WO2011083627A1 - Steering device for vehicle - Google Patents

Steering device for vehicle Download PDF

Info

Publication number
WO2011083627A1
WO2011083627A1 PCT/JP2010/070107 JP2010070107W WO2011083627A1 WO 2011083627 A1 WO2011083627 A1 WO 2011083627A1 JP 2010070107 W JP2010070107 W JP 2010070107W WO 2011083627 A1 WO2011083627 A1 WO 2011083627A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
angle
steering
straight
neutral
Prior art date
Application number
PCT/JP2010/070107
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 安田
隆之 佐藤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2011083627A1 publication Critical patent/WO2011083627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position

Definitions

  • the present invention relates to a vehicle steering apparatus that is mounted on a transport vehicle such as a dump truck and is preferably used to steer the vehicle.
  • a large transport vehicle called a dump truck has a vessel (loading platform) that can be raised and lowered on a frame of a vehicle body.
  • This dump truck travels in a state where a large amount of transport objects made of crushed stone or earth and sand are loaded on a vessel (Patent Document 1).
  • This type of prior art transport vehicle includes a self-propelled vehicle body, a cargo bed provided on the vehicle body so as to be capable of tilting (raising and lowering), and a transport object to be loaded thereon, and the vehicle body located on the front side of the cargo bed. And a cab that defines a cab inside. In the cab of the transport vehicle, a steering handle is provided for a driver to grip and steer the traveling direction of the vehicle.
  • a conventional transport vehicle is equipped with a steering device called a power steering device (power steering) configured to steer the vehicle using hydraulic pressure so that the driver can lighten the steering wheel operation.
  • a steering apparatus includes a steering handle, a steering valve that controls supply and discharge of pressure oil in accordance with the operation of the steering handle, and a steering that steers the vehicle with the pressure oil that is supplied and discharged through the steering valve. It is comprised including a cylinder (patent document 2).
  • the steering wheel for example, the front wheel
  • the operation angle of the steering wheel for example, the turning angle of the steering wheel with respect to the neutral state
  • the operation of the steering wheel Is not necessarily determined uniformly. That is, the correlation between the operation angle of the steering wheel and the steering angle of the steered wheels is sequentially changed when an oil leak occurs in the steering valve.
  • Patent Document There is also known a configuration in which the rotational speeds of the front wheels and the rear wheels of a vehicle that performs four-wheel drive are independently controlled based on a detection signal of a steering angle sensor provided in the lower part of the vehicle. 4).
  • JP 2009-262750 A JP-A-5-155344 Japanese Patent Laid-Open No. 10-316000 JP-A-6-156101
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to stably obtain an actual steering angle (actual steering angle of a steered wheel) of a vehicle with a simple configuration.
  • An object of the present invention is to provide a vehicle steering apparatus.
  • the present invention provides a steering handle that is operated by a driver, a steering valve that controls supply and discharge of pressure oil according to the operation of the steering handle, and supply and discharge through the steering valve.
  • the present invention is applied to a vehicle steering apparatus including a steering cylinder that steers the vehicle with the pressurized oil.
  • the feature of the configuration adopted by the present invention is that an operation angle detection unit that detects an operation angle of the steering handle, a straight travel determination unit that determines whether or not the vehicle is traveling straight when the vehicle is traveling, and the straight travel When the determination means determines that the vehicle is traveling straight, a neutral angle storage means for storing an operation angle by the operation angle detection means as a neutral angle during vehicle travel, and an operation detected by the operation angle detection means An actual steering angle calculating means for calculating the actual steering angle of the vehicle based on the angle and the neutral angle stored by the neutral angle storage means.
  • the operation angle output from the operation angle detection unit can be stored as a neutral angle during vehicle travel by the neutral angle storage unit so as to be updatable.
  • the actual steering angle calculation means is based on the operation angle detected by the operation angle detection means and the neutral angle stored by the neutral angle storage means. Steering angle) can be obtained stably by calculation.
  • the operation angle output from the operation angle detection means when the vehicle is traveling straight is stored in an updatable manner as the neutral angle when the vehicle is traveling, so that the actual steering of the vehicle is performed based on the updated neutral angle.
  • the angle is obtained by calculation.
  • the steering angle at which the steering wheel (for example, the front wheel) of the vehicle is actually steered can be made to coincide with the actual steering angle obtained by calculation, and the steering control of the vehicle can be stabilized using this actual steering angle. Can be done.
  • the present invention it is not necessary to provide a high-resolution sensor on the lower side of the vehicle for directly detecting the steering angle on the front wheel side which is the steering wheel of the vehicle, so that the actual steering angle of the vehicle is obtained.
  • a high-resolution sensor it is possible to reduce costs by eliminating the need for a high-resolution sensor.
  • the actual steering angle calculation means calculates an angle difference between the operation angle detected by the operation angle detection means and the neutral angle stored by the neutral angle storage means, and based on this angle difference, the vehicle The actual steering angle is obtained.
  • the steering angle calculation means obtains the actual steering angle of the vehicle from the angle difference between the operation angle by the operation angle detection means and the neutral angle by the neutral angle storage means.
  • the actual steering angle can be obtained stably.
  • the straight traveling determination unit determines whether the vehicle is traveling straight by monitoring whether or not the operation angle detected by the operation angle detection unit changes over a predetermined time.
  • the neutral angle storage means stores the operation angle detected by the operation angle detection means over the predetermined time as the neutral angle.
  • the straight travel determination means determines straight travel of the vehicle based on the change in the operation angle detected by the operation angle detection means, so that further simplification and cost reduction can be achieved. That is, when the vehicle is traveling straight, the vehicle driver maintains a state in which a constant operation angle is maintained without operating the steering wheel. Therefore, the straight traveling determination means determines whether or not a predetermined time has passed without the steering handle being operated, in other words, the operation angle detected by the operation angle detection means is not changed substantially. Monitor whether time has passed. Thereby, the straight-ahead determination unit can stably determine whether or not the vehicle is traveling straight ahead.
  • the present invention includes a yaw rate detection means for detecting a yaw rate (rotational angular velocity about the vertical axis of the center of gravity of the vehicle) during travel of the vehicle, and the straight travel determination means is based on a detection signal detected by the yaw rate detection means. It is configured to determine whether or not the vehicle is traveling straight.
  • a yaw rate detection means for detecting a yaw rate (rotational angular velocity about the vertical axis of the center of gravity of the vehicle) during travel of the vehicle
  • the straight travel determination means is based on a detection signal detected by the yaw rate detection means. It is configured to determine whether or not the vehicle is traveling straight.
  • the determination whether or not the vehicle is traveling straight is accurately and stably determined based on the yaw rate.
  • the yaw rate detecting means can be provided in the driver's cabin of the vehicle, it is not exposed to stepping stones, earth and sand, muddy water, dust, etc. unlike the lower part of the vehicle. For this reason, it is not necessary to provide a special protection means for the yaw rate detection means, and it can be configured with a simple structure and at a low cost as compared with the steering angle sensor of the prior art.
  • the present invention includes a rectilinear detection switch for detecting whether or not the vehicle is traveling straight, and the rectilinear determination means determines whether or not the vehicle is traveling straight based on a detection signal from the rectilinear detection switch. It is configured.
  • the straight detection switch can be configured as a simple ON-OFF switch, its durability and life can be improved even when it is provided at the bottom of the vehicle, and no special protective means is required. Can do.
  • a self-propelled vehicle body having a front wheel and a rear wheel, a loading platform provided on the vehicle body so as to be tiltable with the rear side as a fulcrum and on which a transportation object is loaded, and on the front side of the loading platform
  • a cab located in the vehicle body and defining a driver's cab inside, and a hoist cylinder provided between the cargo bed and the vehicle body and tilting the cargo bed backward when discharging the object to be transported from the cargo bed
  • the steering wheel is provided in the cab, the steering cylinder is provided in the front wheel, and the steering valve is provided in the vehicle body.
  • FIG. 1 is a front view showing a dump truck to which a steering device according to a first embodiment of the present invention is applied. It is a block diagram which shows the steering device of a dump truck including a motor for driving, a rear wheel, etc. It is a flowchart which shows the straight-ahead determination process by a controller, a neutral angle memory
  • FIG. 3 is a configuration diagram similar to FIG. 2 illustrating a steering device according to a second embodiment of the present invention including a traveling motor, a rear wheel, and the like.
  • FIG. 4 is a flowchart similar to FIG. 3 showing a straight-ahead determination process, a neutral angle storage process, an actual steering angle calculation process, and the like by a controller.
  • FIG. 4 is a flowchart similar to FIG. 3 showing a straight-ahead determination process, a neutral angle storage process, an actual steering angle calculation process, and the like by a controller.
  • FIGS. 1 to 3 show a first embodiment of a vehicle steering system according to the present invention.
  • reference numeral 1 denotes a dump truck as a vehicle (large transport vehicle).
  • the dump truck 1 includes a vehicle body 2 having a sturdy frame structure as shown in FIG. 1, and a rear side on the vehicle body 2 as a fulcrum. It is roughly constituted by a vessel 3 as a loading platform mounted so as to be capable of tilting (raising and falling).
  • the vessel 3 is formed as a large container having a total length of 10 to 13 meters in order to load a large amount of a heavy transport object (hereinafter referred to as a crushed stone 4) made of crushed stone, for example. It is connected to the rear end side via a connecting pin 5 so as to be tiltable. Further, on the upper front side of the vessel 3, a flange 3 ⁇ / b> A that covers a cab 6 described later from above is integrally provided.
  • a flange 3 ⁇ / b> A that covers a cab 6 described later from above is integrally provided.
  • the bottom side of the vessel 3 is rotatably supported by the connecting pin 5 on the rear side of the vehicle body 2.
  • the front side (the flange 3A side) of the vessel 3 is rotated (lifted / lowered) upward and downward with the connecting pin 5 as a fulcrum by extending or contracting a hoist cylinder 9 described later.
  • a driver's cab located on the front side of the vessel 3 and provided at the front part of the vehicle body 2, and the cab 6 forms a driver's cab where a driver (operator) of the dump truck 1 gets on and off.
  • a driver's seat a driver's seat, a start switch, an accelerator pedal, a brake pedal (all not shown), a steering handle 16 described later, and the like are provided.
  • the collar 3A of the vessel 3 covers the cab 6 almost completely from the upper side, thereby protecting the cab 6 from a stepping stone such as a rock, and driving the cab 6 when the vehicle (dump truck 1) falls. It has a function to protect the person.
  • Reference numeral 7 denotes left and right front wheels that are rotatably provided on the front side of the vehicle body 2.
  • the front wheels 7 have a tire diameter (outside diameter dimension) of, for example, 2 to 4 meters, as in the case of the rear wheel 8 described later. ).
  • These left and right front wheels 7 are steered as the steering cylinder 18 extends and contracts when the driver of the dump truck 1 operates a steering handle 16 described later.
  • Reference numeral 8 denotes left and right rear wheels rotatably provided on the rear side of the vehicle body 2.
  • the rear wheels 8 constitute drive wheels of the dump truck 1 and are driven to rotate by a travel motor 12 described later. .
  • the dump truck 1 travels on the road by driving the left and right rear wheels 8 to rotate.
  • Reference numeral 9 denotes a pair of left and right hoist cylinders (only one is shown in FIG. 1) provided between the vehicle body 2 and the vessel 3 so as to be able to expand and contract.
  • the hoist cylinder 9 is expanded and contracted upward and downward. By doing so, the vessel 3 is tilted (raised) with the connecting pin 5 as a fulcrum.
  • the hydraulic oil tank 10 is a hydraulic oil tank that is located below the vessel 3 and is attached to the side surface of the vehicle body 2.
  • the hydraulic oil tank 10 contains hydraulic oil (oil) therein. Then, the hydraulic oil stored in the hydraulic oil tank 10 is supplied and discharged to the hoist cylinder 9, a steering cylinder 18, which will be described later, and the like by the hydraulic pump 15 which will be described later.
  • the engine 11 is an engine provided in the vehicle body 2 located below the cab 6, and the engine 11 is composed of, for example, a large diesel engine.
  • the engine 11 drives a main generator (not shown) to generate three-phase AC power (for example, about 1500 kW), and rotationally drives a hydraulic pump 15 and the like which will be described later. It also has a function of supplying and discharging pressure oil to a steering cylinder 18 described later.
  • each traveling motor 12 indicates a pair of traveling motors provided on the vehicle body 2 via an accelerator housing (not shown).
  • each traveling motor 12 is rotationally driven by the electric power supplied from the main generator via the motor control device 13, and is constituted by a large electric motor.
  • each traveling motor 12 is rotationally driven independently by a motor control device 13, and a control signal from a controller 20 described later is input to the motor control device 13. Based on this control signal, the motor control device 13 makes the rotation speeds of the left and right rear wheels 8 the same when the vehicle goes straight, or changes the rotation speeds of the left and right rear wheels 8 according to the turning direction when turning. It is configured to perform control such as making them different.
  • This steering device 14 is a power steering (power steering device) in which the direction of the front wheel 7 which is a steered wheel can be changed with a light operating force using oil pressure in accordance with the operation of the steering handle 16 by the driver. is there.
  • the steering device 14 includes a hydraulic pump 15, a steering handle 16, a steering valve 17, a steering cylinder 18, a rotation sensor 19, a controller 20, and the like which will be described later.
  • the hydraulic pump 15 is a hydraulic pump provided in the vicinity of the engine 11, and the hydraulic pump 15 is rotationally driven by the engine 11 to supply pressure oil to a steering cylinder 18 described later.
  • Reference numeral 16 denotes a steering handle (steering wheel) which is provided in the cab 6 and is steered by the driver.
  • the steering handle 16 is gripped by the driver and rotates the handle shaft 16A to the left and right, so that the vehicle The steering operation is performed.
  • the steering valve 17 is a steering valve for controlling the supply and discharge of pressure oil to a steering cylinder 18 which will be described later in accordance with the operation of the steering handle 16.
  • the steering valve 17 includes a valve housing 17A and a spool valve (not shown) provided in the valve housing 17A.
  • the spool valve in the valve housing 17 is connected to the handle shaft 16A, and is switched according to the turning operation of the steering handle 16. At this time, the flow rate of the pressure oil from the hydraulic pump 15 and the supply direction of the pressure oil are controlled according to the switching operation of the steering valve 17.
  • Each steering cylinder 18 is a pair of steering cylinders for steering the vehicle by the pressure oil supplied and discharged through the steering valve 17.
  • Each steering cylinder 18 is provided on the front wheel 7 side, and applies a steering force by oil pressure to the left and right front wheels 7.
  • the left and right steering cylinders 18 extend and contract when pressure oil from the hydraulic pump 15 is supplied via the steering valve 17 and the hydraulic passage 21.
  • the left and right front wheels 7 are moved in the steering direction by the expansion and contraction of the respective steering cylinders 18.
  • the rotation sensor 19 is a rotation sensor as an operation angle detection means for detecting the operation angle A of the steering handle 16, and the rotation sensor 19 is constituted by, for example, an electromagnetic pickup type or an optical rotation detector.
  • the rotation sensor 19 detects an operation angle A of the operation handle 16 as a rotation angle A of the handle shaft 16A, and outputs a rotation detection signal to a controller 20 described later.
  • Reference numeral 20 denotes a controller as a control device constituted by a microcomputer or the like, and the controller includes a straight traveling determination means, a neutral angle storage means, an actual steering angle calculation means, and the like which are constituent features of the present invention.
  • the controller 20 has an input side connected to the rotation sensor 19 and an output side connected to the motor control device 13.
  • the controller 20 has a memory 20A as a neutral angle storage means composed of ROM, RAM (including nonvolatile memory) and the like.
  • the memory 20A of the controller 20 stores a neutral angle An, a threshold value Da, a predetermined time Cs, a memory value Aom, a memory value Anm, and the like shown in FIG. Further, the memory 20A of the controller 20 stores a program or the like for performing processing shown in FIG. 3 to be described later, that is, straight traveling determination processing, neutral angle storage processing, and actual steering angle calculation processing.
  • the vehicle travels straight. Is determined.
  • the operation angle A changes beyond the threshold value Da during the predetermined time, it is determined that the vehicle is not traveling straight.
  • the neutral angle storage process is a process of storing the operation angle A detected by the rotation sensor 19 as the vehicle neutral angle An in the memory 20A in an updatable manner when it is determined that the vehicle is traveling straight by the straight traveling determination process. is there. That is, when the front wheel 7 serving as the steering wheel is accurately mounted in advance and the steering angle on the front wheel side and the operation angle A of the rotation sensor 19 coincide with each other, the operation angle A when the vehicle goes straight becomes zero degrees, and the neutral angle An is also stored in the memory 20A as zero degree.
  • the actual steering angle calculation process is to calculate the actual steering angle S of the vehicle based on the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20A. That is, the actual steering angle S is calculated by calculating the angle difference (A ⁇ An) between the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20A according to the following equation (2). The actual steering angle S of the vehicle is obtained from the difference (A ⁇ An).
  • the controller 20 performs the straight traveling determination process, the neutral angle storage process, and the actual steering angle calculation process as described above, so that the operation angle A of the steering handle 16 detected by the rotation sensor 19 and the vehicle travel straight. Based on the neutral angle An corresponding to the operation angle A stored in the memory 20A when it is determined that the actual steering angle S of the vehicle is calculated according to the equation (2).
  • the controller 20 calculates the target rotational speeds of the left and right traveling motors 12 based on the actual steering angle S thus calculated, and the rotational speeds of the respective traveling motors 12 reach the target rotational speeds.
  • a control signal for controlling each of the traveling motors 12 is output to the motor control device 13.
  • the motor control device 13 makes the left and right rear wheels 8 have the same rotational speed when the vehicle goes straight, or the left and right rear according to the turning direction when turning. Control such as varying the rotation speed of the wheel 8 is performed.
  • the dump truck 1 according to the first embodiment has the above-described configuration, and the operation thereof will be described next.
  • a crushed stone 4 to be transported is loaded on the vessel 3 using a large hydraulic excavator (not shown).
  • the vessel 3 is disposed at the transport position shown in FIG.
  • the dump truck 1 transports the crushed stone 4 toward a predetermined unloading place with a large amount of crushed stone 4 loaded on the vessel 3.
  • the driver in the cab 6 manually operates an operation lever (not shown) to extend the hoist cylinder 9 and tilt the vessel 3 obliquely backward. Thereby, the crushed stone 4 in the vessel 3 is discharged from the vessel 3 so as to slide down.
  • the driver manually operates the operation lever to reduce the hoist cylinder 9.
  • the vessel 3 is rotated to the transport position shown in FIG. 1 and is seated on the vehicle body 2.
  • the dump truck 1 is prepared for the next transport operation in this state.
  • the left and right traveling motors 12 that rotationally drive the left and right rear wheels 8 when traveling on the road are independently controlled according to the actual steering angle S signal output from the controller 20. .
  • the operation angle A of the steering handle 16 detected by the rotation sensor 19 is used as it is as the vehicle steering angle (wheel steering angle)
  • the required control cannot be stably performed.
  • the left and right rear wheels 8 cannot be rotationally driven at different rotational speeds at a ratio corresponding to the steering angle on the front wheel 7 side, thereby improving the steering performance of the vehicle. It becomes difficult.
  • the actual steering of the vehicle is performed by executing the processing shown in FIG. 3 (straight advance determination processing, neutral angle storage processing, actual steering angle calculation processing).
  • the angle S is obtained by calculation.
  • the signal of the actual steering angle S is output from the controller 20 to the motor control device 13 as a control signal for rotationally driving the left and right traveling motors 12.
  • step 1 initial setting is performed.
  • the counter C for measuring time is set to 0
  • the previous operation angle (rotation angle) Ao which is the previous operation angle A
  • the neutral angle An obtained by the previous processing is stored as the memory value Anm.
  • the memory values Aom and Anm correspond to the previous operation angle Ao and neutral angle An stored at the time in the memory 20A in the process of the previous program cycle.
  • step 2 the operation angle (rotation angle of the handle shaft 16A) A of the steering handle 16 is read from the rotation sensor 19.
  • step 5 it is a case where the operation angle A of the steering wheel 16 has not substantially changed over the predetermined time Cs. In this case, it is determined that the vehicle is traveling straight ahead. Can do.
  • step 6 the immediately previous operation angle Ao, which is the operation angle A at this time, is stored in the memory 20A in an updatable manner as the neutral angle An when the vehicle goes straight.
  • the operation angle A read in step 2 is updated as the previous operation angle Ao, and the counter C is reset to zero.
  • step 7 the difference (A-An) between the operation angle A read in step 2 and the neutral angle An (A-An) is obtained as the actual steering angle S as shown in the following equation (2).
  • step 8 determines whether or not the engine 11 is stopped (powered off). If “NO” is determined in the step 8, the process returns to the step 2. On the other hand, if "YES” is determined in the step 8, the process proceeds to a step 9 and an end process is performed. In this end processing, the previous operation angle Ao and the neutral angle An at that time are stored in the memory 20A as memory values Aom and Anm, respectively.
  • Step 3 when “NO” is determined in Step 3, the difference between the operation angle A and the previous operation angle Ao is equal to or greater than the threshold value Da, and the steering handle 16 is being steered. In this case, since it can be determined that the vehicle is turning and is not traveling straight, the process proceeds to step 10 where the previous operation angle Ao is updated to the operation angle A read in step 2 and the counter C is reset to zero. Then, the process proceeds to Step 7.
  • step 3 since it is determined in step 3 that the operation angle A has changed (the vehicle is not in a straight traveling state), the counter addition, the neutral angle An update, and the previous operation angle Ao are updated by the processing in steps 4 to 6 described above. Without performing this, the previous operation angle Ao is updated in Step 10 and the counter C is reset to zero, and then the operation shifts to the calculation of the actual steering angle S in Step 7.
  • Step 5 If “NO” is determined in Step 5, the process proceeds to Step 7 without going through Step 6. That is, since it is determined in step 5 that the predetermined time Cs has not elapsed, the actual steering angle in step 7 is not performed without updating the neutral angle An in step 6, updating the previous operation angle Ao, and resetting the counter C to zero. Move on to the operation of S.
  • the controller 20 executes the process shown in FIG. 3 when the vehicle is in operation. That is, the controller 20 stores the operation angle of the steering handle 16 (rotation angle of the handle shaft 16A) A detected by the rotation sensor 19 and the memory 20A when it is determined that the vehicle is traveling straight when the vehicle is operating. Based on the neutral angle An corresponding to the operated angle A, the actual steering angle S of the vehicle is calculated. Accordingly, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side.
  • the operation angle A output from the rotation sensor 19 when the vehicle is traveling straight as the neutral angle An when the vehicle is traveling the actual steering angle S of the vehicle based on the updated neutral angle An. Is obtained by calculation. Therefore, the steering angle at which the left and right front wheels 7 are actually steered can be made to coincide with the actual steering angle S obtained by calculation, and the stability of vehicle control performed using the actual steering angle S is improved. it can.
  • the configuration for obtaining the actual steering angle S of the vehicle can be simplified, and the space can be used effectively. Can be achieved. Furthermore, the cost can be reduced because a high-resolution sensor is not required.
  • the controller 20 determines straight traveling of the vehicle based on the change of the operation angle A detected by the rotation sensor 19, further simplification and cost reduction can be achieved. That is, the driver of the vehicle maintains a state in which a constant operating angle is maintained without operating the steering handle 16 when the vehicle is traveling straight ahead. Therefore, the controller 20 executes a straight-ahead determination process (the processes of steps 3 to 5 in FIG. 3), and whether or not a predetermined time has passed without the steering handle 16 being operated, that is, a rotation sensor. It is monitored whether or not the predetermined time Cs has elapsed without substantially changing the operating angle A detected at 19. As a result, it can be determined stably whether the vehicle is traveling straight ahead.
  • a straight-ahead determination process the processes of steps 3 to 5 in FIG. 3
  • the controller 20 executes a steering angle calculation process (the process of step 7 in FIG. 3), and the angle difference (A ⁇ An) between the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20.
  • a steering angle calculation process the process of step 7 in FIG. 3
  • FIGS. 4 to 5 show a second embodiment of the present invention.
  • the feature of this embodiment is that it is configured to determine whether or not the vehicle is traveling straight based on the yaw rate (rotational angular velocity around the vertical axis of the center of gravity of the vehicle) when the vehicle is traveling.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • reference numeral 31 denotes a yaw rate sensor provided on the vehicle body, and the yaw rate sensor 31 is housed and provided in a vehicle including a driver's cab of the vehicle, for example.
  • the yaw rate sensor 31 detects a yaw rate Y when the vehicle is traveling, and outputs a yaw rate detection signal representing the yaw rate Y to the controller 20.
  • the controller 20 to which the yaw rate detection signal is input executes the process shown in FIG. 5 based on the rotation detection signal (signal corresponding to the operation angle A) of the rotation sensor 19 in addition to the yaw rate detection signal.
  • the process shown in FIG. 5 will be described.
  • step 11 initial setting is performed.
  • the neutral angle An obtained by the previous process is read as the memory value Anm.
  • the memory value Anm corresponds to the neutral angle An at that time stored in the memory 20A by the processing in the previous program cycle.
  • step 12 the operation angle A of the steering handle 16 is read from the rotation sensor 19, and the yaw rate Y of the vehicle is read from the yaw rate sensor 31, and the process proceeds to step 13.
  • step 13 it is determined whether or not the yaw rate Y is less than a threshold value Dy (a value in which the vehicle is considered not to go straight if the yaw rate Y is greater than this).
  • step 13 If “YES” is determined in the step 13, it can be determined that the vehicle is traveling straight, so the process proceeds to a step 14, and the operation angle A read in the step 12 is stored as a neutral angle An when the vehicle is traveling straight. 20A is stored in an updatable manner, and the process proceeds to Step 15.
  • step 15 as in step 7 described in the first embodiment, the difference (A ⁇ An) between the operation angle A read in step 12 and the neutral angle An is set as the actual steering angle S. And go to step 16.
  • step 16 it is determined whether or not the engine 11 has been stopped (powered off) as in step 8 of the first embodiment described above. If “NO” is determined in the step 16, the process returns to the step 12. On the other hand, if "YES” is determined in the step 16, the process proceeds to a step 17 and an end process is performed. In this termination process, the neutral angle An at that time is stored in the memory 20A as the memory value Anm.
  • step 13 when it is determined “NO” in step 13, it can be determined that the vehicle is not traveling straight (for example, turning), so the process proceeds to step 15 without going through step 14. That is, since it is determined that the vehicle is not traveling straight, the neutral angle An is not updated, and the process proceeds to the calculation of the actual steering angle S in step 15.
  • the controller 20 determines whether or not the vehicle is traveling straight on the basis of the yaw rate Y detected by the yaw rate sensor 31, and further determines that the vehicle is traveling straight.
  • the actual steering angle S of the vehicle is calculated based on the neutral angle An corresponding to the operation angle A. Therefore, also in the second embodiment, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side, and the same effect as the first embodiment described above can be obtained. .
  • the yaw rate sensor 31 may be provided inside the vehicle including the driver's cab of the vehicle, and does not need to be provided at a place exposed to stepping stones, earth and sand, muddy water, dust, or the like as in the lower part of the vehicle. For this reason, it is not necessary to provide a special protection means for the yaw rate sensor 31, and it can be configured with a simple structure and at a low cost as compared with the steering angle sensor of the prior art.
  • FIGS. 6 to 8 show a third embodiment of the present invention.
  • the feature of this embodiment is that it is configured to determine whether or not the vehicle is traveling straight on the basis of the detection signal of the straight traveling detection switch. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • 41 is a protrusion provided on a knuckle arm 42 that supports the front wheel 7, and the protrusion 41 protrudes on the opposite side of the rotation center of the front wheel 7 across the king pin 43 of the knuckle arm 42. It is formed as follows.
  • Reference numeral 44 denotes a rectilinear detection switch for detecting whether or not the vehicle is traveling straight.
  • the rectilinear detection switch 44 is fixed to the vehicle body 2 in a state of being opposed to the protrusion 41 of the knuckle arm 42 through a minute gap.
  • the rectilinear detection switch 44 is configured by using, for example, a non-contact type electromagnetic pickup, a Hall element, and the like, and the vehicle changes due to a magnetic field change when approaching and separating from the protrusion 41 of the steel knuckle arm 42. Is detected as an ON-OFF signal. Accordingly, the straight travel detection switch 44 outputs a straight travel detection signal K consisting of an ON-OFF signal to the controller 20.
  • the straight detection switch 44 outputs an ON signal when the vehicle is traveling straight (the projection 41 is close), and when the vehicle is turning (the projection 41 is separated). Outputs an OFF signal.
  • the controller 20 to which the straight travel detection signal K is input based on the rotation detection signal (signal corresponding to the operation angle A) of the rotation sensor 19 in addition to the straight travel detection signal K, the processing shown in FIG. Is executed to calculate the actual steering angle S of the vehicle.
  • the process shown in FIG. 8 will be described.
  • step 21 When the processing operation shown in FIG. 8 is started by starting the engine 11, initialization is performed in step 21.
  • this initial setting similarly to step 11 of the second embodiment described above, a process of reading the neutral angle An by the previous process as the memory value Anm is performed.
  • step 22 the operation angle A of the steering handle 16 is read from the rotation sensor 19, and the straight-ahead detection signal K is read from the straight-ahead detection switch 44, and the process proceeds to step 23.
  • step 23 it is determined whether or not the straight detection signal K is an ON signal.
  • step 23 If “YES” is determined in the step 23, it can be determined that the vehicle is traveling straight, so the process proceeds to the step 24, and the operation angle A read in the step 22 is set as the neutral angle An when the vehicle is traveling straight in the memory 20A. Is stored in an updatable manner, and the process proceeds to Step 25.
  • step 25 as in step 7 of the first embodiment, the difference (A ⁇ An) between the operation angle A read in step 22 and the neutral angle An is obtained as the actual steering angle S. Move on.
  • step 26 as in step 8 of the first embodiment, it is determined whether or not the engine 11 has been stopped (powered off). If “NO” is determined in the step 26, the process returns to the step 22, and if “YES” is determined, the process proceeds to a step 27 and an end process is performed. In this termination process, the neutral angle An at that time is stored in the memory 20A as the memory value Anm.
  • Step 23 it can be determined that the vehicle is not traveling straight (for example, turning), and therefore, the process proceeds to Step 25 without going through Step 24. That is, since it is determined that the vehicle is not traveling straight, the neutral angle An is not updated, and the process proceeds to the calculation of the actual steering angle S in step 25.
  • the dump truck 1 determines whether or not the vehicle is traveling straight based on the straight traveling detection signal K detected by the straight traveling detection switch 44, and further determines that the vehicle is traveling straight.
  • the actual steering angle S of the vehicle is calculated based on the neutral angle An corresponding to the operation angle A. Therefore, also in the third embodiment, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side, and the same operational effects as those of the first embodiment described above can be obtained. it can.
  • whether the vehicle is traveling straight can be determined by an ON-OFF signal from the straight traveling detection switch 44.
  • the straight-ahead detection switch 44 can be configured as a simple ON-OFF switch, so even when it is provided at the bottom of the vehicle, its durability and life can be increased, and no special protection means is required. Can do.
  • step 23 shows a specific example of the straight-ahead determination means which is a constituent requirement of the present invention.
  • step 6 shown in FIG. 3 is performed
  • step 14 shown in FIG. 5 is performed
  • the processing shows a specific example of the neutral angle storage means which is a constituent requirement of the present invention.
  • step 7 shown in FIG. 3 is performed
  • step 15 shown in FIG. 5 is performed
  • the processing shows a specific example of actual steering angle calculation means which is a constituent requirement of the present invention.
  • the dump truck which is a large transport vehicle
  • the present invention is not limited to this, and for example, other than a small transport vehicle, a passenger vehicle, and the like. It is good also as a structure mounted in this vehicle.

Abstract

The operational angle of the steering wheel (16) provided in a cab (6) is detected as the rotational angle (A) of the steering wheel shaft (16A) by a rotation sensor (19). When the rotational angle (A) detected by the rotation sensor (19) does not change for a predetermined time period (Cs), a controller (20) determines that the vehicle is traveling straight and stores in a memory (20A) the rotational angle (A) as a neutral angle (An). When the vehicle is traveling, the controller (20) calculates, as the actual steering angle (S) of the vehicle, the difference between the rotational angle (A) detected by the rotation sensor (19) and the neutral angle (An) stored in the memory (20A), and the controller (20) outputs the actual steering angle (S) through a motor control device (13) to motors (12) on the rear wheel (8) side. The configuration enables the actual steering angle to be stably obtained when the the vehicle is steered.

Description

車両用操舵装置Vehicle steering system
 本発明は、例えばダンプトラック等の運搬車両に搭載され車両を操舵するのに好適に用いられる車両用操舵装置に関する。 The present invention relates to a vehicle steering apparatus that is mounted on a transport vehicle such as a dump truck and is preferably used to steer the vehicle.
 一般に、ダンプトラックと呼ばれる大型の運搬車両は、車体のフレーム上に起伏可能となったベッセル(荷台)を備えている。このダンプトラックは、ベッセルに砕石物または土砂からなる運搬対象物を多量に積載した状態で走行するものである(特許文献1)。 Generally, a large transport vehicle called a dump truck has a vessel (loading platform) that can be raised and lowered on a frame of a vehicle body. This dump truck travels in a state where a large amount of transport objects made of crushed stone or earth and sand are loaded on a vessel (Patent Document 1).
 この種の従来技術による運搬車両は、自走可能な車体と、該車体上に傾転(起伏)可能に設けられ運搬対象物が積載される荷台と、該荷台の前側に位置して前記車体に設けられ内部に運転室を画成するキャブとを備えている。運搬車両のキャブ内には、運転者が把持して車両の進行方向を舵取り操作するための操舵ハンドルが設けられている。 This type of prior art transport vehicle includes a self-propelled vehicle body, a cargo bed provided on the vehicle body so as to be capable of tilting (raising and lowering), and a transport object to be loaded thereon, and the vehicle body located on the front side of the cargo bed. And a cab that defines a cab inside. In the cab of the transport vehicle, a steering handle is provided for a driver to grip and steer the traveling direction of the vehicle.
 また、従来技術の運搬車両には、運転者のハンドル操作を軽くできるようにするため、油圧力を利用して車両の舵取りを行う構成とした動力舵取り装置(パワーステアリング)と呼ばれる操舵装置が装備されている。このような操舵装置は、操舵ハンドルと、該操舵ハンドルの操作に応じて圧油の供給、排出を制御するステアリングバルブと、該ステアリングバルブを通じて供給、排出される圧油により車両の操舵を行うステアリングシリンダとを含んで構成されている(特許文献2)。 In addition, a conventional transport vehicle is equipped with a steering device called a power steering device (power steering) configured to steer the vehicle using hydraulic pressure so that the driver can lighten the steering wheel operation. Has been. Such a steering apparatus includes a steering handle, a steering valve that controls supply and discharge of pressure oil in accordance with the operation of the steering handle, and a steering that steers the vehicle with the pressure oil that is supplied and discharged through the steering valve. It is comprised including a cylinder (patent document 2).
 ところで、上述した運搬車両に装備される操舵装置の場合、操舵ハンドルの操作角(例えば、中立状態に対するハンドルの回動角度)と操舵ハンドルの操作に基づいて向きが変化する操舵輪(例えば、前輪)の操舵角との関係が必ずしも一律に決められない。即ち、操舵ハンドルの操作角と操舵輪の操舵角との相関関係は、ステアリングバルブ内でオイルリークが生じると、これによって逐次変化してしまう。 By the way, in the case of the steering device equipped in the transport vehicle described above, the steering wheel (for example, the front wheel) whose direction changes based on the operation angle of the steering wheel (for example, the turning angle of the steering wheel with respect to the neutral state) and the operation of the steering wheel. ) Is not necessarily determined uniformly. That is, the correlation between the operation angle of the steering wheel and the steering angle of the steered wheels is sequentially changed when an oil leak occurs in the steering valve.
 これに対して、操舵ハンドルの操作角と操舵輪の操舵角との対応関係を補正するため、例えば前輪(操舵輪)を支持するキングピンにポテンショメータ等の操舵角センサを設ける構成としたものが知られている(特許文献3)。 On the other hand, in order to correct the correspondence between the steering wheel operation angle and the steering wheel steering angle, for example, a configuration in which a steering angle sensor such as a potentiometer is provided on a king pin that supports a front wheel (steering wheel) is known. (Patent Document 3).
 また、車両下部に設けた操舵角センサの検出信号に基づいて、4輪駆動を行う車両の前輪と後輪との回転速度を独立して制御する構成としたものも知られている(特許文献4)。 There is also known a configuration in which the rotational speeds of the front wheels and the rear wheels of a vehicle that performs four-wheel drive are independently controlled based on a detection signal of a steering angle sensor provided in the lower part of the vehicle (Patent Document). 4).
特開2009-262750号公報JP 2009-262750 A 特開平5-155344号公報JP-A-5-155344 特開平10-316000号公報Japanese Patent Laid-Open No. 10-316000 特開平6-156101号公報JP-A-6-156101
 しかし、上述した特許文献3、4による従来技術では、精密部品からなる高分解能の操舵角センサを車両の下部に取付ける構成であるため、走行時の飛び石、泥土等から操舵角センサを保護する必要がある。このため、これらの従来技術では、操舵角センサの取付け部分の構造が複雑になるという問題がある。 However, in the prior arts disclosed in Patent Documents 3 and 4 described above, since a high-resolution steering angle sensor made of precision parts is attached to the lower part of the vehicle, it is necessary to protect the steering angle sensor from flying stones, mud, etc. during traveling. There is. For this reason, in these prior arts, there is a problem that the structure of the mounting portion of the steering angle sensor becomes complicated.
 一方、操舵輪の操舵角を、ステアリングシリンダの伸縮量から求めることも考えられる。しかし、この場合も、ステアリングシリンダの伸縮量を検出するためのセンサは、変位センサ等の高分解能なセンサを車両の下部に設ける必要があり、コストが嵩むと共にセンサ取付け部分の構造が複雑になる虞れがある。 On the other hand, it is also conceivable to obtain the steering angle of the steered wheel from the amount of expansion / contraction of the steering cylinder. However, in this case as well, a sensor for detecting the amount of expansion / contraction of the steering cylinder needs to be provided with a high-resolution sensor such as a displacement sensor in the lower part of the vehicle, which increases costs and complicates the structure of the sensor mounting portion. There is a fear.
 しかも、上述の如き高分解能なセンサが故障した場合には、操舵ハンドルの操作角と操舵輪の操舵角との対応関係が、オイルリークに伴ってずれてしまうと、操舵輪側の実際の操舵角、即ち実操舵角を検出することが困難になるという問題がある。 In addition, when a high-resolution sensor such as that described above breaks down, if the correspondence between the steering wheel operation angle and the steering wheel steering angle shifts with oil leakage, the actual steering on the steering wheel side There is a problem that it is difficult to detect an angle, that is, an actual steering angle.
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、簡単な構成により車両の実際の操舵角(操舵輪の実操舵角)を安定して求めることができるようにした車両用操舵装置を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to stably obtain an actual steering angle (actual steering angle of a steered wheel) of a vehicle with a simple configuration. An object of the present invention is to provide a vehicle steering apparatus.
(1).上述した課題を解決するため、本発明は、運転者が舵取り操作する操舵ハンドルと、該操舵ハンドルの操作に応じて圧油の供給、排出を制御するステアリングバルブと、該ステアリングバルブを通じて供給、排出される圧油により車両の操舵を行うステアリングシリンダとを備えてなる車両用操舵装置に適用される。 (1). In order to solve the above-described problems, the present invention provides a steering handle that is operated by a driver, a steering valve that controls supply and discharge of pressure oil according to the operation of the steering handle, and supply and discharge through the steering valve. The present invention is applied to a vehicle steering apparatus including a steering cylinder that steers the vehicle with the pressurized oil.
 そして、本発明が採用する構成の特徴は、前記操舵ハンドルの操作角を検出する操作角検出手段と、前記車両の走行時に車両が直進しているか否かを判定する直進判定手段と、該直進判定手段により前記車両が直進していると判定したときに、前記操作角検出手段による操作角を車両走行時の中立角として記憶する中立角記憶手段と、前記操作角検出手段により検出された操作角と前記中立角記憶手段によって記憶された中立角とに基づいて前記車両の実操舵角を演算する実操舵角演算手段とを有する構成としたことにある。 The feature of the configuration adopted by the present invention is that an operation angle detection unit that detects an operation angle of the steering handle, a straight travel determination unit that determines whether or not the vehicle is traveling straight when the vehicle is traveling, and the straight travel When the determination means determines that the vehicle is traveling straight, a neutral angle storage means for storing an operation angle by the operation angle detection means as a neutral angle during vehicle travel, and an operation detected by the operation angle detection means An actual steering angle calculating means for calculating the actual steering angle of the vehicle based on the angle and the neutral angle stored by the neutral angle storage means.
 この構成によれば、車両の走行時に直進しているか否かは、直進判定手段により判別することができる。車両の直進時には、操作角検出手段から出力される操作角を、車両走行時の中立角として中立角記憶手段により更新可能に記憶することができる。一方、実操舵角演算手段は、前記操作角検出手段によって検出されたる操作角と前記中立角記憶手段によって記憶された中立角とに基づいて、車両走行時の実操舵角(操舵輪の実際の操舵角)を演算により安定して求めることができる。 According to this configuration, it is possible to determine whether or not the vehicle is traveling straight when the vehicle is traveling by the straight traveling determination unit. When the vehicle is traveling straight, the operation angle output from the operation angle detection unit can be stored as a neutral angle during vehicle travel by the neutral angle storage unit so as to be updatable. On the other hand, the actual steering angle calculation means is based on the operation angle detected by the operation angle detection means and the neutral angle stored by the neutral angle storage means. Steering angle) can be obtained stably by calculation.
 即ち、本発明は、車両の直進時に操作角検出手段から出力される操作角を、車両走行時の中立角として更新可能に記憶することにより、この更新された中立角を基準として車両の実操舵角を演算により求める構成である。この結果、車両の操舵輪(例えば、前輪)が実際に舵取りされた操舵角を、演算により求めた実操舵角と一致させることができ、この実操舵角を用いて車両の舵取り制御を安定して行うことができる。また、本発明によれば、車両の操舵輪となる前輪側の操舵角を直接検出するための高分解能なセンサを車両の下部側に設ける必要がなくなるので、車両の実操舵角を求めるための構成を簡素にでき、スペースの有効活用を図ることができる他に、高分解能のセンサを設けなくて済む分、コストも低減できる。 That is, according to the present invention, the operation angle output from the operation angle detection means when the vehicle is traveling straight is stored in an updatable manner as the neutral angle when the vehicle is traveling, so that the actual steering of the vehicle is performed based on the updated neutral angle. In this configuration, the angle is obtained by calculation. As a result, the steering angle at which the steering wheel (for example, the front wheel) of the vehicle is actually steered can be made to coincide with the actual steering angle obtained by calculation, and the steering control of the vehicle can be stabilized using this actual steering angle. Can be done. Further, according to the present invention, it is not necessary to provide a high-resolution sensor on the lower side of the vehicle for directly detecting the steering angle on the front wheel side which is the steering wheel of the vehicle, so that the actual steering angle of the vehicle is obtained. In addition to simplifying the configuration and making effective use of the space, it is possible to reduce costs by eliminating the need for a high-resolution sensor.
(2).本発明によると、前記実操舵角演算手段は、前記操作角検出手段によって検出された操作角と前記中立角記憶手段によって記憶された中立角との角度差を演算し、この角度差により前記車両の実操舵角を求める構成としている。 (2). According to the present invention, the actual steering angle calculation means calculates an angle difference between the operation angle detected by the operation angle detection means and the neutral angle stored by the neutral angle storage means, and based on this angle difference, the vehicle The actual steering angle is obtained.
 この構成によれば、操舵角演算手段は、操作角検出手段による操作角と中立角記憶手段による中立角との角度差により車両の実操舵角を求めるので、複雑な演算をすることなく車両の実操舵角を安定して求めることができる。 According to this configuration, the steering angle calculation means obtains the actual steering angle of the vehicle from the angle difference between the operation angle by the operation angle detection means and the neutral angle by the neutral angle storage means. The actual steering angle can be obtained stably.
(3).また、本発明によると、前記直進判定手段は、前記操作角検出手段により検出される前記操作角が予め決められた所定時間にわたって変化するか否かを監視することにより前記車両の直進を判定する構成とし、前記中立角記憶手段は、前記所定時間にわたって前記操作角検出手段により検出された前記操作角を前記中立角として記憶する構成としている。 (3). Further, according to the present invention, the straight traveling determination unit determines whether the vehicle is traveling straight by monitoring whether or not the operation angle detected by the operation angle detection unit changes over a predetermined time. The neutral angle storage means stores the operation angle detected by the operation angle detection means over the predetermined time as the neutral angle.
 この構成によれば、直進判定手段は、操作角検出手段により検出される操作角の変化に基づいて車両の直進を判定するので、更なる簡素化と低コスト化とを図ることができる。即ち、車両が直進している状態では、車両の運転者は、操舵ハンドルを操作することなく、一定の操作角を維持した状態を保つ。そこで、直進判定手段は、操舵ハンドルが操作されることなく予め決められた所定時間が経過したか否か、換言すれば操作角検出手段で検出された操作角が実質的に変化することなく所定時間が経過したか否かを監視する。これにより、直進判定手段は、車両が直進走行を行っているか否かを安定して判定することができる。 According to this configuration, the straight travel determination means determines straight travel of the vehicle based on the change in the operation angle detected by the operation angle detection means, so that further simplification and cost reduction can be achieved. That is, when the vehicle is traveling straight, the vehicle driver maintains a state in which a constant operation angle is maintained without operating the steering wheel. Therefore, the straight traveling determination means determines whether or not a predetermined time has passed without the steering handle being operated, in other words, the operation angle detected by the operation angle detection means is not changed substantially. Monitor whether time has passed. Thereby, the straight-ahead determination unit can stably determine whether or not the vehicle is traveling straight ahead.
(4).本発明は、前記車両の走行時のヨーレート(車両の重心垂直軸回りの回転角速度)を検出するヨーレート検出手段を備え、前記直進判定手段は、前記ヨーレート検出手段によって検出された検出信号に基づいて前記車両が直進しているか否かを判定する構成としている。 (4). The present invention includes a yaw rate detection means for detecting a yaw rate (rotational angular velocity about the vertical axis of the center of gravity of the vehicle) during travel of the vehicle, and the straight travel determination means is based on a detection signal detected by the yaw rate detection means. It is configured to determine whether or not the vehicle is traveling straight.
 この構成によれば、ヨーレート検出手段により検出されたヨーレートに基づいて車両が直進しているか否かを判定するので、車両が直進しているか否かの判定をヨーレートに基づいて正確に、安定して行うことができる。特に、ヨーレート検出手段は、車両の運転室内等に設けることができるので、車両の下部等のように飛び石、土砂、泥水、塵埃等にさらされることはない。このため、ヨーレート検出手段に特別な保護手段を設ける必要がなく、従来技術の操舵角センサ等に比較して簡素な構造で、かつ低コストに構成できる。 According to this configuration, since it is determined whether or not the vehicle is traveling straight on the basis of the yaw rate detected by the yaw rate detecting means, the determination whether or not the vehicle is traveling straight is accurately and stably determined based on the yaw rate. Can be done. In particular, since the yaw rate detecting means can be provided in the driver's cabin of the vehicle, it is not exposed to stepping stones, earth and sand, muddy water, dust, etc. unlike the lower part of the vehicle. For this reason, it is not necessary to provide a special protection means for the yaw rate detection means, and it can be configured with a simple structure and at a low cost as compared with the steering angle sensor of the prior art.
(5).本発明は、車両が直進しているか否かを検出する直進検出スイッチを備え、前記直進判定手段は、前記直進検出スイッチからの検出信号に基づいて前記車両が直進しているか否かを判定する構成としている。 (5). The present invention includes a rectilinear detection switch for detecting whether or not the vehicle is traveling straight, and the rectilinear determination means determines whether or not the vehicle is traveling straight based on a detection signal from the rectilinear detection switch. It is configured.
 このように構成することにより、車両が直進しているか否かの判定を直進検出スイッチからの検出信号(例えば、ON-OFF信号)により行うことができる。特に、直進検出スイッチは、単純なON-OFF構造のスイッチとして構成できるので、車両の下部に設けた場合でも、その耐久性、寿命を高めることができ、特別な保護手段等を不要にすることができる。 With this configuration, it is possible to determine whether or not the vehicle is traveling straight by a detection signal (for example, an ON-OFF signal) from the straight travel detection switch. In particular, since the straight detection switch can be configured as a simple ON-OFF switch, its durability and life can be improved even when it is provided at the bottom of the vehicle, and no special protective means is required. Can do.
(6).本発明によると、前輪と後輪とを有した自走可能な車体と、該車体上に後部側を支点として傾転可能に設けられ運搬対象物が積載される荷台と、該荷台の前側に位置して前記車体に設けられ内部に運転室を画成するキャブと、前記荷台と車体との間に設けられ前記運搬対象物を荷台から排出するときに該荷台を後方へと傾斜させるホイストシリンダとを備え、前記キャブ内には前記操舵ハンドルを設け、前記前輪には前記ステアリングシリンダを設け、前記ステアリングバルブは前記車体に設ける構成としている。 (6). According to the present invention, a self-propelled vehicle body having a front wheel and a rear wheel, a loading platform provided on the vehicle body so as to be tiltable with the rear side as a fulcrum and on which a transportation object is loaded, and on the front side of the loading platform A cab located in the vehicle body and defining a driver's cab inside, and a hoist cylinder provided between the cargo bed and the vehicle body and tilting the cargo bed backward when discharging the object to be transported from the cargo bed The steering wheel is provided in the cab, the steering cylinder is provided in the front wheel, and the steering valve is provided in the vehicle body.
本発明の第1の実施の形態による操舵装置が適用されたダンプトラックを示す正面図である。1 is a front view showing a dump truck to which a steering device according to a first embodiment of the present invention is applied. ダンプトラックの操舵装置を走行用モータ、後輪等を含んで示す構成図である。It is a block diagram which shows the steering device of a dump truck including a motor for driving, a rear wheel, etc. コントローラによる直進判定処理、中立角記憶処理、実操舵角演算処理等を示す流れ図である。It is a flowchart which shows the straight-ahead determination process by a controller, a neutral angle memory | storage process, an actual steering angle calculation process, etc. 本発明の第2の実施の形態による操舵装置を走行用モータ、後輪等を含んで示す図2と同様な構成図である。FIG. 3 is a configuration diagram similar to FIG. 2 illustrating a steering device according to a second embodiment of the present invention including a traveling motor, a rear wheel, and the like. コントローラによる直進判定処理、中立角記憶処理、実操舵角演算処理等を示す図3と同様な流れ図である。FIG. 4 is a flowchart similar to FIG. 3 showing a straight-ahead determination process, a neutral angle storage process, an actual steering angle calculation process, and the like by a controller. 本発明の第3の実施の形態による操舵装置を走行用モータ、後輪等を含んで示す図2と同様な断面図である。It is sectional drawing similar to FIG. 2 which shows the steering device by the 3rd Embodiment of this invention including a motor for driving, a rear wheel, etc. 図6中の直進検出スイッチ、ステアリングシリンダ等を示す取付状態図である。It is an attachment state figure which shows the straight detection switch, steering cylinder, etc. in FIG. コントローラによる直進判定処理、中立角記憶処理、実操舵角演算処理等を示す図3と同様な流れ図である。FIG. 4 is a flowchart similar to FIG. 3 showing a straight-ahead determination process, a neutral angle storage process, an actual steering angle calculation process, and the like by a controller.
 以下、本発明に係る車両用操舵装置の実施の形態を、鉱山等で採掘した砕石物を運搬するダンプトラックに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。 Hereinafter, the embodiment of the vehicle steering apparatus according to the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case where the embodiment is applied to a dump truck that transports crushed stones mined in a mine or the like.
 まず、図1ないし図3は本発明に係る車両用操舵装置の第1の実施の形態を示している。図中、1は車両(大型の運搬車両)としてのダンプトラックで、該ダンプトラック1は、図1に示すように頑丈なフレーム構造をなす車体2と、該車体2上に後部側を支点として傾転(起伏)可能に搭載された荷台としてのベッセル3とにより大略構成されている。 First, FIGS. 1 to 3 show a first embodiment of a vehicle steering system according to the present invention. In the figure, reference numeral 1 denotes a dump truck as a vehicle (large transport vehicle). The dump truck 1 includes a vehicle body 2 having a sturdy frame structure as shown in FIG. 1, and a rear side on the vehicle body 2 as a fulcrum. It is roughly constituted by a vessel 3 as a loading platform mounted so as to be capable of tilting (raising and falling).
 ベッセル3は、例えば砕石物からなる重い運搬対象物(以下、砕石4という)を多量に積載するため全長が10~13メートルにも及ぶ大型の容器として形成され、その後側底部が、車体2の後端側に連結ピン5を介して傾転可能に連結されている。また、ベッセル3の前側上部には、後述のキャブ6を上側から覆う庇部3Aが一体に設けられている。 The vessel 3 is formed as a large container having a total length of 10 to 13 meters in order to load a large amount of a heavy transport object (hereinafter referred to as a crushed stone 4) made of crushed stone, for example. It is connected to the rear end side via a connecting pin 5 so as to be tiltable. Further, on the upper front side of the vessel 3, a flange 3 </ b> A that covers a cab 6 described later from above is integrally provided.
 即ち、ベッセル3の底部側は、車体2の後部側に連結ピン5を用いて回動可能に支持されている。ベッセル3の前部側(庇部3A側)は、後述のホイストシリンダ9を伸長または縮小させることにより、連結ピン5を支点として上,下方向に回動(昇降)される。 That is, the bottom side of the vessel 3 is rotatably supported by the connecting pin 5 on the rear side of the vehicle body 2. The front side (the flange 3A side) of the vessel 3 is rotated (lifted / lowered) upward and downward with the connecting pin 5 as a fulcrum by extending or contracting a hoist cylinder 9 described later.
 6はベッセル3の前側に位置して車体2の前部に設けられたキャブで、該キャブ6は、ダンプトラック1の運転者(オペレータ)が乗降する運転室を形成している。キャブ6内には、運転席、起動スイッチ、アクセルペダル、ブレーキペダル(いずれも図示せず)、後述の操舵ハンドル16等が設けられている。 6 is a cab located on the front side of the vessel 3 and provided at the front part of the vehicle body 2, and the cab 6 forms a driver's cab where a driver (operator) of the dump truck 1 gets on and off. In the cab 6, a driver's seat, a start switch, an accelerator pedal, a brake pedal (all not shown), a steering handle 16 described later, and the like are provided.
 ベッセル3の庇部3Aは、キャブ6を上側からほぼ完全に覆うことにより、例えば岩石等の飛び石からキャブ6を保護すると共に、車両(ダンプトラック1)の転倒時等にもキャブ6内の運転者を保護する機能を有している。 The collar 3A of the vessel 3 covers the cab 6 almost completely from the upper side, thereby protecting the cab 6 from a stepping stone such as a rock, and driving the cab 6 when the vehicle (dump truck 1) falls. It has a function to protect the person.
 7は車体2の前部側に回転可能に設けられた左,右の前輪を示し、該前輪7は、後述の後輪8と同様に、例えば2~4メートルに及ぶタイヤ径(外径寸法)をもって形成されている。これらの左,右の前輪7は、ダンプトラック1の運転者が後述の操舵ハンドル16を操作したときに、ステアリングシリンダ18の伸長,縮小動作に伴って舵取り操作されるものである。 Reference numeral 7 denotes left and right front wheels that are rotatably provided on the front side of the vehicle body 2. The front wheels 7 have a tire diameter (outside diameter dimension) of, for example, 2 to 4 meters, as in the case of the rear wheel 8 described later. ). These left and right front wheels 7 are steered as the steering cylinder 18 extends and contracts when the driver of the dump truck 1 operates a steering handle 16 described later.
 8は車体2の後部側に回転可能に設けられた左,右の後輪を示し、該後輪8は、ダンプトラック1の駆動輪を構成し、後述の走行用モータ12により回転駆動される。ダンプトラック1は、左,右の後輪8を回転駆動することにより、路上走行を行うものである。 Reference numeral 8 denotes left and right rear wheels rotatably provided on the rear side of the vehicle body 2. The rear wheels 8 constitute drive wheels of the dump truck 1 and are driven to rotate by a travel motor 12 described later. . The dump truck 1 travels on the road by driving the left and right rear wheels 8 to rotate.
 9は車体2とベッセル3との間に伸長,縮小可能に設けられた左,右一対のホイストシリンダ(図1中に1個のみ図示)で、該ホイストシリンダ9は、上,下方向に伸縮することにより、連結ピン5を支点としてベッセル3を傾転(起伏)させるものである。 Reference numeral 9 denotes a pair of left and right hoist cylinders (only one is shown in FIG. 1) provided between the vehicle body 2 and the vessel 3 so as to be able to expand and contract. The hoist cylinder 9 is expanded and contracted upward and downward. By doing so, the vessel 3 is tilted (raised) with the connecting pin 5 as a fulcrum.
 10はベッセル3の下方に位置して車体2の側面に取付けられた作動油タンクで、該作動油タンク10は、内部に作動油(油液)を収容している。そして、作動油タンク10内に収容した作動油は、後述の油圧ポンプ15により圧油となってホイストシリンダ9、後述のステアリングシリンダ18等に供給、排出される。 10 is a hydraulic oil tank that is located below the vessel 3 and is attached to the side surface of the vehicle body 2. The hydraulic oil tank 10 contains hydraulic oil (oil) therein. Then, the hydraulic oil stored in the hydraulic oil tank 10 is supplied and discharged to the hoist cylinder 9, a steering cylinder 18, which will be described later, and the like by the hydraulic pump 15 which will be described later.
 11はキャブ6の下側に位置して車体2内に設けられるエンジンで、該エンジン11は、例えば大型のディーゼルエンジンにより構成されている。そして、このエンジン11は、主発電機(図示せず)を駆動して3相交流の電力(例えば、1500kW程度)を発生させると共に、後述の油圧ポンプ15等を回転駆動し、ホイストシリンダ9、後述のステアリングシリンダ18等に圧油を供給、排出させる機能も有している。 11 is an engine provided in the vehicle body 2 located below the cab 6, and the engine 11 is composed of, for example, a large diesel engine. The engine 11 drives a main generator (not shown) to generate three-phase AC power (for example, about 1500 kW), and rotationally drives a hydraulic pump 15 and the like which will be described later. It also has a function of supplying and discharging pressure oil to a steering cylinder 18 described later.
 12は車体2にアクセルハウジング(図示せず)を介して設けられた1対の走行用モータを示している。ここで、該各走行用モータ12は、主発電機からモータ制御装置13を介して供給される電力によって回転駆動されるもので、大型の電動モータにより構成されている。 12 indicates a pair of traveling motors provided on the vehicle body 2 via an accelerator housing (not shown). Here, each traveling motor 12 is rotationally driven by the electric power supplied from the main generator via the motor control device 13, and is constituted by a large electric motor.
 また、各走行用モータ12は、モータ制御装置13によりそれぞれ独立して回転駆動されるものであり、このモータ制御装置13には、後述のコントローラ20からの制御信号が入力される。モータ制御装置13は、この制御信号に基づいて、車両の直進時に左,右の後輪8の回転速度を同じにしたり、旋回時に旋回方向に応じて左,右の後輪8の回転速度を異ならせる等の制御を行うように構成されている。 Further, each traveling motor 12 is rotationally driven independently by a motor control device 13, and a control signal from a controller 20 described later is input to the motor control device 13. Based on this control signal, the motor control device 13 makes the rotation speeds of the left and right rear wheels 8 the same when the vehicle goes straight, or changes the rotation speeds of the left and right rear wheels 8 according to the turning direction when turning. It is configured to perform control such as making them different.
 次に、第1の実施の形態の主要部である操舵装置14の構成について説明する。 Next, the configuration of the steering device 14 that is a main part of the first embodiment will be described.
 この操舵装置14は、運転者の操舵ハンドル16の操作に応じて操舵輪である前輪7の向きを、油圧力を利用して軽い操作力で変えられるようにしたパワーステアリング(動力舵取り装置)である。ここで、操舵装置14は、後述の油圧ポンプ15、操舵ハンドル16、ステアリングバルブ17、ステアリングシリンダ18、回転センサ19、コントローラ20等を含んで構成されている。 This steering device 14 is a power steering (power steering device) in which the direction of the front wheel 7 which is a steered wheel can be changed with a light operating force using oil pressure in accordance with the operation of the steering handle 16 by the driver. is there. Here, the steering device 14 includes a hydraulic pump 15, a steering handle 16, a steering valve 17, a steering cylinder 18, a rotation sensor 19, a controller 20, and the like which will be described later.
 15はエンジン11の近傍に設けられた油圧ポンプで、該油圧ポンプ15は、エンジン11によって回転駆動され、後述のステアリングシリンダ18に圧油を供給するものである。 15 is a hydraulic pump provided in the vicinity of the engine 11, and the hydraulic pump 15 is rotationally driven by the engine 11 to supply pressure oil to a steering cylinder 18 described later.
 16はキャブ6内に設けられ、運転者が舵取り操作する操舵ハンドル(ステアリングホイール)で、該操舵ハンドル16は、運転者が把持してハンドル軸16Aを左,右に回動することにより、車両のステアリング操作を行うものである。 Reference numeral 16 denotes a steering handle (steering wheel) which is provided in the cab 6 and is steered by the driver. The steering handle 16 is gripped by the driver and rotates the handle shaft 16A to the left and right, so that the vehicle The steering operation is performed.
 17は操舵ハンドル16の操作に応じて後述のステアリングシリンダ18への圧油の供給、排出を制御するステアリングバルブである。このステアリングバルブ17は、バルブハウジング17Aと、該バルブハウジング17A内に設けられたスプール弁(図示せず)とを含んで構成されている。 17 is a steering valve for controlling the supply and discharge of pressure oil to a steering cylinder 18 which will be described later in accordance with the operation of the steering handle 16. The steering valve 17 includes a valve housing 17A and a spool valve (not shown) provided in the valve housing 17A.
 ここで、バルブハウジング17内のスプール弁は、ハンドル軸16Aに連結され、操舵ハンドル16の回動操作に応じて切換操作される。このとき、前記油圧ポンプ15からの圧油は、ステアリングバルブ17の切換操作に応じて流量と、圧油の供給方向とが制御される。 Here, the spool valve in the valve housing 17 is connected to the handle shaft 16A, and is switched according to the turning operation of the steering handle 16. At this time, the flow rate of the pressure oil from the hydraulic pump 15 and the supply direction of the pressure oil are controlled according to the switching operation of the steering valve 17.
 18はステアリングバルブ17を通じて供給、排出される圧油により車両の操舵を行う1対のステアリングシリンダである。この各ステアリングシリンダ18は、前輪7側に設けられ、左,右の前輪7に対して油圧力による操舵力を付加するものである。 18 is a pair of steering cylinders for steering the vehicle by the pressure oil supplied and discharged through the steering valve 17. Each steering cylinder 18 is provided on the front wheel 7 side, and applies a steering force by oil pressure to the left and right front wheels 7.
 即ち、左,右のステアリングシリンダ18は、図2に示すように、油圧ポンプ15からの圧油がステアリングバルブ17、油圧通路21を介して供給されることにより伸縮動作する。そして、左,右の前輪7は、それぞれのステアリングシリンダ18の伸縮により舵取り方向に動かされる。 That is, as shown in FIG. 2, the left and right steering cylinders 18 extend and contract when pressure oil from the hydraulic pump 15 is supplied via the steering valve 17 and the hydraulic passage 21. The left and right front wheels 7 are moved in the steering direction by the expansion and contraction of the respective steering cylinders 18.
 19は操舵ハンドル16の操作角Aを検出する操作角検出手段としての回転センサで、該回転センサ19は、例えば電磁ピックアップ式または光学式の回転検出器等により構成されている。この回転センサ19は、操作ハンドル16の操作角Aをハンドル軸16Aの回転角Aとして検出し、その回転検出信号を後述のコントローラ20に出力するものである。 19 is a rotation sensor as an operation angle detection means for detecting the operation angle A of the steering handle 16, and the rotation sensor 19 is constituted by, for example, an electromagnetic pickup type or an optical rotation detector. The rotation sensor 19 detects an operation angle A of the operation handle 16 as a rotation angle A of the handle shaft 16A, and outputs a rotation detection signal to a controller 20 described later.
 20はマイクロコンピュータ等により構成される制御装置としてのコントローラで、該コントローラは、本発明の構成要件である直進判定手段、中立角記憶手段および実操舵角演算手段等を含んで構成されている。ここで、コントローラ20は、入力側が回転センサ19に接続され、出力側はモータ制御装置13に接続されている。 Reference numeral 20 denotes a controller as a control device constituted by a microcomputer or the like, and the controller includes a straight traveling determination means, a neutral angle storage means, an actual steering angle calculation means, and the like which are constituent features of the present invention. Here, the controller 20 has an input side connected to the rotation sensor 19 and an output side connected to the motor control device 13.
 一方、コントローラ20は、ROM,RAM(不揮発性のメモリを含む)等からなる中立角記憶手段としてのメモリ20Aを有している。コントローラ20のメモリ20Aには、後述の図3に示す中立角An、閾値Da、所定時間Cs、メモリ値Aom、メモリ値Anm等が格納されている。さらに、コントローラ20のメモリ20Aには、後述の図3に示す処理、即ち、直進判定処理、中立角記憶処理、実操舵角演算処理を行うプログラム等が格納されている。 On the other hand, the controller 20 has a memory 20A as a neutral angle storage means composed of ROM, RAM (including nonvolatile memory) and the like. The memory 20A of the controller 20 stores a neutral angle An, a threshold value Da, a predetermined time Cs, a memory value Aom, a memory value Anm, and the like shown in FIG. Further, the memory 20A of the controller 20 stores a program or the like for performing processing shown in FIG. 3 to be described later, that is, straight traveling determination processing, neutral angle storage processing, and actual steering angle calculation processing.
 ここで、直進判定処理は、車両(ダンプトラック1)の走行時に車両が直進しているか否かを判定処理するものである。即ち、回転センサ19により検出される操作角(ハンドル軸16Aの回転角)Aが予め決められた所定時間(例えば、2~8秒の間に)にわたって変化するか否か、より正確には操作角Aの変化量が直進時には無視できる程度の角度である閾値Da(例えば、Da=0.5~1.5度)未満であるか否かを監視することにより、車両の直進を判定するものである。 Here, the straight-ahead determination process is a process for determining whether or not the vehicle is traveling straight when the vehicle (dump truck 1) is traveling. That is, whether or not the operation angle (rotation angle of the handle shaft 16A) A detected by the rotation sensor 19 changes over a predetermined time (for example, between 2 to 8 seconds) is determined more accurately. It is determined whether or not the vehicle is traveling straight by monitoring whether or not the amount of change in angle A is less than a threshold value Da (eg, Da = 0.5 to 1.5 degrees) that is negligible when traveling straight. It is.
 ここで、回転センサ19による操作角Aが所定時間にわたって変化しない場合(例えば、2~8秒の間に操作角Aの変化量が閾値Daよりも小さい場合)には、車両が直進していると判定する。一方、前記所定時間の間に操作角Aが閾値Daを越えて変化した場合には、車両が直進していないと判定する。 Here, when the operation angle A by the rotation sensor 19 does not change over a predetermined time (for example, when the change amount of the operation angle A is smaller than the threshold value Da in 2 to 8 seconds), the vehicle travels straight. Is determined. On the other hand, if the operation angle A changes beyond the threshold value Da during the predetermined time, it is determined that the vehicle is not traveling straight.
 また、中立角記憶処理は、直進判定処理により車両が直進していると判定したときに、回転センサ19で検出した操作角Aを車両の中立角Anとしてメモリ20Aに更新可能に記憶する処理である。即ち、操舵輪となる前輪7が予め正確に取付けられ、前輪側の操舵角と回転センサ19の操作角Aとが一致しているときには、車両の直進時における操作角Aは零度となり、中立角Anも零度としてメモリ20Aに記憶されるものである。 The neutral angle storage process is a process of storing the operation angle A detected by the rotation sensor 19 as the vehicle neutral angle An in the memory 20A in an updatable manner when it is determined that the vehicle is traveling straight by the straight traveling determination process. is there. That is, when the front wheel 7 serving as the steering wheel is accurately mounted in advance and the steering angle on the front wheel side and the operation angle A of the rotation sensor 19 coincide with each other, the operation angle A when the vehicle goes straight becomes zero degrees, and the neutral angle An is also stored in the memory 20A as zero degree.
 また、実操舵角演算処理は、回転センサ19による操作角Aとメモリ20Aに記憶された中立角Anとに基づいて車両の実操舵角Sを演算処理するものである。即ち、実操舵角Sの演算処理は、後述の数2式により、回転センサ19による操作角Aとメモリ20Aに記憶された中立角Anとの角度差(A-An)を演算し、この角度差(A-An)により車両の実操舵角Sを求めるものである。 Further, the actual steering angle calculation process is to calculate the actual steering angle S of the vehicle based on the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20A. That is, the actual steering angle S is calculated by calculating the angle difference (A−An) between the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20A according to the following equation (2). The actual steering angle S of the vehicle is obtained from the difference (A−An).
 即ち、コントローラ20は、上述の様な直進判定処理、中立角記憶処理、実操舵角演算処理を行うことにより、回転センサ19により検出される操舵ハンドル16の操作角Aと、車両が直進していると判定されたときにメモリ20Aに記憶された操作角Aに対応する中立角Anとに基づいて、数2式による車両の実操舵角Sを演算する。 That is, the controller 20 performs the straight traveling determination process, the neutral angle storage process, and the actual steering angle calculation process as described above, so that the operation angle A of the steering handle 16 detected by the rotation sensor 19 and the vehicle travel straight. Based on the neutral angle An corresponding to the operation angle A stored in the memory 20A when it is determined that the actual steering angle S of the vehicle is calculated according to the equation (2).
 さらに、コントローラ20は、この様に演算された実操舵角Sに基づいて、左,右の走行用モータ12の目標回転速度を演算し、各走行用モータ12の回転速度が目標回転速度に達するようにこれら各走行用モータ12を制御するための制御信号をモータ制御装置13に出力する。この結果、モータ制御装置13は、コントローラ20の制御信号に基づいて、例えば車両の直進時に左,右の後輪8の回転速度を同じにしたり、旋回時に旋回方向に応じて左,右の後輪8の回転速度を異ならせる等の制御を行う。 Further, the controller 20 calculates the target rotational speeds of the left and right traveling motors 12 based on the actual steering angle S thus calculated, and the rotational speeds of the respective traveling motors 12 reach the target rotational speeds. Thus, a control signal for controlling each of the traveling motors 12 is output to the motor control device 13. As a result, based on the control signal from the controller 20, the motor control device 13 makes the left and right rear wheels 8 have the same rotational speed when the vehicle goes straight, or the left and right rear according to the turning direction when turning. Control such as varying the rotation speed of the wheel 8 is performed.
 第1の実施の形態によるダンプトラック1は、上述の如き構成を有するもので、次に、その作動について説明する。 The dump truck 1 according to the first embodiment has the above-described configuration, and the operation thereof will be described next.
 まず、鉱山等の砕石場では、大型の油圧ショベル(図示せず)を用いて運搬対象の砕石4をベッセル3上に積載する。このとき、ベッセル3は図1に示す運搬位置に配置される。そして、ダンプトラック1は、ベッセル3上に砕石4を多量に積載した状態で、所定の荷降ろし場に向けて砕石4を運搬する。 First, in a quarry such as a mine, a crushed stone 4 to be transported is loaded on the vessel 3 using a large hydraulic excavator (not shown). At this time, the vessel 3 is disposed at the transport position shown in FIG. Then, the dump truck 1 transports the crushed stone 4 toward a predetermined unloading place with a large amount of crushed stone 4 loaded on the vessel 3.
 一方、前記荷降ろし場においては、キャブ6内の運転者が、操作レバー(図示せず)を手動操作することにより、ホイストシリンダ9を伸長させてベッセル3を斜め後方へと傾斜させる。これにより、ベッセル3内の砕石4は、下方へと滑り落ちるようにベッセル3から排出される。 On the other hand, in the unloading place, the driver in the cab 6 manually operates an operation lever (not shown) to extend the hoist cylinder 9 and tilt the vessel 3 obliquely backward. Thereby, the crushed stone 4 in the vessel 3 is discharged from the vessel 3 so as to slide down.
 次に、砕石4の排出が終了すると、運転者が前記操作レバーを手動で操作することにより、ホイストシリンダ9を縮小させる。これにより、ベッセル3は、図1に示す運搬位置へと回動され、車体2上に着座する。ダンプトラック1は、この状態で次の運搬作業に備えるものである。 Next, when the discharge of the crushed stone 4 is completed, the driver manually operates the operation lever to reduce the hoist cylinder 9. Thereby, the vessel 3 is rotated to the transport position shown in FIG. 1 and is seated on the vehicle body 2. The dump truck 1 is prepared for the next transport operation in this state.
 一方、ダンプトラック1が路上走行するときには、キャブ6内の運転者が操舵ハンドル16を左方向または右方向に回動操作すると、ステアリングバルブ17のスプール弁が切換えられる。そして、このスプール弁の切換に応じて、圧油が左,右のステアリングシリンダ18に向けて供給される。これにより、ステアリングシリンダ18は伸長,縮小動作し、左,右の前輪7を舵取り方向に動かすことができる。 On the other hand, when the dump truck 1 travels on the road, when the driver in the cab 6 rotates the steering handle 16 leftward or rightward, the spool valve of the steering valve 17 is switched. In response to the switching of the spool valve, pressure oil is supplied toward the left and right steering cylinders 18. As a result, the steering cylinder 18 extends and contracts, and the left and right front wheels 7 can be moved in the steering direction.
 また、路上走行時に左,右の後輪8を回転駆動する左,右の走行用モータ12は、コントローラ20から出力される実操舵角Sの信号に従ってそれぞれの回転速度が独立して制御される。この場合、回転センサ19により検出される操舵ハンドル16の操作角Aをそのまま車両の操舵角(車輪の操舵角)として用いると、必要とされる制御を安定して行うことができない。このため、車両のステアリング操作時に、前輪7側の操舵角に対応した比率で左,右の後輪8を互いに異なる回転速度をもって回転駆動することができず、車両のステアリング性能を向上することが難しくなる。 Further, the left and right traveling motors 12 that rotationally drive the left and right rear wheels 8 when traveling on the road are independently controlled according to the actual steering angle S signal output from the controller 20. . In this case, if the operation angle A of the steering handle 16 detected by the rotation sensor 19 is used as it is as the vehicle steering angle (wheel steering angle), the required control cannot be stably performed. For this reason, at the time of steering operation of the vehicle, the left and right rear wheels 8 cannot be rotationally driven at different rotational speeds at a ratio corresponding to the steering angle on the front wheel 7 side, thereby improving the steering performance of the vehicle. It becomes difficult.
 そこで、第1の実施の形態では、このような問題を解消するために、図3に示す処理(直進判定処理、中立角記憶処理、実操舵角演算処理)を実行することにより車両の実操舵角Sを演算により求める。さらに、この実操舵角Sの信号を、左,右の走行用モータ12を回転駆動するための制御信号としてコントローラ20からモータ制御装置13に出力するものである。 Therefore, in the first embodiment, in order to solve such a problem, the actual steering of the vehicle is performed by executing the processing shown in FIG. 3 (straight advance determination processing, neutral angle storage processing, actual steering angle calculation processing). The angle S is obtained by calculation. Further, the signal of the actual steering angle S is output from the controller 20 to the motor control device 13 as a control signal for rotationally driving the left and right traveling motors 12.
 即ち、エンジン11の起動により図3に示す処理動作がスタートすると、先ず、ステップ1で初期設定を行う。この初期設定は、時間を計測するカウンタCを0に設定し、直前の操作角Aである直前操作角(回転角)Aoをメモリ値Aomとして読出し、前回の処理による中立角Anをメモリ値Anmとして読出す処理を行う。ここで、このメモリ値Aom、Anmは、前回のプログラムサイクルによる処理でメモリ20Aに記憶されたその時点での、直前の操作角Ao、中立角Anに対応するものである。 That is, when the processing operation shown in FIG. 3 is started by starting the engine 11, first, in step 1, initial setting is performed. In this initial setting, the counter C for measuring time is set to 0, the previous operation angle (rotation angle) Ao, which is the previous operation angle A, is read as the memory value Aom, and the neutral angle An obtained by the previous processing is stored as the memory value Anm. Is read out. Here, the memory values Aom and Anm correspond to the previous operation angle Ao and neutral angle An stored at the time in the memory 20A in the process of the previous program cycle.
 ステップ2では、操舵ハンドル16の操作角(ハンドル軸16Aの回転角)Aを回転センサ19から読込む。ステップ3では、下記の数1式のように、操作角Aと直前の操作角Aoとの差の絶対値が閾値Da(例えば、Da=0.5~1.5度)未満であるか否かを判定する。 In step 2, the operation angle (rotation angle of the handle shaft 16A) A of the steering handle 16 is read from the rotation sensor 19. In step 3, whether or not the absolute value of the difference between the operation angle A and the previous operation angle Ao is less than a threshold value Da (for example, Da = 0.5 to 1.5 degrees), as shown in the following equation (1). Determine whether.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ステップ3で「YES」と判定したときには、ステップ4に移り、現在のカウンタCに1を加えて歩進し(C=C+1)、ステップ5に移る。このステップ5では、現在のカウンタCが所定時間Cs(例えば、Cs=2~8秒程度)にわたって操作角Aが変化したか否かを判定するものである。 If "YES" is determined in the step 3, the process proceeds to a step 4, the current counter C is incremented by 1 (C = C + 1), and the process proceeds to the step 5. In step 5, the current counter C determines whether or not the operation angle A has changed over a predetermined time Cs (for example, Cs = 2 to 8 seconds).
 ステップ5で「YES」と判定したときには、操舵ハンドル16の操作角Aが所定時間Csにわたって実質的に変化していない場合であるから、この場合には車両が直進走行していると判定することができる。 If “YES” is determined in the step 5, it is a case where the operation angle A of the steering wheel 16 has not substantially changed over the predetermined time Cs. In this case, it is determined that the vehicle is traveling straight ahead. Can do.
 そこで、このときにはステップ6に進んで、このときの操作角Aである直前操作角Aoを、車両直進時の中立角Anとしてメモリ20Aに更新可能に記憶する。また、ステップ6では、ステップ2で読込まれた操作角Aを直前操作角Aoとして更新し、さらにカウンタCを零リセットする。 Therefore, at this time, the routine proceeds to step 6 where the immediately previous operation angle Ao, which is the operation angle A at this time, is stored in the memory 20A in an updatable manner as the neutral angle An when the vehicle goes straight. In step 6, the operation angle A read in step 2 is updated as the previous operation angle Ao, and the counter C is reset to zero.
 次に、ステップ7では、下記の数2式のように、ステップ2で読込まれた操作角Aと中立角Anとの角度差(A-An)を実操舵角Sとして求める。 Next, in step 7, the difference (A-An) between the operation angle A read in step 2 and the neutral angle An (A-An) is obtained as the actual steering angle S as shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、ステップ8に移り、エンジン11が停止(パワーオフ)されたか否かを判定する。このステップ8で「NO」と判定された場合には、ステップ2に戻る。一方、ステップ8で「YES」と判定された場合には、ステップ9に移り終了処理を行う。この終了処理は、その時点での直前操作角Aoと中立角Anとをメモリ20Aにそれぞれメモリ値Aom、Anmとして記憶するものである。 Next, the process proceeds to step 8 to determine whether or not the engine 11 is stopped (powered off). If “NO” is determined in the step 8, the process returns to the step 2. On the other hand, if "YES" is determined in the step 8, the process proceeds to a step 9 and an end process is performed. In this end processing, the previous operation angle Ao and the neutral angle An at that time are stored in the memory 20A as memory values Aom and Anm, respectively.
 一方、ステップ3で「NO」と判定したときには、操作角Aと直前操作角Aoとの差が閾値Da以上となり、操舵ハンドル16がステアリング操作されている場合である。この場合は、車両は旋回中であり、直進走行していないと判定できるから、ステップ10に移り、直前操作角Aoをステップ2で読込まれた操作角Aに更新すると共に、カウンタCを零リセットし、ステップ7に移る。 On the other hand, when “NO” is determined in Step 3, the difference between the operation angle A and the previous operation angle Ao is equal to or greater than the threshold value Da, and the steering handle 16 is being steered. In this case, since it can be determined that the vehicle is turning and is not traveling straight, the process proceeds to step 10 where the previous operation angle Ao is updated to the operation angle A read in step 2 and the counter C is reset to zero. Then, the process proceeds to Step 7.
 即ち、ステップ3で操作角Aが変化した(車両が直進状態でない)と判定されたため、上述のステップ4~6の処理のよるカウンタの加算、中立角Anの更新、直前操作角Aoの更新を行うことなく、ステップ10で直前操作角Aoを更新すると共にカウンタCを零リセットしてから、ステップ7の実操舵角Sの演算に移る。 That is, since it is determined in step 3 that the operation angle A has changed (the vehicle is not in a straight traveling state), the counter addition, the neutral angle An update, and the previous operation angle Ao are updated by the processing in steps 4 to 6 described above. Without performing this, the previous operation angle Ao is updated in Step 10 and the counter C is reset to zero, and then the operation shifts to the calculation of the actual steering angle S in Step 7.
 また、ステップ5で「NO」と判定したときには、ステップ6を介することなくステップ7に移る。即ち、ステップ5で所定時間Csが経過していないと判定されたため、ステップ6の中立角Anの更新、直前操作角Aoの更新、カウンタCの零リセットを行わずに、ステップ7の実操舵角Sの演算に移る。 If “NO” is determined in Step 5, the process proceeds to Step 7 without going through Step 6. That is, since it is determined in step 5 that the predetermined time Cs has not elapsed, the actual steering angle in step 7 is not performed without updating the neutral angle An in step 6, updating the previous operation angle Ao, and resetting the counter C to zero. Move on to the operation of S.
 このように、第1の実施の形態によれば、車両の作動時にコントローラ20は、図3に示す処理を実行する。即ち、車両の作動時にコントローラ20は、回転センサ19により検出される操舵ハンドル16の操作角(ハンドル軸16Aの回転角)Aと、車両が直進していると判定されたときにメモリ20Aに記憶された操作角Aに対応する中立角Anとに基づいて、車両の実操舵角Sを演算処理する。従って、この実操舵角Sを前輪7側の実際の操舵角として安定して求めることができる。 Thus, according to the first embodiment, the controller 20 executes the process shown in FIG. 3 when the vehicle is in operation. That is, the controller 20 stores the operation angle of the steering handle 16 (rotation angle of the handle shaft 16A) A detected by the rotation sensor 19 and the memory 20A when it is determined that the vehicle is traveling straight when the vehicle is operating. Based on the neutral angle An corresponding to the operated angle A, the actual steering angle S of the vehicle is calculated. Accordingly, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side.
 即ち、車両の直進時に回転センサ19から出力される操作角Aを、車両走行時の中立角Anとして更新可能に記憶することにより、この更新された中立角Anを基準として車両の実操舵角Sを演算により求める構成である。このため、左,右の前輪7が実際に舵取りされた操舵角を、演算により求めた実操舵角Sと一致させることができ、この実操舵角Sを用いて行う車両制御の安定性を向上できる。また、前輪7側の操舵角を直接検出するための高分解能なセンサを車両の下部側に設ける必要がなくなるので、車両の実操舵角Sを求めるための構成を簡素にでき、スペースの有効活用を図ることができる。さらには、高分解能のセンサを設けなくて済む分、コストも低減できる。 That is, by storing the operation angle A output from the rotation sensor 19 when the vehicle is traveling straight as the neutral angle An when the vehicle is traveling, the actual steering angle S of the vehicle based on the updated neutral angle An. Is obtained by calculation. Therefore, the steering angle at which the left and right front wheels 7 are actually steered can be made to coincide with the actual steering angle S obtained by calculation, and the stability of vehicle control performed using the actual steering angle S is improved. it can. In addition, since it is not necessary to provide a high-resolution sensor for directly detecting the steering angle on the front wheel 7 side on the lower side of the vehicle, the configuration for obtaining the actual steering angle S of the vehicle can be simplified, and the space can be used effectively. Can be achieved. Furthermore, the cost can be reduced because a high-resolution sensor is not required.
 一方、コントローラ20は、回転センサ19により検出される操作角Aの変化に基づいて車両の直進を判定するので、更なる簡素化と低コスト化とを図ることができる。即ち、車両の運転者は、車両の直進時に操舵ハンドル16を操作することなく、一定の操作角を維持した状態を保つ。そこで、コントローラ20は、直進判定処理(図3のステップ3~ステップ5の処理)を実行し、操舵ハンドル16が操作されることなく予め決められた所定時間が経過したか否か、即ち回転センサ19で検出した操作角Aが実質的に変化することなく所定時間Csが経過したか否かを監視する。この結果、車両が直進走行を行っているか否かを安定して判定することができる。 On the other hand, since the controller 20 determines straight traveling of the vehicle based on the change of the operation angle A detected by the rotation sensor 19, further simplification and cost reduction can be achieved. That is, the driver of the vehicle maintains a state in which a constant operating angle is maintained without operating the steering handle 16 when the vehicle is traveling straight ahead. Therefore, the controller 20 executes a straight-ahead determination process (the processes of steps 3 to 5 in FIG. 3), and whether or not a predetermined time has passed without the steering handle 16 being operated, that is, a rotation sensor. It is monitored whether or not the predetermined time Cs has elapsed without substantially changing the operating angle A detected at 19. As a result, it can be determined stably whether the vehicle is traveling straight ahead.
 さらに、コントローラ20は、操舵角演算処理(図3のステップ7の処理)を実行し、回転センサ19による操作角Aとメモリ20に記憶されている中立角Anとの角度差(A-An)により車両の実操舵角Sを求めるので、複雑な演算をすることなく車両の実操舵角を安定して求めることができる。 Further, the controller 20 executes a steering angle calculation process (the process of step 7 in FIG. 3), and the angle difference (A−An) between the operation angle A by the rotation sensor 19 and the neutral angle An stored in the memory 20. Thus, the actual steering angle S of the vehicle can be obtained, so that the actual steering angle of the vehicle can be obtained stably without performing complicated calculations.
 次に、図4ないし図5は本発明の第2の実施の形態を示している。本実施の形態の特徴は、車両が直進しているか否かを、車両の走行時のヨーレート(車両の重心垂直軸回りの回転角速度)に基づいて判定する構成としたことにある。なお、第2の実施の形態では、上述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。 Next, FIGS. 4 to 5 show a second embodiment of the present invention. The feature of this embodiment is that it is configured to determine whether or not the vehicle is traveling straight based on the yaw rate (rotational angular velocity around the vertical axis of the center of gravity of the vehicle) when the vehicle is traveling. In the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 図中、31は車体に設けられたヨーレートセンサで、該ヨーレートセンサ31は、例えば車両の運転室内を含む車両の内部に収納して設けられている。このヨーレートセンサ31は、車両の走行時のヨーレートYを検出し、このヨーレートYを表すヨーレート検出信号をコントローラ20に出力するものである。また、このヨーレート検出信号が入力されるコントローラ20は、このヨーレート検出信号の他に、回転センサ19の回転検出信号(操作角Aに対応する信号)に基づいて、図5に示す処理を実行することにより、車両の実操舵角Sを演算する。以下、図5に示す処理を説明する。 In the figure, reference numeral 31 denotes a yaw rate sensor provided on the vehicle body, and the yaw rate sensor 31 is housed and provided in a vehicle including a driver's cab of the vehicle, for example. The yaw rate sensor 31 detects a yaw rate Y when the vehicle is traveling, and outputs a yaw rate detection signal representing the yaw rate Y to the controller 20. Further, the controller 20 to which the yaw rate detection signal is input executes the process shown in FIG. 5 based on the rotation detection signal (signal corresponding to the operation angle A) of the rotation sensor 19 in addition to the yaw rate detection signal. Thus, the actual steering angle S of the vehicle is calculated. Hereinafter, the process shown in FIG. 5 will be described.
 エンジン11の起動により図5に示す処理動作がスタートすると、先ず、ステップ11で初期設定を行う。この初期設定は、前回の処理による中立角Anをメモリ値Anmとして読出す処理を行う。ここで、このメモリ値Anmは、前回のプログラムサイクルによる処理でメモリ20Aに記憶されたその時点での中立角Anに対応するものである。 When the processing operation shown in FIG. 5 is started by starting the engine 11, first, in step 11, initial setting is performed. In this initial setting, the neutral angle An obtained by the previous process is read as the memory value Anm. Here, the memory value Anm corresponds to the neutral angle An at that time stored in the memory 20A by the processing in the previous program cycle.
 次に、ステップ12では、操舵ハンドル16の操作角Aを回転センサ19から読込むと共に、車両のヨーレートYをヨーレートセンサ31から読込み、ステップ13に移る。このステップ13では、ヨーレートYが閾値Dy(ヨーレートYが、それ以上であると車両が直進状態でないと考えられる値)未満であるか否かを判定する。 Next, in step 12, the operation angle A of the steering handle 16 is read from the rotation sensor 19, and the yaw rate Y of the vehicle is read from the yaw rate sensor 31, and the process proceeds to step 13. In this step 13, it is determined whether or not the yaw rate Y is less than a threshold value Dy (a value in which the vehicle is considered not to go straight if the yaw rate Y is greater than this).
 このステップ13で「YES」と判定したときには、車両が直進走行していると判定できるので、ステップ14に進んで、ステップ12で読込まれた操作角Aを、車両直進時の中立角Anとしてメモリ20Aに更新可能に記憶し、ステップ15に移る。 If "YES" is determined in the step 13, it can be determined that the vehicle is traveling straight, so the process proceeds to a step 14, and the operation angle A read in the step 12 is stored as a neutral angle An when the vehicle is traveling straight. 20A is stored in an updatable manner, and the process proceeds to Step 15.
 このステップ15では、上述の第1の実施の形態で述べたステップ7と同様に、ステップ12で読込まれた操作角Aと中立角Anとの角度差(A-An)を実操舵角Sとして求め、ステップ16に移る。 In step 15, as in step 7 described in the first embodiment, the difference (A−An) between the operation angle A read in step 12 and the neutral angle An is set as the actual steering angle S. And go to step 16.
 このステップ16では、上述の第1の実施の形態のステップ8と同様に、エンジン11が停止(パワーオフ)されたか否かを判定する。このステップ16で「NO」と判定された場合には、ステップ12に戻る。一方、ステップ16で「YES」と判定された場合には、ステップ17に移り終了処理を行う。この終了処理は、その時点での中立角Anをメモリ20Aにメモリ値Anmとして記憶するものである。 In step 16, it is determined whether or not the engine 11 has been stopped (powered off) as in step 8 of the first embodiment described above. If “NO” is determined in the step 16, the process returns to the step 12. On the other hand, if "YES" is determined in the step 16, the process proceeds to a step 17 and an end process is performed. In this termination process, the neutral angle An at that time is stored in the memory 20A as the memory value Anm.
 一方、ステップ13で「NO」と判定したときには、車両が直進走行していない(例えば旋回中である)と判定できるので、ステップ14を介することなくステップ15に移る。即ち、車両が直進走行していないと判定されたため、中立角Anの更新を行わずに、ステップ15の実操舵角Sの演算に移る。 On the other hand, when it is determined “NO” in step 13, it can be determined that the vehicle is not traveling straight (for example, turning), so the process proceeds to step 15 without going through step 14. That is, since it is determined that the vehicle is not traveling straight, the neutral angle An is not updated, and the process proceeds to the calculation of the actual steering angle S in step 15.
 第2の実施の形態によると、コントローラ20は、ヨーレートセンサ31が検出するヨーレートYに基づいて車両が直進しているか否かを判定し、さらに、車両が直進していると判定されたときの操作角Aに対応する中立角Anを基準として車両の実操舵角Sを演算する。従って、第2の実施の形態でも、実操舵角Sを前輪7側の実際の操舵角として安定して求めることができ、上述した第1の実施の形態と同様の作用効果を得ることができる。 According to the second embodiment, the controller 20 determines whether or not the vehicle is traveling straight on the basis of the yaw rate Y detected by the yaw rate sensor 31, and further determines that the vehicle is traveling straight. The actual steering angle S of the vehicle is calculated based on the neutral angle An corresponding to the operation angle A. Therefore, also in the second embodiment, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side, and the same effect as the first embodiment described above can be obtained. .
 また、第2の実施の形態では、車両が直進しているか否かの判定を、ヨーレートセンサ31により検出されるヨーレートYに基づいて正確に、安定して行うことができる。特に、ヨーレートセンサ31は、車両の運転室内を含む車両の内部に設ければよく、車両の下部のように飛び石、土砂、泥水、塵埃等にさらされる箇所に設ける必要がない。このため、ヨーレートセンサ31に特別な保護手段を設ける必要がなく、従来技術の操舵角センサ等に比較して簡素な構造で、かつ低コストに構成できる。 In the second embodiment, whether or not the vehicle is traveling straight can be determined accurately and stably based on the yaw rate Y detected by the yaw rate sensor 31. In particular, the yaw rate sensor 31 may be provided inside the vehicle including the driver's cab of the vehicle, and does not need to be provided at a place exposed to stepping stones, earth and sand, muddy water, dust, or the like as in the lower part of the vehicle. For this reason, it is not necessary to provide a special protection means for the yaw rate sensor 31, and it can be configured with a simple structure and at a low cost as compared with the steering angle sensor of the prior art.
 次に、図6ないし図8は本発明の第3の実施の形態を示している。本実施の形態の特徴は、車両が直進しているか否かを直進検出スイッチの検出信号に基づいて判定する構成としたことにある。なお、第3の実施の形態では、上述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。 Next, FIGS. 6 to 8 show a third embodiment of the present invention. The feature of this embodiment is that it is configured to determine whether or not the vehicle is traveling straight on the basis of the detection signal of the straight traveling detection switch. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 図中、41は前輪7を支持するナックルアーム42に設けられた突部で、該突部41は、ナックルアーム42のうち、キングピン43を挟んで前輪7の回転中心とは反対側に突出するように形成されている。 In the figure, 41 is a protrusion provided on a knuckle arm 42 that supports the front wheel 7, and the protrusion 41 protrudes on the opposite side of the rotation center of the front wheel 7 across the king pin 43 of the knuckle arm 42. It is formed as follows.
 44は車両が直進しているか否かを検出する直進検出スイッチで、該直進検出スイッチ44は、ナックルアーム42の突部41に微小隙間を介して対向させた状態で車体2に固定されている。ここで、直進検出スイッチ44は、例えば非接触式の電磁ピックアップ、ホール素子等を用いて構成され、鋼製のナックルアーム42の突部41に対して近接,離間するときの磁界変化により、車両が直進しているか否かをON-OFF信号として検出する。従って、この直進検出スイッチ44は、ON-OFF信号からなる直進検出信号Kをコントローラ20に出力するものである。 Reference numeral 44 denotes a rectilinear detection switch for detecting whether or not the vehicle is traveling straight. The rectilinear detection switch 44 is fixed to the vehicle body 2 in a state of being opposed to the protrusion 41 of the knuckle arm 42 through a minute gap. . Here, the rectilinear detection switch 44 is configured by using, for example, a non-contact type electromagnetic pickup, a Hall element, and the like, and the vehicle changes due to a magnetic field change when approaching and separating from the protrusion 41 of the steel knuckle arm 42. Is detected as an ON-OFF signal. Accordingly, the straight travel detection switch 44 outputs a straight travel detection signal K consisting of an ON-OFF signal to the controller 20.
 即ち、直進検出スイッチ44は、車両が直進している(突部41が近接している)場合はON信号を出力し、車両が旋回している(突部41が離間している)場合はOFF信号を出力する。そして、この直進検出信号Kが入力されるコントローラ20は、この直進検出信号Kの他に、回転センサ19の回転検出信号(操作角Aに対応する信号)等に基づいて、図8に示す処理を実行することにより車両の実操舵角Sを演算する。以下、図8に示す処理を説明する。 That is, the straight detection switch 44 outputs an ON signal when the vehicle is traveling straight (the projection 41 is close), and when the vehicle is turning (the projection 41 is separated). Outputs an OFF signal. Then, the controller 20 to which the straight travel detection signal K is input, based on the rotation detection signal (signal corresponding to the operation angle A) of the rotation sensor 19 in addition to the straight travel detection signal K, the processing shown in FIG. Is executed to calculate the actual steering angle S of the vehicle. Hereinafter, the process shown in FIG. 8 will be described.
 エンジン11の起動により図8に示す処理動作がスタートすると、ステップ21で初期設定を行う。この初期設定は、上述の第2の実施の形態のステップ11と同様に、前回の処理による中立角Anをメモリ値Anmとして読出す処理を行う。 When the processing operation shown in FIG. 8 is started by starting the engine 11, initialization is performed in step 21. In this initial setting, similarly to step 11 of the second embodiment described above, a process of reading the neutral angle An by the previous process as the memory value Anm is performed.
 ステップ22では、回転センサ19から操舵ハンドル16の操作角Aを読込むと共に、直進検出スイッチ44から直進検出信号Kを読込み、ステップ23に移る。このステップ23では、直進検出信号KがON信号であるか否かを判定する。 In step 22, the operation angle A of the steering handle 16 is read from the rotation sensor 19, and the straight-ahead detection signal K is read from the straight-ahead detection switch 44, and the process proceeds to step 23. In step 23, it is determined whether or not the straight detection signal K is an ON signal.
 ステップ23で「YES」と判定したときには、車両が直進走行していると判定できるので、ステップ24に進んで、ステップ22で読込まれた操作角Aを、車両直進時の中立角Anとしてメモリ20Aに更新可能に記憶し、ステップ25に移る。 If "YES" is determined in the step 23, it can be determined that the vehicle is traveling straight, so the process proceeds to the step 24, and the operation angle A read in the step 22 is set as the neutral angle An when the vehicle is traveling straight in the memory 20A. Is stored in an updatable manner, and the process proceeds to Step 25.
 このステップ25では、第1の実施の形態のステップ7と同様に、ステップ22で読込まれた操作角Aと中立角Anとの角度差(A-An)を実操舵角Sとして求め、ステップ26に移る。 In step 25, as in step 7 of the first embodiment, the difference (A−An) between the operation angle A read in step 22 and the neutral angle An is obtained as the actual steering angle S. Move on.
 このステップ26では、第1の実施の形態のステップ8と同様に、エンジン11が停止(パワーオフ)されたか否かを判定する。このステップ26で「NO」と判定された場合には、ステップ22に戻り、「YES」と判定された場合には、ステップ27に移り終了処理を行う。この終了処理は、その時点での中立角Anをメモリ20Aにメモリ値Anmとして記憶するものである。 In step 26, as in step 8 of the first embodiment, it is determined whether or not the engine 11 has been stopped (powered off). If “NO” is determined in the step 26, the process returns to the step 22, and if “YES” is determined, the process proceeds to a step 27 and an end process is performed. In this termination process, the neutral angle An at that time is stored in the memory 20A as the memory value Anm.
 一方、ステップ23で「NO」と判定したときには、車両が直進走行していない(例えば旋回中である)と判定できるので、ステップ24を介することなくステップ25に移る。即ち、車両が直進走行していないと判定されたため、中立角Anの更新を行わずに、ステップ25の実操舵角Sの演算に移る。 On the other hand, if “NO” is determined in Step 23, it can be determined that the vehicle is not traveling straight (for example, turning), and therefore, the process proceeds to Step 25 without going through Step 24. That is, since it is determined that the vehicle is not traveling straight, the neutral angle An is not updated, and the process proceeds to the calculation of the actual steering angle S in step 25.
 第3の実施の形態によるダンプトラック1は、直進検出スイッチ44が検出する直進検出信号Kに基づいて車両が直進しているか否かを判定し、さらに、車両が直進していると判定されたときの操作角Aに対応する中立角Anを基準として車両の実操舵角Sを演算する。従って、第3の実施の形態でも、この実操舵角Sを前輪7側の実際の操舵角として安定して求めることができ、上述した第1の実施の形態と同様の作用効果を得ることができる。 The dump truck 1 according to the third embodiment determines whether or not the vehicle is traveling straight based on the straight traveling detection signal K detected by the straight traveling detection switch 44, and further determines that the vehicle is traveling straight. The actual steering angle S of the vehicle is calculated based on the neutral angle An corresponding to the operation angle A. Therefore, also in the third embodiment, the actual steering angle S can be stably obtained as the actual steering angle on the front wheel 7 side, and the same operational effects as those of the first embodiment described above can be obtained. it can.
 また、第3の実施の形態では、車両が直進しているか否かの判定を直進検出スイッチ44からのON-OFF信号により行うことができる。特に、直進検出スイッチ44は、単純なON-OFF構造のスイッチとして構成できるので、車両の下部に設けた場合でも、その耐久性、寿命を高めることができ、特別な保護手段を不要にすることができる。 In the third embodiment, whether the vehicle is traveling straight can be determined by an ON-OFF signal from the straight traveling detection switch 44. In particular, the straight-ahead detection switch 44 can be configured as a simple ON-OFF switch, so even when it is provided at the bottom of the vehicle, its durability and life can be increased, and no special protection means is required. Can do.
 なお、第1の実施の形態では図3に示すステップ3~ステップ5の処理が、第2の実施の形態では図5に示すステップ13の処理が、第3の実施の形態では図8に示すステップ23の処理が、本発明の構成要件である直進判定手段の具体例を示している。 In the first embodiment, the processing of steps 3 to 5 shown in FIG. 3 is performed, in the second embodiment, the processing of step 13 shown in FIG. 5 is performed, and in the third embodiment, processing is performed as shown in FIG. The process of step 23 shows a specific example of the straight-ahead determination means which is a constituent requirement of the present invention.
 また、第1の実施の形態では図3に示すステップ6の処理が、第2の実施の形態では図5に示すステップ14の処理が、第3の実施の形態では図8に示すステップ24の処理が、本発明の構成要件である中立角記憶手段の具体例を示している。 Further, in the first embodiment, the process of step 6 shown in FIG. 3 is performed, in the second embodiment, the process of step 14 shown in FIG. 5 is performed, and in the third embodiment, the process of step 24 shown in FIG. The processing shows a specific example of the neutral angle storage means which is a constituent requirement of the present invention.
 また、第1の実施の形態では図3に示すステップ7の処理が、第2の実施の形態では図5に示すステップ15の処理が、第3の実施の形態では図8に示すステップ25の処理が、本発明の構成要件である実操舵角演算手段の具体例を示している。 In the first embodiment, the process of step 7 shown in FIG. 3 is performed, in the second embodiment, the process of step 15 shown in FIG. 5 is performed, and in the third embodiment, the process of step 25 shown in FIG. The processing shows a specific example of actual steering angle calculation means which is a constituent requirement of the present invention.
 一方、上述した各実施の形態では、油圧源として油圧ポンプを用いた場合を例に挙げて説明したが、本発明はこれに限るものではなく、例えばアキュムレータを用いる構成としてもよい。この場合には、車両の走行時に油圧ポンプを停止しておくことも可能となる。 On the other hand, in each of the above-described embodiments, the case where a hydraulic pump is used as a hydraulic source has been described as an example. However, the present invention is not limited to this, and for example, an accumulator may be used. In this case, the hydraulic pump can be stopped when the vehicle is traveling.
 さらに、上述した各実施の形態では、車両として大型の運搬車両であるダンプトラックを例に挙げて説明したが、本発明はこれに限るものではなく、例えば小型の運搬車両や乗用車両等の他の車両に搭載する構成としてもよい。 Further, in each of the above-described embodiments, the dump truck, which is a large transport vehicle, has been described as an example. However, the present invention is not limited to this, and for example, other than a small transport vehicle, a passenger vehicle, and the like. It is good also as a structure mounted in this vehicle.
1 ダンプトラック(車両)
14 操舵装置
16 操舵ハンドル
17 ステアリングバルブ
18 ステアリングシリンダ
19 回転センサ(操作角検出手段)
20 コントローラ(直進判定手段、中立角記憶手段、実操舵角演算手段)
20A メモリ(中立角記憶手段)
31 ヨーレートセンサ
44 直進検出スイッチ
1 Dump truck (vehicle)
14 Steering device 16 Steering handle 17 Steering valve 18 Steering cylinder 19 Rotation sensor (operation angle detecting means)
20 controller (straight-ahead determination means, neutral angle storage means, actual steering angle calculation means)
20A memory (neutral angle storage means)
31 Yaw rate sensor 44 Straight line detection switch

Claims (6)

  1.  運転者が舵取り操作する操舵ハンドルと、該操舵ハンドルの操作に応じて圧油の供給、排出を制御するステアリングバルブと、該ステアリングバルブを通じて供給、排出される圧油により車両の操舵を行うステアリングシリンダとを備えてなる車両用操舵装置において、
     前記操舵ハンドルの操作角を検出する操作角検出手段と、
     前記車両の走行時に車両が直進しているか否かを判定する直進判定手段と、
     該直進判定手段により前記車両が直進していると判定したときに、前記操作角検出手段による操作角を車両走行時の中立角として記憶する中立角記憶手段と、
     前記操作角検出手段により検出された操作角と前記中立角記憶手段によって記憶された中立角とに基づいて前記車両の実操舵角を演算する実操舵角演算手段とを有する構成としたことを特徴とする車両用操舵装置。
    Steering handle that the driver steers, a steering valve that controls supply and discharge of pressure oil according to the operation of the steering handle, and a steering cylinder that steers the vehicle by the pressure oil supplied and discharged through the steering valve In a vehicle steering apparatus comprising:
    An operation angle detection means for detecting an operation angle of the steering wheel;
    Straight travel determination means for determining whether or not the vehicle is traveling straight when the vehicle is traveling;
    A neutral angle storage means for storing the operation angle by the operation angle detection means as a neutral angle during vehicle travel when the straight movement determination means determines that the vehicle is moving straight;
    An actual steering angle calculation unit that calculates an actual steering angle of the vehicle based on the operation angle detected by the operation angle detection unit and the neutral angle stored by the neutral angle storage unit is provided. A vehicle steering system.
  2.  前記実操舵角演算手段は、前記操作角検出手段によって検出された操作角と前記中立角記憶手段によって記憶された中立角との角度差を演算し、この角度差により前記車両の実操舵角を求める構成としてなる請求項1に記載の車両用操舵装置。 The actual steering angle calculation means calculates an angle difference between the operation angle detected by the operation angle detection means and the neutral angle stored by the neutral angle storage means, and the actual steering angle of the vehicle is calculated based on the angle difference. The vehicle steering device according to claim 1, wherein the vehicle steering device is configured to be obtained.
  3.  前記直進判定手段は、前記操作角検出手段により検出される前記操作角が予め決められた所定時間にわたって変化するか否かを監視することにより前記車両の直進を判定する構成とし、前記中立角記憶手段は、前記所定時間にわたって前記操作角検出手段により検出された前記操作角を前記中立角として記憶する構成としてなる請求項1または2に記載の車両用操舵装置。 The straight-ahead determination unit is configured to determine whether the vehicle is traveling straight by monitoring whether or not the operation angle detected by the operation angle detection unit changes over a predetermined time, and stores the neutral angle storage The vehicle steering apparatus according to claim 1 or 2, wherein the means is configured to store the operation angle detected by the operation angle detection means over the predetermined time as the neutral angle.
  4.  前記車両の走行時のヨーレートを検出するヨーレート検出手段を備え、前記直進判定手段は、前記ヨーレート検出手段により検出された検出信号に基づいて前記車両が直進しているか否かを判定する構成としてなる請求項1または2に記載の車両用操舵装置。 Yaw rate detection means for detecting the yaw rate during travel of the vehicle is provided, and the straight travel determination means determines whether or not the vehicle is traveling straight based on a detection signal detected by the yaw rate detection means. The vehicle steering apparatus according to claim 1 or 2.
  5.  車両が直進しているか否かを検出する直進検出スイッチを備え、前記直進判定手段は、前記直進検出スイッチからの検出信号に基づいて前記車両が直進しているか否かを判定する構成としてなる請求項1または2に記載の車両用操舵装置。 A straight travel detection switch for detecting whether or not the vehicle is traveling straight is provided, and the straight travel determination means is configured to determine whether or not the vehicle is traveling straight based on a detection signal from the straight travel detection switch. Item 3. The vehicle steering device according to Item 1 or 2.
  6.  前輪と後輪とを有した自走可能な車体と、該車体上に後部側を支点として傾転可能に設けられ運搬対象物が積載される荷台と、該荷台の前側に位置して前記車体に設けられ内部に運転室を画成するキャブと、前記荷台と車体との間に設けられ前記運搬対象物を荷台から排出するときに該荷台を後方へと傾斜させるホイストシリンダとを備え、
     前記キャブ内には前記操舵ハンドルを設け、前記前輪には前記ステアリングシリンダを設け、前記ステアリングバルブは前記車体に設ける構成としてなる請求項1に記載の車両用操舵装置。
    A self-propelled vehicle body having a front wheel and a rear wheel, a cargo bed provided on the vehicle body so as to be tiltable with the rear side as a fulcrum and on which a transport object is loaded, and the vehicle body located on the front side of the cargo bed A cab that defines a cab inside, and a hoist cylinder that is provided between the cargo bed and the vehicle body and tilts the cargo bed backward when discharging the object to be transported from the cargo bed,
    The vehicle steering apparatus according to claim 1, wherein the steering handle is provided in the cab, the steering cylinder is provided in the front wheel, and the steering valve is provided in the vehicle body.
PCT/JP2010/070107 2010-01-07 2010-11-11 Steering device for vehicle WO2011083627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-001955 2010-01-07
JP2010001955 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083627A1 true WO2011083627A1 (en) 2011-07-14

Family

ID=44305367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070107 WO2011083627A1 (en) 2010-01-07 2010-11-11 Steering device for vehicle

Country Status (1)

Country Link
WO (1) WO2011083627A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129090A1 (en) * 2012-02-29 2013-09-06 日立建機株式会社 Steering device for vehicle
CN113942564A (en) * 2020-07-16 2022-01-18 日本电产株式会社 Control device and control method for electric power steering device, and motor module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295980A (en) * 1988-09-30 1990-04-06 Koyo Seiko Co Ltd Steering angle middle point sensing device
JPH05162652A (en) * 1991-12-10 1993-06-29 Mitsubishi Motors Corp Steering wheel neutral point estimating method
JPH07132845A (en) * 1993-11-08 1995-05-23 Mitsubishi Motors Corp Electric power steering with learning function
JP2002087303A (en) * 2000-09-14 2002-03-27 Toyota Industries Corp Steering angle neutral point determining method in steering support device
JP2002104217A (en) * 2000-09-26 2002-04-10 Nippon Yusoki Co Ltd Steering angle sensing device
JP2007106283A (en) * 2005-10-14 2007-04-26 Nsk Ltd Control device of electric power steering device
JP2008037132A (en) * 2006-08-01 2008-02-21 Jtekt Corp Electric power steering device
JP2009262750A (en) * 2008-04-24 2009-11-12 Hitachi Constr Mach Co Ltd Conveying vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295980A (en) * 1988-09-30 1990-04-06 Koyo Seiko Co Ltd Steering angle middle point sensing device
JPH05162652A (en) * 1991-12-10 1993-06-29 Mitsubishi Motors Corp Steering wheel neutral point estimating method
JPH07132845A (en) * 1993-11-08 1995-05-23 Mitsubishi Motors Corp Electric power steering with learning function
JP2002087303A (en) * 2000-09-14 2002-03-27 Toyota Industries Corp Steering angle neutral point determining method in steering support device
JP2002104217A (en) * 2000-09-26 2002-04-10 Nippon Yusoki Co Ltd Steering angle sensing device
JP2007106283A (en) * 2005-10-14 2007-04-26 Nsk Ltd Control device of electric power steering device
JP2008037132A (en) * 2006-08-01 2008-02-21 Jtekt Corp Electric power steering device
JP2009262750A (en) * 2008-04-24 2009-11-12 Hitachi Constr Mach Co Ltd Conveying vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129090A1 (en) * 2012-02-29 2013-09-06 日立建機株式会社 Steering device for vehicle
CN104144844A (en) * 2012-02-29 2014-11-12 日立建机株式会社 Steering device for vehicle
JPWO2013129090A1 (en) * 2012-02-29 2015-07-30 日立建機株式会社 Vehicle steering system
US9272729B2 (en) 2012-02-29 2016-03-01 Hitachi Construction Machinery Co., Ltd. Steering device for vehicle
CN113942564A (en) * 2020-07-16 2022-01-18 日本电产株式会社 Control device and control method for electric power steering device, and motor module

Similar Documents

Publication Publication Date Title
JP5941133B2 (en) Vehicle steering system
US8840189B2 (en) Transporter vehicle
JP4917617B2 (en) Transport vehicle
US9586511B2 (en) Dumping work determination system for haulage vehicle
JP5793199B2 (en) Transport vehicle
CN104723822A (en) Vehicle with automatically leanable wheels
WO2009116329A1 (en) Steering operation device
JP6473239B2 (en) Steering control device for work vehicle
JP4550698B2 (en) Dump truck hydraulic drive
WO2017164056A1 (en) Control method for motor graders and motor grader
WO2019030828A1 (en) Work vehicle control system, method, and work vehicle
WO2011083627A1 (en) Steering device for vehicle
JP7358164B2 (en) Control system, work vehicle control method, and work vehicle
JP7358163B2 (en) Control system, work vehicle control method, and work vehicle
JP7188449B2 (en) industrial vehicle
JP3159057B2 (en) Industrial vehicle control device
JP2006001329A (en) Steering device of industrial vehicle
JP7024637B2 (en) Industrial vehicle
JP7439724B2 (en) unmanned industrial vehicle
WO2023067886A1 (en) Control device for work machine
JPH09309308A (en) Control device of industrial vehicle
CN117241985A (en) Work machine and method for controlling a work machine
JP2022014795A (en) Steering angle control device
JP4518316B2 (en) Industrial vehicle steering device
JP2021031874A (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP