WO2011059225A2 - Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability - Google Patents

Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability Download PDF

Info

Publication number
WO2011059225A2
WO2011059225A2 PCT/KR2010/007913 KR2010007913W WO2011059225A2 WO 2011059225 A2 WO2011059225 A2 WO 2011059225A2 KR 2010007913 W KR2010007913 W KR 2010007913W WO 2011059225 A2 WO2011059225 A2 WO 2011059225A2
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic hydrocarbon
vinyl aromatic
conjugated diene
block copolymer
diene block
Prior art date
Application number
PCT/KR2010/007913
Other languages
French (fr)
Korean (ko)
Other versions
WO2011059225A3 (en
Inventor
이춘화
전문석
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100110409A external-priority patent/KR101268770B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2012532027A priority Critical patent/JP5500258B2/en
Priority to CN201080050558.0A priority patent/CN102597032B/en
Priority to US13/508,700 priority patent/US9567409B2/en
Publication of WO2011059225A2 publication Critical patent/WO2011059225A2/en
Publication of WO2011059225A3 publication Critical patent/WO2011059225A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent

Definitions

  • the present invention relates to a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, and more particularly, to a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer using a coupling reaction with improved ion stability.
  • Styrene-butadiene-styrene triple block copolymers composed of vinyl aromatic hydrocarbon blocks and conjugated diene blocks are prepared by solution polymerization using an anionic initiator, with the excessive exothermic reaction leading to a polymerization temperature of at least 100 ° C.
  • anionic polymerization may be stabilized for a long time at room temperature for a long time even in the form of an anion at the end of the polymer chain until the end of the growth reaction and just before the termination reaction. This results in a side reaction where the anions at the end form unsaturated double bonds. Even if the time from the growth reaction to the end of the reaction is within a few minutes, this side reaction cannot be avoided.
  • this side reaction product increases the physical properties of the produced product, but it may decrease the commerciality of the product because it has to be solution-polymerized at low temperature and low solids content due to deterioration in processability and limitation of control in the polymerization manufacturing process. have. Therefore, even if the polymerization is carried out at a high temperature in order to ensure commerciality, it is possible to stabilize the anion terminal, and there is a need for a technique for maximizing the coupling efficiency and precise molecular weight control by suppressing side reaction generation.
  • the present invention is to solve the problem of the manufacturing method of the conventional vinyl aromatic hydrocarbon-conjugated diene block copolymer, side reaction is generated by the polymerization of Lewis acid, which is a stabilizing material of the anion chain terminal into the polymerization system of the existing block copolymer It is an object of the present invention to provide a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer capable of precisely controlling the molecular weight of a block copolymer by carrying out a coupling reaction.
  • the present invention to achieve the above object
  • step (b) Adding a conjugated diene monomer to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block to form a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block (b) ;
  • a silane compound or an epoxy compound, which is a coupling agent, is added to the second mixed solution of step (b) to cause a coupling reaction.
  • a method for preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer using a coupling polymerization reaction having improved ion stability is provided.
  • silane compound and the epoxy compound which are coupling agents may be compounds represented by the following Chemical Formulas 1, 2 or 3, respectively.
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or an aryl group having 5 to 18 carbon atoms, X may be a halogen group,
  • R 3 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 5 to 24 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
  • q and r are each independently an integer of 0 to 4, and 2 ⁇ q + r ⁇ 4.
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 5 to 24 carbon atoms, or 6 to 6 carbon atoms. It may be an alkylaryl group of 30, s is 1, t and u are each independently an integer of 0 to 1, 1 ⁇ s + t + u ⁇ 3.
  • the Lewis acid may be a compound represented by Formula 4 below.
  • M is Mg, B, Al, or Zn in the periodic table
  • R 13 and R 14 may each independently be an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
  • k and l are each independently an integer of 0 to 3, and 2 ⁇ k + l ⁇ 3.
  • the Lewis acid is preferably diethylmagnesium, di-n-propylmagnesium, di-isopropylmagnesium, dibutylmagnesium, triethylaluminum, tri-isobutylaluminum, tri-n-propylaluminum, tri-n-hexyl Aluminum, diethyl aluminum monohydride, diisobutyl aluminum monohydride, diethylzinc, di-n-propyl zinc, di-isoamyl zinc, di-isobutyl zinc, triethylborane, tri-sec-butylborane It may be at least one selected from the group consisting of, tributyl borane, trimethyl borane, and triphenyl borane.
  • the molar ratio of the Lewis acid / organic lithium compound is 0.05 to 0.2, preferably 0.05 to 0.15, and more preferably 0.05 to 0.1.
  • a silane compound can be used as the coupling agent.
  • the silane compound may be at least one selected from the group consisting of silane tetrachloride, methyl trichloride, and dimethyl dichloride.
  • the molar ratio of the Lewis acid / organic lithium compound is 0.05 to 4, preferably 0.1 to 0.75, in which case an epoxy compound can be used as the coupling agent.
  • the epoxy compound is 1,2,7,8-diepoxyoctane, diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether and bisphenol F diglycidyl ether, epoxidized soybean oil oil and It may be at least one selected from the group consisting of epoxidized rinse oil.
  • the vinyl aromatic hydrocarbons include styrene, alpha methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, and It may be at least one selected from the group consisting of 1-vinyl-5 hexyl naphthalene.
  • conjugated dienes include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperiene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene It may be at least one selected from the group consisting of.
  • According to the present invention is to solve the problem of the conventional method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, the polymerization reaction of Lewis acid, which is a stabilizing material of the anionic chain terminal and the coupling agent in the polymerization system of the conventional block copolymer
  • Method of producing vinyl aromatic hydrocarbon-conjugated diene block copolymer which can control the molecular weight, molecular weight distribution, viscosity, and processability of the block copolymer precisely by preventing the side reaction from being generated and improving the coupling efficiency during the coupling reaction.
  • the purpose is to provide.
  • FIG. 1 is a diagram showing the gel permeation chromatography profile of the polymerization product of Comparative Examples 1 to 3 and Examples 1 to 2.
  • FIG. 2 is a view showing a gel permeation chromatography profile of the polymerization product of Examples 3 to 5.
  • the present invention aims to minimize side reactions by heat even after the growth reaction is completed by adding the initiator used in the polymerization of the existing vinyl aromatic hydrocarbon-conjugated diene block copolymer and the Lewis acid which stabilizes the anion at the end of the chain during the initiation and growth reaction.
  • the side reactions are not easy to control in the conventional anionic polymerization method, and can only be controlled in a relatively low solids process with a very low solids content or a reaction maximum temperature of 100 ° C. or less, thereby improving the polymerization productivity.
  • the hydrogen desorption reaction proceeds in several side reactions, thereby lowering the activity of the polymer chain terminal, thereby decreasing the coupling efficiency in the polymerization of the coupling.
  • the polymer produced by this thermal termination reaction By combining to generate a much higher molecular weight than the target molecular weight, it becomes impossible to produce the designed block copolymer, overcoming this can easily produce the copolymer as designed.
  • step (b) Adding a conjugated diene monomer to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block to form a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block (b) ;
  • a silane compound or an epoxy compound, which is a coupling agent, is added to the second mixed solution of step (b) to cause a coupling reaction.
  • the Lewis acid may be added between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a) and the termination of the polymerization of the conjugated diene monomer of step (b), more preferably the step (a) It is added within the range between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of c) to the addition of the conjugated diene monomer of the step (b), in this case there is no reduction in the polymerization rate has an excellent productivity and economic efficiency.
  • a method of preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention comprises polymerizing a vinyl aromatic hydrocarbon monomer with a polymerization initiator of an organolithium compound in a hydrocarbon solvent to include a first vinyl aromatic hydrocarbon block (vinyl aromatic hydrocarbon polymer). Forming a mixed solution (a).
  • the hydrocarbon solvent may be selected and used among solvents commonly known for anionic polymerization.
  • alkyl substitutions such as cyclic aliphatic hydrocarbons such as cyclopentane, cyclohexane or cycloheptane, benzene, naphthalene, toluene, and xylene
  • Linear or branched aliphatic hydrocarbon solvents such as aromatic hydrocarbon-based, pentane, hexane, heptane, and octane, and the like, and preferably, cyclohexane, n-hexane and n-heptane may be used alone or in combination. .
  • the temperature of each step of the polymerization reaction is possible under the same or different temperature conditions, both constant temperature conditions or adiabatic conditions.
  • the range of possible reaction temperature is -10-150 degreeC, Preferably it is 10-100 degreeC.
  • vinyl aromatic hydrocarbon monomer styrene, alpha methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, or 1 -Vinyl-5 hexyl naphthalene can be used individually or in combination of 2 or more types.
  • an anionic polymerization initiator used for this invention as an organolithium compound which is a polymerization initiator, if it is an organic alkali metal compound, all can be used, Preferably an organolithium compound is used.
  • the organolithium compound is an organolithium compound having a polymerization initiation capability that can be represented by the general formula RLi, and R is one of those commonly used for conventional anion polymerization, such as alkyl, cycloalkyl, aryl, having 1 to 20 carbon atoms. You can choose to use it.
  • n-butyllithium, sec-butyllithium, methyllithium, ethyllithium, isopropyllithium, cyclohexyllithium, allyllithium, vinyllithium, phenyllithium or benzyllithium alone or in combination Can be used.
  • the conjugated diene monomer is added to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block.
  • a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block is formed.
  • conjugated diene 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperiene, 3-butyl-1,3-octadiene, isoprene, or 2-phenyl-1,3-butadiene May be used alone or in combination of two or more thereof.
  • the method for preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention comprises adding Lewis acid to the first mixed solution before the start of polymerization of the vinyl aromatic hydrocarbon monomer of step (a), during the polymerization or upon completion of the polymerization ( c).
  • the Lewis acid is preferably added between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a) and the end of the polymerization of the conjugated diene monomer of step (b), more preferably of step (a) It is added within the range between when the polymerization of the vinyl aromatic hydrocarbon monomers is completed and when the conjugated diene monomer is added. In this case, there is no decrease in the polymerization rate, and thus the productivity and economic efficiency are excellent.
  • M is Mg, B, Al, or Zn in the periodic table
  • R 13 and R 14 may each independently be an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
  • k and l are each independently an integer of 0 to 3, and 2 ⁇ k + l ⁇ 3.
  • a silane compound or an epoxy compound, which is a coupling agent is added to the second mixed solution of step (b) for coupling reaction, whereby the number average molecular weight is 5,000 to 500,000.
  • a vinyl aromatic hydrocarbon-conjugated diene block copolymer having a content of a vinyl aromatic hydrocarbon block in an amount of 5 to 50 wt% based on 100 wt% of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  • silane compound and the epoxy compound which are coupling agents may be compounds represented by the following Chemical Formulas 1, 2 or 3, respectively.
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 18 carbon atoms, X may be a halogen group,
  • R 3 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 24 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms,
  • q and r are each independently an integer of 0 to 4, and 2 ⁇ q + r ⁇ 4.
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 represent an alkylene group (bivalent) or an alkyl group (monovalent) having 1 to 20 carbon atoms , An arylene group or an aryl group having 6 to 24 carbon atoms, or an alkylarylene group, an arylalkylene group or an alkylaryl group having 7 to 30 carbon atoms, s is 1, t and u are each independently an integer of 0 to 1, 1 ⁇ s + t + u ⁇ 3.
  • silane compound as a coupling agent, and the molar ratio of a Lewis acid / organic lithium compound is 0.05-0.2, and to use silane tetrachloride, methyl trichloride, or dimethyl silane alone or in combination of 2 or more types. More preferred.
  • the stability of the polymer terminal ions is similar to that when no Lewis acid is added, which is not preferable when the molar ratio is less than 0.05.
  • the content of the triblock copolymer is less than 10%, which is not preferable for the preparation of the triblock copolymer.
  • the molar ratio of a Lewis acid / organic lithium compound is 0.05-4, and an epoxy compound is used as a coupling agent, More preferably, molar ratio is 0.1-0.75. 1,2,7,8-diepoxyoctane, diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether, or bisphenol F diglycidyl ether, epoxidized soybean oil and epoxy as epoxy compounds It is more preferable to use the rinsed oil, alone or in combination of two or more.
  • the molar ratio of the Lewis acid / organic lithium compound is less than 0.05, the stability of the polymer terminal ions is similar to that when no Lewis acid is added. If it exceeds 4, the polymerization reaction does not proceed and is not preferable.
  • the polymerization method of the vinylaromatic hydrocarbon-conjugated diene block copolymer is briefly described as follows.
  • Example 1 of the present invention is a polymerization process using a coupling polymerization method and adding Lewis acid to improve the ion stability of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  • a triblock copolymer having a weight ratio of 31/69 was prepared as follows.
  • dimethyl dichloride was administered in the amount shown in Table 2 to proceed the coupling reaction, and then 0.33 g of water was administered to terminate the polymerization reaction.
  • 0.4 parts by weight of antioxidant Irganox 1076 (Ciba) and 0.9 parts by weight of trisnonyl phenyl phosphite (intrinsic chemical, TNPP) were added as additives to the polymerization solution.
  • Example 1 the amount of triisobutyl aluminum was increased to 1.81 g, and the coupling agent was used in the same manner as in Example 1, except that 1,2,7,8-diepoxyoctane was used.
  • a triblock copolymer was prepared in the same manner as in Example 1, except that triisobutyl aluminum, which is an ion stability improving agent, was not added in Example 1.
  • a copolymer was prepared in the same manner as in Example 1, except that the amount of triisobutyl aluminum was increased to 1.81 g in Example 1.
  • Coupling efficiency (%) The area ratio of the uncoupled molecular weight to the uncoupled molecular weight area was determined by the% method.
  • the change in the reaction temperature of the embodiment was obtained about the effect of about 1.6 ⁇ 2.6 °C lowered.
  • the overall reaction time of the Example is delayed by about 0.5 to 1 minute compared to the comparative example, but it is seen that the difference in the reaction rate is not large.
  • Lewis acid was added before the styrene reaction as in Comparative Example 3
  • the reaction time was delayed by about 5 to 6 minutes, and only about 60% of the reaction time was increased. Therefore, the addition of Lewis acid after the styrene reaction can be regarded as the right time to add the polymer without lowering the polymerization rate.
  • Comparative Example 2 when the ratio of aluminum / lithium is increased from 0.1 to about 0.5, the coupling efficiency is drastically reduced from about 56% to 8.3%, which is due to an increase in stability through an aluminum compound in which the anion at the end of the polymer chain is Lewis acid. It means that the reactivity with methyl dichloride silane is lowered, which means that it is not suitable as a coupling agent in this case.
  • Comparative Example 3 the aluminum / lithium ratio is similar to that of Comparative Example 2, but when methyl trichloride is used, the coupling efficiency is increased by about 28% from 8.3% to 36.5%, compared to methyl dichloride. In comparison, the use of halogen silane as a coupling agent is still not suitable as a coupling agent in a system having an aluminum / lithium ratio of 0.1 equivalent or more, because the coupling efficiency is still about 20%.
  • Example 2 the coupling agent was changed to 1,2,7,8-diepoxy octane, which was epoxy, and the coupling efficiency was 57.5% despite the molar ratio of aluminum / lithium similar to those of Comparative Examples 2 and 3. It can be found that the coupling agent is epoxy based when the content of the ion stability improver is increased.
  • a copolymer was prepared in the same manner as in Example 2, but diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether, and bisphenol F diglycidyl ether were used as coupling agents.
  • Table 3 and Figure 2 show the gel permeation chromatography analysis results and profiles of Examples 3 to 5, respectively.
  • the coupling efficiency is improved by about 8 to 19% in all of Examples 3 to 5 compared to the epoxy coupling agent used in Example 2. It is possible to use the coupling polymerization method for the polymerization of block copolymers by using Lewis acid which can improve ion stability by using an appropriate coupling agent. It means that the coupling efficiency can be increased by suppressing other side reactions. Therefore, according to the manufacturing method of the block copolymer of the present invention, it is possible to polymerize by raising the solid content in the solution during the polymerization and precisely control the molecular weight and molecular weight distribution of the block copolymer.

Abstract

The present invention relates to a preparation method of a vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling polymerization with improved ion stability. According to the present invention, the preparation method of a vinyl aromatic hydrocarbon-conjugated diene block copolymer comprises the following steps of: (a) polymerizing a vinyl aromatic hydrocarbon monomer with an organolithium compound polymerization initiator in a hydrocarbon solvent to prepare a first mixture solution containing a vinyl aromatic hydrocarbon block; and (b) adding a conjugated diene monomer to the first mixture solution of the step (a) to form a conjugated diene block to the terminal of the vinyl aromatic hydrocarbon block, thereby preparing a second mixture solution containing a vinyl aromatic hydrocarbon block-conjugated diene block copolymer, wherein the preparation method comprises the step of (c) adding a Lewis acid to the first mixture solution before the initiation of polymerization of the vinyl aromatic hydrocarbon monomer of the step (a), during polymerization, or the termination of polymerization.

Description

이온안정성이 개선된 커플링 반응을 이용한 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법Method for preparing vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability
본 발명은 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법에 관한 것으로서, 보다 상세하게는 이온안정성이 개선된 커플링 반응을 이용한 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, and more particularly, to a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer using a coupling reaction with improved ion stability.
비닐 방향족 탄화수소 블록 및 공액 디엔 블록으로 구성되는 스티렌-부타디엔-스티렌 삼중 블록 공중합체는 음이온 개시제를 사용하여 용액 중합으로 제조하게 되는데, 이때 과도한 발열 반응으로 인해 중합 최고온도가 100℃ 이상에 이르게 된다. Styrene-butadiene-styrene triple block copolymers composed of vinyl aromatic hydrocarbon blocks and conjugated diene blocks are prepared by solution polymerization using an anionic initiator, with the excessive exothermic reaction leading to a polymerization temperature of at least 100 ° C.
원래 음이온 중합 시 성장반응이 끝난 후 종결반응 직전까지 고분자 사슬 말단에 음이온형태로 상온에서는 상당히 오랜 시간 동안 심지어는 일주일간 안정화 되어 있을 수 있으나, 100℃ 이상의 고온 상태에서는 열에 의해 수소 음이온 탈리 반응이 일어나게 되어 말단의 음이온이 불포화 이중결합을 형성하게 되는 부반응이 생기게 된다. 심지어는 성장반응 후 종결반응 직전까지의 시간이 수 분 이내 라고 하더라도 이 부반응을 피할 수 없게 된다. Originally anionic polymerization may be stabilized for a long time at room temperature for a long time even in the form of an anion at the end of the polymer chain until the end of the growth reaction and just before the termination reaction. This results in a side reaction where the anions at the end form unsaturated double bonds. Even if the time from the growth reaction to the end of the reaction is within a few minutes, this side reaction cannot be avoided.
이러한 부반응으로 인해 고분자 사슬 말단의 활성을 저하시켜 커플링 중합 시 커플링 효율을 저하시킬 뿐만 아니라, 살아있는 리빙 고분자들의 음이온 말단과 부반응으로 생성된 고분자간에 반응이 진행되어 전체적으로 2배에 달하는 분자량이 생성되게 되는데, 대개 전체 중합된 고분자의 10~15% 생성되게 된다. 게다가, 동일한 중합 처방 시에서도 이러한 높은 분자량의 고분자 생성 함량이 일정하지 않고 상이하여, 분자량 조절이 미세하게 요구되는 제품에서는 공정 조절이 용이하지 않아서 제품 불량률이 늘어나게 된다. Due to such side reactions, the activity of the polymer chain ends is reduced to reduce the coupling efficiency during the polymerization of the coupling, and the reaction proceeds between the anion terminal of the living living polymers and the polymer produced by the side reaction, thereby generating twice the molecular weight as a whole. Usually, 10 to 15% of the total polymerized polymer is produced. In addition, even in the same polymerization formulation, the content of such high molecular weight polymers is not constant and different, and in a product requiring fine molecular weight control, process control is not easy to increase the product defect rate.
물성적인 측면에서 이 부 반응산물은 생산된 제품의 물성을 상승시키기는 하나, 가공성 저하 및 중합 제조 공정에서 조절의 한계로 인해 저온 및 낮은 고형분 함량으로 용액중합을 해야만 하므로 제품의 상업성을 떨어뜨릴 수 있다. 따라서, 상업성 확보를 위해 고온에서 중합을 시행하더라도 음이온 말단을 안정화할 수 있고, 부반응 생성을 억제를 통해 커플링 효율 극대화 및 정확한 분자량 조절을 위한 기술이 필요하다.In terms of physical properties, this side reaction product increases the physical properties of the produced product, but it may decrease the commerciality of the product because it has to be solution-polymerized at low temperature and low solids content due to deterioration in processability and limitation of control in the polymerization manufacturing process. have. Therefore, even if the polymerization is carried out at a high temperature in order to ensure commerciality, it is possible to stabilize the anion terminal, and there is a need for a technique for maximizing the coupling efficiency and precise molecular weight control by suppressing side reaction generation.
본 발명은 기존의 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법의 문제점을 해결하기 위한 것으로, 기존 블록공중합체의 중합 시스템에 음이온 사슬 말단의 안정화 물질인 루이스 산을 중합 시 투입하여 부반응이 생성되지 않도록 하며, 커플링 반응을 시킴으로써 블록 공중합체의 분자량을 정밀하게 제어할 수 있는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법을 제공하는 것을 목적으로 한다. The present invention is to solve the problem of the manufacturing method of the conventional vinyl aromatic hydrocarbon-conjugated diene block copolymer, side reaction is generated by the polymerization of Lewis acid, which is a stabilizing material of the anion chain terminal into the polymerization system of the existing block copolymer It is an object of the present invention to provide a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer capable of precisely controlling the molecular weight of a block copolymer by carrying out a coupling reaction.
상기한 과제를 달성하기 위하여 본 발명은 The present invention to achieve the above object
비닐 방향족 탄화수소 단량체를 탄화수소 용매에서 유기리튬 화합물의 중합개시제로 중합시켜 비닐 방향족 탄화수소 블록을 포함하는 제1 혼합용액을 형성하는 단계(a): 및 (A) polymerizing a vinyl aromatic hydrocarbon monomer with a polymerization initiator of an organolithium compound in a hydrocarbon solvent to form a first mixed solution comprising a vinyl aromatic hydrocarbon block; and
공액디엔 단량체를 단계(a)의 제1 혼합용액에 첨가하여 비닐 방향족 탄화수소 블록 말단에 공액디엔 블록을 형성시켜 비닐방향족 탄화수소 블록-공액디엔 블록이 포함된 제2 혼합용액을 형성하는 단계(b);를 Adding a conjugated diene monomer to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block to form a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block (b) ;
포함하는 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법에 있어서,In the manufacturing method of a vinyl aromatic hydrocarbon-conjugated diene block copolymer containing,
루이스 산을 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 개시 전, 중합 중, 또는 중합 완료 시에 제 1 혼합용액에 첨가하는 단계(c); 및(C) adding the Lewis acid to the first mixed solution before the start of polymerization of the vinyl aromatic hydrocarbon monomer of step (a), during the polymerization or upon completion of the polymerization; And
커플링제인 실란 화합물 또는 에폭시 화합물을 단계(b)의 제2 혼합용액에 첨가하여 커플링 반응시켜,A silane compound or an epoxy compound, which is a coupling agent, is added to the second mixed solution of step (b) to cause a coupling reaction.
수평균분자량이 5,000 내지 500,000이며 비닐 방향족 탄화수소블록의 함량이 비닐 방향족 탄화수소-공액디엔 블록 공중합체 100 중량%를 기준으로 5 내지 50 중량%인 비닐 방향족 탄화수소-공액디엔 블록 공중합체를 형성하는 단계(d);를 Forming a vinyl aromatic hydrocarbon-conjugated diene block copolymer having a number average molecular weight of 5,000 to 500,000 and a content of the vinyl aromatic hydrocarbon block of 5 to 50% by weight based on 100% by weight of the vinyl aromatic hydrocarbon-conjugated diene block copolymer ( d);
포함하는 것을 특징으로 하는 이온안정성이 개선된 커플링 중합반응을 이용한 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법을 제공한다.Provided is a method for preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer using a coupling polymerization reaction having improved ion stability.
본 발명에서, 커플링제인 실란 화합물 및 에폭시 화합물은 각각 아래 화학식 1, 2 또는 3으로 표시되는 화합물일 수 있다.In the present invention, the silane compound and the epoxy compound which are coupling agents may be compounds represented by the following Chemical Formulas 1, 2 or 3, respectively.
[화학식 1][Formula 1]
Figure PCTKR2010007913-appb-I000001
Figure PCTKR2010007913-appb-I000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 또는 탄소수 5 내지 18의 아릴기이며, X는 할로겐기일 수 있고,In Formula 1, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or an aryl group having 5 to 18 carbon atoms, X may be a halogen group,
m, n, 및 p는 각각 독립적으로 0 내지 4의 정수이며, m+n+p=4이다. m, n, and p are each independently an integer of 0 to 4, and m + n + p = 4.
[화학식 2][Formula 2]
Figure PCTKR2010007913-appb-I000002
Figure PCTKR2010007913-appb-I000002
상기 화학식 2에서, R3은 탄소수 1 내지 20의 알킬기, 탄소수 5 내지 24의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고, In Formula 2, R 3 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 5 to 24 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
q 및 r은 각각 독립적으로 0 내지 4의 정수이며, 2≤q+r≤4이다. q and r are each independently an integer of 0 to 4, and 2 ≦ q + r ≦ 4.
[화학식 3][Formula 3]
Figure PCTKR2010007913-appb-I000003
Figure PCTKR2010007913-appb-I000003
상기 화학식 3에서 R4, R5, R6, R7, R8, R9, R10, R11, R12는 탄소수 1 내지 20의 알킬기, 탄소수 5 내지 24의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고, s는 1,t 및 u는 각각 독립적으로 0 내지 1의 정수이며, 1≤s+t+u≤3이다. 또한, v,w,x는 각각 독립적으로 1 내지 6의 정수이며, 2≤v+w+x≤6이다.In Formula 3, R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 5 to 24 carbon atoms, or 6 to 6 carbon atoms. It may be an alkylaryl group of 30, s is 1, t and u are each independently an integer of 0 to 1, 1≤s + t + u≤3. In addition, v, w, x is an integer of 1-6 each independently, and 2 <= v + w + x <6.
본 발명에서, 루이스 산은 아래 화학식 4로 표시되는 화합물일 수 있다. In the present invention, the Lewis acid may be a compound represented by Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2010007913-appb-I000004
Figure PCTKR2010007913-appb-I000004
상기 화학식 3에서, M은 주기율표에서 Mg, B, Al, 또는 Zn이며,In Formula 3, M is Mg, B, Al, or Zn in the periodic table,
R13 및 R14는 각각 독립적으로 탄소수 1 내지 6인 알킬기, 탄소수 5 내지 18의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고,R 13 and R 14 may each independently be an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
k 및 l은 각각 독립적으로 0 내지 3의 정수이며, 2≤k+l≤3이다.k and l are each independently an integer of 0 to 3, and 2 ≦ k + l ≦ 3.
여기서, 루이스 산은 바람직하게는 디에틸마그네슘, 디-n-프로필마그네슘, 디-이소프로필마그네슘, 디부틸마그네슘, 트리에틸 알루미늄, 트리-이소부틸알루미늄, 트리-n-프로필알루미늄, 트리-n-헥실알루미늄, 디에틸 알루미늄 모노하이드라이드, 디이소부틸 알루미늄 모노하이드라이드, 디에틸아연, 디-n-프로필 아연, 디-이소아밀 아연, 디-이소부틸 아연, 트리에틸보란, 트리-sec-부틸보란, 트리부틸보란, 트리메시틸보란, 및 트리페닐보란으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.Here the Lewis acid is preferably diethylmagnesium, di-n-propylmagnesium, di-isopropylmagnesium, dibutylmagnesium, triethylaluminum, tri-isobutylaluminum, tri-n-propylaluminum, tri-n-hexyl Aluminum, diethyl aluminum monohydride, diisobutyl aluminum monohydride, diethylzinc, di-n-propyl zinc, di-isoamyl zinc, di-isobutyl zinc, triethylborane, tri-sec-butylborane It may be at least one selected from the group consisting of, tributyl borane, trimethyl borane, and triphenyl borane.
본 발명에서, 루이스 산/유기리튬 화합물의 몰비가 0.05 내지 0.2이고, 바람직하게는 0.05 내지 0.15이며, 보다 바람직하게는 0.05 내지 0.1인데, 이 경우 커플링제로서 실란 화합물을 사용할 수 있다.In the present invention, the molar ratio of the Lewis acid / organic lithium compound is 0.05 to 0.2, preferably 0.05 to 0.15, and more preferably 0.05 to 0.1. In this case, a silane compound can be used as the coupling agent.
또한, 실란화합물은 사염화실란, 삼염화메틸실란, 이염화이메틸실란으로 이루어지는 군으로부터 선택된 1종 이상일 수 있다.The silane compound may be at least one selected from the group consisting of silane tetrachloride, methyl trichloride, and dimethyl dichloride.
본 발명에서, 루이스 산/유기리튬 화합물의 몰비가 0.05 내지 4이고, 바람직하게는 0.1 내지 0.75이며, 이 경우 커플링제로서 에폭시 화합물을 사용할 수 있다.In the present invention, the molar ratio of the Lewis acid / organic lithium compound is 0.05 to 4, preferably 0.1 to 0.75, in which case an epoxy compound can be used as the coupling agent.
여기서, 에폭시 화합물은 1,2,7,8-디에폭시옥탄, 디글리시딜-1,4-부탄디올, 비스페놀A 디글리시딜 에테르 및 비스페놀F 디글리시딜 에테르, 에폭시화된 대두유 오일 및 에폭시화된 린스 오일로 이루어진 군으로부터 선택된 1종 이상일 수 있다.Wherein the epoxy compound is 1,2,7,8-diepoxyoctane, diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether and bisphenol F diglycidyl ether, epoxidized soybean oil oil and It may be at least one selected from the group consisting of epoxidized rinse oil.
본 발명에서, 비닐 방향족 탄화수소는 스티렌, 알파 메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌, 및 1-비닐-5헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In the present invention, the vinyl aromatic hydrocarbons include styrene, alpha methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, and It may be at least one selected from the group consisting of 1-vinyl-5 hexyl naphthalene.
또한, 공액디엔은 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페리렌, 3-부틸-1,3-옥타디엔, 이소프렌, 및 2-페닐-1,3-부타디엔으로 이루어지는 군으로부터 선택된 1종 이상일 수 있다.In addition, conjugated dienes include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperiene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene It may be at least one selected from the group consisting of.
본 발명에 따르면 기존의 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법의 문제점을 해결하기 위한 것으로, 기존의 블록공중합체의 중합 시스템에 음이온 사슬 말단의 안정화 물질인 루이스 산과 커플링제를 중합반응 시 투입하여 부반응이 생성되지 않도록 하고 커플링 반응시 커플링효율을 향상시켜 블록 공중합체의 분자량, 분자량분포, 점성, 및 가공성을 정밀하게 제어할 수 있는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법을 제공하는 것을 목적으로 한다.According to the present invention is to solve the problem of the conventional method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, the polymerization reaction of Lewis acid, which is a stabilizing material of the anionic chain terminal and the coupling agent in the polymerization system of the conventional block copolymer Method of producing vinyl aromatic hydrocarbon-conjugated diene block copolymer which can control the molecular weight, molecular weight distribution, viscosity, and processability of the block copolymer precisely by preventing the side reaction from being generated and improving the coupling efficiency during the coupling reaction. The purpose is to provide.
도 1은 비교예 1 내지 3 및 실시예 1 내지 2의 중합생성물의 겔투과크로마토그래피 프로파일을 나타낸 도면이다.1 is a diagram showing the gel permeation chromatography profile of the polymerization product of Comparative Examples 1 to 3 and Examples 1 to 2.
도 2는 실시예 3 내지 5의 중합생성물의 겔투과 크로마토그래피 프로파일을 나타낸 도면이다.2 is a view showing a gel permeation chromatography profile of the polymerization product of Examples 3 to 5.
이하 본 발명을 실시예를 포함하여 상세하게 설명한다. Hereinafter, the present invention will be described in detail including examples.
본 발명은 기존 비닐 방향족 탄화수소-공액디엔 블록 공중합체 용액중합 시 사용하는 개시제와 개시 및 성장 반응 시 사슬 말단의 음이온을 안정화하는 루이스 산을 첨가함으로써 성장반응이 완료된 후에도 열에 의한 부반응을 최소화하고자 한다. The present invention aims to minimize side reactions by heat even after the growth reaction is completed by adding the initiator used in the polymerization of the existing vinyl aromatic hydrocarbon-conjugated diene block copolymer and the Lewis acid which stabilizes the anion at the end of the chain during the initiation and growth reaction.
그 부반응은 기존 음이온 중합 방식에서는 조절이 용이하지 않으며, 단지 아주 낮은 고형분 함량 또는 반응 최고온도 100 ℃ 이하의 상대적으로 저온 공정에서만이 조절되어 중합 생산성 향상을 할 수 없다.The side reactions are not easy to control in the conventional anionic polymerization method, and can only be controlled in a relatively low solids process with a very low solids content or a reaction maximum temperature of 100 ° C. or less, thereby improving the polymerization productivity.
생산성을 올리고자 할 때 몇몇 부반응으로 수소 탈리 반응이 진행되어 고분자 사슬 말단의 활성을 저하시켜 커플링 중합 시 커플링 효율을 저하시키며, 이 열 종결반응에 의해 생긴 고분자의 경우 다시 활성을 가진 고분자와 결합하여 목적 분자량 대비 훨씬 높은 분자량이 생김으로써, 설계한 블록공중합체를 생산할 수 없게 되는데, 이를 극복하면 설계한 대로 공중합체를 용이하게 생산할 수 있다.In order to increase productivity, the hydrogen desorption reaction proceeds in several side reactions, thereby lowering the activity of the polymer chain terminal, thereby decreasing the coupling efficiency in the polymerization of the coupling. In the case of the polymer produced by this thermal termination reaction, By combining to generate a much higher molecular weight than the target molecular weight, it becomes impossible to produce the designed block copolymer, overcoming this can easily produce the copolymer as designed.
본 발명에 따른 이온안정성이 개선된 커플링 중합반응을 이용한 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법은 Method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer by using a coupling polymerization with improved ion stability according to the present invention
비닐 방향족 탄화수소 단량체를 탄화수소 용매에서 유기리튬 화합물의 중합개시제로 중합시켜 비닐 방향족 탄화수소 블록을 포함하는 제1 혼합용액을 형성하는 단계(a): 및 (A) polymerizing a vinyl aromatic hydrocarbon monomer with a polymerization initiator of an organolithium compound in a hydrocarbon solvent to form a first mixed solution comprising a vinyl aromatic hydrocarbon block; and
공액디엔 단량체를 단계(a)의 제1 혼합용액에 첨가하여 비닐 방향족 탄화수소 블록 말단에 공액디엔 블록을 형성시켜 비닐방향족 탄화수소 블록-공액디엔 블록이 포함된 제2 혼합용액을 형성하는 단계(b);를 Adding a conjugated diene monomer to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block to form a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block (b) ;
포함하는 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법에 있어서,In the manufacturing method of a vinyl aromatic hydrocarbon-conjugated diene block copolymer containing,
루이스 산을 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 개시 전, 중합 중 또는 중합 완료 시에 제1 혼합용액에 첨가하는 단계(c); 및(C) adding the Lewis acid to the first mixed solution before the start of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a), during the polymerization or upon completion of the polymerization; And
커플링제인 실란 화합물 또는 에폭시 화합물을 단계(b)의 제2 혼합용액에 첨가하여 커플링 반응시켜,A silane compound or an epoxy compound, which is a coupling agent, is added to the second mixed solution of step (b) to cause a coupling reaction.
수평균분자량이 5,000 내지 500,000이며 비닐 방향족 탄화수소블록의 함량이 비닐 방향족 탄화수소-공액디엔 블록 공중합체 100 중량%를 기준으로 5 내지 50 중량%인 비닐 방향족 탄화수소-공액디엔 블록 공중합체를 형성하는 단계(d);를 포함한다.Forming a vinyl aromatic hydrocarbon-conjugated diene block copolymer having a number average molecular weight of 5,000 to 500,000 and a content of the vinyl aromatic hydrocarbon block of 5 to 50% by weight based on 100% by weight of the vinyl aromatic hydrocarbon-conjugated diene block copolymer ( d);
상기 루이스 산은 상기 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 완료 시부터 상기 단계(b)의 공액디엔 단량체의 중합 종결 전까지의 사이에 투입되는 것이 바람직할 수 있고, 보다 바람직하게는 상기 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 완료 시부터 상기 단계(b)의 공액디엔 단량체 투입 시 사이의 범위 내에서 투입되는 것인데, 이 경우 중합 속도의 저하가 없어 생산성 및 경제성이 뛰어난 효과가 있다.The Lewis acid may be added between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a) and the termination of the polymerization of the conjugated diene monomer of step (b), more preferably the step (a) It is added within the range between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of c) to the addition of the conjugated diene monomer of the step (b), in this case there is no reduction in the polymerization rate has an excellent productivity and economic efficiency.
단계(a) Step (a)
먼저 본 발명에 따른 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법은 비닐 방향족 탄화수소 단량체를 탄화수소 용매에서 유기리튬 화합물의 중합개시제로 중합시켜 비닐 방향족 탄화수소 블록(비닐 방향족 탄화수소 중합체)을 포함하는 제1 혼합용액을 형성하는 단계(a)를 포함한다.First, a method of preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention comprises polymerizing a vinyl aromatic hydrocarbon monomer with a polymerization initiator of an organolithium compound in a hydrocarbon solvent to include a first vinyl aromatic hydrocarbon block (vinyl aromatic hydrocarbon polymer). Forming a mixed solution (a).
여기서, 탄화수소 용매로서 음이온 중합용으로 통상적으로 알려진 용매 중에서 선택하여 사용할 수 있는 바, 구체적으로는 사이클로펜탄, 사이클로헥산 또는 사이클로헵탄 등의 환상 지방족 탄화수소계, 벤젠, 나프탈렌, 톨루엔, 크실렌 등의 알킬 치환된 방향족 탄화수소계, 펜탄, 헥산, 헵탄, 옥탄 등의 선형 또는 가지상의 지방족 탄화수소계 용매 등을 사용할 수 있으며, 바람직하기로는 사이클로헥산, n-헥산 및 n-헵탄을 단독 또는 혼합하여 사용하는 것이 좋다.Here, the hydrocarbon solvent may be selected and used among solvents commonly known for anionic polymerization. Specifically, alkyl substitutions such as cyclic aliphatic hydrocarbons such as cyclopentane, cyclohexane or cycloheptane, benzene, naphthalene, toluene, and xylene Linear or branched aliphatic hydrocarbon solvents such as aromatic hydrocarbon-based, pentane, hexane, heptane, and octane, and the like, and preferably, cyclohexane, n-hexane and n-heptane may be used alone or in combination. .
그리고, 중합반응의 각 단계별 온도는 동일한 온도조건 또는 상이한 온도조건 모두에서 가능하며, 항온조건이나 단열 조건 모두 가능하다. 가능한 반응온도의 범위는 -10 ~ 150 ℃이며, 바람직하기로는 10 ~ 100 ℃이다.In addition, the temperature of each step of the polymerization reaction is possible under the same or different temperature conditions, both constant temperature conditions or adiabatic conditions. The range of possible reaction temperature is -10-150 degreeC, Preferably it is 10-100 degreeC.
또한, 비닐 방향족 탄화수소 단량체로서 스티렌, 알파 메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌, 또는 1-비닐-5헥실나프탈렌을 단독 또는 2종 이상 병행하여 사용할 수 있다. Further, as the vinyl aromatic hydrocarbon monomer, styrene, alpha methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, or 1 -Vinyl-5 hexyl naphthalene can be used individually or in combination of 2 or more types.
또한, 중합개시제인 유기리튬 화합물로서 본 발명에 사용되는 음이온 중합 개시제로는 유기 알칼리 금속 화합물이면 모두 사용 가능하지만, 바람직하게는 유기리튬 화합물을 사용한다. 유기리튬 화합물로는 일반식 RLi으로 표시할 수 있는 중합 개시 능력을 가지는 유기리튬 화합물이며, R은 1 ~ 20까지의 탄소수를 갖는 알킬, 사이클로알킬, 아릴 등 종래 음이온 중합용으로 통상 사용하는 것 중에서 선택하여 사용할 수 있다. 더욱 바람직한 유기리튬 개시제로서 n-부틸리튬, sec-부틸리튬, 메틸리튬, 에틸리튬, 이소프로필리튬, 사이클로헥실리튬, 알릴리튬, 비닐리튬, 페닐리튬, 또는 벤질리튬을 단독 또는 2종 이상 병행하여 사용할 수 있다.In addition, as an anionic polymerization initiator used for this invention as an organolithium compound which is a polymerization initiator, if it is an organic alkali metal compound, all can be used, Preferably an organolithium compound is used. The organolithium compound is an organolithium compound having a polymerization initiation capability that can be represented by the general formula RLi, and R is one of those commonly used for conventional anion polymerization, such as alkyl, cycloalkyl, aryl, having 1 to 20 carbon atoms. You can choose to use it. As a more preferred organic lithium initiator, n-butyllithium, sec-butyllithium, methyllithium, ethyllithium, isopropyllithium, cyclohexyllithium, allyllithium, vinyllithium, phenyllithium or benzyllithium alone or in combination Can be used.
단계(b)Step (b)
발명에 따른 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법은 상기 단계(a) 후에 본 공액디엔 단량체를 단계(a)의 제1 혼합용액에 첨가하여 비닐 방향족 탄화수소 블록 말단에 공액디엔 블록을 형성시켜 비닐방향족 탄화수소 블록-공액디엔 블록이 포함된 제2 혼합용액을 형성하는 단계(b)를 포함할 수 있다.In the method for preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention, after the step (a), the conjugated diene monomer is added to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block. To form a second mixed solution containing the vinylaromatic hydrocarbon block-conjugated diene block.
여기서, 공액디엔으로서 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페리렌, 3-부틸-1,3-옥타디엔, 이소프렌, 또는 2-페닐-1,3-부타디엔을 단독 또는 2종 이상 병행하여 사용할 수 있다.Here, as conjugated diene, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperiene, 3-butyl-1,3-octadiene, isoprene, or 2-phenyl-1,3-butadiene May be used alone or in combination of two or more thereof.
단계(c)Step (c)
본 발명에 따른 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법은 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 개시 전, 중합 중 또는 중합 완료 시에 루이스 산을 제1 혼합용액에 첨가하는 단계(c)를 포함할 수 있다.The method for preparing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention comprises adding Lewis acid to the first mixed solution before the start of polymerization of the vinyl aromatic hydrocarbon monomer of step (a), during the polymerization or upon completion of the polymerization ( c).
상기 루이스 산은 상기 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 완료 시부터 상기 단계(b)의 공액디엔 단량체의 중합 종결 전까지의 사이에 투입되는 것이 바람직하고, 보다 바람직하게는 상기 단계(a)의 비닐 방향족 탄화수소 단량체의 중합 완료 시부터 공액디엔 단량체 투입 시 사이의 범위 내에서 투입되는 것인데, 이 경우 중합 속도의 저하가 없어 생산성 및 경제성이 뛰어난 효과가 있다.The Lewis acid is preferably added between the completion of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a) and the end of the polymerization of the conjugated diene monomer of step (b), more preferably of step (a) It is added within the range between when the polymerization of the vinyl aromatic hydrocarbon monomers is completed and when the conjugated diene monomer is added. In this case, there is no decrease in the polymerization rate, and thus the productivity and economic efficiency are excellent.
여기서, 루이스 산으로서 아래 화학식 4로 표시되는 화합물을 사용할 수 있다.Here, as the Lewis acid, a compound represented by the following formula (4) may be used.
[화학식 4][Formula 4]
Figure PCTKR2010007913-appb-I000005
Figure PCTKR2010007913-appb-I000005
상기 화학식 3에서, M은 주기율표에서 Mg, B, Al, 또는 Zn이며,In Formula 3, M is Mg, B, Al, or Zn in the periodic table,
R13 및 R14는 각각 독립적으로 탄소수 1 내지 6인 알킬기, 탄소수 5 내지 18의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고,R 13 and R 14 may each independently be an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
k 및 l은 각각 독립적으로 0 내지 3의 정수이며, 2≤k+l≤3이다.k and l are each independently an integer of 0 to 3, and 2 ≦ k + l ≦ 3.
여기서, 루이스 산으로서 바람직하게는 디에틸마그네슘, 디-n-프로필마그네슘, 디-이소프로필마그네슘, 디부틸마그네슘, 트리에틸 알루미늄, 트리-이소부틸알루미늄, 트리-n-프로필알루미늄, 트리-n-헥실알루미늄, 디에틸 알루미늄 모노하이드라이드, 디이소부틸 알루미늄 모노하이드라이드, 디에틸아연, 디-n-프로필 아연, 디-이소아밀 아연, 디-이소부틸 아연, 트리에틸보란, 트리-sec-부틸보란, 트리부틸보란, 트리메시틸보란, 또는 트리페닐보란을 단독 또는 2종 이상 병행하여 사용할 수 있다.Here, as the Lewis acid, diethylmagnesium, di-n-propylmagnesium, di-isopropylmagnesium, dibutylmagnesium, triethylaluminum, tri-isobutylaluminum, tri-n-propylaluminum, tri-n- Hexyl aluminum, diethyl aluminum monohydride, diisobutyl aluminum monohydride, diethylzinc, di-n-propyl zinc, di-isoamyl zinc, di-isobutyl zinc, triethylborane, tri-sec-butyl Borane, tributyl borane, trimethyl borane, or triphenyl borane can be used individually or in combination of 2 or more types.
단계(d)Step (d)
본 발명에 따른 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법은 커플링제인 실란 화합물 또는 에폭시 화합물을 단계(b)의 제2 혼합용액에 첨가하여 커플링 반응시켜, 수평균분자량이 5,000 내지 500,000이며 비닐 방향족 탄화수소블록의 함량이 비닐 방향족 탄화수소-공액디엔 블록 공중합체 100 중량%를 기준으로 5 내지 50 중량%인 비닐 방향족 탄화수소-공액디엔 블록 공중합체를 형성하는 단계(d)를 포함할 수 있다. In the method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer according to the present invention, a silane compound or an epoxy compound, which is a coupling agent, is added to the second mixed solution of step (b) for coupling reaction, whereby the number average molecular weight is 5,000 to 500,000. And forming a vinyl aromatic hydrocarbon-conjugated diene block copolymer having a content of a vinyl aromatic hydrocarbon block in an amount of 5 to 50 wt% based on 100 wt% of the vinyl aromatic hydrocarbon-conjugated diene block copolymer. .
여기서, 커플링제인 실란 화합물 및 에폭시 화합물은 각각 아래 화학식 1, 2 또는 3으로 표시되는 화합물일 수 있다.Here, the silane compound and the epoxy compound which are coupling agents may be compounds represented by the following Chemical Formulas 1, 2 or 3, respectively.
[화학식 1][Formula 1]
Figure PCTKR2010007913-appb-I000006
Figure PCTKR2010007913-appb-I000006
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 또는 탄소수 6 내지 18의 아릴기이며, X는 할로겐기일 수 있고,In Formula 1, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 18 carbon atoms, X may be a halogen group,
m, n, 및 p는 각각 독립적으로 0 내지 4의 정수이며, m+n+p=4이다. m, n, and p are each independently an integer of 0 to 4, and m + n + p = 4.
[화학식 2][Formula 2]
Figure PCTKR2010007913-appb-I000007
Figure PCTKR2010007913-appb-I000007
상기 화학식 2에서, R3은 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 24의 아릴기, 또는 탄소수 7 내지 30의 알킬아릴기일 수 있고, In Formula 2, R 3 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 24 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms,
q 및 r은 각각 독립적으로 0 내지 4의 정수이며, 2≤q+r≤4이다.q and r are each independently an integer of 0 to 4, and 2 ≦ q + r ≦ 4.
[화학식 3][Formula 3]
Figure PCTKR2010007913-appb-I000008
Figure PCTKR2010007913-appb-I000008
상기 화학식 3에서 R4, R5, R6, R7, R8, R9, R10, R11, R12는 탄소수 1 내지 20의 알킬렌기(2가; bivalent) 또는 알킬기(1가), 탄소수 6 내지 24의 아릴렌기 또는 아릴기, 또는 탄소수 7 내지 30의 알킬아릴렌기, 아릴알킬렌기 또는 알킬아릴기일 수 있고, s는 1,t 및 u는 각각 독립적으로 0 내지 1의 정수이며, 1≤s+t+u≤3이다. 또한, v, w, x는 각각 독립적으로 1 내지 6의 정수이며, 2≤v+w+x≤6이다.In Formula 3, R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 represent an alkylene group (bivalent) or an alkyl group (monovalent) having 1 to 20 carbon atoms , An arylene group or an aryl group having 6 to 24 carbon atoms, or an alkylarylene group, an arylalkylene group or an alkylaryl group having 7 to 30 carbon atoms, s is 1, t and u are each independently an integer of 0 to 1, 1 ≦ s + t + u ≦ 3. In addition, v, w, and x are each independently an integer of 1-6, and 2 <= v + w + x <6.
여기서, 루이스 산/유기리튬 화합물의 몰비가 0.05 내지 0.2이고 커플링제로서 실란 화합물을 사용하는 것이 바람직하며, 사염화실란, 삼염화메틸실란, 또는 이염화이메틸실란을 단독 또는 2종 이상 병행하여 사용하는 것이 보다 바람직하다. Here, it is preferable to use a silane compound as a coupling agent, and the molar ratio of a Lewis acid / organic lithium compound is 0.05-0.2, and to use silane tetrachloride, methyl trichloride, or dimethyl silane alone or in combination of 2 or more types. More preferred.
여기서, 루이스 산/유기리튬 화합물의 몰비가 0.05 미만인 경우에는 고분자말단 이온의 안정성이 루이스산을 넣지 않을 때와 유사하게 나타나 0.05 미만인 경우에는 바람직하지 않고, 0.2를 초과하는 경우에는 할로겐 실란을 커플링제를 사용할 경우 삼중블록 공중합체의 함량이 10% 미만으로 삼중블록 공중합체 제조에 바람직하지 않다Herein, when the molar ratio of the Lewis acid / organic lithium compound is less than 0.05, the stability of the polymer terminal ions is similar to that when no Lewis acid is added, which is not preferable when the molar ratio is less than 0.05. When used, the content of the triblock copolymer is less than 10%, which is not preferable for the preparation of the triblock copolymer.
한편, 루이스 산/유기리튬 화합물의 몰비가 0.05 내지 4이고, 커플링제로서 에폭시 화합물을 사용하는 것이 바람직하며, 여기서 보다 바람직하게는 몰비가 0.1 내지 0.75이다. 에폭시 화합물로서 1,2,7,8-디에폭시옥탄, 디글리시딜-1,4-부탄디올, 비스페놀A 디글리시딜 에테르, 또는 비스페놀F 디글리시딜 에테르, 에폭시화된 대두유 오일 및 에폭시화된 린스 오일을 단독 또는 2종 이상 병행하여 사용하는 것이 보다 바람직하다. 여기서, 루이스 산/유기리튬 화합물의 몰비가 0.05 미만인 경우에는 고분자말단 이온의 안정성이 루이스산을 넣지 않을 때와 유사하게 나타나 삼중블록 공중합체 생성에 기존에 비해 안정성 개선 효과가 나타나지 않아 바람직하지 않고, 4를 초과하는 경우에는 중합 반응이 진행되지 않아 바람직하지 않다.On the other hand, it is preferable that the molar ratio of a Lewis acid / organic lithium compound is 0.05-4, and an epoxy compound is used as a coupling agent, More preferably, molar ratio is 0.1-0.75. 1,2,7,8-diepoxyoctane, diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether, or bisphenol F diglycidyl ether, epoxidized soybean oil and epoxy as epoxy compounds It is more preferable to use the rinsed oil, alone or in combination of two or more. Herein, when the molar ratio of the Lewis acid / organic lithium compound is less than 0.05, the stability of the polymer terminal ions is similar to that when no Lewis acid is added. If it exceeds 4, the polymerization reaction does not proceed and is not preferable.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
상기 비닐방향족 탄화수소-공액 디엔 블록 공중합체의 중합 방법을 간단히 설명하면 다음과 같다. The polymerization method of the vinylaromatic hydrocarbon-conjugated diene block copolymer is briefly described as follows.
유기 리튬과 탄화수소 용매가 있는 반응기에, 비닐 방향족 탄화수소를 투입하고 99% 이상 비닐 방향족 탄화수소 단량체가 소모될 때까지 대기한 후 공액디엔 단량체를 반응기에 투입하고 공액디엔 단량체 소모가 99% 이상일 때까지 중합을 진행한 후 커플링제를 투입하여 커플링 반응을 통해 선형 혹은 방사형 블록 공중합체를 제조하였다. In a reactor containing an organic lithium and a hydrocarbon solvent, vinyl aromatic hydrocarbon is added and waited until at least 99% of the vinyl aromatic hydrocarbon monomer is consumed, and then conjugated diene monomer is introduced into the reactor and polymerization is performed until the consumption of conjugated diene monomer is at least 99%. After proceeding to the coupling agent was added to prepare a linear or radial block copolymer through a coupling reaction.
이 때 개시 또는 성장반응 시 사슬 말단의 이온을 안정화하기 위한 루이스 산을 투입하는 시점은 유기 리튬으로 중합을 개시하기 전이나 비닐 방향족 탄화수소 단량체의 중합반응 중, 또는 비닐 방향족 탄화수소 단량체의 중합반응 종결 시부터 공액 디엔 단량체 중합 종결 전까지의 사이에 투입한다. 이 후 물 또는 알코올등의 반응종결제를 반응기에 첨가하여 활성 고분자의 활성을 제거한 중합물을 제조하였다. At this time, when the Lewis acid for stabilizing the ions at the end of the chain is introduced during the initiation or growth reaction, before the polymerization is initiated with organolithium or during the polymerization of the vinyl aromatic hydrocarbon monomer or when the polymerization of the vinyl aromatic hydrocarbon monomer is terminated, The conjugated diene monomer is added until the end of the polymerization. Thereafter, a reaction terminator such as water or alcohol was added to the reactor to prepare a polymer in which the activity of the active polymer was removed.
실시예 1Example 1
본 발명의 실시예 1은 커플링 중합 방법을 이용하고, 루이스 산을 투입하여 비닐 방향족 탄화수소-공액디엔 블록공중합체의 이온안정성을 개선시키는 중합 공정이다.Example 1 of the present invention is a polymerization process using a coupling polymerization method and adding Lewis acid to improve the ion stability of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
스티렌과 부타디엔을 단량체로 사용하여 무게 조성비 31/69의 삼중 블록 공중합체를 다음과 같이 제조하였다. Using a styrene and butadiene as a monomer, a triblock copolymer having a weight ratio of 31/69 was prepared as follows.
질소로 충전된 10 L반응기에 용매인 사이클로헥산 4256g, 스티렌 330g을 투입한 후 65℃의 온도에서 n-부틸리튬 1.4g을 첨가하여 스티렌을 중합하였다. 스티렌 중합 후 트리이소부틸알루미늄 0.37g을 넣고 완전히 분산시킨 다음 부타디엔 단량체 734g을 투여하여 상기 중합된 스티렌 블록 말단에 부타디엔 블록을 생성시켰다. 4256 g of cyclohexane as a solvent and 330 g of styrene were added to a 10 L reactor filled with nitrogen, and 1.4 g of n-butyllithium was added at a temperature of 65 ° C. to polymerize styrene. After styrene polymerization, 0.37 g of triisobutylaluminum was added and completely dispersed, followed by administration of 734 g of butadiene monomer to produce butadiene block at the end of the polymerized styrene block.
부타디엔 중합 완료 후 이염화이메틸실란을 하기 표 2에 기재된 양으로 투여하여 커플링 반응을 진행시킨 다음, 물 0.33g을 투여하여 중합 반응을 종결하였다. 중합 용액에 첨가제로 산화방지제인 이가녹스(Irganox)1076(Ciba) 0.4 중량부와 트리스 노닐 페닐 포스파이트(진성케미컬, TNPP) 0.9 중량부를 첨가하였다. After completion of the butadiene polymerization, dimethyl dichloride was administered in the amount shown in Table 2 to proceed the coupling reaction, and then 0.33 g of water was administered to terminate the polymerization reaction. 0.4 parts by weight of antioxidant Irganox 1076 (Ciba) and 0.9 parts by weight of trisnonyl phenyl phosphite (intrinsic chemical, TNPP) were added as additives to the polymerization solution.
실시예 2Example 2
상기 실시예 1에서 트리이소부틸 알루미늄의 량을 1.81g으로 증량하고 커플링제를 1,2,7,8-디에폭시옥탄을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. In Example 1, the amount of triisobutyl aluminum was increased to 1.81 g, and the coupling agent was used in the same manner as in Example 1, except that 1,2,7,8-diepoxyoctane was used.
비교예 1Comparative Example 1
상기 실시예 1에서 이온 안정성 개선제인 트리이소부틸 알루미늄을 첨가하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 삼중블록 공중합체를 제조하였다.A triblock copolymer was prepared in the same manner as in Example 1, except that triisobutyl aluminum, which is an ion stability improving agent, was not added in Example 1.
비교예 2 Comparative Example 2
상기 실시예 1에서 트리이소부틸 알루미늄의 량을 1.81g으로 증량한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 공중합체를 제조하였다. A copolymer was prepared in the same manner as in Example 1, except that the amount of triisobutyl aluminum was increased to 1.81 g in Example 1.
비교예 3Comparative Example 3
상기 비교예 2에서 이온 안정성 개선제인 트리이소부틸 알루미늄 1.81g을 스티렌 반응전 첨가하고, 이염화이메틸실란 대신 삼염화메틸실란을 커플링제로 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 삼중 블록 공중합체를 제조하였다.In Comparative Example 2, tri-butyl aluminum, which is an ion stability improving agent, was added before styrene reaction, and triple block air was prepared in the same manner as in Comparative Example 2, except that methyl trichloride was used as a coupling agent instead of dimethyl dichloride. The coalescence was prepared.
상기 비교예 1, 2, 3 과 실시예 1, 2로 제조된 최종 스티렌-부타디엔-스티렌 블록 공중합체의 중합 시 중합 변수를 표 1에 기재하였고, 각 중합물들을 겔 투과 크로마토그래피로 분석하여 표 2에 나타내었으며, 도 1은 표2 예들의 겔 투과 크로마토그래피 프로파일이다. The polymerization parameters in the polymerization of Comparative Examples 1, 2 and 3 and the final styrene-butadiene-styrene block copolymers prepared in Examples 1 and 2 are described in Table 1, and the respective polymers were analyzed by gel permeation chromatography. 1 is a gel permeation chromatography profile of the Table 2 examples.
공중합체의 분자량, 분자량 분포, 및 프로파일 등을 비교하기 위해 겔 투과 크로마토 그래피를 이용하였으며, 용매는 THF를 사용하였고, 온도는 40℃에서 1ml/min의 속도로 측정하였다.Gel permeation chromatography was used to compare the molecular weight, molecular weight distribution, and profile of the copolymer, THF was used as the solvent, and the temperature was measured at 40 ° C. at a rate of 1 ml / min.
* 수평균분자량 측정방법-겔투과 크로마토 그래피 기기를 이용하여 측정하였다.* Number average molecular weight measurement method-was measured using a gel permeation chromatography instrument.
* 부반응 생성율(%)-겔투과 크로마토 그래피 프로파일에서 부반응으로 생긴 거대 분자량이 생성 된 면적과 커플된 분자량이 생성된 면적 비를 %방법(×100)으로 측정하였다.* Side reaction generation rate (%)-The ratio of the area where the macromolecular weight generated by the side reaction and the area where the coupled molecular weight was generated in the gel permeation chromatography profile was determined by the% method (× 100).
* 커플링 효율(%)-커플된 분자량의 면적과 커플되지 않은 분자량의 면적 비를 %방법으로 측정하였다.Coupling efficiency (%) — The area ratio of the uncoupled molecular weight to the uncoupled molecular weight area was determined by the% method.
표 1
항목 [Al]/[Li]몰비 커플링제 반응최고온도 및 압력 (℃)/(bar) 반응시간 온도변화 (℃) 입력변화 (bar)
비교예 1 0 이염화 이메틸실란 137.10/5.5 10'07" 71.85 4.0
실시예 1 0.10 이염화 이메틸실란 135.50/5.5 11'25" 70.65 4.3
비교예 2 0.5 이염화 이메틸실란 134.47/4.9 10'50" 69.52 3.7
비교예 3 0.5 삼염화 메틸실란 135.68/5.5 16'18" 70.77 4.3
실시예 2 0.5 1,2,7,8-디에폭시옥탄 135.50/5.4 10'25" 70.32 4.2
Table 1
Item [Al] / [Li] molar ratio Coupling agent Reaction temperature and pressure (℃) / (bar) Reaction time Temperature change (℃) Input change (bar)
Comparative Example 1 0 Dimethyl silane dichloride 137.10 / 5.5 10'07 " 71.85 4.0
Example 1 0.10 Dimethyl silane dichloride 135.50 / 5.5 11'25 " 70.65 4.3
Comparative Example 2 0.5 Dimethyl silane dichloride 134.47 / 4.9 10'50 " 69.52 3.7
Comparative Example 3 0.5 Methylsilane Trichloride 135.68 / 5.5 16'18 " 70.77 4.3
Example 2 0.5 1,2,7,8-diepoxyoctane 135.50 / 5.4 10'25 " 70.32 4.2
상기 표 1에서 볼 수 있듯이 실시예의 반응온도 변화가 약 1.6~2.6℃ 정도 낮아지는 효과를 얻을 수 있었다. 실시예의 전체 반응시간은 비교예 대비 약 0.5~1분 정도 지연되나 반응속도의 차이가 크지 않다고 보여진다. 반면, 비교예 3과 같이 스티렌 반응 전 루이스산을 투입한 경우 반응시간이 약 5~6분 정도 지연되어 전체 반응시간의 약 60% 반응시간만 증가하는 현상이 나타났다. 따라서, 스티렌 반응 후 루이스산을 투입하는 것이 중합 속도 저하 없이 중합물을 얻기 위한 올바른 투입 시점이로 볼 수 있다.As can be seen in Table 1, the change in the reaction temperature of the embodiment was obtained about the effect of about 1.6 ~ 2.6 ℃ lowered. The overall reaction time of the Example is delayed by about 0.5 to 1 minute compared to the comparative example, but it is seen that the difference in the reaction rate is not large. On the other hand, when Lewis acid was added before the styrene reaction as in Comparative Example 3, the reaction time was delayed by about 5 to 6 minutes, and only about 60% of the reaction time was increased. Therefore, the addition of Lewis acid after the styrene reaction can be regarded as the right time to add the polymer without lowering the polymerization rate.
표 2
[Al]/[Li]몰비 커플링제 [커플링제]/[Li] 몰비부 부반응 생성율(%) 커플된 SBS의 분자량 (kg/mol) 커플링효율(%)
비교예 1 0 이염화 이메틸실란 1.04 11.5 115.1k 55.4
실시예 1 0.10 이염화 이메틸실란 1.04 - 110.8k 56.1
비교예 2 0.5 이염화 이메틸실란 1.20 - 115.4.k 8.3
비교예 3 0.5 삼염화 메틸실란 0.79 - 109.1k 35.09
실시예 2 0.5 1,2,7,8-디에폭시옥탄 1.06 - 111.8k 57.5
TABLE 2
[Al] / [Li] molar ratio Coupling agent [Coupling Agent] / [Li] Molar Ratio Side reaction rate (%) Molecular Weight of Coupled SBS (kg / mol) Coupling Efficiency (%)
Comparative Example 1 0 Dimethyl silane dichloride 1.04 11.5 115.1k 55.4
Example 1 0.10 Dimethyl silane dichloride 1.04 - 110.8k 56.1
Comparative Example 2 0.5 Dimethyl silane dichloride 1.20 - 115.4.k 8.3
Comparative Example 3 0.5 Methylsilane Trichloride 0.79 - 109.1k 35.09
Example 2 0.5 1,2,7,8-diepoxyoctane 1.06 - 111.8k 57.5
상기 표 2에서 알루미늄/리튬의 몰비가 0 내지 0.1에서의 커플링 효율이 거의 동등수준임을 알 수 있으나, 도 1을 보면, 비교예 1은 11.5%의 고분자가 생성되었고, 알루미늄을 첨가한 실시예 1, 2 및 비교예 2, 3에서는 거의 생성되지 않았음을 알 수 있다. In Table 2, it can be seen that the coupling efficiency at the molar ratio of aluminum / lithium of 0 to 0.1 is almost the same level. Referring to FIG. 1, Comparative Example 1 produced a polymer of 11.5% and added aluminum. It can be seen that in 1, 2 and Comparative Examples 2 and 3, almost no generation was made.
비교예 2에서 알루미늄/리튬의 비율이 0.1에서 약 0.5로 상승되면, 커플링 효율이 약 56%에서 8.3%로 급격히 감소되는데, 이는 고분자 사슬 말단의 음이온이 루이스 산인 알루미늄 화합물을 통해 안정성이 증가하여 이염화메틸 실란과의 반응성이 저하되었다는 것을 의미하며, 이 경우에는 커플링제로 적합하지 않다는 것을 의미한다. In Comparative Example 2, when the ratio of aluminum / lithium is increased from 0.1 to about 0.5, the coupling efficiency is drastically reduced from about 56% to 8.3%, which is due to an increase in stability through an aluminum compound in which the anion at the end of the polymer chain is Lewis acid. It means that the reactivity with methyl dichloride silane is lowered, which means that it is not suitable as a coupling agent in this case.
반면, 비교예 3에서는 알루미늄/리튬 비율이 비교예 2와 유사하나, 삼염화메틸 실란을 사용한 경우 커플링 효율이 이염화메틸 실란에 비해 8.3%에서 36.5%로 약 28% 정도 상승하나 비교예 1에 비해 아직도 20% 정도의 커플링 효율이 낮아 할로겐 실란을 커플링제로 사용하는 것은 알루미늄/리튬 비율이 0.1 당량 이상의 계에서는 커플링제로서 적합하지 않다.On the other hand, in Comparative Example 3, the aluminum / lithium ratio is similar to that of Comparative Example 2, but when methyl trichloride is used, the coupling efficiency is increased by about 28% from 8.3% to 36.5%, compared to methyl dichloride. In comparison, the use of halogen silane as a coupling agent is still not suitable as a coupling agent in a system having an aluminum / lithium ratio of 0.1 equivalent or more, because the coupling efficiency is still about 20%.
실시예 2에서는 커플링제를 에폭시계인 1,2,7,8-디에폭시 옥탄으로 변경하여 실험한 결과 비교예 2, 3 과 유사한 알루미늄/리튬의 몰 비임에도 불구하고 커플링 효율이 다시 57.5%로 향상됨을 발견할 수 있어 이온 안정성 개선제의 함량이 증가 시 적합한 커플링제는 에폭시계임을 확인할 수 있었다.In Example 2, the coupling agent was changed to 1,2,7,8-diepoxy octane, which was epoxy, and the coupling efficiency was 57.5% despite the molar ratio of aluminum / lithium similar to those of Comparative Examples 2 and 3. It can be found that the coupling agent is epoxy based when the content of the ion stability improver is increased.
실시예 3 내지 5 Examples 3 to 5
실시예 2와 동일한 방법으로 공중합체를 제조하되 커플링제로 디글리시딜-1,4-부탄디올, 비스페놀A 디글리시딜 에테르, 비스페놀F 디글리시딜 에테르를 각각 사용하였다. A copolymer was prepared in the same manner as in Example 2, but diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether, and bisphenol F diglycidyl ether were used as coupling agents.
표 3과 도 2는 각각 실시예 3 내지 5의 겔 투과 크로마토 그래피 분석결과와 프로파일을 보여주고 있다. Table 3 and Figure 2 show the gel permeation chromatography analysis results and profiles of Examples 3 to 5, respectively.
표 3
[Al]/[Li]몰비 커플링제 [커플링제]/[Li] 몰비 부반응생성율(%) 커플된 SBS의 분자량(kg/mol) 커플링효율(%)
실시예 3 0.5 디글리시딜-1,4-부탄디올 1.24 - 116.5k 71.4
실시예 4 0.5 비스페놀A 디글리시딜 에테르 0.99 - 97.9k 74.3
실시예 5 0.5 비스페놀F 디글리시딜 에테르 1.04 - 102.6k 63.5
TABLE 3
[Al] / [Li] molar ratio Coupling agent [Coupling Agent] / [Li] Molar Ratio Side reaction rate (%) Molecular Weight of Coupled SBS (kg / mol) Coupling Efficiency (%)
Example 3 0.5 Diglycidyl-1,4-butanediol 1.24 - 116.5k 71.4
Example 4 0.5 Bisphenol A diglycidyl ether 0.99 - 97.9k 74.3
Example 5 0.5 Bisphenol F diglycidyl ether 1.04 - 102.6k 63.5
상기 표 3 및 도 2의 겔투과 크로마토그래피 결과에 의하면, 실시예 2에서 사용한 에폭시계 커플링제에 비해 실시예 3 내지 5 모두 커플링 효율이 약 8~19% 개선되는 것을 알 수 있다. 이는 적절한 커플링제를 사용하면 이온 안정성을 개선할 수 있는 루이스 산을 이용하여 커플링 중합 방식을 블록공중합체의 중합에 이용할 수 있고, 용액 내 고형분 증가 시 커플링 저하를 일으키는 열 종결반응과 같은 또 다른 부반응을 억제함으로써 커플링 효율을 올릴 수 있다는 것을 의미한다. 따라서 본 발명의 블록공중합체의 제조방법에 따르면 중합 시 용액 내 고형분을 올려 중합할 수 있고 블록 공중합체의 분자량과 분자량 분포를 정밀하게 조절할 수 있다.According to the gel permeation chromatography results of Table 3 and Figure 2, it can be seen that the coupling efficiency is improved by about 8 to 19% in all of Examples 3 to 5 compared to the epoxy coupling agent used in Example 2. It is possible to use the coupling polymerization method for the polymerization of block copolymers by using Lewis acid which can improve ion stability by using an appropriate coupling agent. It means that the coupling efficiency can be increased by suppressing other side reactions. Therefore, according to the manufacturing method of the block copolymer of the present invention, it is possible to polymerize by raising the solid content in the solution during the polymerization and precisely control the molecular weight and molecular weight distribution of the block copolymer.
또한, 비교예 1처럼 루이스 산을 사용하지 않은 경우 커플링 효율이 나쁘고 부반응이 증가하여 목적한 분자량 대비 약 2배정도의 분자량을 보통 10~15% 정도 포함하여 물성은 향상되지만, 제품의 용액점도가 상승하게 된다. 따라서, 중합 시 이 부반응으로 생긴 고분자량을 반영해야 하므로 조절해야 하는 인자가 늘어나게 되어 중합 시 설계된 목적 점도 및 분자량을 생산하기 쉽지 않게 된다. In addition, when the Lewis acid is not used as in Comparative Example 1, the coupling efficiency is poor and the side reactions are increased, so that the physical properties are improved by including about 10 to 15% of the molecular weight, which is about 2 times the desired molecular weight, but the solution viscosity of the product is improved. Will rise. Therefore, since the high molecular weight produced by this side reaction during the polymerization must be reflected, the factor to be controlled is increased, so that it is not easy to produce the designed target viscosity and molecular weight during the polymerization.
반면, 본 발명에 따른 실시예에서는 부반응으로 인한 고분자량이 거의 생성되지 않으므로, 중합 시 목적 분자량만 조절하면 되므로, 설계된 목적 점도 및 분자량의 블록공중합체를 제조할 수 있다.On the other hand, in the embodiment according to the present invention, since the high molecular weight due to the side reaction is hardly generated, only the target molecular weight needs to be adjusted during polymerization, so that a block copolymer having a designed target viscosity and molecular weight can be prepared.

Claims (17)

  1. 비닐 방향족 탄화수소 단량체를 탄화수소 용매에서 유기리튬 화합물의 중합개시제로 중합시켜 비닐 방향족 탄화수소 블록을 포함하는 제1 혼합용액을 형성하는 단계(a): 및 (A) polymerizing a vinyl aromatic hydrocarbon monomer with a polymerization initiator of an organolithium compound in a hydrocarbon solvent to form a first mixed solution comprising a vinyl aromatic hydrocarbon block; and
    공액디엔 단량체를 단계 (a)의 제1 혼합용액에 첨가하여 비닐 방향족 탄화수소 블록 말단에 공액디엔 블록을 형성시켜 비닐방향족 탄화수소 블록-공액디엔 블록이 포함된 제2 혼합용액을 형성하는 단계(b);를 포함하는 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법에 있어서,Adding a conjugated diene monomer to the first mixed solution of step (a) to form a conjugated diene block at the end of the vinyl aromatic hydrocarbon block to form a second mixed solution containing a vinylaromatic hydrocarbon block-conjugated diene block (b) In the manufacturing method of the vinyl aromatic hydrocarbon-conjugated diene block copolymer containing,
    루이스 산을 단계 (a)의 비닐 방향족 탄화수소 단량체의 중합 개시 전, 중합 중, 또는 중합 완료 시에 제1 혼합용액에 첨가하는 단계(c)가 포함되는 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.And (c) adding the Lewis acid to the first mixed solution before the start of the polymerization of the vinyl aromatic hydrocarbon monomer of step (a), during the polymerization, or upon completion of the polymerization. Method of Preparation of Copolymer.
  2. 제1항에 있어서, The method of claim 1,
    상기 루이스 산과 유기리튬 화합물의 몰비(루이스 산의 몰수/유기리튬 화합물 몰수)는 0.05 내지 4인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The molar ratio (mole number of Lewis acid / mole number of organic lithium compound) of the said Lewis acid and an organolithium compound is 0.05-4, The manufacturing method of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  3. 제1항에 있어서, The method of claim 1,
    커플링제를 단계(b)의 제2 혼합용액에 첨가하여 커플링 반응시켜, 비닐 방향족 탄화수소블록의 함량이 비닐 방향족 탄화수소-공액디엔 블록 공중합체 100 중량%를 기준으로 5 내지 50 중량%인 비닐 방향족 탄화수소-공액디엔 블록 공중합체를 형성하는 단계(d);를 포함하는 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.A coupling agent was added to the second mixed solution of step (b) to cause a coupling reaction, wherein the vinyl aromatic hydrocarbon block content was 5 to 50 wt% based on 100 wt% of the vinyl aromatic hydrocarbon-conjugated diene block copolymer. Forming a hydrocarbon-conjugated diene block copolymer (d); Method of producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer comprising a.
  4. 제3항에 있어서, The method of claim 3,
    상기 커플링제는 실란 화합물 또는 에폭시 화합물인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The coupling agent is a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that the silane compound or an epoxy compound.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 커플링제가 실란 화합물인 경우 상기 루이스 산과 유기리튬 화합물의 몰비(루이스 산의 몰수/유기리튬 화합물 몰수)는 0.05 내지 0.2인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.When the coupling agent is a silane compound, the molar ratio (mole number of Lewis acid / mole number of organic lithium compound) of the Lewis acid and the organolithium compound is 0.05 to 0.2, characterized in that the manufacturing method of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 커플링제가 에폭시 화합물인 경우 상기 루이스 산과 유기리튬 화합물의 몰비(루이스 산의 몰수/유기리튬 화합물 몰수)는 0.05 내지 4인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.When the coupling agent is an epoxy compound, the molar ratio (mole number of Lewis acid / mole number of organic lithium compound) of the Lewis acid and the organolithium compound is 0.05 to 4, characterized in that the manufacturing method of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  7. 제1항에 있어서,The method of claim 1,
    상기 비닐 방향족 탄화수소-공액디엔 블록 공중합체는 수평균 분자량이 5,000 내지 500,000인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법. The vinyl aromatic hydrocarbon-conjugated diene block copolymer has a number average molecular weight of 5,000 to 500,000.
  8. 제4항 또는 제5항에 있어서,The method according to claim 4 or 5,
    상기 실란 화합물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The silane compound is a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that the compound represented by the formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2010007913-appb-I000009
    Figure PCTKR2010007913-appb-I000009
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 또는 탄소수 5 내지 18의 아릴기이며, X는 할로겐기일 수 있고, m, n, 및 p는 각각 독립적으로 0 내지 4의 정수이며, m+n+p=4이다. In Formula 1, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or an aryl group having 5 to 18 carbon atoms, X may be a halogen group, m, n, and p are each independently 0 to It is an integer of 4, and m + n + p = 4.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 에폭시 화합물은 각각 아래 화학식 2 또는 3으로 표시되는 화합물인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록공중합체의 제조방법.The epoxy compound is a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that the compound represented by the formula (2) or (3), respectively.
    [화학식 2][Formula 2]
    Figure PCTKR2010007913-appb-I000010
    Figure PCTKR2010007913-appb-I000010
    상기 화학식 2에서, R3은 탄소수 1 내지 20의 알킬기, 탄소수 5 내지 24의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고, In Formula 2, R 3 may be an alkyl group having 1 to 20 carbon atoms, an aryl group having 5 to 24 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms,
    q 및 r은 각각 독립적으로 0 내지 4의 정수이며, 2≤q+r≤4이다.q and r are each independently an integer of 0 to 4, and 2 ≦ q + r ≦ 4.
    [화학식 3][Formula 3]
    Figure PCTKR2010007913-appb-I000011
    Figure PCTKR2010007913-appb-I000011
    상기 화학식 3에서 R4, R5, R6, R7, R8, R9, R10, R11, R12는 탄소수 1 내지 20의 알킬렌기 또는 알킬기, 탄소수 5 내지 24의 아릴렌기 또는 아릴기, 또는 탄소수 6 내지 30의 알킬아릴렌기 또는 알킬아릴기일 수 있고, s는 1,t 및 u는 각각 독립적으로 0 내지 1의 정수이며, 1≤s+t+u≤3이다. 또한, v, w, x는 각각 독립적으로 1 내지 6의 정수이며, 2≤v+w+x≤6이다.In Formula 3, R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 represent an alkylene group or alkyl group having 1 to 20 carbon atoms, an arylene group having 5 to 24 carbon atoms, or aryl Or an alkylarylene group or an alkylaryl group having 6 to 30 carbon atoms, and s is 1, t and u are each independently an integer of 0 to 1, and 1 ≦ s + t + u ≦ 3. In addition, v, w, and x are each independently an integer of 1-6, and 2 <= v + w + x <6.
  10. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 루이스 산은 하기 화학식 4로 표시되는 화합물인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The Lewis acid is a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that the compound represented by the following formula (4).
    [화학식 4][Formula 4]
    Figure PCTKR2010007913-appb-I000012
    Figure PCTKR2010007913-appb-I000012
    상기 화학식 3에서, M은 주기율표에서 Mg, B, Al, 또는 Zn이며,In Formula 3, M is Mg, B, Al, or Zn in the periodic table,
    R13 및 R14는 각각 독립적으로 탄소수 1 내지 6인 알킬기, 탄소수 5 내지 18의 아릴기, 또는 탄소수 6 내지 30의 알킬아릴기일 수 있고, k 및 l은 각각 독립적으로 0 내지 3의 정수이며, 2≤k+l≤3이다.R 13 and R 14 may each independently be an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an alkylaryl group having 6 to 30 carbon atoms, and k and l are each independently an integer of 0 to 3, 2≤k + l≤3.
  11. 제10항에 있어서, The method of claim 10,
    상기 루이스 산은 디에틸마그네슘, 디-n-프로필마그네슘, 디-이소프로필마그네슘, 디부틸마그네슘, 트리에틸 알루미늄, 트리-이소부틸알루미늄, 트리-n-프로필알루미늄, 트리-n-헥실알루미늄, 디에틸 알루미늄 모노하이드라이드, 디이소부틸 알루미늄 모노하이드라이드, 디에틸아연, 디-n-프로필 아연, 디-이소아밀 아연, 디-이소부틸 아연, 트리에틸보란, 트리-sec-부틸보란, 트리부틸보란, 트리메시틸보란, 및 트리페닐보란으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The Lewis acid is diethylmagnesium, di-n-propylmagnesium, di-isopropylmagnesium, dibutylmagnesium, triethylaluminum, tri-isobutylaluminum, tri-n-propylaluminum, tri-n-hexylaluminum, diethyl Aluminum monohydride, diisobutyl aluminum monohydride, diethylzinc, di-n-propyl zinc, di-isoamyl zinc, di-isobutyl zinc, triethylborane, tri-sec-butylborane, tributylborane The method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that at least one member selected from the group consisting of trimethylborane, and triphenylborane.
  12. 제4항에 있어서, The method of claim 4, wherein
    상기 커플링제가 실란 화합물인 경우 상기 루이스 산과 유기리튬 화합물의 몰비(루이스 산의 몰수/유기리튬 화합물 몰수)가 0.05 내지 0.1인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.When the coupling agent is a silane compound, the molar ratio (mole number of Lewis acid / mole number of organic lithium compound) of the Lewis acid and the organolithium compound is 0.05 to 0.1, characterized in that the manufacturing method of the vinyl aromatic hydrocarbon-conjugated diene block copolymer.
  13. 제4항에 있어서, The method of claim 4, wherein
    상기 실란화합물은 사염화실란, 삼염화메틸실란, 이염화이메틸실란으로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The silane compound is a method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that at least one selected from the group consisting of silane tetrachloride, methyl trichloride, and dimethyl dichloride.
  14. 제4항에 있어서, The method of claim 4, wherein
    상기 커플링제가 에폭시 화합물인 경우 상기 루이스 산과 유기리튬 화합물의 몰비(루이스 산의 몰수/유기리튬 화합물 몰수)가 0.1 내지 0.75인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The molar ratio (mole number of Lewis acid / mole number of organic lithium compound) of said Lewis acid and an organolithium compound when the said coupling agent is an epoxy compound is 0.1-0.75, The manufacturing method of the vinyl aromatic hydrocarbon conjugated diene block copolymer.
  15. 제4항에 있어서,The method of claim 4, wherein
    상기 에폭시 화합물은 1,2,7,8-디에폭시옥탄, 디글리시딜-1,4-부탄디올, 비스페놀A 디글리시딜 에테르, 비스페놀F 디글리시딜 에테르, 에폭시화된 대두유 오일 및 에폭시화된 린스 오일로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The epoxy compounds include 1,2,7,8-diepoxyoctane, diglycidyl-1,4-butanediol, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, epoxidized soybean oil oil and epoxy Method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that at least one member selected from the group consisting of rinsed rinsing oil.
  16. 제1항에 있어서,The method of claim 1,
    상기 비닐 방향족 탄화수소 단량체는 스티렌, 알파 메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌, 및 1-비닐-5헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The vinyl aromatic hydrocarbon monomers include styrene, alpha methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, and 1- A vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that at least one member selected from the group consisting of vinyl-5hexyl naphthalene.
  17. 제1항에 있어서, The method of claim 1,
    상기 공액디엔은 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페리렌, 3-부틸-1,3-옥타디엔, 이소프렌, 및 2-페닐-1,3-부타디엔으로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비닐 방향족 탄화수소-공액디엔 블록 공중합체의 제조방법.The conjugated diene is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperiene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene Method for producing a vinyl aromatic hydrocarbon-conjugated diene block copolymer, characterized in that at least one member selected from the group consisting of.
PCT/KR2010/007913 2009-11-10 2010-11-10 Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability WO2011059225A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012532027A JP5500258B2 (en) 2009-11-10 2010-11-10 Method for producing vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ionic stability
CN201080050558.0A CN102597032B (en) 2009-11-10 2010-11-10 The preparation method of the vinylaromatic hydrocarbon conjugated diene block copolymer for the utilization coupled reaction that ion stability is improved
US13/508,700 US9567409B2 (en) 2009-11-10 2010-11-10 Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0107875 2009-11-10
KR20090107875 2009-11-10
KR1020100110409A KR101268770B1 (en) 2009-11-10 2010-11-08 Polymerization Method of Vinyl Aromatic Hydrocarbon-Conjugated Diene Block Copolymer Using Coupling Reaction with Improved Ionic Stability
KR10-2010-0110409 2010-11-08

Publications (2)

Publication Number Publication Date
WO2011059225A2 true WO2011059225A2 (en) 2011-05-19
WO2011059225A3 WO2011059225A3 (en) 2011-10-27

Family

ID=43992207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007913 WO2011059225A2 (en) 2009-11-10 2010-11-10 Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability

Country Status (1)

Country Link
WO (1) WO2011059225A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836516A (en) * 2017-11-29 2019-06-04 中国石油化工股份有限公司 A kind of method of unsaturated double-bond in elimination hydrogenated styrene analog thermoplastic elastomer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996273A (en) * 1989-12-21 1991-02-26 Shell Oil Company Anionic polymerization catalyst compositions
US5306779A (en) * 1989-05-19 1994-04-26 Japan Synthetic Rubber Co., Ltd. Hydrogenated diene block copolymer and composition comprising the same
US5461095A (en) * 1993-08-25 1995-10-24 Shell Oil Company Block copolymer composition, hot melt adhesive composition containing it, and process for the preparation thereof
US6455651B1 (en) * 1999-04-23 2002-09-24 Kraton Polymers U.S. Llc Uniform initiation of anionic polymerization using organo-substituted alkali metal initiators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306779A (en) * 1989-05-19 1994-04-26 Japan Synthetic Rubber Co., Ltd. Hydrogenated diene block copolymer and composition comprising the same
US4996273A (en) * 1989-12-21 1991-02-26 Shell Oil Company Anionic polymerization catalyst compositions
US5461095A (en) * 1993-08-25 1995-10-24 Shell Oil Company Block copolymer composition, hot melt adhesive composition containing it, and process for the preparation thereof
US6455651B1 (en) * 1999-04-23 2002-09-24 Kraton Polymers U.S. Llc Uniform initiation of anionic polymerization using organo-substituted alkali metal initiators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARLOTTI, S. ET AL.: 'Retarded Anionic Polymerization (RAP) of Styrene and Dienes.' POLYMER vol. 50, 19 May 2009, pages 3057 - 3067 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836516A (en) * 2017-11-29 2019-06-04 中国石油化工股份有限公司 A kind of method of unsaturated double-bond in elimination hydrogenated styrene analog thermoplastic elastomer

Also Published As

Publication number Publication date
WO2011059225A3 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2016099021A1 (en) Novel anionic polymerization initiator and method for preparing conjugated diene-based polymer using same
EP1444280B1 (en) Process for preparing linear block copolymer
JP2004525232A (en) Modified polymer having high content of cis double bond, process for preparing the same and use thereof
JP4198350B2 (en) Method for producing diene elastomer by anionic polymerization
WO2013119006A1 (en) Modified conjugated diene polymer and method for producing same
KR101268770B1 (en) Polymerization Method of Vinyl Aromatic Hydrocarbon-Conjugated Diene Block Copolymer Using Coupling Reaction with Improved Ionic Stability
CN112745432B (en) Copolymer of alpha-olefin and 2, 3-dimethyl-1, 3-butadiene and preparation method thereof
EP0745613B1 (en) Synthesis of silyl-functional telechelic hydrocarbon polymers
US6624256B2 (en) Method of preparation of siloxane-functionalized high 1,4-cis polybutadiene
WO2010011022A2 (en) Asphalt modifier compositions and asphalt compositions containing same
WO2014175562A1 (en) Process for continuous production of modified conjugated diene polymer, polymer produced by process, and rubber composition comprising same
WO2019151672A1 (en) Method for preparing conjugated diene-based polymer and apparatus for preparing conjugated diene-based polymer
WO2016085134A1 (en) Method for preparing novel anionic polymerization initiator and conjugate diene system copolymer using same
WO2011059225A2 (en) Preparation method of vinyl aromatic hydrocarbon-conjugated diene block copolymer using coupling reaction with improved ion stability
KR20010002762A (en) A process for preparation of high 1,4-cis polybutadiene
EP1092735A1 (en) Process for manufacturing high 1,4-CIS polybutadiene containing hydroxyl groups at ends thereof using molecular oxygen
WO2016080764A1 (en) Catalyst composition for polymerization of conjugated diene
US3663634A (en) Preparation of organodilithium initiator and polymerizations utilizing same
WO2016080766A1 (en) Method for preparing conjugated diene-based polymer
EP0210016B1 (en) Polymerization process and initiator system therefor
WO2021235678A1 (en) Liquid rubber preparation method and liquid rubber prepared thereby
CN110372819B (en) Conjugated diene polymer, preparation method thereof and styrene butadiene rubber
WO2016104931A1 (en) Aminosilane terminal modifier to which functional group has been introduced, method for producing terminal-modified conjugated diene polymer using the aminosilane terminal modifier, and terminal-modified conjugated diene polymer produced according to the method
JP2518005B2 (en) Method for producing conjugated diene polymer
US20020198343A1 (en) Uniform initiation of anionic polymerization using organo-substituted alkali metal initiators

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050558.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012532027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830157

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10830157

Country of ref document: EP

Kind code of ref document: A2