주사전자현미경 사진이다. 4 is a scanning electron micrograph of a group III nitride surface grating reflector patterned using holographic lithography.
도 5는 GaN 표면 격자 반사체로 파장 450 nm인 TE(transverse electric field) 편광 입사광이 입사할 때 전기장의 분포를 나타내는 도면이다. FIG. 5 is a diagram showing an electric field distribution when a transverse electric field (TE) polarized incident light having a wavelength of 450 nm is incident on a GaN surface grating reflector.
도 6은 상기 바람직한 Ⅲ족 질화물격자 패턴 구조에 대하여 RCWA 방법으로 계산된 편광방향에 따른 반사스펙트럼을 나타내는 그래프이다. FIG. 6 is a graph showing reflection spectra according to the polarization direction calculated by the RCWA method with respect to the preferable Group III nitride grid pattern structure. FIG.
도 7은 RCWA 방법으로 계산된 격자의 주기 또는 격자의 높이에 따른 입사광의 0차 반사율의 변화를 나타내는 도면이다. 7 is a diagram illustrating a change in the zeroth order reflectance of incident light according to the period of the grating or the height of the grating calculated by the RCWA method.
도 8은 RCWA 방법으로 계산된 격자의 채움률 또는 격자의 경사각에 따른 입사광의 0차 반사율의 변화를 나타내는 도면이다. 8 is a view showing a change in the zero-order reflectance of the incident light according to the fill factor of the grating or the tilt angle of the grating calculated by the RCWA method.
도 9는 GaN 표면 격자 반사체의 Ⅲ족 질화물층 내부에서 공기 또는 진공 쪽으로 진행하는 입사광에 대한 반사율 측정 시스템이다. FIG. 9 is a reflectance measurement system for incident light traveling toward air or vacuum inside a Group III nitride layer of a GaN surface grating reflector.
도 10은 반사율 측정 시스템을 이용하여 측정한 GaN 표면 격자 반사체의 반사율을 나타내는 그래프이다.10 is a graph showing the reflectance of a GaN surface grating reflector measured using a reflectance measuring system.
이하, 도면을 참조하여 본 개시의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 명세서에 개시된 기술은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 당업자에게 본 개시의 기술 및 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 도면에서는 여러 층(또는 막), 영역 및 형상을 명확하게 표현하기 위하여 구조물들의 폭, 두께 또는 형상을 확대하여 나타내었다. 도면은 관찰자의 시점에서 설명되었고, 층, 막, 영역 등의 부분이 다른 부분 “상부에” 또는 “위에” 있다고 표현된 경우에는, “바로 상부에” 또는 “바로 위에” 있는 경우뿐 아니라, 그 중간에 또 다른 부분이 있는 경우도 포함한다. 그리고, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, the technology disclosed herein is not limited to the embodiments described herein and may be embodied in other forms. It is merely to be understood that the embodiments introduced herein are provided to enable those skilled in the art to fully convey the spirit and spirit of the present disclosure to those skilled in the art. In the drawings, the width, thickness, or shape of structures are enlarged in order to clearly express various layers (or layers), regions, and shapes. The drawings have been described at the point of view of the observer, and if portions of layers, films, regions, etc. are expressed as being “above” or “above” other portions, as well as “immediately above” or “immediately above”, This includes the case where there is another part in the middle. Like reference numerals designate like elements throughout the specification.
도 1의 (a)는 본 개시의 Ⅲ족 질화물 표면 격자 반사체를 나타내는 사시도이다. 도 1의 (a)를 참조하면, Ⅲ족 질화물 표면 격자 반사체(100)는 기판(102)의 일면에 Ⅲ족 질화물 층(104)이 배치되어 있다. Ⅲ족 질화물은 예로서 GaN, AlGaN 또는 InGaN일 수 있다. 간결하게 기술하기 위하여, 이하에서는 Ⅲ족 질화물 중 GaN을 대상으로 하여 Ⅲ족 질화물 표면 격자 반사체(100)를 설명하기로 한다. 여기서, GaN 층(104) 표면에 격자 패턴 구조(P)가 형성되어 있다. 격자 패턴 구조 (P)는 마루 부분(110)과 골(120) 부분이 주기적으로 배치된 요철 형상의 단면을 가진다. 즉, 격자 패턴 구조(P)는 GaN 층(104) 표면의 적어도 일부에 복수 개의 바(bar)들이 평행하게 배열된 것과 같은 형태를 가진다. 격자 패턴 구조(P)에 있어서, 주기(Λ)는 마루 부분(110)의 폭(w1)과 골 부분(120)의 폭(w2)의 합이 된다.1A is a perspective view illustrating a group III nitride surface grating reflector of the present disclosure. Referring to FIG. 1A, in the group III nitride surface grating reflector 100, a group III nitride layer 104 is disposed on one surface of the substrate 102. Group III nitrides may be, for example, GaN, AlGaN or InGaN. For simplicity, hereinafter, the group III nitride surface lattice reflector 100 will be described for GaN in the group III nitride. Here, a lattice pattern structure P is formed on the surface of the GaN layer 104. The grid pattern structure P has a concave-convex cross section in which the floor portion 110 and the valley 120 portion are periodically arranged. That is, the lattice pattern structure P has a form such that a plurality of bars are arranged in parallel on at least a part of the surface of the GaN layer 104. In the grid pattern structure (P), period (Λ) is the sum of the width (w 2) of the width (w 1) with the bone parts 120 in the top portions 110.
격자 패턴 구조(P)의 표면은 공기(air)와 접하거나 진공(vacuum) 중에 놓일 수 있다.The surface of the grid pattern structure P may be in contact with air or placed in a vacuum.
기판(102)은 예로서, 사파이어, 실리콘, 질화갈륨, 비소화갈륨, 탄화실리콘, 산화아연 또는 유리로 된 기판일 수 있다.The substrate 102 may be, for example, a substrate made of sapphire, silicon, gallium nitride, gallium arsenide, silicon carbide, zinc oxide, or glass.
특정 파장을 갖는 빛이 GaN 내부로부터 입사하는 경우, GaN 표면 격자 반사체(100)는 격자 패턴 구조(P)의 표면에서 높은 반사율을 가질 수 있다. 특정 이론에 의해 구속받는 것은 아니지만, 본 개시의 GaN 표면 격자 반사체가 입사광을 반사하는 이유를 이하와 같이 설명할 수 있다.When light having a specific wavelength is incident from inside the GaN, the GaN surface grating reflector 100 may have a high reflectance at the surface of the grating pattern structure P. Although not bound by a specific theory, the reason why the GaN surface grating reflector of the present disclosure reflects incident light can be explained as follows.
도 1의 (b)는 본 개시의 GaN 표면 격자 반사체의 단면을 나타내는 도면이다. 도 1의 (b)를 참조하면, GaN층(104)을 투과하는 입사광(130)이 격자 패턴 구조(P)를 통과하면 입사광(130)의 파장과 격자 패턴 구조(P)의 주기(Λ)에 따라 여러 각도로 빛이 회절될 수 있다. 격자 패턴을 적절히 설계하면 입사광이 입사각과 다른 각도로 투과하거나 반사하는 1차 이상의 회절 (high order diffraction)을 억제하고 입사광이 입사각과 같은 각도로 투과하거나 반사하는 0차 회절만 존재하도록 할 수 있다. 입사광은 약 300 nm 내지 약 700 nm의 파장을 가질 수 있다.1B is a diagram showing a cross section of the GaN surface lattice reflector of the present disclosure. Referring to FIG. 1B, when the incident light 130 passing through the GaN layer 104 passes through the grating pattern structure P, the wavelength of the incident light 130 and the period Λ of the grating pattern structure P are shown. As a result, light may be diffracted at various angles. Properly designed grating patterns can suppress high order diffraction in which incident light transmits or reflects at an angle different from the incident angle, and ensures that only zero-order diffraction exists where the incident light transmits or reflects at the same angle as the incident angle. The incident light can have a wavelength of about 300 nm to about 700 nm.
이 때 마루 부분(110)과 골 부분(120)을 각각 지나는 제 1 광(130-1)과 제 2 광(130-2)의 위상차가 π가 되도록 하면 격자를 통과한 빛들이 공기 중에서 상쇄간섭을 일으킬 수 있다. 상기 위상차는 격자 패턴 구조(P)의 외형(geometry)을 결정하는 구조적 매개변수에 따라 정해질 수 있다. 따라서 마루의 높이(h) 또는 채움률(F; filling factor)과 같은 구조적 매개변수를 적절히 조절함으로써, GaN층(104)을 투과하는 특정 파장의 입사파를 완전 반사시킬 수 있다. 채움률이란 마루의 폭(w1)과 격자의 주기(Λ)의 비율이다.At this time, when the phase difference between the first light 130-1 and the second light 130-2 passing through the floor portion 110 and the valley portion 120 becomes π, the light passing through the grating cancels interference in the air. May cause The phase difference may be determined according to structural parameters that determine the geometry of the lattice pattern structure P. FIG. Thus, by appropriately adjusting structural parameters such as floor height (h) or filling factor (F), it is possible to fully reflect incident waves of a particular wavelength passing through the GaN layer 104. The fill factor is the ratio of the width of the floor (w 1 ) to the period of the lattice (Λ).
본 개시의 일실시예에 따르면 GaN 표면 격자 반사체의 GaN 격자 패턴은 골(120)이 한 방향으로 나 있는 구조에 한정되지 않고 2차원 격자 패턴 구조로 구현할 수도 있다. 즉, 2차원 격자 패턴 구조는 마루 부분과 골 부분이 2차원적으로 주기적 배열된 형태로 구현할 수 있다. 예로서 격자는 삼각형 또는 사각형 모양일 수 있다.According to the exemplary embodiment of the present disclosure, the GaN lattice pattern of the GaN surface lattice reflector may be implemented as a two-dimensional lattice pattern structure without being limited to a structure in which the valleys 120 extend in one direction. That is, the two-dimensional lattice pattern structure may be implemented in a form in which the floor portion and the valley portion are periodically arranged in two dimensions. As an example the grid may be triangular or square in shape.
이하, 일 실시예에 따른 GaN 표면 격자 반사체의 제조방법을 설명하고자 한다. 도 2는 본 개시의 일 실시예에 따른 GaN 표면 격자 반사체의 제조방법을 나타내는 흐름도이다. 도 2를 참조하면, S200에서 기판 위에 GaN 층을 형성시킨다. 기판은 일예로 사파이어 기판일 수 있다. GaN층은 일예로 금속-유기화학 기상 증착법(metal-organic chemical-vapor-deposition, 이하 ‘MOCVD’라 함)을 사용하여 수 마이크론의 두께로 성장시킬 수 있다.Hereinafter, a method of manufacturing a GaN surface grating reflector according to an embodiment will be described. 2 is a flowchart illustrating a method of manufacturing a GaN surface grating reflector according to an embodiment of the present disclosure. Referring to FIG. 2, a GaN layer is formed on a substrate in S200. The substrate may be, for example, a sapphire substrate. The GaN layer may be grown to a thickness of several microns using, for example, metal-organic chemical-vapor-deposition (hereinafter referred to as MOCVD).
S210에서 GaN층 위에 SiO2 층을 형성시킨다. SiO2 층은 일예로 플라즈마 향상 화학기상 증착법(plasma-enhanced chemical vapor deposition)으로 성장시킬 수 있다. SiO2 층은 GaN층의 격자 패턴 형성을 위한 마스크로 사용된다.In S210, a SiO 2 layer is formed on the GaN layer. The SiO 2 layer may be grown by, for example, plasma-enhanced chemical vapor deposition. The SiO 2 layer is used as a mask for forming a lattice pattern of the GaN layer.
S220에서 SiO2 층 위에 Cr 층을 형성시킨다. Cr 층은 SiO2 층 식각을 위한 마스크로 사용된다. Cr 층은 일예로 전자총 증발법(e-gun evaporation)으로 성장시킬 수 있다.In S220, a Cr layer is formed on the SiO 2 layer. The Cr layer is used as a mask for etching SiO 2 layer. The Cr layer may be grown by e-gun evaporation, for example.
S230에서 Cr 층을 홀로그래픽 리소그래피(holographic lithography)를 이용하여 라인 패턴(line pattern)을 만들고 에칭하여 격자 패턴을 만든다.In S230, the Cr layer is made of a line pattern using holographic lithography and etched to form a lattice pattern.
도 3은 본 개시의 GaN표면 격자 반사체를 제조하기 위한 홀로그래픽 리소그래피 시스템을 개략적으로 나타내는 도면이다. 홀로그래픽 리소그래피는 전자빔 리소그래피(e-beam lithography)에 비해 적은 비용과 시간으로 1, 2 차원의 주기적 나노 집적 회로(IC nano-structure)를 넓은 면적에 제작하기가 용이하다. 도 3을 참조하면 홀로그래픽 리소그래피 시스템은 헬륨-카드뮴 레이저 발생기(350), 미러(330a, 330b, 330c), 셔터(340), 광 확장기(320), 렌즈(310) 및 샘플 스테이지(360)를 포함한다. 325nm 헬륨-카드뮴(He-Cd) 레이저 발생기(350)에서 방출된 레이저(305)를 미러(330b)로 반사시켜 셔터로 통과시킨다. 셔터(340)는 일예로 전자식 셔터(electronic shutter)로서 샘플(300)에 조사되는 레이저의 노광 시간을 조절할 수 있다. 셔터(340)를 통과한 레이저는 미러(330b)에서 반사되어 광 확장기(320)를 통과면서 퍼진다. 광 확장기(320)를 통과하면서 퍼진 레이저를 시준기(310)로 평행광으로 만든 다음 샘플 스테이지(360)로 입사시킨다. 샘플(300)에 직접 조사되는 레이저와 샘플(300)에 수직으로 설치된 미러(330c)에서 반사되어 샘플(300)로 들어오는 레이저가 샘플(300) 표면에서 간섭을 일으켜 1차원 격자 패턴을 형성한다. 샘플 스테이지(360)를 회전시켜 두 레이저의 입사각을 조절하면 격자 패턴의 주기를 쉽게 조절할 수 있다. 두 레이저의 간섭 현상을 이용한 홀로그래픽 리소그래피를 사용하여 샘플(300)의 넓은 면적에 격자를 패터닝할 수 있다. 3 is a schematic representation of a holographic lithography system for fabricating a GaN surface grating reflector of the present disclosure. Holographic lithography makes it easier to fabricate one- and two-dimensional periodic IC nanostructures in large areas at a fraction of the cost and time required compared to e-beam lithography. Referring to FIG. 3, a holographic lithography system includes a helium-cadmium laser generator 350, mirrors 330a, 330b, and 330c, a shutter 340, an optical expander 320, a lens 310, and a sample stage 360. Include. The laser 305 emitted from the 325 nm helium-cadmium (He-Cd) laser generator 350 is reflected by the mirror 330b and passed through the shutter. For example, the shutter 340 may adjust an exposure time of a laser irradiated to the sample 300 as an electronic shutter. The laser passing through the shutter 340 is reflected by the mirror 330b and spreads through the optical expander 320. The laser spreads through the optical expander 320 is made into parallel light with the collimator 310 and then incident to the sample stage 360. The laser directly irradiated onto the sample 300 and the laser reflected from the mirror 330c installed perpendicular to the sample 300 enter the sample 300 to interfere with the surface of the sample 300 to form a one-dimensional grating pattern. By rotating the sample stage 360 to adjust the incident angles of the two lasers, the period of the grating pattern can be easily adjusted. The grating can be patterned over a large area of the sample 300 using holographic lithography using the interference of two lasers.
도 2를 재참조하면, S240에서 SiO2 층을 반응성 이온 에칭(reactive ion etching 이하 ‘RIE’ 라 함)한다. S250에서 격자로 된 SiO2 층을 이용하여 GaN층을 유도결합 플라즈마 반응성 이온 에칭(inductively-coupled plasma RIE, 이하 ‘ICPRIE’함)하여 GaN 층에 격자 패턴을 형성함으로써, GaN 표면 격자 반사체가 제조될 수 있다.Referring back to FIG. 2, the SiO 2 layer is referred to as reactive ion etching (RIE) in S240. A GaN surface lattice reflector can be fabricated by forming a lattice pattern in the GaN layer by inductively-coupled plasma RIE (hereinafter referred to as " ICPRIE ") using a lattice SiO 2 layer in S250. Can be.
도 4에 상술한 홀로그래픽 리소그래피를 이용하여 패터닝한 GaN 표면 격자 반사체의 주사전자현미경 사진을 나타내었다. 도 4의 (a)는 GaN표면 격자 반사체의 측면에서 관찰한 사진이고, 도 4의 (b)는 GaN 표면 격자 반사체의 상부에서 관찰한 사진이다. 도 4의 (a) 및 (b)로부터, 주기적 패턴을 가진 격자 구조를 관찰할 수 있다.4 shows a scanning electron micrograph of a GaN surface grating reflector patterned using holographic lithography as described above. 4A is a photograph observed from the side of the GaN surface grating reflector, and FIG. 4B is a photograph observed from the top of the GaN surface grating reflector. From Figs. 4A and 4B, the lattice structure having a periodic pattern can be observed.
상술한 방법으로 만들어진 GaN 표면 격자 반사체에 대해 반사율 측정은 다음과 같은 방식으로 수행될 수 있다.The reflectance measurement for the GaN surface grating reflector made by the above-described method can be performed in the following manner.
도 5는 GaN 표면 격자 반사체로 파장 450 nm인 TE(transverse electric field) 편광 입사광이 입사할 때 전기장의 분포를 나타내는 도면이다. TE 편광이란 빛의 전기장과 격자 패턴 구조의 골 방향(도 1의 (a)에 있어서 ‘l’)이 평행한 빛을 말한다. 상기 전기장의 분포는 유한 차 시간 영역(Finite-difference time-domain, 이하 ‘FDTD’라 함) 방법을 이용하여 분석될 수 있다. 도 5의 (a)를 참조하면, 각 숫자는 빛의 전기장의 세기를 상대적으로 표시한 값이다. 전기장이 동일한 세기를 가지는 좌표를 선으로 연결하여 표시하였다. 전기장이 GaN격자 패턴의 표면에 국소적으로 강하게 집중되어 있다. ‘A’영역 및‘B’영역을 각각 격자의 마루 부분과 골 부분을 통과하는 빛이 지나는 영역이다. 도 5의 (b)를 참조하면 격자 패턴을 통과하기 전 각각의 빛은 위상이 동일하다. 그러나 격자 패턴을 통과하면서 격자의 마루를 통과하는 빛과 격자의 골을 통과하는 빛 사이에 위상차가 π만큼 발생한다. 그 결과, ‘A’ 영역 및 ‘B’ 영역을 각각 통과하는 빛의 전기장의 합은 0이 된다. 따라서 격자 패턴 구조의 마루 부분과 골 부분을 통과하는 빛의 상쇄간섭 현상에 의해 높은 반사가 얻어질 수 있다는 앞서의 설명과 잘 일치함을 알 수 있다. 상기 위상차가 π에 가까워질수록 반사율이 높아지며, 상기 위상차는 격자 패턴 구조의 구조적 매개변수들에 의해 결정될 수 있다. 상기 구조적 매개변수들의 예로 도 1에서 상술한 주기(Λ), 채움률(F), 높이(h) 및 격자의 경사각(θ) 등을 들 수 있다. 여기서 격자의 경사각(θ)은 격자의 골 부분을 가로지르는 법선과 격자 측면이 이루는 각을 말한다. 예를 들어 격자의 경사각 (θ)이 0도인 경우 격자 패턴 구조의 단면은 직사각형의 형태가 되고 0도 이상이 되면 사다리꼴의 형태가 된다. 필요한 용도에 따라 상기 구조적 매개변수들은 다양하게 변경될 수 있다.FIG. 5 is a diagram showing an electric field distribution when a transverse electric field (TE) polarized incident light having a wavelength of 450 nm is incident on a GaN surface grating reflector. TE polarized light means light in which the electric field of light and the valley direction ('l' in Fig. 1 (a)) of the lattice pattern structure are parallel. The distribution of the electric field may be analyzed using a finite-difference time-domain (hereinafter referred to as 'FDTD') method. Referring to (a) of FIG. 5, each number is a value representing a relative intensity of an electric field of light. Coordinates with the same intensity of the electric field are shown by connecting lines. The electric field is strongly concentrated locally on the surface of the GaN grid pattern. Areas 'A' and 'B' are light passing through the floor and valley of the grid respectively. Referring to FIG. 5B, each light has the same phase before passing through the grid pattern. However, the phase difference occurs by π between the light passing through the grid floor and the light passing through the valley of the grid while passing through the grid pattern. As a result, the sum of the electric fields of light passing through the 'A' and 'B' regions respectively becomes zero. Therefore, it can be seen that the above description is consistent with the above description that a high reflection can be obtained by the destructive interference phenomenon of light passing through the floor and valley portions of the lattice pattern structure. As the phase difference approaches π, the reflectance increases, and the phase difference may be determined by structural parameters of the grating pattern structure. Examples of the structural parameters may include the period (Λ), the filling rate (F), the height (h), and the inclination angle (θ) of the lattice described above with reference to FIG. 1. Here, the angle of inclination (θ) of the lattice refers to the angle formed between the normal line across the valley portion of the lattice and the lattice side. For example, when the angle of inclination θ of the lattice is 0 degrees, the cross section of the lattice pattern structure becomes a rectangular shape, and when it is 0 degrees or more, it becomes a trapezoidal shape. The structural parameters can be variously modified according to the required use.
상기 주기(Λ)는 입사광의 파장(λ)보다 짧아야 한다. 바람직하게는 λ/2 < Λ < λ일 수 있다. 예를 들어 입사광의 파장이 약 450 nm인 경우 바람직한 주기(Λ)는 약 400 nm 내지 약 450 nm 일 수 있다.The period Λ should be shorter than the wavelength λ of the incident light. Preferably λ / 2 <Λ <λ. For example, when the wavelength of the incident light is about 450 nm, the preferred period Λ may be about 400 nm to about 450 nm.
상기 마루 부분의 높이(h)는 채움률이 약 0.5인 경우 λ/2(nGaN-1) 부근이어야 한다(λ: 입사광의 파장, nGaN: GaN의 굴절률). 바람직하게는 λ/4(nGaN-1) < h < λ/(nGaN-1)일 수 있다. 예를 들어 입사광의 파장이 약 450 nm인 경우, 높이(h)는 약 80 내지 약 150 nm일 수 있으며, 바람직하게는 약 95 nm 내지 약 125 nm 일 수 있다.The height h of the floor portion should be around λ / 2 (n GaN −1) when the fill factor is about 0.5 (λ: wavelength of incident light, n GaN : refractive index of GaN). Preferably, λ / 4 (n GaN −1) <h <λ / (n GaN −1). For example, when the wavelength of the incident light is about 450 nm, the height h may be about 80 to about 150 nm, preferably about 95 nm to about 125 nm.
상기 채움률(F)는 약 0.1 내지 약 0.7일 수 있으며, 바람직하게는 약 0.2 내지 약 0.45일 수 있다.상기 격자의 경사각(θ)은 약 0 내지 약 40도일 수 있으며, 바람직하게는 약 0도 내지 약 30도 일 수 있다.The filling rate F may be about 0.1 to about 0.7, preferably about 0.2 to about 0.45. The inclination angle θ of the grating may be about 0 to about 40 degrees, preferably about 0 Degrees to about 30 degrees.
각각의 범위를 만족시킬 경우, 반사율은 약 90% 이상일 수 있다.When satisfying each range, the reflectance may be about 90% or more.
다양한 구조적 매개변수들에 대해 엄밀한 결합 파동 분석 (Rigorous Coupled-Wave Analysis, 이하 ‘RCWA’라 함) 방법으로 면밀히 계산한 결과, 바람직한 GaN 격자 패턴 구조의 일예를 들면, 파장(λ)이 약 450 nm 인 입사광에 대해 주기(Λ) = 약 419 nm, 채움률(F) = 약 0.4, 높이(h) = 약 114 nm, 격자의 경사각(θ) = 약 0 도 일 경우 반사율은 1에 근접할 수 있다.As a result of careful calculation by rigorous coupled-wave analysis (RCWA) for various structural parameters, an example of a preferred GaN lattice pattern structure, for example, wavelength λ of about 450 nm The reflectance can be close to 1 for period (Λ) = about 419 nm, fill factor (F) = about 0.4, height (h) = about 114 nm, and tilt angle (θ) = about 0 degrees have.
도 6은 상기 바람직한 Ⅲ족 질화물격자 패턴 구조에 대하여 RCWA 방법으로 계산된 편광방향에 따른 반사스펙트럼을 나타내는 그래프이다. 이 RCWA 계산에서 Ⅲ족 질화물의 파장에 따른 반사지수의 분산은 셀마이어 방정식(Sellmeier equation)을 따른다고 가정하였다. ‘0th R’,‘1st R’,‘2nd R’은 각각 입사광의 0차 회절 반사율, 1차 회절 반사율 및 2차 회절 반사율을 의미한다. 0차 회절 반사율은 입사광의 입사각과 반사각이 동일할 때의 입사광의 반사율을 의미한다. 1차 이상의 회절 반사율은 입사광의 입사각과 반사각이 동일하지 않을 때의 입사광의 반사율을 의미한다. ‘0th T’,‘1st T’는 각각 입사광의 0차 회절 투과율, 1차 회절 투과율을 의미한다. 0차 회절 투과율은 입사광의 입사방향과 투과방향이 평행할 때의 입사광의 투과율을 의미한다. 1차 이상의 회절 투과율은 입사광의 입사방향과 투과방향이 평행하지 않을 때의 입사광의 투과율을 의미한다. 도 6의 (a)를 참조하면, TE 편광으로 파장 약 450 nm 부근에서 0차의 회절 반사율은 1에 가깝다. 또한 TE 편광의 1차 이상의 회절 반사율은 효과적으로 억제됨을 알 수 있다. TE 편광으로 0차 회절 반사율이 약 80 % 이상인 스펙트럼 대역이 약 90 nm, 0차 회절 반사율이 약 90 % 인 스펙트럼 대역이 약 60 nm로 상당히 넓은 대역을 갖는 반사체를 얻을 수 있다. 이는 일반적인 단파장용 반도체 물질로 쓰이는 InGaN 양자우물의 일반적인 이득폭 보다 넓다. 도 6의 (b)를 참조하면, TM 편광으로 파장450 nm 부근에서 0차의 반사율은 0에 가깝다. TM 편광이란 빛의 자기장과 격자 패턴 구조의 골 방향(도 1의 (a)에 있어서 ‘l’)이 평행한 빛을 말한다. 또한TM 편광의 1차 회절 반사율은 효과적으로 억제되지 않음을 알 수 있다. 상기 결과로부터 본 개시의 Ⅲ족 질화물 표면 격자 반사체는 TE편광에 대해 선택적으로 좋은 반사체로 동작할 수 있음을 알 수 있다.FIG. 6 is a graph showing reflection spectra according to the polarization direction calculated by the RCWA method with respect to the preferable Group III nitride grid pattern structure. FIG. In this RCWA calculation, it is assumed that the dispersion of reflection index according to the wavelength of group III nitride follows the Selmeier equation. '0th R', '1st R', and '2nd R' refer to the zeroth order diffraction reflectivity, the first order diffraction reflectance, and the second order diffraction reflectance of the incident light, respectively. The zeroth-order diffraction reflectance means the reflectance of incident light when the incident angle and the reflection angle of the incident light are the same. The diffraction reflectivity of the first order or more means the reflectance of incident light when the incident angle and the reflection angle of the incident light are not the same. "0th T" and "1st T" mean 0th diffraction transmittance and 1st diffraction transmittance of incident light, respectively. The zero-order diffraction transmittance means the transmittance of incident light when the incident direction of the incident light and the transmission direction are parallel. The first or more diffraction transmittance means the transmittance of incident light when the incident direction of the incident light and the transmission direction are not parallel. Referring to FIG. 6 (a), the diffraction reflectance of the 0th order is close to 1 near the wavelength of about 450 nm with TE polarized light. It can also be seen that the diffraction reflectivity of the first order or higher of the TE polarization is effectively suppressed. With TE polarized light, a reflector having a fairly wide band can be obtained, with a spectral band having a zeroth order diffraction reflectance of about 80% or more and a spectral band of about 90% having a zeroth order diffraction reflectance of about 60%. This is wider than the typical gain of InGaN quantum wells, which are commonly used as short wavelength semiconductor materials. Referring to FIG. 6B, the reflectivity of the 0th order is close to 0 in the vicinity of the wavelength of 450 nm with TM polarized light. TM polarized light refers to light in which the magnetic field of light and the valley direction of the lattice pattern structure ('l' in FIG. 1A) are parallel. It can also be seen that the first order diffraction reflectivity of the TM polarization is not effectively suppressed. From the above results, it can be seen that the group III nitride surface lattice reflector of the present disclosure can act as a good reflector selectively for TE polarization.
도 7은 RCWA 방법으로 계산된 격자의 주기 또는 격자의 높이에 따른 입사광의 0차 회절 반사율의 변화를 나타내는 도면이다. 동일한 0차 회절 반사율을 가지는 좌표를 연결하여 등고선 모양으로 표현 하였다. 도 7의 (a)를 참조하면 격자의 주기에 따른 반사율의 변화가 도시된다. 격자의 주기란 마루 하나의 폭과 골 하나의 폭을 더한 값이다. 격자의 주기가 증가함에 따라 반사율이 가장 높은 영역-반사율이 약 0.9이상인 영역-이 장파장 쪽으로 이동하며 입사광의 반사율이 감소함을 알 수 있다. 격자의 주기의 변화에 따른 반사율의 변화는 다른 매개변수들에 비해 크지 않음을 알 수 있다.FIG. 7 is a diagram illustrating a change in the zeroth order diffraction reflectance of incident light according to the period of the grating or the height of the grating calculated by the RCWA method. Coordinates with the same zero-order diffraction reflectance are connected to each other to form a contour line. Referring to FIG. 7A, a change in reflectance according to the period of the grating is illustrated. The period of the grid is the width of one floor plus the width of the valleys. It can be seen that as the period of the grating increases, the region having the highest reflectance-the region having the reflectance of about 0.9 or more-moves toward the long wavelength and the reflectance of the incident light decreases. It can be seen that the change in reflectance according to the change in the period of the grating is not large compared to other parameters.
도 7의 (b)를 참조하면, 격자의 높이(h)에 따른 반사율의 변화가 도시된다. 격자의 높이가 약 114 nm를 중심으로 반사율이 높은 영역-반사율이 약 0.9 이상인 영역-이 굉장히 넓게 나타남을 알 수 있다.Referring to FIG. 7B, the change in reflectance according to the height h of the grating is shown. It can be seen that the region with a high reflectivity-the region with a reflectance of about 0.9 or more-appears around the 114 nm of the grating height.
도 8은 RCWA 방법으로 계산된 격자의 채움률 또는 격자의 경사각에 따른 입사광의 0차 반사율의 변화를 나타내는 도면이다. 동일한 0차 회절 반사율을 가지는 좌표를 연결하여 등고선 모양으로 표현 하였다. 도 8의 (a)를 참조하면, 격자의 채움률(F)에 따른 반사율의 변화가 도시된다. 격자의 채움률의 경우 최적인 약 0.4 이하에서는 반사율이 높지만, 약 0.45를 넘어서부터 급격히 반사율이 감소함을 확인할 수 있다. 또한 반사율이 높은 영역도 다른 매개변수에 비해 상대적으로 좁다.8 is a view showing a change in the zero-order reflectance of the incident light according to the fill factor of the grating or the tilt angle of the grating calculated by the RCWA method. Coordinates with the same zero-order diffraction reflectance are connected to each other to form a contour line. Referring to FIG. 8A, the change in reflectance according to the filling factor F of the grating is shown. In the case of the filling ratio of the lattice, the reflectance is high at the optimum value of about 0.4 or less, but the reflectance rapidly decreases from about 0.45. In addition, areas with high reflectance are also relatively narrow compared to other parameters.
도 8의 (b)를 참조하면, 격자의 경사각(θ)에 따른 반사율의 변화가 도시된다. 격자의 경사각이란 격자의 골의 법선과 격자 측면이 이루는 각을 말한다. 격자의 경사각이 0˚에서 약 30˚까지 반사율의 변화가 다른 매개변수에 비해 상대적으로 크지 않음을 알 수 있다. 도 7 및 도 8에 나타난 결과로부터 유추하여 볼 때 격자의 채움률은 반사율을 결정함에 있어서 상대적으로 중요한 변수임을 알 수 있다.Referring to FIG. 8B, a change in reflectance according to the inclination angle θ of the grating is shown. The angle of inclination of the grid refers to the angle formed between the normals of the valleys of the grid and the sides of the grid. It can be seen that the change in reflectance of the grating angle from 0 ° to about 30 ° is not relatively large compared to other parameters. Inferred from the results shown in FIGS. 7 and 8, the fill factor of the grating is a relatively important variable in determining the reflectance.
도 9는 GaN 표면 격자 반사체의 GaN층 내부에서 공기 또는 진공 쪽으로 진행하는 입사광에 대한 반사율 측정 시스템이다. 도 9를 참조하면, 반사율 측정 시스템(900)은 제논 램프(910), 렌즈(920), 핀홀(930), 편광기(940), 빔분리기(960) 및 분광기(970)를 포함한다. 제논 램프(910)에서 방출되어 렌즈(920)를 통과한 빛을 빔분리기(960)를 이용하여 샘플(950)의 기판 쪽으로 입사시킨다. 편광기(940)와 핀홀(930)을 사용하여 특정 편광 방향의 빛만 샘플(950)에 수직으로 입사시킬 수 있다. 샘플(950)에서 반사된 빛은 분광기(970)로 입사시켜 파장에 따른 반사율을 측정할 수 있다. 측정된 결과는 알루미늄 거울을 이용하여 정규화(normalization) 될 수 있다.9 is a reflectance measurement system for incident light traveling toward air or vacuum inside a GaN layer of a GaN surface grating reflector. 9, the reflectance measuring system 900 includes a xenon lamp 910, a lens 920, a pinhole 930, a polarizer 940, a beam splitter 960, and a spectrometer 970. Light emitted from the xenon lamp 910 and passed through the lens 920 is incident to the substrate of the sample 950 using the beam separator 960. Using the polarizer 940 and the pinhole 930, only light in a specific polarization direction may be incident perpendicularly to the sample 950. The light reflected from the sample 950 may be incident on the spectrometer 970 to measure reflectance according to the wavelength. The measured results can be normalized using an aluminum mirror.
도 10은 반사율 측정 시스템을 이용하여 측정한 GaN 표면 격자 반사체의 반사율을 나타내는 그래프이다. ‘TE-exp’는 TE 편광에 대해 반사율 측정 시스템을 이용하여 반사율을 측정한 결과이다. ‘TE-RCWA’는 TE 편광에 대해 RCWA방법을 이용하여 반사율을 계산한 결과이다. ‘TM-exp’는 TM 편광에 대해 반사율 측정 시스템을 이용하여 반사율을 측정한 결과이다. ‘TM-RCWA’는 TM 편광에 대해 RCWA방법을 이용하여 반사율을 계산한 결과이다. 도 10을 참조하면, 파장이 약 450 nm 부근의 TE편광의 반사율은 약 1에 가까워 매우 높음을 알 수 있다. TE 편광 입사광의 파장이 약 0nm 이상 약 510nm 이하일 때 반사율은 약 80% 이상이 될 수 있다. 반면 TM 편광의 반사율은 실험적으로 얻은 값이 대부분 약 0.4 이하이다. 따라서 GaN 표면 격자 반사체는 TE편광에 대하여 탁월한 반사체임을 알 수 있다. 한편, 마루 부분과 골 부분이 2차원적으로 주기적 배열되는 2차원 격자 구조를 포함하는 Ⅲ족 질화물 표면 격자 반사체의 경우 입사광이 TE편광 또는 TM편광 여부에 관계없이 높은 반사율을 가질 수 있을 것이다.10 is a graph showing the reflectance of a GaN surface grating reflector measured using a reflectance measuring system. 'TE-exp' is the result of measuring reflectance using a reflectance measuring system for TE polarized light. 'TE-RCWA' is the result of calculating the reflectance using the RCWA method for TE polarized light. 'TM-exp' is the result of measuring reflectance using a reflectivity measuring system for TM polarized light. 'TM-RCWA' is the result of calculating the reflectance using the RCWA method for TM polarized light. Referring to FIG. 10, it can be seen that the reflectance of TE polarized light having a wavelength of about 450 nm is close to about 1, which is very high. When the wavelength of the TE polarized incident light is about 0 nm or more and about 510 nm or less, the reflectance may be about 80% or more. On the other hand, the reflectance of TM polarized light is almost 0.4 or less. Thus, it can be seen that the GaN surface grating reflector is an excellent reflector for TE polarization. Meanwhile, in the case of the group III nitride surface grating reflector including the two-dimensional lattice structure in which the ridge portion and the valley portion are periodically two-dimensionally arranged, the incident light may have a high reflectance regardless of whether TE or TM polarization is incident.
본 개시의 GaN 표면 격자 반사체는 높은 반사율을 요구하는 GaN기반의 광소자에 장착될 수 있다. 예를 들면 상기 GaN 표면 격자 반사체는 공진 공동 발광 다이오드(resonant-cavity light-emitting diode) 또는 수직 공동 발광 다이오드(vertical-cavity light-emitting diode)에 장착되어 응용될 수 있다.The GaN surface grating reflector of the present disclosure may be mounted in a GaN based optical device that requires high reflectance. For example, the GaN surface grating reflector may be mounted and applied to a resonant-cavity light-emitting diode or a vertical-cavity light-emitting diode.
상술한 바와 같이 본 개시의 Ⅲ족 질화물 표면 격자 반사체의 일 실시예에 따르면, 단면이 요철 모양인 격자 패턴이 주기적으로 반복되는 구조를 포함하고 있다. 특정 파장대의 입사광에 대해 높은 반사율을 가지고, 특히 TE 편광에 대하여 탁월한 반사율을 나타낸다. 또한 약 0.8 이상의 높은 반사율을 보이는 입사광의 파장대가 약 90 nm로 넓다.As described above, according to one embodiment of the group III nitride surface grating reflector of the present disclosure, a cross-sectional grating pattern having a concave-convex shape includes a structure in which a periodic pattern is repeated. It has a high reflectance for incident light in a particular wavelength band, and particularly exhibits excellent reflectance for TE polarized light. In addition, the wavelength band of incident light showing high reflectivity of about 0.8 or more is wide, about 90 nm.
또한 본 개시의 Ⅲ족 질화물 표면 격자 반사체의 다른 실시예에 따르면, 마루 부분과 골 부분이 2차원적으로 주기적 배열되는 2차원 격자 패턴 구조를 포함하고 있다. 이 경우 입사광이 TE편광 또는 TM편광 여부에 관계없이 높은 반사율을 가질 수 있다.Further, according to another embodiment of the group III nitride surface grating reflector of the present disclosure, it includes a two-dimensional lattice pattern structure in which the ridge portion and the valley portion are periodically arranged two-dimensionally. In this case, the incident light may have a high reflectance regardless of whether it is TE polarized light or TM polarized light.
이상에서 살펴본 바와 같이 본 개시된 기술을 다양한 실시예를 들어 상세히 기술하였지만, 본 개시된 기술이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 개시된 기술의 정신 및 범위를 벗어나지 않으면서 본 개시된 기술을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 개시된 기술의 앞으로의 실시예들의 변경은 본 개시된 기술의 기술을 벗어날 수 없을 것이다.As described above, the disclosed technology has been described in detail with reference to various embodiments, but a person having ordinary skill in the art to which the disclosed technology belongs, the spirit and scope of the disclosed technology defined in the appended claims Various modifications may be made to the disclosed technology without departing from it. Therefore, changes in the future embodiments of the disclosed technology will not be able to escape the technology of the disclosed technology.

Claims (13)

  1. 기판 및 상기 기판의 일면 위에 배치되며 1차원 회절 격자 패턴의 구조가 표면에 형성된 Ⅲ족 질화물 층을 포함하되,A group III nitride layer disposed on one surface of the substrate and having a structure of a one-dimensional diffraction grating pattern formed on a surface thereof,
    상기 격자 패턴 구조는 마루 부분과 골 부분이 주기적으로 배치된 요철 형상의 단면을 가지며,The grid pattern structure has a concave-convex cross section in which the floor portion and the valley portion are periodically arranged,
    상기 Ⅲ족 질화물 내부로부터 입사한 입사광 중 상기 마루 부분을 투과하는 제 1 광과 상기 골 부분을 투과하는 제 2 광이 서로 상쇄간섭을 일으킴으로써 상기 입사광이 상기 격자 패턴 구조의 표면에서 반사되는 Ⅲ족 질화물 표면 격자 반사체. Group III in which the incident light is reflected on the surface of the lattice pattern structure by canceling out interference between the first light penetrating the ridge portion and the second light penetrating the valley portion among the incident light incident from the inside of the Group III nitride Nitride surface grating reflector.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 Ⅲ족 질화물은 GaN, AlGaN 또는 InGaN 중 하나인 Ⅲ족 질화물 표면 격자 반사체.The group III nitride surface group grating reflector is one of GaN, AlGaN or InGaN.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 입사광은 300 nm 내지 700 nm의 파장을 갖는 Ⅲ족 질화물 표면 격자 반사체.The incident light has a wavelength of 300 nm to 700 nm group III nitride surface grating reflector.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 격자 패턴 구조의 주기(Λ)는 λ/2 < Λ < λ인 Ⅲ족 질화물 표면 격자 반사체(λ는 입사광의 파장).The period Λ of the grating pattern structure is a group III nitride surface grating reflector wherein λ / 2 <Λ <λ (λ is the wavelength of incident light).
  5. 제 1 항에 있어서,The method of claim 1,
    상기 격자 패턴 구조의 상기 마루 부분의 높이(h)는 λ/4(nⅢ족 질화물-1) < h < λ/(nⅢ족 질화물-1)인 Ⅲ족 질화물 표면 격자 반사체(λ: 입사광의 파장, nⅢ족 질화물: Ⅲ족 질화물의 굴절률).The height h of the ridge portion of the lattice pattern structure is λ / 4 (n group III nitride -1) <h <λ / (n group III nitride -1). Wavelength, n group III nitride : refractive index of group III nitride).
  6. 제 1 항에 있어서,The method of claim 1,
    상기 격자 패턴 구조의 채움률(F)이 0.2 내지 0.7인 Ⅲ족 질화물 표면 격자 반사체.A group III nitride surface grating reflector having a fill factor (F) of the grating pattern structure of 0.2 to 0.7.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 격자 패턴 구조의 격자의 경사각(θ)이 0 내지 40도인 Ⅲ족 질화물 표면 격자 반사체.A group III nitride surface grating reflector having an inclination angle [theta] of the grating of the grating pattern structure being 0 to 40 degrees.
  8. 제 1 항 내지 제 7 항 중 어느 한 항의 Ⅲ족 질화물 표면 격자 반사체를 포함하는 발광소자. A light emitting element comprising the group III nitride surface lattice reflector of any one of claims 1 to 7.
  9. 기판 및 상기 기판의 일면 위에 배치되며 격자 패턴의 구조가 표면에 형성된 Ⅲ족 질화물 층을 포함하되,A group III nitride layer disposed on one surface of the substrate and having a lattice pattern structure formed thereon;
    상기 격자 패턴 구조는 마루 부분과 골 부분이 2차원적으로 주기적 배열되고 상기 격자는 다각형 형태이며,The lattice pattern structure is the floor portion and the valley portion is periodically arranged in two dimensions and the lattice is a polygonal form,
    상기 Ⅲ족 질화물 내부로부터 입사한 입사광 중 상기 마루 부분을 투과하는 제 1 광과 상기 골 부분을 투과하는 제 2 광이 서로 상쇄간섭을 일으킴으로써 상기 입사광이 상기 격자 패턴 구조의 표면에서 반사되는 Ⅲ족 질화물 표면 격자 반사체.Group III in which the incident light is reflected on the surface of the lattice pattern structure by canceling out interference between the first light penetrating the ridge portion and the second light penetrating the valley portion among the incident light incident from the inside of the Group III nitride Nitride surface grating reflector.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 Ⅲ족 질화물은 GaN, AlGaN 또는 InGaN 중 하나인 Ⅲ족 질화물 표면 격자 반사체.The group III nitride surface group grating reflector is one of GaN, AlGaN or InGaN.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 입사광은 상기 입사광의 유도전기장 방향이 상기 골 부분의 길이 방향과 평행한 TE(transverse electric field) 편광인 Ⅲ족 질화물 표면 격자 반사체.And said incident light is a transverse electric field (TE) polarization in which the induced electric field direction of said incident light is parallel to the longitudinal direction of said valley portion.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 입사광은 상기 입사광의 자기장 방향이 상기 골 부분의 길이 방향과 평행한 TM(transverse electric field) 편광인 Ⅲ족 질화물 표면 격자 반사체.And said incident light is a transverse electric field (TM) polarized light in which the magnetic field direction of said incident light is parallel to the longitudinal direction of said valley portion.
  13. 제 9 항 내지 제 12 항 중 어느 한 항의 Ⅲ족 질화물 표면 격자 반사체를 포함하는 발광소자. 13. A light emitting device comprising the group III nitride surface grating reflector of any one of claims 9-12.
PCT/KR2009/005996 2009-10-16 2009-10-16 Iii-nitride surface grating reflector WO2011046244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127010505A KR101377397B1 (en) 2009-10-16 2009-10-16 Ⅲ-nitride surface grating reflector
PCT/KR2009/005996 WO2011046244A1 (en) 2009-10-16 2009-10-16 Iii-nitride surface grating reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/005996 WO2011046244A1 (en) 2009-10-16 2009-10-16 Iii-nitride surface grating reflector

Publications (1)

Publication Number Publication Date
WO2011046244A1 true WO2011046244A1 (en) 2011-04-21

Family

ID=43876289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005996 WO2011046244A1 (en) 2009-10-16 2009-10-16 Iii-nitride surface grating reflector

Country Status (2)

Country Link
KR (1) KR101377397B1 (en)
WO (1) WO2011046244A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643881A (en) * 2016-07-27 2019-04-16 巴黎第十大学 Distributed feedback laser diode
WO2021150304A1 (en) * 2020-01-23 2021-07-29 Yale University Stacked high contrast gratings and methods of making and using thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908005B1 (en) 2016-12-08 2018-10-15 (주)케이아이오티 Intelligent camera system and managing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
WO2002059938A2 (en) * 2000-12-29 2002-08-01 Honeywell International Inc. Spatially modulated reflector for an optoelectronic device
US20080123711A1 (en) * 2006-09-06 2008-05-29 Palo Alto Research Center Incorporated Nitride light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150075A (en) 2005-11-29 2007-06-14 Rohm Co Ltd Nitride semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
WO2002059938A2 (en) * 2000-12-29 2002-08-01 Honeywell International Inc. Spatially modulated reflector for an optoelectronic device
US20080123711A1 (en) * 2006-09-06 2008-05-29 Palo Alto Research Center Incorporated Nitride light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643881A (en) * 2016-07-27 2019-04-16 巴黎第十大学 Distributed feedback laser diode
CN109643881B (en) * 2016-07-27 2021-04-23 巴黎第十大学 Distributed feedback laser diode
WO2021150304A1 (en) * 2020-01-23 2021-07-29 Yale University Stacked high contrast gratings and methods of making and using thereof

Also Published As

Publication number Publication date
KR20120079113A (en) 2012-07-11
KR101377397B1 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
EP2733752B1 (en) Light emitting element and method for manufacturing the same
US10734786B2 (en) Semiconductor light emitting element and light emitting device including same
EP2056368B1 (en) Light emitting device and method for manufacturing the same
Fricke et al. Properties and fabrication of high-order Bragg gratings for wavelength stabilization of diode lasers
US9529128B2 (en) Non-uniform grating
JP6945954B2 (en) Grating coupler system and integrated grating coupler system
JP6747922B2 (en) Semiconductor light emitting device and light emitting device
US20150118124A1 (en) Structural colorimetric sensor
KR101580619B1 (en) Semiconductor light-emitting element and production method
US20210028332A1 (en) Optical device and method of forming the same
KR20160093544A (en) Led element
Lee et al. Polarization-dependent GaN surface grating reflector for short wavelength applications
WO2011046244A1 (en) Iii-nitride surface grating reflector
JP4935148B2 (en) Multi-wavelength quantum well infrared detector
JP2018132728A (en) Reflection type diffraction grating, laser oscillator, and laser beam machine
Kitson et al. Photonic band gaps in metallic microcavities
US20020048304A1 (en) Radiation emitting devices
JP7103817B2 (en) Semiconductor light emitting device
JP6981074B2 (en) Optical element
CN111226148B (en) Waveguide sheet and photoelectric conversion device
EP0946994A1 (en) Radiation emitting devices
JP6925249B2 (en) Light emitting device
KR20080049393A (en) Light emitting device
Wiesmann et al. Analysis of the emission characteristics of photonic crystal LEDs
KR101061803B1 (en) Group III nitride thin film lattice reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127010505

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09850420

Country of ref document: EP

Kind code of ref document: A1