WO2011082889A1 - Natural shading agents - Google Patents

Natural shading agents Download PDF

Info

Publication number
WO2011082889A1
WO2011082889A1 PCT/EP2010/068383 EP2010068383W WO2011082889A1 WO 2011082889 A1 WO2011082889 A1 WO 2011082889A1 EP 2010068383 W EP2010068383 W EP 2010068383W WO 2011082889 A1 WO2011082889 A1 WO 2011082889A1
Authority
WO
WIPO (PCT)
Prior art keywords
textile
treating
laundry detergent
azulene dye
azulene
Prior art date
Application number
PCT/EP2010/068383
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to EP10784310A priority Critical patent/EP2521765A1/en
Priority to CN201080060945.2A priority patent/CN102753672B/en
Publication of WO2011082889A1 publication Critical patent/WO2011082889A1/en
Priority to ZA2012/04928A priority patent/ZA201204928B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention provides for the use of natural shading agents.

Description

NATURAL SHADING AGENTS
FIELD OF INVENTION
The present invention concerns laundry shading dye
compositions .
BACKGROUND OF THE INVENTION
In domestic washing, maintenance and enhancing of fabric whiteness may be achieved using synthetic organic
fluorescers and synthetic organic shading dyes. W02008 /090091 (Unilever) discloses a wide range of synthetic organic fluorescers and synthetic organic shading dyes for use in Laundry detergents.
WO2001/28973 (Procter & Gamble) discloses a specific azulene compounds covalently linked to a phenolic antioxidant for use in cleaning composition to scavenge radicals.
The blue color of the mushroom Lactarius indigo is due to the azulene derivative (7-isopropenyl-4-methylazulen-l- yl) methyl stearate.
Azulenes are the general names for the blue to violet aromatic hydrocarbons derived from
bicyclo [ 5.3.0 ] decapentaene . Azulenes occur in various liverworts, for example Calypogeia azurea contains 1,4- dimethylazulene and methyl-4-methylazulene-l-carboxylate . Azulenes are discussed in Rompp Encyclopedia of Natural Products (Georg Thieme Verlag 2000) .
There is a consumer desire for products which contain natural ingredients for maintaining and enhancing fabric whiteness .
SUMMARY OF INVENTION We have found that naturally occurring blue-violet azulene compounds may be included in laundry detergents and deposit to fabrics enhancing the whiteness of fabric.
In one aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of: (i) treating a textile with an aqueous solution of the naturally occurring blue or violet azulene dye, the aqueous solution comprising from 1 ppb to 1 ppm of the naturally occurring blue or violet azulene dye; and, from 0.2 g/L to 3 g/L of a surfactant; (ii) optionally rinsing the textile; and, (iii) drying the textile.
In another aspect the present invention provides a laundry detergent formulation comprising:
(i) from 0.0001 to 0.01 wt% of a naturally occurring blue or violet azulene dye;
(ii) an enzyme from 0.0001 wt% to 0.1 wt% protein; and,
(iii) from 2 to 70 wt% of a surfactant. The azulenes used in the present invention are naturally occurring but the synthesised equivalent may be used. DETAILED DESCRIPTION OF THE INVENTION
Naturally occurring azulenes include 1 , 4-dimethylazulene, methyl-4-methylazulene-l-carboxylate, linderazulene, and ehuazulene, chamazulene and Guaiazulene. By naturally occurring is meant that the azulenes are found naturally in naturally occurring life, for example plants, animals, fungi, mushrooms, and marine life.
Natural azulenes are secondary metabolites of living
organisms .
The azulene is preferable Guaiazulene ( 1 , 4-dimethyl-7- isopropylazulene .
Figure imgf000004_0001
Guaiazulene
SURFACTANT
The composition comprises between 2 to 70 wt percent of a surfactant, most preferably 10 to 30 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon ' s Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in
"Tenside-Taschenbuch" , H. Stache, 2nd Edn., Carl Hauser Verlag, 1981. Preferably the surfactants used are saturated.
Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent
compounds are C6 to C22 alkyl phenol-ethylene oxide
condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic Cs to Ci s primary or secondary linear or
branched alcohols with ethylene oxide, generally 5 to 40 EO.
Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic
sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Ci s alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium Cn to C15 alkyl benzene sulphonates and sodium C12 to Ci s alkyl
sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever) , which show resistance to salting-out, the alkyl polyglycoside surfactants
described in EP-A-070 074, and alkyl monoglycosides .
Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever). Especially preferred is surfactant system that is a mixture of an alkali metal salt of a Ci6 to Ci s primary alcohol sulphate together with a C12 to Cis primary alcohol 3 to 7 EO ethoxylate.
The nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt % of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5% to about 40 wt % of the surfactant system.
In another aspect which is also preferred the surfactant may be a cationic such that the formulation is a fabric
conditioner .
CATIONIC COMPOUND
When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
Most preferred are quaternary ammonium compounds. It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain. It is preferred if the quaternary ammonium compound has the following formula:
R2
U
R1-N-R3 X
I
R4 in which R is a C12 to C22 alkyl or alkenyl chain; R , R and R4 are independently selected from Ci to C4 alkyl chains and X~ is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl
quaternary ammonium bromide.
A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from C12 to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci to C4 alkyl chains and X~ is a compatible anion.
A detergent composition according to claim 1 in which the ratio of (ii) cationic material to (iv) anionic surfactant is at least 2:1.
Other suitable quaternary ammonium compounds are disclosed in EP 0 239 910 (Proctor and Gamble) . It is preferred if the ratio of cationic to nonionic
surfactant is from 1:100 to 50:50, more preferably 1:50 to 20:50. The cationic compound may be present from 1.5 wt % to 50 wt % of the total weight of the composition. Preferably the cationic compound may be present from 2 wt % to 25 wt %, a more preferred composition range is from 5 wt % to 20 wt %. The softening material is preferably present in an amount of from 2 to 60% by weight of the total composition, more preferably from 2 to 40%, most preferably from 3 to 30% by weight . The composition optionally comprises a silicone. Builders or Complexing agents:
Builder materials may be selected from 1) calcium
sequestrant materials, 2) precipitating materials,
3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants , such as ethylene diamine tetra- acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate. Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or
amorphous aluminosilicates , of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0, 384, 070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or
alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach- stabilising agents by virtue of their ability to complex metal ions.
Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders.
The composition may contain as builder a crystalline
aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula: 0.8-1.5 M20. A1203. 0.8-6 Si02 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term xphosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include
silicates, such as soluble silicates, metasilicates , layered silicates (e.g. SKS-6 from Hoechst) .
Preferably the laundry detergent formulation is a non- phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably the laundry detergent formulation is carbonate built.
FLUORESCENT AGENT The composition preferably comprises a fluorescent agent
(optical brightener) . Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3- sulfophenyl ) -2H-napthol [ 1 , 2-d] triazole, disodium 4,4'- bis { [ (4-anilino-6- (N methyl-N-2 hydroxyethyl ) amino 1,3,5- triazin-2-yl) ] amino } stilbene-2-2 ' disulfonate, disodium 4 , 4 ' -bis { [ ( 4 -anilino- 6-morpholino-l , 3,5-triazin-2-yl) ] amino } stilbene-2-2' disulfonate, and disodium 4, 4 '-bis (2- sulfostyryl) biphenyl .
It is preferred that the aqueous solution used in the method has a fluorescer present. When a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/1 to 0.1 g/1, preferably 0.001 to 0.02 g/1. PERFUME
Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2): 80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol , rose oxide and cis-3-hexanol .
Perfume and top note may be used to cue the whiteness benefit of the invention. It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
POLYMERS
The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly (ethylene glycol) ,
poly (vinyl alcohol), polycarboxylates such as polyacrylates , maleic/acrylic acid copolymers and lauryl
methacrylate/acrylic acid copolymers.
Polymers present to prevent dye deposition, for example poly (vinylpyrrolidone) , poly (vinylpyridine-N-oxide) , and poly (vinylimidazole) , are preferably absent from the
formulation.
ENZYMES
One or more enzymes are preferred present in a composition of the invention and when practicing a method of the
invention . Preferably the level of each enzyme is from 0.0001 wt% to 0.1 wt% protein.
Especially contemplated enzymes include proteases, alpha- amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces) , e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a
Pseudomonas lipase, e.g. from P. alcaligenes or P.
pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P. fluorescens, Pseudomonas sp . strain SD 705 (WO 95/06720 and WO 96/27002), P.
wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al . (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus
(JP 64/744992) or B . pumilus (WO 91/16422) .
Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578,
WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ (Novozymes A/S) . The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol .
Phospholipases are enzymes which participate in the
hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid.
Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively. The enzyme and the shading dye may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme or shading dye and/or other segregation within the product.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and F 3™ (Genencor International Inc.).
The method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74. The
cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. lichen!formis, described in more detail in GB 1,296,839, or the Bacillus sp . strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™,
Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium,
Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila , and Fusarium oxysporum disclosed in US
4,435,307, US 5,648,263, US 5,691,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307. Commercially available cellulases include Celluzyme™, Carezyme™,
Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation) .
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful
peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially
available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S) . ENZYME STABILIZERS
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid
derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO
92/19709 and WO 92/19708.
The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise. Experimental
Knitted white polyester (microfiber) , knitted nylon-elastane (80:20) and white woven non-mercerised cotton fabrics were used together in 4g/L of a detergent which contained 15%
Linear Alkyl benzene sulfonate (LAS) surfactant, 30% a2C03, 40% NaCl, remainder minors included calcite and fluorescer and moisture. Washes were conducted in demineralised water at room temperature with a liquor to cloth ratio of 30:1, for 30 minutes. This was then repeated three more times to accomplish 4 washes in total. Following the washes the cloths were rinsed twice in water, dried, the reflectance spectrum of the nylon-elastane was measured on a
reflectometer and the colour expressed as CIE L* a* b* values (UV-excluded) .
The experiment was repeated with the addition of 200ppb Guaiazulene to the wash solution. The Guaiazulene was added from a solution in ethanol. The deposition of Guaiazulene to the fabrics was expressed as the Ab value such that
Ab = b (control) -b (Guaiazulene) +ve values indicate a blueing/whitening of the fabric, due to Guaiazulene
deposition .
The results are given in the table below:
Wash number Ab
1 0.3
4 0.6

Claims

Claims :
1. A domestic method of treating a textile, the method comprising the steps of: (i) treating a textile with an aqueous solution of the naturally occurring blue or violet azulene dye, the aqueous solution comprising from 1 ppb to 1 ppm of the naturally occurring blue or violet azulene dye; and, from 0.2 g/L to 3 g/L of a surfactant; (ii) optionally rinsing the textile; and, (iii) drying the textile.
2. A domestic method of treating a textile according to claim 1, wherein the azulene dye is selected from: 1,4- dimethylazulene ; methyl-4-methylazulene-l-carboxylate ;
linderazulene ; ehuazulene; chamazulene; and, guaiazulene.
3. A domestic method of treating a textile according to claim 1, wherein the azulene dye is 1 , 4-dimethyl-7- isopropylazulene :
Figure imgf000019_0001
4. A domestic method of treating a textile according to any one of the preceding claims, wherein the aqueous solution comprises 0.1 to 50 ppm of fluorescer.
5. A laundry detergent formulation comprising:
(i) from 0.0001 to 0.01 wt% of a naturally occurring blue or violet azulene dye;
(ii) an enzyme from 0.0001 wt% to 0.1 wt% protein; and,
(iii) from 2 to 70 wt% of a surfactant.
6. A laundry detergent formulation according to claim 5, wherein the azulene dye is selected from: 1,4- dimethylazulene ; methyl-4-methylazulene-l-carboxylate ;
linderazulene ; ehuazulene; chamazulene; and, guaiazulene.
7. A laundry detergent formulation according to claim 5, wherein the azulene dye is 1 , 4-dimethyl-7-isopropylazulene
CH3
Figure imgf000020_0001
8. A laundry detergent composition according to any one of claims 5 to 7, wherein the laundry detergent formulation comprises a fluorescer selected from the group consisting of: sodium 2 ( 4-styryl-3-sulfophenyl ) -2H-napthol [ 1 , 2- d]triazole, disodium 4, 4 ' -bis { [ (4-anilino-6- (N methyl-N-2 hydroxyethyl ) amino 1 , 3 , 5-triazin-2-yl )] amino } stilbene-2-2 ' disulfonate, disodium 4, 4 ' -bis { [ (4-anilino-6-morpholino- 1 , 3 , 5-triazin-2-yl ) ] amino } stilbene-2-2' disulfonate, and disodium 4, 4 '-bis (2-sulfostyryl) biphenyl .
PCT/EP2010/068383 2010-01-07 2010-11-29 Natural shading agents WO2011082889A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10784310A EP2521765A1 (en) 2010-01-07 2010-11-29 Natural shading agents
CN201080060945.2A CN102753672B (en) 2010-01-07 2010-11-29 Natural shading agents
ZA2012/04928A ZA201204928B (en) 2010-01-07 2012-07-02 Natural shading agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10150249 2010-01-07
EP10150249.0 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011082889A1 true WO2011082889A1 (en) 2011-07-14

Family

ID=42227593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068383 WO2011082889A1 (en) 2010-01-07 2010-11-29 Natural shading agents

Country Status (4)

Country Link
EP (1) EP2521765A1 (en)
CN (1) CN102753672B (en)
WO (1) WO2011082889A1 (en)
ZA (1) ZA201204928B (en)

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0239910A2 (en) 1986-04-02 1987-10-07 The Procter & Gamble Company Biodegradable fabric softeners
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
EP0346995A2 (en) 1988-06-13 1989-12-20 Unilever N.V. Liquid detergents
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2001028973A1 (en) 1999-10-19 2001-04-26 The Procter & Gamble Company Radical scavenger
WO2005067875A1 (en) * 2003-12-31 2005-07-28 Kimberly-Clark Worldwide, Inc. Color changing liquid cleansing products
EP1591099A2 (en) * 2004-04-28 2005-11-02 MERCK PATENT GmbH Methods for stabilizing ingredients within cosmetics, personal care and household products
US20070269399A1 (en) * 2006-05-17 2007-11-22 Sadao Tagawa Hydrogen peroxide containing composition
WO2008090091A1 (en) 2007-01-26 2008-07-31 Unilever Plc Shading composition

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0239910A2 (en) 1986-04-02 1987-10-07 The Procter & Gamble Company Biodegradable fabric softeners
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
EP0346995A2 (en) 1988-06-13 1989-12-20 Unilever N.V. Liquid detergents
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2001028973A1 (en) 1999-10-19 2001-04-26 The Procter & Gamble Company Radical scavenger
WO2005067875A1 (en) * 2003-12-31 2005-07-28 Kimberly-Clark Worldwide, Inc. Color changing liquid cleansing products
EP1591099A2 (en) * 2004-04-28 2005-11-02 MERCK PATENT GmbH Methods for stabilizing ingredients within cosmetics, personal care and household products
US20070269399A1 (en) * 2006-05-17 2007-11-22 Sadao Tagawa Hydrogen peroxide containing composition
WO2008090091A1 (en) 2007-01-26 2008-07-31 Unilever Plc Shading composition

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"International Buyers Guide", 1992, CFTA PUBLICATIONS
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY
"OPD 1993 Chemicals Buyers Directory", 1993, SCHNELL PUBLISHING CO.
"Rompp Encyclopedia of Natural Products", 2000, GEORG THIEME VERLAG
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
H. STACHE: "Tenside-Taschenbuch", 1981, CARL HAUSER VERLAG
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
SCHWARTZ; PERRY: "Surface Active Agents", vol. 1, 1949, INTERSCIENCE
SCHWARTZ; PERRY; BERCH: "SURFACE ACTIVE AGENTS", vol. 2, 1958, INTERSCIENCE

Also Published As

Publication number Publication date
CN102753672B (en) 2014-11-12
CN102753672A (en) 2012-10-24
ZA201204928B (en) 2013-09-25
EP2521765A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
EP2534206B1 (en) Dye polymers
EP2534237B1 (en) Laundry treatment composition comprising bis-azo shading dyes
EP2488622B1 (en) Dye polymers
EP3097152B1 (en) Dye polymer
EP4263773A1 (en) Cleaning composition
EP3824057B1 (en) Use of a rhamnolipid in a surfactant system
EP2992054B1 (en) Alkoxylated bis azo dyes
EP3119865B1 (en) Domestic method of treating a textile with an azo-dye
WO2012098046A1 (en) Dye polymer for laundry treatment
EP3775122A1 (en) Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
EP3242927B1 (en) Laundry treatment composition comprising a dye
US8673024B2 (en) Shading composition
EP2427540B1 (en) Shading composition
EP3402868B1 (en) Laundry treatment composition
EP2521765A1 (en) Natural shading agents
EP3914682A1 (en) Laundry detergent
WO2020020703A1 (en) Laundry detergent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060945.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1627/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010784310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010784310

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016790

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012016790

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 020120062629 DE 06/07/2012 , COM ASSINATURA LEGIVEL E CARIMBO DO MESMO, COMPROVANDO QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADA NO IDENTIFIQUE ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996(LPI). OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEU PROCURADORES, DEVIDAMENTE QUALIFICADOS. .

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012016790

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012016790

Country of ref document: BR

Free format text: PEDIDO CONSIDERADO RETIRADO ( COD. 1.2 ) EM RELACAO AO BRASIL, POR NAO CUMPRIMENTO DA EXIGENCIA, FORMULADO NA RPI 2481 DE 24/07/2018.