WO2011080955A1 - 面状照明装置およびそれを備えた表示装置 - Google Patents

面状照明装置およびそれを備えた表示装置 Download PDF

Info

Publication number
WO2011080955A1
WO2011080955A1 PCT/JP2010/067244 JP2010067244W WO2011080955A1 WO 2011080955 A1 WO2011080955 A1 WO 2011080955A1 JP 2010067244 W JP2010067244 W JP 2010067244W WO 2011080955 A1 WO2011080955 A1 WO 2011080955A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
polarizing plate
illumination device
optical sheet
Prior art date
Application number
PCT/JP2010/067244
Other languages
English (en)
French (fr)
Inventor
悠作 味地
山本 智彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10840814.7A priority Critical patent/EP2520851A4/en
Priority to CN201080049511.2A priority patent/CN102597603B/zh
Priority to US13/508,552 priority patent/US8672528B2/en
Priority to RU2012132305/07A priority patent/RU2012132305A/ru
Priority to JP2011547370A priority patent/JP5284489B2/ja
Publication of WO2011080955A1 publication Critical patent/WO2011080955A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to a planar illumination device, and more particularly to a planar illumination device used for a backlight of a liquid crystal display device.
  • a backlight device called an edge light type or a side light type is known as one of backlight devices used in liquid crystal display devices.
  • an LED light emitting diode
  • CCFL cold cathode tube
  • a light emitter is disposed, and surface light emission toward the liquid crystal panel is performed based on light emitted from the light emitter and incident on the light guide plate.
  • FIG. 13 is a cross-sectional view showing the configuration of one end of a conventional edge light type backlight device.
  • the backlight device includes an LED 40, a chassis (hereinafter referred to as “side chassis”) 51 that supports a substrate (not shown) on which the LED 40 is mounted, and a light emitted from the LED 40 toward the liquid crystal panel.
  • a chassis (hereinafter referred to as “upper surface side chassis”) 52 disposed on the optical sheet 80.
  • the optical sheet 80 is disposed on the light emitting surface side of the light guide plate 20
  • the reflection sheet 30 is disposed on the back surface side of the light guide plate 20.
  • the optical sheet 80 includes a reflective polarizing plate 81, a prism sheet 82, and a diffusion sheet 83.
  • the diffusion sheet 83 diffuses light to make it uniform.
  • the prism sheet 82 condenses light so that a component in a direction perpendicular to the liquid crystal panel increases.
  • the reflective polarizing plate 81 transmits some light (for example, linearly polarized light that vibrates in a specific direction) and reflects the remaining light (for example, linearly polarized light that vibrates in a direction perpendicular to the specific direction). To do.
  • the light transmitted through the reflective polarizing plate 81 is incident on the polarizing plate on the backlight device side among the polarizing plates provided on both surfaces of the liquid crystal panel.
  • the light emitted from the LED 40 is incident on the light guide plate 20 directly or after being reflected by the reflection sheet 30.
  • the light incident on the light guide plate 20 propagates while reflecting in the light guide plate 20 and is emitted to the light emitting surface side through the optical sheet 80.
  • the optical sheet 80 is shorter than the light guide plate 20 in the left-right direction of FIG. 13 (the end of the optical sheet 80 is the end surface of the upper surface side chassis 52 and the end surface (end portion) of the light guide plate 20).
  • the length of the optical sheet 80 and the length of the light guide plate 20 are equal, the light emitted from the LED 40 in the direction of the arrow indicated by reference numeral 71 is as indicated by the arrow indicated by reference numeral 72.
  • the optical sheet 80 is made shorter than the light guide plate 20 as shown in FIG. 13 so that such light is absorbed by the upper surface side chassis 52.
  • FIG. 15 is a cross-sectional view showing the configuration of one end of a conventional edge light type backlight device having a narrow frame.
  • the distance L 9 in the configuration shown in FIG. It is shorter than the distance L8 in the illustrated configuration.
  • the distance L9 is about 5 mm.
  • the distance between the center side end face of the upper surface side chassis 52 and the end face of the light guide plate 20 is shortened, so that unlike the configuration shown in FIG.
  • the length of the sheet 90 is equal to the length of the light guide plate 20.
  • the reason for this is as follows.
  • the optical sheet 90 expands due to heat as the LED 40 emits light.
  • the size of the optical sheet 90 is designed in consideration of a certain degree of tolerance. Accordingly, the optical sheet 90 is not fixed in the chassis, but moves (displaces) within a tolerance range. Under such a premise, if the distance from the center side end surface of the upper surface side chassis 52 to the end of the optical sheet 90 is shortened as shown in FIG.
  • the optical sheet 90 is positioned from the position corresponding to the center side end surface of the upper surface side chassis 52 on the optical sheet 90 so that the optical sheet 90 is held in the chassis.
  • the distance to the end of 90 is determined so that the length (covering the optical sheet 90) covered by the upper surface side chassis 52 is sufficient.
  • the length of the optical sheet 90 is equal to the length of the light guide plate 20.
  • Japanese Patent Application Laid-Open No. 2004-71167 discloses a bright line or display due to light leakage by sticking a light-shielding tape to all or part of the edge of the light-emitting surface side of the light guide plate.
  • An invention of a planar light source device that suppresses the occurrence of unevenness is disclosed.
  • the black printing 60 when the black printing 60 is applied to a part of the optical sheet 90 as shown in FIG. 18, the light propagating through the light guide plate 20 is essentially as indicated by the arrow 75 in FIG. 19A. 19B, it is absorbed by the black printing 60 as indicated by the arrow 76 in FIG. For this reason, although generation
  • the periphery of the light source is covered with a reflecting structure (lamp reflector), the efficiency of light incident on the light guide plate is increased.
  • a reflecting structure lamp reflector
  • the reflective structure becomes thin (for example, about 500 ⁇ m)
  • the optical sheet is expanded by heat, there is no space in which the optical sheet can be stretched, so that the optical sheet bends.
  • an object of the present invention is to realize a narrow frame while suppressing the occurrence of light leakage and a decrease in luminance in an edge light type backlight device.
  • a first aspect of the present invention includes a plurality of light sources, a light guide plate for emitting light emitted from the light sources in a planar shape, a plurality of optical sheets disposed on a light emitting surface side of the light guide plate, A planar illumination device comprising a reflective sheet disposed on the side opposite to the light emitting surface side of the light guide plate with respect to the position of the light guide plate, A chassis for fixing the plurality of optical sheets; At least one optical sheet of the plurality of optical sheets is provided with a light shielding portion in a part of a region corresponding to a non-light emitting region of the planar illumination device, The optical sheet disposed at a position farthest from the light guide plate among the plurality of optical sheets is a reflective polarizing plate that transmits a part of light and reflects the remaining light, About the 1st direction which is a direction perpendicular
  • the distance between the end of the light guide plate and the end of the reflective polarizing plate is the distance between the end of the light guide plate and the surface of the chassis on which the light source is provided. It is characterized in that it is at least one third.
  • the distance between the end of the light guide plate and the end of the reflective polarizing plate is at least 1 millimeter.
  • the light shielding portion is a region from a position corresponding to an end portion of the light emitting region of the planar illumination device on the optical sheet to an end portion of the optical sheet other than the reflective polarizing plate. In at least one third of the area.
  • the light shielding portion is formed by black printing on the optical sheet.
  • the portion of the chassis that is disposed closer to the light emitting surface than the optical sheet is black.
  • a seventh aspect of the present invention is the sixth aspect of the present invention,
  • the thickness of the portion of the chassis that is disposed closer to the light emitting surface than the optical sheet is 1.5 mm or less.
  • the reflective polarizing plate is composed of a plurality of thin films having different refractive indexes, transmits linearly polarized light that vibrates in a specific direction, and reflects linearly polarized light that vibrates in a direction perpendicular to the specific direction. It is characterized by.
  • the reflective polarizing plate is composed of a cholesteric liquid crystal layer and a retardation plate,
  • the cholesteric liquid crystal layer transmits circularly polarized light that rotates in a specific direction, reflects circularly polarized light that rotates in a direction different from the specific direction,
  • the retardation plate is characterized in that circularly polarized light transmitted through the cholesteric liquid crystal layer is converted into linearly polarized light.
  • the reflective polarizing plate is constituted by a base material on which a plurality of fine metal wires are formed, and transmits light having a wavelength greater than the interval between the fine metal wires and a component having an electric field vector perpendicular to the fine metal wires.
  • the method has a feature of reflecting a component having an electric field vector parallel to the thin metal wire.
  • An eleventh aspect of the present invention is a display device, It further includes a display panel, and is provided with the planar illumination device according to the first aspect of the present invention.
  • the end portion of the reflective polarizing plate protrudes beyond the end portion of the light guide plate in the direction between the one surface (of the chassis) where the light source is provided (the chassis) and the facing surface. It has a configuration. For this reason, according to the conventional configuration, a part of the light absorbed by the chassis above the light source is reflected by the reflective polarizing plate and is incident on the light guide plate. Thereby, the utilization efficiency of the light emitted from the light source is increased, and the luminance is improved. Moreover, about the optical sheet, the light-shielding part is provided in a part of area
  • the light emitted from the light source and incident on the optical sheet without entering the light guide plate is absorbed by the light shielding unit. Thereby, the occurrence of light leakage near the boundary between the light emitting region and the non-light emitting region is suppressed.
  • a narrow frame of the backlight device can be realized while suppressing occurrence of light leakage and luminance reduction.
  • the light absorbed by the chassis above the light source in the conventional configuration is more efficiently reflected by the reflective polarizing plate and incident on the light guide plate.
  • a narrow frame of the backlight device is realized while effectively suppressing a decrease in luminance.
  • a narrow frame of the backlight device is realized while effectively suppressing a decrease in luminance.
  • light that causes light leakage in the vicinity of the boundary between the light emitting region and the non-light emitting region is more effectively absorbed by the light shielding unit.
  • the narrow frame of the backlight device is realized while effectively suppressing the occurrence of light leakage.
  • the occurrence of light leakage in the vicinity of the boundary between the light emitting region and the non-light emitting region can be suppressed with a relatively simple configuration.
  • the sixth aspect of the present invention since black hardly transmits light, occurrence of light leakage from the chassis portion is suppressed. Thereby, the deterioration of the display quality resulting from light leakage is suppressed.
  • the same effect as in the sixth aspect of the present invention can be obtained in the thinned backlight device.
  • the same effect as that of the first aspect of the present invention can be obtained in the planar illumination device having the configuration using the reflective polarizing plate realized by the thin film lamination method.
  • the same effect as that of the first aspect of the present invention can be obtained in the planar illumination device having the configuration using the reflective polarizing plate realized by the cholesteric liquid crystal method.
  • the same effect as that of the first aspect of the present invention can be obtained in the planar illumination device having the configuration using the reflective polarizing plate realized by the wire grid method.
  • the display device is provided with the planar illumination device according to the first aspect of the present invention.
  • the narrow frame of the display device is realized while suppressing the occurrence of light leakage and the decrease in luminance.
  • a and B are diagrams for explaining the effects obtained by the reflective polarizing plate in the embodiment.
  • it is a graph which shows the relationship between the protrusion amount of a reflective polarizing plate from the end surface of a light-guide plate, and a brightness
  • it is a graph which shows the relationship between the width
  • it is a graph which shows the brightness
  • it is a graph which shows the brightness
  • it is a graph which shows the brightness
  • FIGS. 19A and 19B are diagrams for explaining the cause of a decrease in luminance in the backlight device having the configuration shown in FIG.
  • FIG. 2 is an exploded perspective view of an edge light type backlight device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the backlight device as viewed from the direction of the arrow 9 in FIG.
  • the backlight device includes a plurality of LEDs 40 as light sources (light emitters), a chassis 50, a light guide plate 20 for emitting light emitted from the LEDs 40 toward the liquid crystal panel, and a light guide plate 20. It is comprised by the reflection sheet 30 for reflecting the light which goes to a back surface inside, and the optical sheet 10 for improving the efficiency of the light irradiated toward a liquid crystal panel.
  • the LEDs 40 are mounted on a substrate at a pitch (interval) of 10 mm, for example, and the substrate is fixed to one side 58 of the chassis 50 and its opposite side 59 as shown in FIG.
  • Each LED 40 is arranged so that there is a light emission peak in the right direction in FIG.
  • the chassis 50 includes a side chassis 51 that supports a substrate on which the LEDs 40 are mounted, and an upper chassis 52 that is disposed on the optical sheet 10.
  • the optical sheet 10 includes a reflective polarizing plate 11, a prism sheet 12, and a diffusion sheet 13.
  • black printing 60 is applied to a part of the front or back surface of the diffusion sheet 13 in the optical sheet 10 as shown in FIG.
  • the black print 60 functions as a light shielding portion.
  • the reflective polarizing plate 11 has a configuration different from that of the conventional backlight device. Specifically, in the left-right direction (first direction) in FIG. 1, the reflective polarizing plate 11 is longer than the light guide plate 20, and the end portion of the reflective polarizing plate 11 is the end face (end portion) of the light guide plate 20. It is located on the LED 40 side (side surface side chassis 51 side). In the following, the distance from the end face of the light guide plate 20 to the end of the reflective polarizing plate 11 is referred to as “the amount of protrusion” and is denoted by reference symbol L2 (see FIG. 1).
  • distance L1 5 mm between the center side end surface of the upper surface side chassis 52 and the end surface of the light guide plate 20.
  • the amount of protrusion L2 is 1 mm.
  • Distance L3 between the end surface of the light guide plate 20 and the side chassis 51 3 mm.
  • Distance L4 between the end face of the light guide plate 20 and the tip of the LED 40 1.6 mm.
  • Black print 60 width L5 3 mm.
  • FIG. 3 is a cross-sectional view showing a configuration of one end of a liquid crystal display device including the backlight device.
  • the backlight device is fixed to the chassis 2 of the liquid crystal display device.
  • the liquid crystal panel 3 is disposed on the side opposite to the light guide plate 20 with respect to the position of the optical sheet 10.
  • the active area of the liquid crystal panel 3 (display area where an image is actually displayed) is narrower than the active area of the backlight device (area where light can be irradiated).
  • the distance L6 from the end of the active area of the liquid crystal panel 3 to the end of the active area of the backlight device is 2 mm.
  • a black matrix is formed in a region corresponding to the above L6 for one of the two glass substrates constituting the liquid crystal panel 3. For this reason, the said area
  • the backlight device according to the present embodiment is typically employed as a backlight device for a large liquid crystal panel.
  • a reflective polarizing plate 11 is employed for the optical sheet 10 that is disposed on the most liquid crystal panel side (the light emitting surface side in FIG. 1).
  • the reflective polarizing plate 11 transmits part of light and reflects the remaining light.
  • transmitted the reflective polarizing plate 11 injects into the polarizing plate by the side of the backlight apparatus among the polarizing plates provided in both surfaces of the liquid crystal panel.
  • a reflective polarizing plate 11 in which a plurality of thin films having different refractive indexes are laminated is employed.
  • linearly polarized light is generated by multistage reflection with the plurality of thin films.
  • Examples of the reflective polarizing plate 11 include DBEF (Dual Brightness Enhancement Film) (“DBEF” is a registered trademark) manufactured by Sumitomo 3M Limited.
  • DBEF Dual Brightness Enhancement Film
  • the reflective polarizing plate 11 transmits only linearly polarized light (P wave) that vibrates in a specific direction, and reflects linearly polarized light (S wave) that vibrates in a direction perpendicular to the specific direction.
  • the S wave reflected by the reflective polarizing plate 11 propagates through the light guide plate 20 and is reflected again by the reflection sheet 30 to be separated into a P wave and an S wave. In this way, light is reused, and the amount of light applied to the liquid crystal panel is increased.
  • a method for realizing the reflective polarizing plate 11 employed in the present embodiment is referred to as a “thin film lamination method”.
  • FIGS. 4A and 4B are diagrams for explaining the effects obtained by the reflective polarizing plate 11 in the present embodiment.
  • reference numerals 5, 6, 300, 301, and 302 denote a P wave, an S wave, a liquid crystal layer, a polarizing plate on the back side of the liquid crystal panel, and a polarizing plate on the front side of the liquid crystal panel, respectively. Show. Further, optical sheets other than the reflective polarizing plate 11 are omitted. According to the configuration not including the reflective polarizing plate 11, as shown in FIG. 4A, among the P wave 5 and S wave 6 emitted from the light guide plate 20, the S wave 6 is a polarizing plate on the back side of the liquid crystal panel. Absorbed at 301.
  • the S wave 6 reflected by the reflective polarizing plate 11 again becomes the P wave 5 and the S wave 6 from the light guide plate 20. Emitted.
  • the P wave 5 is applied to the polarizing plate 301 on the back side of the liquid crystal panel, and the S wave 6 is reflected by the reflective polarizing plate 11 and reused.
  • the thin film lamination type reflective polarizing plate 11 for the most liquid crystal panel side of the optical sheet 10, the light emitted from the light guide plate 20 is efficiently obtained. Is being used.
  • FIG. 5 shows a 40-type liquid crystal panel (the distance L1 between the center side end surface of the upper surface side chassis 52 and the end surface of the light guide plate 20 is 5 mm, and the distance between the end surface of the light guide plate 20 and the side surface chassis 51 is It is a graph which shows the relationship (experimental result) of the protrusion amount L2 and brightness
  • a thin solid line 61 is data when the black printing 60 is not performed on the optical sheet 10.
  • a thick dotted line 62 is data when black printing 60 having a width of 3 mm is applied on the optical sheet 10.
  • a thick solid line with reference numeral 63 is data when a black print 60 having a width of 5 mm is applied on the optical sheet 10. From FIG.
  • FIG. 6 is a graph showing the relationship (experimental result) between the width of the black print 60 on the optical sheet 10 and light leakage.
  • the horizontal axis represents the width of the black print 60
  • the vertical axis represents the ratio (that is, the relative value) of the leakage light luminance to the luminance at the central portion of the liquid crystal panel. From FIG. 6, it is understood that when the width of the black print 60 is 3 mm, the light leakage is about one-half that when the black print 60 is not applied (the width of the black print 60 is 0 mm).
  • the protruding amount L2 is 1 mm, and the width L5 of the black print 60 is 3 mm.
  • the protruding amount L2 is preferably at least one third of the distance L3 between the end face of the light guide plate 20 and the side chassis 51.
  • the width L5 of the black print 60 is at least a distance between a position (on the diffusion sheet 13) corresponding to the end of the active area (see FIG. 3) of the backlight device and the end of the diffusion sheet 13. One third is preferable.
  • the upper surface side chassis 52 in the present embodiment will be described in detail.
  • polycarbonate is used as the material, and the thickness is 1.0 mm to 1.5 mm.
  • black is adopted as the color.
  • the backlight device according to the present embodiment is typically used for a large liquid crystal panel.
  • the backlight device is generally used for a small liquid crystal panel such as a mobile phone in which a white chassis is generally used. The reason why black is adopted as the color of the upper surface side chassis 52 in this embodiment will be described in comparison with the backlight device.
  • a backlight device for a small liquid crystal panel an LED is mounted on an FPC (flexible printed circuit board) and a light guide plate is attached to the FPC. Therefore, even if the light guide plate is expanded by heat, the LED is not physically pressed by the light guide plate and the chassis. Moreover, in the backlight device for small liquid crystal panels, since the light guide plate is small compared to the device for large liquid crystal panels, the amount of expansion due to heat is small. For this reason, even if the light guide plate expands due to heat, the LED is not physically pressed by the light guide plate. Further, since the required luminance is lower than that of a device for a large liquid crystal panel, the amount of heat received by the light guide plate is also small.
  • FPC flexible printed circuit board
  • the distance between the LED and the light guide plate can be made substantially 0 mm, the occurrence of light leakage based on light emitted from the LED and not incident on the light guide plate is suppressed.
  • the required brightness is low compared to devices for large liquid crystal panels, and a sufficient amount of light can be obtained with a small number of LEDs, so the impact on display quality even if light leakage occurs is compared. Small.
  • the substrate on which the LED 40 is mounted is generally fixed to the side chassis 51, and the LED 40 and the light guide plate 20 are not integrated. For this reason, an air gap is provided between the LED 40 and the light guide plate 20 in consideration of thermal expansion of the light guide plate 20. Therefore, the amount of light that can cause light leakage is increased as compared with a backlight device for a small liquid crystal panel. Further, in a large liquid crystal panel, required luminance is high, and a large number of LEDs 40 are arranged in a chassis. For this reason, light leakage appears as a bright line, and the display quality is remarkably lowered.
  • the white color when white is adopted as the color of the upper surface side chassis 52, the white color easily transmits light. Therefore, light leakage occurs unless the thickness of the upper surface side chassis 52 is considerably large.
  • the backlight device for large liquid crystal panels in which the thickness of the upper surface side chassis 52 is relatively thin is also used. Deterioration of display quality due to light leakage is suppressed.
  • the length of the reflective polarizing plate 11 is longer than the length of the light guide plate 20 in the direction between the LEDs facing each other. That is, as compared with the conventional configuration, the end portion of the reflective polarizing plate 11 protrudes to the LED 40 side from the end surface of the light guide plate 20. For this reason, according to the conventional configuration, a part of the light absorbed by the upper surface side chassis 52 is reflected by the reflective polarizing plate 11 and incident on the light guide plate 20 as indicated by an arrow 70 in FIG. The Thereby, the utilization efficiency of the light radiate
  • the black printing 60 as the light shielding portion is applied to a partial region of the diffusion sheet 13 in the optical sheet 10. For this reason, the light emitted from the LED 40 and incident on the optical sheet 10 without being incident on the light guide plate 20 is absorbed by the black printing 60. Thereby, the occurrence of light leakage at the edge portion of the display area (near the active area end portion of the backlight device) is suppressed.
  • the luminance is the position indicated by the reference symbol P1 in the graph shown in FIG. It becomes the value of.
  • the luminance is a value at the position indicated by the symbol P2.
  • a black chassis is adopted as the upper surface side chassis 52. If a white chassis is adopted as the upper surface side chassis 52, light leakage occurs depending on the thickness of the chassis (the light leakage amount increases as the chassis thickness decreases). In this regard, when a black chassis is employed as in the present embodiment, light is absorbed by the chassis, so that light leakage is effectively suppressed. Thereby, the deterioration of the display quality resulting from light leakage is suppressed.
  • the thin film lamination type reflective polarizing plate 11 is employed, but the present invention is not limited to this.
  • the reflection type polarizing plate 11 realized by the methods described below referred to as “cholesteric liquid crystal method” and “wire grid method” may be adopted.
  • the cholesteric liquid crystal reflection type polarizing plate 11 is composed of a cholesteric liquid crystal layer 111 and a retardation plate 112. As shown in FIG. 11, among the cholesteric liquid crystal layer 111 and the retardation film 112, the cholesteric liquid crystal layer 111 is disposed on the liquid crystal panel 3 side, and the retardation film 112 is disposed on the light guide plate 20 side. In FIG. 11, optical sheets other than the reflective polarizing plate 11 are omitted. In such a configuration, the cholesteric liquid crystal layer 111 transmits circularly polarized light that rotates in a specific direction and reflects circularly polarized light that rotates in a direction different from the specific direction.
  • the phase difference plate 112 converts the circularly polarized light transmitted through the cholesteric liquid crystal layer 111 into linearly polarized light. As described above, the light transmitted through the cholesteric liquid crystal layer 111 is given to the polarizing plate 301 on the back side of the liquid crystal panel 3, and the light reflected by the cholesteric liquid crystal layer 111 is reused.
  • the reflective polarizing plate 11 by the wire grid method is configured by a base material (substrate) 113 on which a plurality of fine metal wires 114 are formed, as shown in FIG.
  • the reflection-type polarizing plate 11 transmits a component having an electric field vector perpendicular to the metal thin wire 114 for light having a wavelength longer than the interval L7 where the plurality of metal thin wires 114 are formed.
  • the component having the electric field vector parallel to 114 is reflected. Thereby, the light transmitted through the reflective polarizing plate 11 is given to the polarizing plate on the back side of the liquid crystal panel, and the light reflected by the reflective polarizing plate 11 is reused.
  • the optical sheet 10 includes the reflective polarizing plate 11, the prism sheet 12, and the diffusion sheet 13.
  • the present invention is not limited to this.
  • the reflective polarizing plate 11 is disposed on the most liquid crystal panel side, the number and type of optical sheets are not particularly limited.
  • the black printing 60 was given to the diffusion sheet 13
  • this invention is not limited to this, The structure by which the black printing 60 was given to sheets other than the diffusion sheet 13 may be sufficient. .
  • the light shielding portion is realized by performing the black printing 60 on the optical sheet 10, but the present invention is not limited to this.
  • the light shielding part may be realized by sticking a black tape on the optical sheet 10, or the light shielding part is realized by painting a part of the optical sheet 10 in black with a marking pen. Also good.

Abstract

 エッジライト型のバックライト装置において、光漏れの発生および輝度低下を抑制しつつ狭額縁化を実現することを目的とする。 バックライト装置は、LED(40),LED(40)が実装された基板を支持する側面側シャーシ(51),LED(40)から発せられた光を液晶パネルに向けて面状に出射させるための導光板(20),導光板(20)内で裏面側に向かう光を反射させるための反射シート(30),反射型偏光板(11)とプリズムシート(12)と拡散シート(13)とからなる光学シート(10),および光学シート(10)の上部に配置される上面側シャーシ(52)によって構成される。拡散シート(13)の一部の領域には黒印刷(60)が施される。反射型偏光板(11)の端部が導光板(20)の端面よりもLED(40)側に位置するよう、反射型偏光板(11)の長さは導光板(20)の長さよりも長くされる。

Description

面状照明装置およびそれを備えた表示装置
 本発明は、面状照明装置に関し、特に、液晶表示装置のバックライト等に用いられる面状照明装置に関する。
 従来より、液晶表示装置に用いられるバックライト装置の1つとして、エッジライト型あるいはサイドライト型と呼ばれるバックライト装置が知られている。エッジライト型のバックライト装置では、一般に透明な樹脂で作製された導光板の一側面近傍あるいは互いに対面となる二側面近傍あるいは四側面近傍にLED(発光ダイオード)やCCFL(冷陰極管)などの発光体が配置され、発光体から出射され導光板に入射された光に基づいて、液晶パネルに向けた面発光が行われる。なお、以下においては、発光体としてLEDが用いられているものを例に挙げて説明する。
 図13は、従来のエッジライト型のバックライト装置の一端部の構成を示す断面図である。このバックライト装置は、LED40と、LED40が実装された基板(不図示)を支持するシャーシ(以下、「側面側シャーシ」という。)51と、LED40から発せられた光を液晶パネルに向けて面状に出射させるための導光板20と、導光板20内で裏面側に向かう光を反射させるための反射シート30と、液晶パネルに向けて照射される光の効率を高めるための光学シート80と、光学シート80の上部に配置されるシャーシ(以下、「上面側シャーシ」という。)52とによって構成されている。なお、図13に示すように、光学シート80については、導光板20の発光面側に配置され、反射シート30については、導光板20の裏面側に配置されている。
 図13に示すバックライト装置においては、光学シート80は、反射型偏光板81,プリズムシート82,および拡散シート83によって構成されている。拡散シート83は、光を拡散させて均一にする。プリズムシート82は、光の進行方向を液晶パネルに対して垂直方向成分が多くなるように集光する。反射型偏光板81は、一部の光(例えば、特定方向に振動する直線偏光)を透過して、残りの光(例えば、上記特定方向に対して垂直な方向に振動する直線偏光)を反射する。反射型偏光板81を透過した光は、液晶パネルの両面に設けられている偏光板のうちのバックライト装置側の偏光板に入射される。
 上述のような構成において、LED40から発せられた光は、直接あるいは反射シート30で反射した後、導光板20に入射される。導光板20に入射された光は、導光板20内を反射しつつ伝搬し、光学シート80を介して発光面側に出射される。
 ここで、図13の左右方向について光学シート80が導光板20よりも短くされている(光学シート80の端部が、上面側シャーシ52の中央側端面と導光板20の端面(端部)との中間付近にある)理由について説明する。仮に図14に示すように光学シート80の長さと導光板20の長さとが等しくされていれば、符号71で示す矢印の向きにLED40から出射された光は、符号72で示す矢印のように光学シート80内を伝搬する結果、表示領域のエッジ部からの光漏れの原因となる。そこで、そのような光が上面側シャーシ52で吸収されるよう、図13に示したように光学シート80は導光板20よりも短くされている。
 ところで、近年、液晶表示装置の狭額縁化が進められている。このため、バックライト装置についても狭額縁化が進められている。図15は、狭額縁化された従来のエッジライト型のバックライト装置の一端部の構成を示す断面図である。ここで、図13および図15の左右方向について、上面側シャーシ52の中央側端面と導光板20の端面との間の距離に着目すると、図15に示した構成における距離L9は、図13に示した構成における距離L8よりも短くなっている。一例を挙げると、40型の液晶パネルにおいて、距離L9は5mm程度となっている。このように上面側シャーシ52の中央側端面と導光板20の端面との間の距離が短くなっていることに起因して、図13に示した構成とは異なり、図15の左右方向について光学シート90の長さと導光板20の長さとは等しくされている。この理由は次のとおりである。バックライト装置の使用中においては、LED40の発光に伴って、光学シート90は熱により膨張する。このため、光学シート90のサイズについては、或る程度の公差を考慮して設計されている。従って、光学シート90は、シャーシ内で固定されているのではなく、公差の範囲内で動く(ずれる)ようになっている。このような前提下、仮に上面側シャーシ52の中央側端面から光学シート90の端部までの距離を図16Aに示すように短くした構成にすると、例えば液晶表示装置が輸送される時などにおいて、振動によって図16Bに示すように光学シート90がシャーシの外部に飛び出すおそれが生じる。そこで、近年のように狭額縁化されたバックライト装置においては、光学シート90がシャーシ内で保持されるよう、光学シート90上における上面側シャーシ52の中央側端面に相当する位置から当該光学シート90の端部までの距離は、上面側シャーシ52に(光学シート90が)覆われる長さが充分になるように定められている。例えば、図15に示したように光学シート90の長さと導光板20の長さとが等しくされている。
 ところが、図15に示した構成によると、上述したように表示領域のエッジ部からの光漏れの発生が懸念される。詳しくは、図17で符号73で示す矢印の向きにLED40から出射された光は、符号74で示す矢印のように光学シート90内を伝搬する結果、光漏れの原因となる。そこで、図18に示すように、光漏れの原因となる光を吸収するための黒印刷60が光学シート90の表面または裏面の一部に施された構成のバックライト装置が提案されている。図18に示した構成のバックライト装置によれば、LED40から出射されて導光板20に入射されずに光学シート90に入射された光は、黒印刷60によって吸収される。このため、狭額縁化されたバックライト装置において、光漏れの発生が抑制される。
 なお、本件発明に関連して、日本の特開2004-71167号公報には、導光板の発光面側の縁部の全部又は一部に遮光性テープを貼付することにより光漏れによる輝線や表示ムラの発生を抑制している面状光源装置の発明が開示されている。
日本の特開2004-71167号公報
 ところが、図18に示したように光学シート90の一部に黒印刷60を施した構成にすると、本来的には図19Aで符号75で示す矢印のように導光板20内を伝搬する光が、図19Bで符号76で示す矢印のように黒印刷60によって吸収されてしまう。このため、光漏れの発生については上述したように抑制されるが、輝度の低下が生じる。
 また、日本の特開2004-71167号公報に開示された面状光源装置によると、光源の周囲が反射構造体(ランプリフレクタ)で覆われているので導光板に入射される光の効率は高められるが、以下のような課題が挙げられる。まず、反射構造体が薄くなる(例えば500μm程度)ので強度不足が懸念される。また、反射構造体の存在により狭額縁化が困難となる。さらに、光学シートが熱によって膨張したときに、光学シートが伸びることのできる空間がないので、光学シートのたわみが生じる。
 そこで本発明は、エッジライト型のバックライト装置において、光漏れの発生および輝度低下を抑制しつつ狭額縁化を実現することを目的とする。
 本発明の第1の局面は、複数の光源と、前記光源から発せられた光を面状に出射させるための導光板と、前記導光板の発光面側に配置された複数の光学シートと、前記導光板の位置を基準にして前記導光板の発光面側とは反対側に配置された反射シートとを備えた面状照明装置であって、
 前記複数の光学シートを固定するためのシャーシを有し、
 前記複数の光学シートのうちの少なくとも1つの光学シートには、前記面状照明装置の非発光領域に相当する領域の一部に遮光部が設けられ、
 前記複数の光学シートのうち前記導光板から最も離れた位置に配置されている光学シートは、一部の光を透過して残りの光を反射する反射型偏光板であって、
 前記シャーシを形成する面のうち前記光源が設けられている面に対して垂直な方向である第1方向について、前記反射型偏光板の端部が前記導光板の端部よりも前記光源側に位置するように、前記反射型偏光板の長さが前記導光板の長さよりも長くされていることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1方向について、前記導光板の端部と前記反射型偏光板の端部との間の距離は、前記導光板の端部と前記光源が設けられているシャーシの面との間の距離の少なくとも3分の1にされていることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記第1方向について、前記導光板の端部と前記反射型偏光板の端部との間の距離は、少なくとも1ミリメートルにされていることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記遮光部は、前記第1方向について、前記光学シート上における前記面状照明装置の発光領域の端部に相当する位置から前記反射型偏光板以外の前記光学シートの端部までの領域のうちの少なくとも3分の1の領域に設けられていることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記遮光部は、前記光学シートに黒印刷が施されることによって形成されていることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記シャーシのうち前記光学シートよりも発光面側に配置されている部分は黒色であることを特徴とする。
 本発明の第7の局面は、本発明の第6の局面において、
 前記シャーシのうち前記光学シートよりも発光面側に配置されている部分の厚さは1.5ミリメートル以下であることを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記反射型偏光板は、互いに屈折率の異なる複数の薄膜によって構成され、特定の方向に振動する直線偏光を透過し、前記特定の方向に対して垂直な方向に振動する直線偏光を反射することを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記反射型偏光板は、コレステリック液晶層と位相差板とによって構成され、
 前記コレステリック液晶層は、特定の方向に回転する円偏光を透過し、前記特定の方向とは異なる方向に回転する円偏光を反射し、
 前記位相差板は、前記コレステリック液晶層を透過した円偏光を直線偏光にすることを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記反射型偏光板は、複数の金属細線が形成された基材によって構成され、前記複数の金属細線の間隔よりも大きい波長の光について、前記金属細線に垂直な電界ベクトルを有する成分を透過し、前記金属細線に平行な電界ベクトルを有する成分を反射することを特徴とする。
 本発明の第11の局面は、表示装置であって、
 表示パネルを更に含み、本発明の第1の局面に係る面状照明装置を備えたことを特徴とする。
 本発明の第1の局面によれば、光源が設けられている(シャーシの)一面とその対面間の方向について、反射型偏光板の端部が導光板の端部よりも光源側にはみ出した構成となっている。このため、従来の構成によれば光源の上方のシャーシによって吸収されていた光の一部が、反射型偏光板で反射して導光板に入射される。これにより、光源から出射される光の利用効率が高まり、輝度が向上する。また、光学シートについては、非発光領域に相当する領域の一部に遮光部が設けられている。このため、光源から出射されて導光板に入射されずに光学シートに入射された光は、遮光部によって吸収される。これにより、発光領域と非発光領域との境界部近傍における光漏れの発生が抑制される。以上より、光漏れの発生および輝度低下を抑制しつつ、バックライト装置の狭額縁化が実現される。
 本発明の第2の局面によれば、従来の構成において光源の上方のシャーシによって吸収されていた光が、より効率的に反射型偏光板で反射して導光板に入射される。これにより、効果的に輝度低下を抑制しつつ、バックライト装置の狭額縁化が実現される。
 本発明の第3の局面によれば、本発明の第2の局面と同様、効果的に輝度低下を抑制しつつ、バックライト装置の狭額縁化が実現される。
 本発明の第4の局面によれば、発光領域と非発光領域との境界部近傍における光漏れの原因となる光が、より効果的に遮光部によって吸収される。これにより、効果的に光漏れの発生を抑制しつつ、バックライト装置の狭額縁化が実現される。
 本発明の第5の局面によれば、比較的簡易な構成によって発光領域と非発光領域との境界部近傍における光漏れの発生を抑制することができる。
 本発明の第6の局面によれば、黒色は光を透過しにくいので、シャーシの部分からの光漏れの発生が抑制される。これにより、光漏れに起因する表示品位の低下が抑制される。
 本発明の第7の局面によれば、薄型化されたバックライト装置において、本発明の第6の局面と同様の効果が得られる。
 本発明の第8の局面によれば、薄膜積層方式によって実現されている反射型偏光板を用いた構成の面状照明装置において、本発明の第1の局面と同様の効果が得られる。
 本発明の第9の局面によれば、コレステリック液晶方式によって実現されている反射型偏光板を用いた構成の面状照明装置において、本発明の第1の局面と同様の効果が得られる。
 本発明の第10の局面によれば、ワイヤグリッド方式によって実現されている反射型偏光板を用いた構成の面状照明装置において、本発明の第1の局面と同様の効果が得られる。
 本発明の第11の局面によれば、表示装置には、本発明の第1の局面に係る面状照明装置が設けられる。これにより、光漏れの発生および輝度低下を抑制しつつ、表示装置の狭額縁化が実現される。
本発明の一実施形態に係るエッジライト型のバックライト装置の一端部の構成を示す断面図である。 上記実施形態に係るバックライト装置の分解斜視図である。 上記実施形態に係るバックライト装置を含む液晶表示装置の一端部の構成を示す断面図である。 AおよびBは、上記実施形態において、反射型偏光板によって得られる効果について説明するための図である。 上記実施形態において、導光板の端面からの反射型偏光板のはみ出し量と輝度との関係を示すグラフである。 上記実施形態において、光学シート上の黒印刷の幅と光漏れとの関係を示すグラフである。 上記実施形態において、光学シート上に黒印刷が施されていないときの液晶パネル上の位置に応じた輝度を示すグラフである。 上記実施形態において、光学シート上の黒印刷の幅が3mmのときの液晶パネル上の位置に応じた輝度を示すグラフである。 上記実施形態において、光学シート上の黒印刷の幅が5mmのときの液晶パネル上の位置に応じた輝度を示すグラフである。 上記実施形態における効果について説明するための図である。 上記実施形態の変形例において、コレステリック液晶方式による反射型偏光板について説明するための図である。 上記実施形態の変形例において、ワイヤグリッド方式による反射型偏光板について説明するための図である。 従来のエッジライト型のバックライト装置の一端部の構成を示す断面図である。 従来例において、光学シートが導光板よりも短くされている理由について説明するための図である。 狭額縁化された従来のエッジライト型のバックライト装置の一端部の構成を示す断面図である。 AおよびBは、狭額縁化された従来のエッジライト型のバックライト装置において、光学シートの長さと導光板の長さとが等しくされている理由について説明するための図である。 従来例において、光漏れについて説明するための図である。 光学シートに黒印刷が施された従来のエッジライト型のバックライト装置の一端部の構成を示す断面図である。 AおよびBは、図18に示した構成のバックライト装置において、輝度低下が生じる原因について説明するための図である。
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
<1.バックライト装置の構成>
 図2は、本発明の一実施形態に係るエッジライト型のバックライト装置の分解斜視図である。また、図1は、図2で符号9で示す矢印の方向からこのバックライト装置を見たときの断面図である。このバックライト装置は、光源(発光体)としての複数個のLED40と、シャーシ50と、LED40から発せられた光を液晶パネルに向けて面状に出射させるための導光板20と、導光板20内で裏面側に向かう光を反射させるための反射シート30と、液晶パネルに向けて照射される光の効率を高めるための光学シート10とによって構成されている。LED40は例えば10mmピッチ(間隔)で基板に実装され、その基板が図2に示すようにシャーシ50の一方の辺58およびその対辺59に固定されている。また、各LED40は、図1で右方向に発光のピークがあるように配置されている。シャーシ50は、図1に示すように、LED40が実装されている基板を支持する側面側シャーシ51と光学シート10の上部に配置される上面側シャーシ52とから構成されている。
 図13等に示した従来のバックライト装置と同様、光学シート10は、反射型偏光板11,プリズムシート12,および拡散シート13によって構成されている。本実施形態においては、光学シート10のうちの拡散シート13の表面または裏面の一部の領域に、図1に示すように黒印刷60が施されている。この黒印刷60は、遮光部として機能する。反射型偏光板11については、従来のバックライト装置とは異なる構成となっている。詳しくは、図1の左右方向(第1の方向)について、反射型偏光板11は導光板20よりも長くされており、反射型偏光板11の端部は導光板20の端面(端部)よりもLED40側(側面側シャーシ51側)に位置している。なお、以下においては、導光板20の端面から反射型偏光板11の端部までの距離を「はみ出し量」といい、符号L2で示す(図1参照)。
 なお、図1において符号L1~L5で示す距離の一例は次のとおりである。
上面側シャーシ52の中央側端面と導光板20の端面との間の距離L1:5mm。
上記はみ出し量L2:1mm。
導光板20の端面と側面側シャーシ51との間の距離L3:3mm。
導光板20の端面とLED40の先端部との間の距離L4:1.6mm。
黒印刷60の幅L5:3mm。
 図3は、上記バックライト装置を含む液晶表示装置の一端部の構成を示す断面図である。バックライト装置は液晶表示装置のシャーシ2に固定される。その際、光学シート10の位置を基準とすると導光板20とは反対側に液晶パネル3が配置される。ここで、図3に示すように、液晶パネル3のアクティブエリア(実際に画像が表示される表示領域)はバックライト装置のアクティブエリア(光の照射が可能な領域)よりも狭くなっている。一例を挙げると、液晶パネル3のアクティブエリアの端部からバックライト装置のアクティブエリアの端部までの距離L6は2mmにされている。一般に、液晶パネル3を構成する2枚のガラス基板のうちの一方のガラス基板についての上記L6に相当する領域にはブラックマトリクスが形成されている。このため、当該領域は外部からは黒色に視認される。なお、本実施形態に係るバックライト装置は、典型的には大型の液晶パネル向けのバックライト装置として採用される。
<2.反射型偏光板について>
 光学シート10のうち最も液晶パネル側(図1の発光面側)に配置されるシートには、反射型偏光板11が採用されている。反射型偏光板11は、一部の光を透過して、残りの光を反射する。そして、反射型偏光板11を透過した光は、液晶パネルの両面に設けられている偏光板のうちのバックライト装置側の偏光板に入射される。
 ところで、本実施形態においては、互いに屈折率の異なる複数の薄膜が積層された反射型偏光板11が採用されている。この反射型偏光板11では、上記複数の薄膜での多段階反射によって直線偏光が生成される。この反射型偏光板11としては、例えば住友スリーエム株式会社製のDBEF(Dual Brightness Enhancement Film)(「DBEF」は登録商標)が挙げられる。この反射型偏光板11は、特定の方向に振動する直線偏光(P波)のみを透過し、当該特定の方向に対して垂直な方向に振動する直線偏光(S波)を反射する。反射型偏光板11で反射したS波は、導光板20内を伝搬して反射シート30で再度反射し、P波とS波とに分離される。このようにして光の再利用が行われ、液晶パネルに照射される光の量が多くなる。なお、以下においては、本実施形態で採用している反射型偏光板11の実現方式を「薄膜積層方式」という。
 図4Aおよび図4Bは、本実施形態における反射型偏光板11によって得られる効果を説明するための図である。なお、図4Aおよび図4Bにおいて、符号5,6,300,301,および302はそれぞれP波,S波,液晶層,液晶パネルの裏面側の偏光板,および液晶パネルの表面側の偏光板を示している。また、反射型偏光板11以外の光学シートについては省略している。反射型偏光板11を備えていない構成によれば、図4Aに示すように、導光板20から出射されたP波5およびS波6のうちS波6については液晶パネルの裏面側の偏光板301で吸収される。これに対して、反射型偏光板11を備えた構成によれば、図4Bに示すように、反射型偏光板11で反射したS波6は再度P波5およびS波6として導光板20から出射される。そして、P波5については液晶パネルの裏面側の偏光板301に与えられ、S波6については反射型偏光板11で反射して再利用がなされる。
 以上のように、本実施形態においては、光学シート10のうちの最も液晶パネル側のシートに薄膜積層方式の反射型偏光板11を採用することによって、導光板20から出射される光の効率的な利用が行われている。
<3.反射型偏光板のはみ出し量および黒印刷の幅について>
 次に、本実施形態において、(図1の左右方向についての)上述のはみ出し量L2および光学シート10上の黒印刷60の幅L5がどのようにして決定されたかについて説明する。
 図5は、或る40型の液晶パネル(上面側シャーシ52の中央側端面と導光板20の端面との間の距離L1を5mmとし、導光板20の端面と側面側シャーシ51との間の距離L3を3mmとする。)におけるはみ出し量L2と輝度との関係(実験結果)を示すグラフである。符号61の細実線は、光学シート10上に黒印刷60を施さなかったときのデータである。符号62の太点線は、光学シート10上に幅3mmの黒印刷60を施したときのデータである。符号63の太実線は、光学シート10上に幅5mmの黒印刷60を施したときのデータである。図5より、いずれの場合にも「はみ出し量を0mmから1mmに伸ばしたときには顕著な輝度上昇効果が得られるが、1mmから更に伸ばしても輝度上昇効果は緩やかになる」ということが把握される。すなわち、はみ出し量を1mmにすることによって導光板20に入射される光の量が効率的に高められると考えられる。また、黒印刷60の幅が3mmのときと5mmのときとで輝度を比較すると、はみ出し量にかかわらず5mmのときの輝度よりも3mmのときの輝度の方がわずかに高いのみである。なお、黒印刷60が施されていないときには黒印刷60が施されているときと比べて高い輝度が得られるが、黒印刷60が施されていないときには後述するように光漏れが顕著に発生するので、黒印刷60を施さないという構成を採用することはできない。
 図6は、光学シート10上の黒印刷60の幅と光漏れとの関係(実験結果)を示すグラフである。図6において、横軸は黒印刷60の幅を表し、縦軸は液晶パネルの中央部での輝度に対する漏れ光の輝度の割合(すなわち相対値)を表している。図6より、黒印刷60の幅が3mmのときには黒印刷60が施されていない(黒印刷60の幅が0mm)ときと比べて光漏れが約2分の1となることが把握される。また、「黒印刷60の幅を0mmから3mmに伸ばしたときには顕著な光漏れ抑制効果が得られるが、3mmから更に伸ばしても光漏れ抑制効果は緩やかになる」ということが把握される。図7,図8,および図9は、それぞれ、光学シート10上に黒印刷60が施されていないとき,光学シート10上の黒印刷60の幅が3mmのとき,および光学シート10上の黒印刷60の幅が5mmのときの液晶パネル上の位置に応じた輝度(実験結果)を示すグラフである。図7,図8,および図9において、一端の位置は図2で符号58の矢印で示す位置に相当し、他端の位置は図2で符号59の矢印で示す位置に相当する。図7の符号K1,K2で示す部分から、黒印刷60が施されていないときには光漏れが顕著に生じることが把握される。また、図8の符号K3,K4で示す部分からは、黒印刷60の幅が3mmのときには光漏れが僅かに生じることが把握され、図9の符号K5,K6で示す部分からは、黒印刷60の幅が5mmのときには光漏れがほぼ生じないことが把握される。以上のことから、光学シート10上の黒印刷60の幅を3mmにすることによって効率的に光漏れが抑制されると考えられる。
 以上より、本実施形態においては、40型の液晶パネルにおいて、はみ出し量L2は1mmとなっており、黒印刷60の幅L5は3mmとなっている。但し、これらの値は一例であって、本発明はこれらの値に限定されるものではない。なお、はみ出し量L2については、導光板20の端面と側面側シャーシ51との間の距離L3の少なくとも3分の1とすることが好ましい。また、黒印刷60の幅L5については、バックライト装置のアクティブエリア(図3参照)の端部に相当する(拡散シート13上の)位置と拡散シート13の端部との間の距離の少なくとも3分の1とすることが好ましい。
<4.シャーシについて>
 次に、本実施形態における上面側シャーシ52について詳しく説明する。本実施形態においては、材質についてはポリカーボネートが採用されており、厚さについては1.0mm~1.5mmとされている。また、色については黒色が採用されている。上述したように本実施形態に係るバックライト装置は典型的には大型の液晶パネル向けのものとして採用されるところ、以下、一般に白色のシャーシが採用される携帯電話等の小型の液晶パネル向けのバックライト装置と対比しつつ、本実施形態において上面側シャーシ52の色に黒色が採用される理由について説明する。
 一般に小型液晶パネル向けのバックライト装置においては、FPC(フレキシブルプリント基板)にLEDが実装されるとともに当該FPCに導光板が貼り付けられた構成となっている。従って、導光板が熱によって膨張しても、導光板およびシャーシによって物理的にLEDが圧迫されるということはない。また、小型液晶パネル向けのバックライト装置においては、大型液晶パネル向けの装置に比べて、導光板が小さいため、熱による膨張量が小さい。このため、熱によって導光板が膨張しても、導光板によってLEDが物理的に圧迫されるということはない。さらに、大型液晶パネル向けの装置に比べて、要求される輝度は低いため、導光板が受ける熱の量も少ない。以上のことから、LEDと導光板との間の距離をほぼ0mmにすることが可能となるので、LEDから出射され導光板に入射されない光に基づく光漏れの発生が抑制される。また、上述したように大型液晶パネル向けの装置と比べて要求される輝度は低く、少ない数のLEDで充分な光量が得られることから、仮に光漏れが生じても表示品位に与える影響は比較的小さい。
 これに対して、大型液晶パネル向けのバックライト装置においては、一般に、LED40が実装されている基板は側面側シャーシ51に固定されており、LED40と導光板20とは一体化されていない。このため、導光板20が熱膨張することを考慮して、LED40と導光板20との間に空隙が設けられている。従って、小型液晶パネル向けバックライト装置と比較して、光漏れの原因となり得る光量が多くなる。また、大型液晶パネルでは、要求される輝度が高く、多数のLED40がシャーシに並べて配置される。このため、光漏れは輝線となって現れ、表示品位が著しく低下する。
 以上のような前提下、上面側シャーシ52の色に白色が採用されると、白色は光を透過しやすいので、上面側シャーシ52の厚さが相当厚くない限り光漏れが生じる。これに対して、黒色は光を透過しにくいので、上面側シャーシ52の色に黒色を採用することによって、上面側シャーシ52の厚さを比較的薄くした大型液晶パネル向けのバックライト装置においても光漏れに起因する表示品位の低下が抑制される。
<5.効果>
 本実施形態によれば、狭額縁化されたバックライト装置において、互いに対向するLED間の方向について、反射型偏光板11の長さは導光板20の長さよりも長くされている。すなわち、従来の構成と比較すると、反射型偏光板11の端部が導光板20の端面よりもLED40側にはみ出した構成となっている。このため、従来の構成によれば上面側シャーシ52によって吸収されていた光の一部が、図10で符号70で示す矢印のように反射型偏光板11で反射して導光板20に入射される。これにより、LED40から出射される光の利用効率が高まり、輝度が向上する。また、本実施形態によれば、光学シート10のうちの拡散シート13の一部の領域に遮光部としての黒印刷60が施されている。このため、LED40から出射されて導光板20に入射されずに光学シート10に入射された光は黒印刷60によって吸収される。これにより、表示領域のエッジ部(バックライト装置のアクティブエリア端部近傍)における光漏れの発生が抑制される。
 ところで図14に示した構成(狭額縁化されているが光学シート10上への黒印刷60は施されていない構成)によれば、図5に示したグラフにおいて、輝度は符号P1で示す位置の値となる。これに対して、本実施形態によれば、図5に示したグラフにおいて、輝度は符号P2で示す位置の値となる。これらのことから、「光学シート10上に黒印刷60を施すことによる輝度の低下よりも、反射型偏光板11の端部が導光板20の端面よりもLED40側にはみ出した構成とすることによる輝度の上昇の方が大きい」ということが把握される。以上より、エッジライト型のバックライト装置において、光漏れの発生および輝度低下を抑制しつつ狭額縁化が実現される。
 さらに、本実施形態によれば、上面側シャーシ52には黒色のシャーシが採用されている。仮に上面側シャーシ52に白色のシャーシが採用された場合、シャーシの厚さによっては光漏れが生じる(シャーシの厚さが薄いほど光の漏れ量が多くなる)。この点、本実施形態のように黒色のシャーシが採用されていると、当該シャーシによって光は吸収されるので、光漏れの発生は効果的に抑制される。これにより、光漏れに起因する表示品位の低下が抑制される。
<6.変形例など>
 上記実施形態においては、薄膜積層方式の反射型偏光板11が採用されているが、本発明はこれに限定されない。例えば、以下に説明する方式(「コレステリック液晶方式」および「ワイヤグリッド方式」という。)で実現される反射型偏光板11が採用された構成であっても良い。
 コレステリック液晶方式による反射型偏光板11は、コレステリック液晶層111と位相差板112とによって構成されている。図11に示すように、コレステリック液晶層111および位相差板112のうち、コレステリック液晶層111については液晶パネル3側に配置され、位相差板112については導光板20側に配置されている。なお、図11では反射型偏光板11以外の光学シートについては省略している。このような構成において、コレステリック液晶層111は、特定の方向に回転する円偏光を透過し、当該特定の方向とは異なる方向に回転する円偏光を反射する。また、位相差板112は、コレステリック液晶層111を透過した円偏光を直線偏光にする。以上より、コレステリック液晶層111を透過した光については液晶パネル3の裏面側の偏光板301に与えられ、コレステリック液晶層111で反射した光については再利用がなされる。
 ワイヤグリッド方式による反射型偏光板11は、図12に示すように、複数の金属細線114が形成された基材(基板)113によって構成されている。このような構成において、反射型偏光板11は、複数の金属細線114が形成されている間隔L7よりも大きい波長の光について、金属細線114に垂直な電界ベクトルを有する成分を透過し、金属細線114に平行な電界ベクトルを有する成分を反射する。これにより、この反射型偏光板11を透過した光については液晶パネルの裏面側の偏光板に与えられ、この反射型偏光板11で反射した光については再利用がなされる。
 また、上記実施形態においては、光学シート10は反射型偏光板11とプリズムシート12と拡散シート13とによって構成されているが、本発明はこれに限定されない。最も液晶パネル側に反射型偏光板11が配置された構成であれば、光学シートの枚数や種類については特に限定されない。
 さらに、上記実施形態においては拡散シート13に黒印刷60が施されているが、本発明はこれに限定されず、拡散シート13以外のシートに黒印刷60が施された構成であっても良い。
 さらにまた、上記実施形態においては、光学シート10上に黒印刷60を施すことによって遮光部が実現されているが、本発明はこれに限定されない。例えば、光学シート10上に黒色のテープを貼付することによって遮光部が実現されていても良いし、光学シート10上の一部をマーキングペンにて黒色で塗りつぶすことによって遮光部が実現されていても良い。
 3…液晶パネル
 5…P波
 6…S波
 10…光学シート
 11…反射型偏光板
 12…プリズムシート
 13…拡散シート
 20…導光板
 30…反射シート
 40…LED(発光ダイオード)
 50…シャーシ
 51…側面側シャーシ
 52…上面側シャーシ
 60…黒印刷
 L2…はみ出し量
 L5…黒印刷の幅

Claims (11)

  1.  複数の光源と、前記光源から発せられた光を面状に出射させるための導光板と、前記導光板の発光面側に配置された複数の光学シートと、前記導光板の位置を基準にして前記導光板の発光面側とは反対側に配置された反射シートとを備えた面状照明装置であって、
     前記複数の光学シートを固定するためのシャーシを有し、
     前記複数の光学シートのうちの少なくとも1つの光学シートには、前記面状照明装置の非発光領域に相当する領域の一部に遮光部が設けられ、
     前記複数の光学シートのうち前記導光板から最も離れた位置に配置されている光学シートは、一部の光を透過して残りの光を反射する反射型偏光板であって、
     前記シャーシを形成する面のうち前記光源が設けられている面に対して垂直な方向である第1方向について、前記反射型偏光板の端部が前記導光板の端部よりも前記光源側に位置するように、前記反射型偏光板の長さが前記導光板の長さよりも長くされていることを特徴とする、面状照明装置。
  2.  前記第1方向について、前記導光板の端部と前記反射型偏光板の端部との間の距離は、前記導光板の端部と前記光源が設けられているシャーシの面との間の距離の少なくとも3分の1にされていることを特徴とする、請求項1に記載の面状照明装置。
  3.  前記第1方向について、前記導光板の端部と前記反射型偏光板の端部との間の距離は、少なくとも1ミリメートルにされていることを特徴とする、請求項1に記載の面状照明装置。
  4.  前記遮光部は、前記第1方向について、前記光学シート上における前記面状照明装置の発光領域の端部に相当する位置から前記反射型偏光板以外の前記光学シートの端部までの領域のうちの少なくとも3分の1の領域に設けられていることを特徴とする、請求項1に記載の面状照明装置。
  5.  前記遮光部は、前記光学シートに黒印刷が施されることによって形成されていることを特徴とする、請求項1に記載の面状照明装置。
  6.  前記シャーシのうち前記光学シートよりも発光面側に配置されている部分は黒色であることを特徴とする、請求項1に記載の面状照明装置。
  7.  前記シャーシのうち前記光学シートよりも発光面側に配置されている部分の厚さは1.5ミリメートル以下であることを特徴とする、請求項6に記載の面状照明装置。
  8.  前記反射型偏光板は、互いに屈折率の異なる複数の薄膜によって構成され、特定の方向に振動する直線偏光を透過し、前記特定の方向に対して垂直な方向に振動する直線偏光を反射することを特徴とする、請求項1に記載の面状照明装置。
  9.  前記反射型偏光板は、コレステリック液晶層と位相差板とによって構成され、
     前記コレステリック液晶層は、特定の方向に回転する円偏光を透過し、前記特定の方向とは異なる方向に回転する円偏光を反射し、
     前記位相差板は、前記コレステリック液晶層を透過した円偏光を直線偏光にすることを特徴とする、請求項1に記載の面状照明装置。
  10.  前記反射型偏光板は、複数の金属細線が形成された基材によって構成され、前記複数の金属細線の間隔よりも大きい波長の光について、前記金属細線に垂直な電界ベクトルを有する成分を透過し、前記金属細線に平行な電界ベクトルを有する成分を反射することを特徴とする、請求項1に記載の面状照明装置。
  11.  表示パネルを更に含み、請求項1に記載の面状照明装置を備えたことを特徴とする、表示装置。
PCT/JP2010/067244 2009-12-28 2010-10-01 面状照明装置およびそれを備えた表示装置 WO2011080955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10840814.7A EP2520851A4 (en) 2009-12-28 2010-10-01 FLAT LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED THEREWITH
CN201080049511.2A CN102597603B (zh) 2009-12-28 2010-10-01 面状照明装置和具备它的显示装置
US13/508,552 US8672528B2 (en) 2009-12-28 2010-10-01 Planar illumination device and display device provided with the same
RU2012132305/07A RU2012132305A (ru) 2009-12-28 2010-10-01 Планарное устройство освещения и устройство отображения, снабженное им
JP2011547370A JP5284489B2 (ja) 2009-12-28 2010-10-01 面状照明装置およびそれを備えた表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-296611 2009-12-28
JP2009296611 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080955A1 true WO2011080955A1 (ja) 2011-07-07

Family

ID=44226375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067244 WO2011080955A1 (ja) 2009-12-28 2010-10-01 面状照明装置およびそれを備えた表示装置

Country Status (6)

Country Link
US (1) US8672528B2 (ja)
EP (1) EP2520851A4 (ja)
JP (1) JP5284489B2 (ja)
CN (1) CN102597603B (ja)
RU (1) RU2012132305A (ja)
WO (1) WO2011080955A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636906A (zh) * 2012-05-09 2012-08-15 深圳市华星光电技术有限公司 一种液晶显示装置的光学膜片及液晶显示装置
CN102840518A (zh) * 2012-09-10 2012-12-26 深圳市华星光电技术有限公司 一种背光单元、液晶模组、液晶显示器
CN102855823A (zh) * 2012-08-28 2013-01-02 李崇 具有良好视觉效果的全色led显示屏
US20130021558A1 (en) * 2011-07-19 2013-01-24 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
CN103133945A (zh) * 2011-12-05 2013-06-05 纬创资通股份有限公司 用来提供光源至显示面板的背光模块与其显示装置
WO2016088596A1 (ja) * 2014-12-01 2016-06-09 シャープ株式会社 液晶表示装置
WO2017057219A1 (ja) * 2015-09-30 2017-04-06 シャープ株式会社 照明装置及び表示装置
CN108153059A (zh) * 2018-02-01 2018-06-12 广东欧珀移动通信有限公司 背光模组、显示装置及电子设备
CN112578590A (zh) * 2019-09-29 2021-03-30 京东方科技集团股份有限公司 背光模组及显示装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878525B (zh) * 2012-09-21 2016-03-30 北京京东方光电科技有限公司 棱镜膜、侧光式背光模组及液晶显示装置
KR102058054B1 (ko) * 2012-10-12 2019-12-23 삼성전자주식회사 백라이트 유닛 및 이를 이용한 디스플레이 장치
CN102943985B (zh) * 2012-11-29 2016-04-13 深圳市华星光电技术有限公司 一种背光模组及其显示装置
US20140177268A1 (en) * 2012-12-20 2014-06-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical Film Layer, Backlight Module, and Display Device
CN103091767A (zh) * 2013-01-24 2013-05-08 广州创维平面显示科技有限公司 液晶显示装置、led背光模组、导光板及其制造方法
US9140845B2 (en) 2013-07-02 2015-09-22 Samsung Display Co., Ltd. Display device having improved illumination characteristics
KR102015363B1 (ko) 2013-07-24 2019-08-29 삼성디스플레이 주식회사 백라이트 유닛 및 그것을 포함하는 표시 장치
JP6107514B2 (ja) * 2013-07-30 2017-04-05 株式会社デンソー 表示装置
KR102128554B1 (ko) * 2013-09-25 2020-07-09 엘지디스플레이 주식회사 백라이트 유닛 및 이를 이용한 액정표시장치
US9316779B1 (en) 2013-09-30 2016-04-19 Amazon Technologies, Inc. Shaping reflective material for controlling lighting uniformity
US9690036B1 (en) * 2013-09-30 2017-06-27 Amazon Technologies, Inc. Controlling display lighting color and uniformity
KR102253262B1 (ko) * 2014-04-15 2021-05-20 삼성전자주식회사 디스플레이 유닛 및 이를 가지는 디스플레이 장치
KR102240756B1 (ko) * 2014-06-30 2021-04-15 현대모비스 주식회사 자동차용 램프 설계방법
CN104464534B (zh) * 2014-12-10 2017-09-05 深圳市华星光电技术有限公司 显示模块及具有该显示模块的显示装置
US20170178377A1 (en) * 2015-02-26 2017-06-22 Sony Corporation Electronic apparatus
CN105241887A (zh) * 2015-09-25 2016-01-13 黄梦漪 注塑产品熔接痕检测仪
EP3179161B1 (de) * 2015-12-11 2019-02-06 Glas Trösch Holding AG Leuchtelement
KR20180053989A (ko) * 2016-11-14 2018-05-24 삼성전자주식회사 백 라이트 유닛 및 이를 포함하는 디스플레이 장치
CN106654028A (zh) * 2016-11-29 2017-05-10 天津市中环量子科技有限公司 一种主动增亮膜及其制备方法
CN108319075B (zh) * 2018-01-31 2020-09-04 Oppo广东移动通信有限公司 电子装置及其显示组件、背光模组
CN110095835A (zh) * 2018-01-31 2019-08-06 广东欧珀移动通信有限公司 一种背光模组及电子装置
CN108254973A (zh) 2018-01-31 2018-07-06 广东欧珀移动通信有限公司 电子装置及其显示组件、背光模组
CN208060755U (zh) * 2018-05-10 2018-11-06 合肥鑫晟光电科技有限公司 一种扩散片、背光模组、液晶显示面板及显示装置
CN113809056A (zh) * 2021-08-30 2021-12-17 中国电子科技集团公司第五十五研究所 一种实现夜视兼容的超薄Mini-LED背光模组

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071167A (ja) 2002-08-01 2004-03-04 Advanced Display Inc 面状光源装置及びそれを用いた液晶表示装置並びにその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69333439T2 (de) * 1992-07-13 2005-02-10 Seiko Epson Corp. Flächenhafte Beleuchtungsvorrichtung und Flüssigkristallanzeige
CA2177714C (en) * 1993-12-21 2005-08-09 Andrew J. Ouderkirk Multilayered optical film
JP2945318B2 (ja) * 1996-01-17 1999-09-06 スタンレー電気株式会社 面光源装置
JPH09282921A (ja) * 1996-04-10 1997-10-31 Canon Inc バックライト装置及び該バックライト装置を備えた液晶表示装置
JP3360785B2 (ja) * 1996-07-29 2002-12-24 株式会社エンプラス サイドライト型面光源装置
JP3871176B2 (ja) * 1998-12-14 2007-01-24 シャープ株式会社 バックライト装置および液晶表示装置
US7030945B2 (en) * 2001-08-22 2006-04-18 Nitto Denko Corporation Liquid-crystal display device
JP4255302B2 (ja) * 2003-03-31 2009-04-15 シャープ株式会社 液晶表示用照明装置および液晶表示装置
KR100804653B1 (ko) * 2003-06-16 2008-02-20 미쓰비시덴키 가부시키가이샤 면 광원 장치 및 이 장치를 이용한 표시장치
CN101271201A (zh) * 2007-03-23 2008-09-24 深圳Tcl工业研究院有限公司 可改变偏振光状态的光学组件及液晶显示装置
CN101339321B (zh) * 2007-07-06 2010-05-26 深圳Tcl工业研究院有限公司 液晶显示装置
TWM334359U (en) * 2007-12-18 2008-06-11 Wintek Corp Back light module and liquid crystal display
JP2010079105A (ja) * 2008-09-26 2010-04-08 Citizen Electronics Co Ltd 面発光装置及び表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071167A (ja) 2002-08-01 2004-03-04 Advanced Display Inc 面状光源装置及びそれを用いた液晶表示装置並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520851A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170261814A1 (en) * 2011-07-19 2017-09-14 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
US11042055B2 (en) 2011-07-19 2021-06-22 138 East Lcd Advancements Limited Liquid crystal display device and electronic apparatus
US9864233B2 (en) 2011-07-19 2018-01-09 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
US20130021558A1 (en) * 2011-07-19 2013-01-24 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
US9785009B2 (en) * 2011-07-19 2017-10-10 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
CN103133945A (zh) * 2011-12-05 2013-06-05 纬创资通股份有限公司 用来提供光源至显示面板的背光模块与其显示装置
CN102636906B (zh) * 2012-05-09 2015-07-15 深圳市华星光电技术有限公司 一种液晶显示装置的光学膜片及液晶显示装置
CN102636906A (zh) * 2012-05-09 2012-08-15 深圳市华星光电技术有限公司 一种液晶显示装置的光学膜片及液晶显示装置
CN102855823A (zh) * 2012-08-28 2013-01-02 李崇 具有良好视觉效果的全色led显示屏
CN102840518A (zh) * 2012-09-10 2012-12-26 深圳市华星光电技术有限公司 一种背光单元、液晶模组、液晶显示器
WO2016088596A1 (ja) * 2014-12-01 2016-06-09 シャープ株式会社 液晶表示装置
WO2017057219A1 (ja) * 2015-09-30 2017-04-06 シャープ株式会社 照明装置及び表示装置
US10274142B2 (en) 2015-09-30 2019-04-30 Sharp Kabushiki Kaisha Lighting device and display device
CN108153059A (zh) * 2018-02-01 2018-06-12 广东欧珀移动通信有限公司 背光模组、显示装置及电子设备
CN108153059B (zh) * 2018-02-01 2023-08-04 Oppo广东移动通信有限公司 背光模组、显示装置及电子设备
CN112578590A (zh) * 2019-09-29 2021-03-30 京东方科技集团股份有限公司 背光模组及显示装置
CN112578590B (zh) * 2019-09-29 2022-04-29 京东方科技集团股份有限公司 背光模组及显示装置

Also Published As

Publication number Publication date
CN102597603A (zh) 2012-07-18
CN102597603B (zh) 2014-09-03
JPWO2011080955A1 (ja) 2013-05-09
EP2520851A4 (en) 2013-06-05
US20120230008A1 (en) 2012-09-13
RU2012132305A (ru) 2014-02-10
US8672528B2 (en) 2014-03-18
EP2520851A1 (en) 2012-11-07
JP5284489B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5284489B2 (ja) 面状照明装置およびそれを備えた表示装置
JP4640188B2 (ja) 面状光源装置
KR101736986B1 (ko) 디스플레이 장치
US10424691B2 (en) Display apparatus having quantum dot unit or quantum dot sheet and method for manufacturing quantum dot unit
WO2011074354A1 (ja) 照明装置、表示装置およびテレビ受信装置
WO2013039001A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010047151A1 (ja) 照明装置、面光源装置、表示装置およびテレビ受信装置
EP2211091A1 (en) Lighting device and liquid crystal display
US8400581B2 (en) Back light unit and liquid crystal display comprising the same
JP2012084303A (ja) 光源モジュールおよび電子機器
WO2015136625A1 (ja) 光源装置、表示装置、及び光源装置の製造方法
JP5727394B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2012212526A (ja) 表示装置
US20130135843A1 (en) Light guide plate structure and backlight module using the same
JP2007256697A (ja) 液晶表示装置
JP5087148B2 (ja) 液晶表示装置
JP2010177085A (ja) バックライトユニットおよびそれを用いた映像表示装置
TWI405102B (zh) 背光模組與光學式觸控面板
KR102253797B1 (ko) 백라이트 유닛 및 이를 이용한 액정표시장치
KR102541393B1 (ko) 디스플레이 장치
JP2012084304A (ja) 光源モジュールおよび電子機器
WO2013018499A1 (ja) バックライト及び液晶表示装置
JP2005293925A (ja) 照明装置および液晶表示装置
JP2013134942A (ja) 照明装置、表示装置、及びテレビ受信装置
KR102139469B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049511.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547370

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3822/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13508552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010840814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010840814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012132305

Country of ref document: RU