WO2011093608A2 - Biometal strip-type stent for therapy of cerebral aneurysm - Google Patents

Biometal strip-type stent for therapy of cerebral aneurysm Download PDF

Info

Publication number
WO2011093608A2
WO2011093608A2 PCT/KR2011/000307 KR2011000307W WO2011093608A2 WO 2011093608 A2 WO2011093608 A2 WO 2011093608A2 KR 2011000307 W KR2011000307 W KR 2011000307W WO 2011093608 A2 WO2011093608 A2 WO 2011093608A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
wire
region
braided
wires
Prior art date
Application number
PCT/KR2011/000307
Other languages
French (fr)
Korean (ko)
Other versions
WO2011093608A3 (en
Inventor
한문희
고재영
김우경
임성우
정민영
Original Assignee
주식회사 뉴로벤션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 뉴로벤션 filed Critical 주식회사 뉴로벤션
Publication of WO2011093608A2 publication Critical patent/WO2011093608A2/en
Publication of WO2011093608A3 publication Critical patent/WO2011093608A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight

Definitions

  • the present invention relates to a stent for the treatment of cerebrovascular disease (cerebral vascular disorder), specifically inserted into a blood vessel (blood vessel) to maintain normal blood flow and embolism (emboli into the interior of the neovascular aneurysm (neurovascular aneurysm) And stents that block blood flow.
  • cerebrovascular disease Cerebral vascular disorder
  • embolism emboli into the interior of the neovascular aneurysm (neurovascular aneurysm)
  • stents that block blood flow.
  • vascular disease is a term used to refer to a disorder of blood vessels. Sudden cerebrovascular disorder causes local neuropathy symptoms such as loss of consciousness, hemiplegia, and speech impairment, and in severe cases, death. It is a disease.
  • Cerebrovascular disease is represented by ischemic diseases such as cerebral infarction caused by blood circulation disorder due to blood clots accumulated in narrowed cerebral arteries and subarachnoid hemorrhage caused by cerebral aneurysms in which some of the blood vessels swell. There is a hemorrhagic disease.
  • balloon plastic surgery such as a balloon catheter
  • the balloon is fixed to the diseased portion to expand the balloon to expand the vascular disease portion.
  • Surgery of this method has a problem such as causing pain or recurrence of the patient.
  • cerebrovascular disease is a high risk in the case of surgical treatment compared to other organs due to physiological characteristics, minimally invasive treatment method is required instead of direct surgery.
  • a stent formed of a metal mesh is inserted into the stenosis to enlarge the original blood vessel size or prevent embolism and blood flow from entering the cerebral aneurysm.
  • a method using a stent to maintain blood flow is used.
  • stents are used to prevent flow of blood or body fluids and to be inserted into the blocked area according to interventional procedures to normalize the flow or to block additional embolism and blood flow into the cerebral aneurysm if there is a disturbance in the flow of blood or body fluids. It refers to a tubular structure implant in the form of a metal mesh.
  • An example of such a stent is disclosed in US Patent Application Publication No. 2005/0267568, filed May 25, 2005, published December 1, 2005, entitled "FLEXIBLE VASCULAR OCCLUDING DEVICE".
  • Stent intervention a minimally invasive procedure using stents, involves the use of a small catheter, thin wire (guide wire), or stent-delivered delivery wire through a blood vessel under X-ray vision.
  • a metal stent such as to normalize the flow of blood, or block the neck (neck) that is the entrance of the cerebral aneurysm to prevent the inflow of embolism and blood flow to prevent blood flow It is a normalizing treatment.
  • the stent In order for the stent to function stably during the procedure or after insertion into the body, in the case of a stent made of a shape memory material such as nitinol, flexibility and resistance to resistance to blood vessel pressure without collapse of the stent in the vessel Radial resistence must be excellent, and the contact area with blood vessels is small, and uniform structural arrangements are required to minimize the ratio of voids after expansion. In addition, when the stent functions to block the neck of the cerebral aneurysm, characteristics such as embolism and blood flow are increased to prevent the stent from passing through the outer peripheral surface of the stent.
  • a shape memory material such as nitinol
  • FIG. 1 is a view illustrating a stent 1 which blocks a neck portion so that embolism and blood flow do not flow into an aneurysm (AN: aneurysm) where embolism (EM) is accumulated in a cerebrovascular vessel.
  • AN aneurysm
  • EM embolism
  • the stent (1) for treating hemorrhagic vascular disease is to block the neck portion of the cerebral aneurysm (AN) swelling blood vessels that additional embolism and blood flow into the cerebral aneurysm (AN) Prevent.
  • the stent 1 spirally braids multifilament metal yarns, or a plurality of metal strand wires 3 similar to a polymer. It is manufactured by braiding. During braiding, each wire 3 is rotated and wound so as to have a constant wire pitch, so that a void (H: Hole), which is a blank area of the wire 3, exists on the outer peripheral surface of the stent 1.
  • H Hole
  • the void region H has a density that is minimized.
  • a conventional stent since the entire part of the stent is designed and manufactured to have a constant density, shape memory such as Cr-Co alloy, stainless steel, or nitinol used as the main material of the stent is used. In addition to the need for a large amount of alloy, there is a serious problem that the flexibility of the stent is significantly reduced because the stent is made of high density in the portion other than the neck portion, which is the entrance of the cerebral aneurysm.
  • the uniform use of the shape memory alloy made of nitinol prevents the radiopacity of the material, and thus, computed tomography (CT) and magnetic resonance imaging (MRI) during or after the procedure.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • the present invention provides a stent that effectively blocks additional embolism and blood flow into the cerebral aneurysm site while maintaining elasticity, such as anti-pressure resistance, flexibility, and circular resilience required for the stent.
  • the present invention also provides a stent for facilitating positioning in the blood vessel by radiation such as X-rays.
  • the present invention provides a delivery wire inside the catheter having a function of securing a reposition when the stent is not mounted at a desired position.
  • a first embodiment of the present invention includes two or more wires which are rotated in a spiral shape and extended in a longitudinal direction and braided,
  • the wire is densely braided at the center of the stent such that the wire density at the center of the stent is greater than the wire density at both ends of the stent,
  • a stent is provided in which the wire density between both ends of the stent and the center portion of the stent varies continuously.
  • the central portion occupies an area of 20% or more and 50% or less with respect to the length of the stent in the center of the stent.
  • the angle at which the two or more wires cross each other in the central portion is 160 degrees or more.
  • a second embodiment of the present invention includes two or more wires which are rotated and wound in a spiral shape and extended in a longitudinal direction and braided,
  • a fourth region braided to reduce wire density from the third region is
  • a stent is provided that extends from the fourth region and includes a fifth region braided to have a third wire density up to the end of the stent.
  • the first wire density and the third wire density are the same.
  • the third region occupies an area of 20% or more and 50% or less with respect to the length of the stent in the central portion of the stent.
  • an angle at which the two or more wires cross each other in the third region is 160 degrees or more.
  • an angle at which the two or more wires cross each other in the first region and the fifth region is less than 160 degrees.
  • a plurality of wires are braided to rotate in a spiral shape and extend in a longitudinal direction to be braided.
  • the stent is provided with two or more wires and a core portion formed of a radiopaque material is inserted in the center of each of the wires.
  • the core portion has a circular cross section having a diameter of 20% or more and 60% or less of the wire diameter.
  • the radiopaque material is any one of platinum, gold, palladium, or tantalum.
  • the stent is densely braided at the central portion of the stent such that the wire density at the center portion is greater than the wire density at both ends of the stent.
  • the stent according to the present invention can effectively block the inflow of additional embolism and blood flow to the cerebral aneurysm site while maintaining the properties of anti-pressure, flexibility, and elasticity required for the stent.
  • the stent according to the present invention can easily secure the position of the intravascular stent by improving radiopacity.
  • 1 and 2 is a conceptual diagram showing a conventional stent
  • FIG. 3 is a view of a stent according to a first embodiment of the present invention
  • FIG. 4 is a view showing the density change of the stent wire according to the first embodiment of the present invention
  • FIG. 5 is a view of a stent according to a second embodiment of the present invention.
  • FIG. 6 is a view showing the density change of the stent wire according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the wire used in the stent according to the embodiment of the present invention.
  • FIG. 8 is an enlarged view of a portion of another embodiment of a wire used in a stent in accordance with an embodiment of the present invention.
  • FIG 3 is a view of a stent according to a first embodiment of the present invention.
  • the stent 10 according to the first embodiment of the present invention is manufactured by braiding a plurality of wires 13. During braiding, two or more wires 13 are rotated and wound in a spiral shape and extend in the longitudinal direction to form a generally cylindrical mesh shape.
  • the cylindrical stent 1 has a circular cross section perpendicular to the longitudinal direction, which corresponds to the cross sectional shape of the blood vessel.
  • the stent 10 is formed by braiding a plurality of wires 13, and the voids H between the wires 13 may be different from each other on the outer circumferential surface of the stent 10. Low, on the contrary small, means high wire density.
  • the stent 10 used for hemorrhagic cerebrovascular disease has a high density of wire 13 in these portions to prevent additional embolism and blood flow into the intracranial aneurysm (AN). It must be formed.
  • the oblique angle is 160 degrees or more, preferably 161.54 degrees at the portion where the wires 13 cross each other in the central portion CE directly facing the neck of the cerebral aneurysm.
  • the wire 13 is at an obtuse angle of 160 degrees or less, the embolism or the blood flow can move through the gap H between the wires 13, and the efficiency of blocking the embolism or the blood flow is lowered. Can not function as). Since the area of the cerebral aneurysm AN does not come into contact with the neck of the cerebral aneurysm in the region other than the central portion CE, the angle at which the wire 13 intersects may be less than 160 degrees as an obtuse angle.
  • the predetermined distance may be freely selected by those skilled in the art, but the central portion CE, which is in contact with the site of the cerebral aneurysm, should occupy the predetermined distance with the highest density in the stent 10, which is the cerebral aneurysm (AN). It is in order to achieve the function of the stent 10 by preventing direct inflow of embolism and blood flow in direct contact with.
  • the central portion CE may have a blood impermeable density.
  • the central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 10. If the central portion (CE) is reduced to less than 20%, the central portion (CE) of the cerebral aneurysm may not be sufficiently blocked to prevent further embolism and inflow of blood flow. (10) Problems such as waste of material, difficulty in manufacturing, and reduction of elasticity occur.
  • the stent 10 of the present invention is braided into a cylindrical shape having a length of 25.86 mm and a diameter of 5 mm using a wire 13 having a diameter of 0.05 mm.
  • This stent 10 includes A, B, C, and D portions in which the pore area and the wire density vary continuously in the longitudinal direction.
  • the space H where the plurality of wires 13 meets has a rhombus shape, the long diagonal of which is 0.785 mm and the short diagonal is 0.262 It may have a length of mm, and the obtuse angle of the portion where the wire 13 meets may be 143.09 degrees.
  • portion B of the central portion CE of the stent 10 has the smallest width of the void and the highest wire density.
  • the long diagonal of the rhombus has a length of 0.785 mm like A, but the short diagonal has a length of 0.131 mm, so that the void (H) is reduced. You can see that it is reduced to one half (the area formula of the rhombus (long diagonal length) * (short diagonal length) / 2 is half the length of the short diagonal).
  • the central portion CE of the stent 10 may have a predetermined wire density, and may have a density such that blood permeation is limited.
  • the length of the long diagonal line is the same in the rhombus shape of the void H generated by the wire 13, but the short diagonal lines are 0.236 mm each. It gradually decreases from 0.145 mm to the B part of the center (CE).
  • the obtuse angle of the portion where the wire 13 meets in the C portion and the D portion may be 146.53 degrees and 157.24 degrees, respectively.
  • the gap H gradually decreases from the A portion, which is the distal end of the stent 10, to the B portion, which is the center portion, and the wire density is gradually tightened while the wire 13 is gradually wound tightly. It means increasing gradually.
  • the change of the wire density may vary continuously or intermittently in the longitudinal direction of the stent 10.
  • each of the areas in the longitudinal direction of the stent 10 may have different sizes and wire densities of pores (H), Figures 4a and 4b from one end of the stent 10 to the entrance of the central portion (CE)
  • FIG. 4C shows the case where the wire density of the wire 13 changes intermittently.
  • FIG. 4D illustrates a case where the portion where the wire density changes from one end of the stent 10 to the entrance of the central portion CE is limited.
  • the horizontal axis means the length of the stent 10
  • the vertical axis means the wire density.
  • FIG. 4A illustrates a case where an inflection point of the wire density exists in a portion from one end of the stent 10 to the central portion CE
  • FIG. 4B illustrates a case where the inflection point does not exist.
  • A, B, C, and D on the graph indicate the A, B, C, and D portions of FIG.
  • FIG. 4C is a case where the wire density changes in a stepwise manner, in which the wire densities are kept constant in the A, B, C, and D portions, and the wire density is intermittently changed between the portions.
  • the wire density (first density) is kept constant at the end portion of one side of the stent 10 (part A, the first region), and there is an area where the density increases after a predetermined distance (C And part D, the second region), followed by the central portion (part B, the third region) having the highest density (second density).
  • both ends of the stent 10 may be formed symmetrically with respect to the center portion CE, so that the area where the wire density decreases (fourth area) and the other end where the density is maintained constant (third density) again.
  • the intersection of the wires 13 with each other in the third region may be 160 degrees or more at an obtuse angle in consideration of the efficiency of embolization and blood flow blocking, and the first and fifth regions may be cerebral aneurysms (AN). Since it does not touch the neck portion of the neck, the angle at which the wire 13 intersects may be less than 160 degrees at an obtuse angle.
  • AN cerebral aneurysms
  • the predetermined distance can be freely selected by those skilled in the art, but the central portion CE facing the neck of the cerebral aneurysm has the highest wire density in the stent 10 and faces the neck of the cerebral aneurysm while facing the neck of the cerebral aneurysm.
  • the central portion CE may have a density such that blood penetration is limited.
  • the central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 10. In this case, when the central portion (CE) is reduced to less than 20%, the central portion (CE) does not sufficiently block the neck of the cerebral aneurysm, preventing additional embolism and inflow of blood flow, and the central portion (CE) is 50% or more. This results in waste of the stent 10 material, difficulty in manufacturing, and reduction of elasticity.
  • FIG. 5 shows a stent according to a second embodiment of the present invention.
  • the same reference numerals refer to the same members or parts, and the description of the same parts will be omitted.
  • the central portion CE of the stent 20 is formed to have the same high wire density as the B portion of the first embodiment, and in other parts, the A of the first embodiment is used. It is formed to have the same low wire density as the part.
  • the distribution of the wire density is divided into two parts, and the density of the wire 23 is rapidly changed in the area between the two parts.
  • FIG. 6 is a graph illustrating the distribution of wire density according to the second embodiment of the present invention.
  • the angle at which the wires 23 intersect at the portion B may be 160 degrees or more as an obtuse angle, and since the first and fifth regions do not contact the neck portion of the cerebral aneurysm, the wire 23 is The intersecting angle may be less than 160 degrees at an obtuse angle.
  • the predetermined distance between the wires can be freely selected by those skilled in the art, but the central portion CE which comes into contact with the neck of the cerebral aneurysm should occupy the predetermined distance with the highest density in the stent 20. This is to achieve the function of the stent 20 to block the embolus and blood flow into the cerebral aneurysm.
  • the central portion CE may have a wire density such that blood permeation is limited.
  • the central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 20.
  • the central portion (CE) of the stent is not able to effectively block the inflow of embolism and blood flow, when the central portion (CE) is more than 50% of the stent 10 material Waste and manufacturing difficulties arise.
  • the angle at which the wires 13 cross each other is preferably at least 160 degrees at an obtuse angle.
  • the angle at which the wires 13 intersect is less than 160 degrees at an obtuse angle, the embolism and blood flow can move through the gap H between the wires 13, thereby reducing the efficiency of blocking the embolism and blood flow, thereby stent 10 You will not be able to function as.
  • the space H formed by crossing the plurality of wires 23 in the portion B has a rhombus shape, and the length of the long diagonal of the rhombus shape is 0.785 mm, and the length of the short diagonal is Is 0.131 mm, and the angle at which the wires 23 intersect may be 161.54 degrees at an obtuse angle.
  • the central portion CE including the B portion is an area used to block the neck portion of the cerebral aneurysm (AN of FIG. 1), and reduces the length of the short diagonal of the air gap H to penetrate the blood. It may be formed to have a density of a limited degree.
  • the space H formed by crossing the plurality of wires 23 in the portion A has a rhombus shape
  • the long diagonal of the rhombus shape is 0.785 mm
  • the length of the short diagonal is 0.262 mm
  • the wire 23 The angle at which) crosses may be 143.09 degrees with an obtuse angle.
  • the number of wires used in the second embodiment of the present invention may be 32 or 48.
  • the diameter of the wire is 0.002 inch for 32 pieces and 0.0015 inch for 48 pieces.
  • the wire 33 includes a core portion 35 in which a radiopaque material is formed in a central portion thereof.
  • Nitinol which is used as a wire material, is advantageous for securing the stent's elasticity, but it has a disadvantage in that it is difficult to confirm the position of the stent by X-ray radiation during or after the procedure because of high radiotransmittance.
  • the wire 33 of the present invention forms a core portion 35 having a radiopaque material formed in the center thereof.
  • the core portion 35 may have a diameter of 60% or less of the diameter of the wire 33.
  • the core part 35 has a diameter exceeding 60%, the elasticity of the wire 33 may be affected, which may cause the stent to deteriorate.
  • the core part 35 has a diameter of 20% or less of the diameter of the wire 33, it becomes difficult to secure the position of the stent by radiation such as X-rays, and therefore it is preferable to have a diameter of 20% or more.
  • FIG. 8 shows another embodiment of a wire used in a stent according to the above embodiment of the present invention.
  • the stent is braided with a mixture of at least two types of first and second wires 43 and 45, of which the first wire 43 is nitinol and the second wire 45.
  • first and second wires 43 and 45 May be made of any one of the radiopaque material platinum, palladium or tantalum.
  • the second wire 45 using the radiopaque material preferably has a number of 5% to 30% of the total number of wires in the braided stent.
  • the second wire 45 has less than 5% of the total wires, it is difficult to secure the position of the stent by X-rays or the like, and when the second wire 45 has more than 30%, the entire stent 40 Influence of the elasticity of the stent 40 may cause a decrease in function.

Abstract

The stent of the present invention comprises two or more wires which are rotated and coiled in the spiral shape and are extended and braided in the longitudinal direction thereof. The wire is densely braided in the center part of the stent so that the density of wire in the center part of the stent can be greater than that at both ends of the stent. The density of wire changes continuously between both ends of the stent and the center part thereof. Additionally, the stent of the present invention comprises a plurality of wires which are rotated and coiled in the spiral shape and are extended and braided in the longitudinal direction thereof, wherein there are two or more wires and a core portion formed from radiopaque substances is inserted in the center of each wire.

Description

뇌동맥류 치료용 생체 금속 세선형 스텐트Bio-metallic thin stents for the treatment of cerebral aneurysms
본 발명은 뇌혈관질환(cerebral vascular disorder)의 치료를 위한 스텐트에 관한 것으로, 구체적으로 혈관(blood vessel)에 삽입되어 정상적인 혈류의 흐름을 유지하게 하며 뇌동맥류(neurovascular aneurysm) 내부로의 색전(emboli) 및 혈류(blood flow)를 차단하는 스텐트에 관한 것이다. The present invention relates to a stent for the treatment of cerebrovascular disease (cerebral vascular disorder), specifically inserted into a blood vessel (blood vessel) to maintain normal blood flow and embolism (emboli into the interior of the neovascular aneurysm (neurovascular aneurysm) And stents that block blood flow.
일반적으로, 혈관계 질환이란 혈관에 이상이 생긴 질환을 통칭하는 용어로서, 급작스러운 뇌혈류 장애는 의식소실, 반신마비(hemiplegia), 언어장애 등의 국소적 신경장애 증상을 유발하며 심한 경우 사망에 이르게 하는 질병이다. In general, vascular disease is a term used to refer to a disorder of blood vessels. Sudden cerebrovascular disorder causes local neuropathy symptoms such as loss of consciousness, hemiplegia, and speech impairment, and in severe cases, death. It is a disease.
뇌혈관 질환에는 뇌동맥이 좁아진 곳에 혈전이 축적되어 혈관이 막히게 됨에 따라 혈액순환 장애로 인해 발생하는 뇌경색 등과 같은 허혈성 질환과 혈관의 일부가 부풀어 오른 뇌동맥류에 의한 지주막하 출혈(subarachnoid hemorrhage) 등으로 대표되는 출혈성 질환이 있다.Cerebrovascular disease is represented by ischemic diseases such as cerebral infarction caused by blood circulation disorder due to blood clots accumulated in narrowed cerebral arteries and subarachnoid hemorrhage caused by cerebral aneurysms in which some of the blood vessels swell. There is a hemorrhagic disease.
이와 같은 뇌혈관 질환을 치료하기 위해 혈관에 풍선 카테터(balloon catheter)를 이용하여 풍선을 삽입하고, 질환부에 고정시킨 후 풍선을 확장시켜 혈관 질환부를 넓혀주는 등의 풍선 성형술 등이 사용되기도 하나, 이러한 방법의 수술은 환자의 고통 유발이나 재발 등의 문제가 있었다. 또한, 뇌혈관 질환은 생리학적 특성상 다른 장기에 비해 외과적 수술을 통한 치료를 하는 경우, 위험이 크므로, 직접적 수술 대신 최소 침습적인 치료방법이 더 요구된다.In order to treat such cerebrovascular disease, balloon plastic surgery, such as a balloon catheter, is used to insert a balloon into the blood vessel, and the balloon is fixed to the diseased portion to expand the balloon to expand the vascular disease portion. Surgery of this method has a problem such as causing pain or recurrence of the patient. In addition, since cerebrovascular disease is a high risk in the case of surgical treatment compared to other organs due to physiological characteristics, minimally invasive treatment method is required instead of direct surgery.
이러한 문제점을 극복하기 위하여, 금속망(metal mesh)으로 형성된 스텐트(stent)를 협착 혈관에 삽입하여 원래의 혈관크기로 넓혀주거나 뇌동맥류로 색전 및 혈류가 더 이상 유입되지 않도록 함으로써 혈관의 치료 및 정상적인 혈류의 흐름을 유지하게 하는 스텐트를 이용한 방법이 사용되고 있다. In order to overcome this problem, a stent formed of a metal mesh is inserted into the stenosis to enlarge the original blood vessel size or prevent embolism and blood flow from entering the cerebral aneurysm. A method using a stent to maintain blood flow is used.
이러한 스텐트는 혈액이나 체액의 흐름에 장애가 있을 경우, 외과적 수술을 통하지 않고 중재적 시술 기법에 따라 막힌 부위에 삽입하여 흐름을 정상화시키거나 뇌동맥류로의 추가적인 색전 및 혈류의 유입을 차단시키는데 사용되는 금속 그물망 형태의 관형 구조물 임플란트를 말한다. 이러한 스텐트의 예는 2005년 5월 25일 출원되고, 2005년 12월 1일 공개된 "FLEXIBLE VASCULAR OCCLUDING DEVICE"라는 명칭의 미국 특허출원공개 제2005/0267568호에 개시되어 있다. These stents are used to prevent flow of blood or body fluids and to be inserted into the blocked area according to interventional procedures to normalize the flow or to block additional embolism and blood flow into the cerebral aneurysm if there is a disturbance in the flow of blood or body fluids. It refers to a tubular structure implant in the form of a metal mesh. An example of such a stent is disclosed in US Patent Application Publication No. 2005/0267568, filed May 25, 2005, published December 1, 2005, entitled "FLEXIBLE VASCULAR OCCLUDING DEVICE".
스텐트를 이용한 최소 침습 시술법인 스텐트 중재술(stent intervention)은 X선 투시 하에서 혈관을 통하여 작은 도관(micro catheter), 가는 철사(가이드 와이어), 또는 스텐트가 장착된 전달 와이어(delivery wire)를 삽입하여 환부에 접근시킨 후, 혈관 질환부에 금속 스텐트 등으로 통로를 확보하여 혈액의 흐름을 정상화시키거나, 뇌동맥류의 입구가 되는 목(neck) 부분을 막아 색전 및 혈류의 유입을 방지하여 혈액의 흐름을 정상화시키는 치료술이다. Stent intervention, a minimally invasive procedure using stents, involves the use of a small catheter, thin wire (guide wire), or stent-delivered delivery wire through a blood vessel under X-ray vision. After accessing to the vascular disease area, the passage of a metal stent, such as to normalize the flow of blood, or block the neck (neck) that is the entrance of the cerebral aneurysm to prevent the inflow of embolism and blood flow to prevent blood flow It is a normalizing treatment.
스텐트의 시술 시 혹은 체내 삽입 후 스텐트가 안정적으로 제 역할을 다하기 위해서는 나이티놀과 같은 형상기억 소재로 만들어진 스텐트의 경우, 유연성 flexibility) 및 혈관 내에서 스텐트의 붕괴없이 혈관 압력에 견딜 수 있는 항내압성(radial resistence)이 우수해야 하고, 더불어 혈관과의 접촉 면적(coverage)이 작으면서 균일한 구조적 배치를 통해 팽창 후 공극의 비율이 최소화되는 등의 특성이 요구된다. 또한, 스텐트가 뇌동맥류의 목(neck)을 막는 기능을 하는 경우, 색전 및 혈류가 스텐트 외주면을 통과하지 못하도록 밀도를 높이는 것 등의 특성이 요구된다.In order for the stent to function stably during the procedure or after insertion into the body, in the case of a stent made of a shape memory material such as nitinol, flexibility and resistance to resistance to blood vessel pressure without collapse of the stent in the vessel Radial resistence must be excellent, and the contact area with blood vessels is small, and uniform structural arrangements are required to minimize the ratio of voids after expansion. In addition, when the stent functions to block the neck of the cerebral aneurysm, characteristics such as embolism and blood flow are increased to prevent the stent from passing through the outer peripheral surface of the stent.
도 1 및 2를 참조하여 종래의 스텐트에 대하여 설명하면 다음과 같다.Referring to Figures 1 and 2 will be described with respect to the conventional stent.
도 1은 뇌혈관에서 색전(EM: emboli)이 쌓여있는 뇌동맥류(AN: aneurysm)에 색전 및 혈류가 유입되지 못하도록, 목(Neck) 부분을 막는 스텐트(1)가 위치한 것을 도시한 도면이고, 도 2는 스텐트(1)의 확대도이다.FIG. 1 is a view illustrating a stent 1 which blocks a neck portion so that embolism and blood flow do not flow into an aneurysm (AN: aneurysm) where embolism (EM) is accumulated in a cerebrovascular vessel. 2 is an enlarged view of the stent 1.
도시된 바와 같이, 출혈성 혈관질환을 치료하기 위한 스텐트(1)는 혈관이 부풀어오른 뇌동맥류(AN)의 목(Neck) 부분을 차단하여 뇌동맥류(AN)로 색전 및 혈류 등이 추가적으로 유입되는 것을 막는다. As shown, the stent (1) for treating hemorrhagic vascular disease is to block the neck portion of the cerebral aneurysm (AN) swelling blood vessels that additional embolism and blood flow into the cerebral aneurysm (AN) Prevent.
여기서, 도 2에 도시된 바와 같이, 스텐트(1)는 멀티필라멘트 금속사(multifilament metal yarns), 또는 폴리머(polymer)와 유사한 복수의 금속 스트랜드 와이어들(strand wires)(3)를 나선형태로 편조하여(braiding) 제작된다. 편조 동안, 각각의 와이어(3)는 일정한 와이어 피치를 갖도록 회전하여 감기므로, 스텐트(1) 외주면에는 와이어(3)의 공백영역인 공극(H: Hole)이 존재하게 된다. Here, as shown in FIG. 2, the stent 1 spirally braids multifilament metal yarns, or a plurality of metal strand wires 3 similar to a polymer. It is manufactured by braiding. During braiding, each wire 3 is rotated and wound so as to have a constant wire pitch, so that a void (H: Hole), which is a blank area of the wire 3, exists on the outer peripheral surface of the stent 1.
여기서, 뇌혈관의 출혈성 질환에 사용되는 스텐트(1)의 경우에는 뇌동맥류(AN)의 목(Neck) 부분에 스텐트(1)가 위치하면서 목(Neck)을 통한 색전 및 혈류의 유입을 막기 위하여 공극영역(H)이 최소화되는 밀도를 갖는다. Here, in the case of the stent (1) used for hemorrhagic diseases of the cerebrovascular vessels in order to prevent the inflow of embolism and blood flow through the neck while the stent (1) is located in the neck (Neck) of the cerebral aneurysm (AN) The void region H has a density that is minimized.
종래의 스텐트에서는, 스텐트의 전체 부분이 일정한 밀도를 갖도록 설계 및 제작되기 때문에, 스텐트의 주 재료로 사용되는 크롬-코발트 합금(Cr-Co alloy), 스테인레스 스틸 또는 나이티놀(nitinol)과 같은 형상기억합금이 다량 필요할 뿐만 아니라, 뇌동맥류의 입구인 목 부분 외의 부분에서도 스텐트가 높은 밀도로 제작되므로 스텐트의 유연성이 현저히 떨어지는 심각한 문제가 있다.In a conventional stent, since the entire part of the stent is designed and manufactured to have a constant density, shape memory such as Cr-Co alloy, stainless steel, or nitinol used as the main material of the stent is used. In addition to the need for a large amount of alloy, there is a serious problem that the flexibility of the stent is significantly reduced because the stent is made of high density in the portion other than the neck portion, which is the entrance of the cerebral aneurysm.
또한, 일률적으로 나이티놀 재질의 형상기억합금을 사용함으로 인하여 재료의 방사선비투과성(radiopacity)을 담보하지 못함으로써, 시술 중 또는 시술 후에 컴퓨터 단층 X선 사진활영(CT) 및 자기공명 영상(MRI)의 촬영하에서 스텐트의 위치를 확인하기 어렵다는 단점이 있었다. In addition, the uniform use of the shape memory alloy made of nitinol prevents the radiopacity of the material, and thus, computed tomography (CT) and magnetic resonance imaging (MRI) during or after the procedure. There was a disadvantage that it was difficult to check the stent's position under the photography.
그러므로, 본 발명은 스텐트에 필요한 항내압성, 유연성, 및 원형회복력과 같은 탄성을 유지하면서도 뇌동맥류 부위에 추가적인 색전 및 혈류의 유입을 효과적으로 차단하는 스텐트를 제공한다. Therefore, the present invention provides a stent that effectively blocks additional embolism and blood flow into the cerebral aneurysm site while maintaining elasticity, such as anti-pressure resistance, flexibility, and circular resilience required for the stent.
또한, 본 발명은 X선 등의 방사선에 의한 혈관 내 위치확보(positioning)를 용이하게 하는 스텐트를 제공한다.The present invention also provides a stent for facilitating positioning in the blood vessel by radiation such as X-rays.
또한, 본 발명은 스텐트가 원하는 위치에 장착되지 않았을 경우, 재 위치를 확보할 수 있는 기능을 갖는 카테타 내부의 전달 와이어(delivery wire)를 제공한다.In addition, the present invention provides a delivery wire inside the catheter having a function of securing a reposition when the stent is not mounted at a desired position.
본 발명의 제1 실시예에 따르면, 나선형상으로 회전하여 감기며 길이방향으로 연장되어 편조되는 둘 이상의 와이어를 포함하며,According to a first embodiment of the present invention, it includes two or more wires which are rotated in a spiral shape and extended in a longitudinal direction and braided,
상기 와이어는 상기 스텐트 중앙부분의 와이어 밀도가 상기 스텐트 양단의 와이어 밀도보다 크도록 상기 스텐트의 중앙부에서 조밀하게 편조되며, The wire is densely braided at the center of the stent such that the wire density at the center of the stent is greater than the wire density at both ends of the stent,
상기 스텐트 양단과 상기 스텐트 중앙부분 사이의 와이어 밀도는 연속되게 변하는 스텐트가 제공된다. A stent is provided in which the wire density between both ends of the stent and the center portion of the stent varies continuously.
상기 중앙부분은 상기 스텐트의 가운데에서 상기 스텐트의 길이에 대하여 20% 이상 50% 이하의 영역을 점유한다. The central portion occupies an area of 20% or more and 50% or less with respect to the length of the stent in the center of the stent.
또한, 상기 중앙부분에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 이상이다. In addition, the angle at which the two or more wires cross each other in the central portion is 160 degrees or more.
본 발명의 제2 실시예에 따르면, 나선형상으로 회전하여 감기며 길이방향으로 연장되어 편조되는 둘 이상의 와이어를 포함하며,According to a second embodiment of the present invention, it includes two or more wires which are rotated and wound in a spiral shape and extended in a longitudinal direction and braided,
상기 스텐트의 일단으로부터 제 1 와이어 밀도를 갖도록 편조된 제 1 영역과,A first region braided to have a first wire density from one end of the stent,
상기 제 1 영역으로부터 와이어 밀도가 증가하도록 편조된 제 2 영역과,A second region braided from the first region to increase wire density,
상기 제 2 영역과 이어지며, 제 2 와이어 밀도를 갖도록 편조된 상기 스텐트 중앙의 제 3 영역과,A third region in the center of the stent that is connected to the second region and braided to have a second wire density,
상기 제 3 영역으로부터 와이어 밀도가 감소하도록 편조된 제 4 영역과,A fourth region braided to reduce wire density from the third region,
상기 제 4 영역과 이어지며, 상기 스텐트의 끝단까지 제 3 와이어 밀도를 갖도록 편조된 제 5 영역을 포함하는 스텐트가 제공된다.A stent is provided that extends from the fourth region and includes a fifth region braided to have a third wire density up to the end of the stent.
상기 제 1 와이어 밀도와 상기 제 3 와이어 밀도는 동일하다. The first wire density and the third wire density are the same.
상기 제 3 영역은 상기 스텐트의 가운데 부분에서 상기 스텐트의 길이에 대하여 20% 이상 50% 이하의 영역을 점유한다. The third region occupies an area of 20% or more and 50% or less with respect to the length of the stent in the central portion of the stent.
또한, 상기 제 3 영역에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 이상이다. In addition, an angle at which the two or more wires cross each other in the third region is 160 degrees or more.
또한, 상기 제 1 영역 및 상기 제 5 영역에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 미만이다. In addition, an angle at which the two or more wires cross each other in the first region and the fifth region is less than 160 degrees.
본 발명의 제3 실시예에 따르면, 나선형상으로 회전하여 감기며 길이방향으로 연장되어 편조되는 다수의 와이어를 포함하며,According to a third embodiment of the present invention, a plurality of wires are braided to rotate in a spiral shape and extend in a longitudinal direction to be braided.
상기 와이어는 둘 이상이고, 각각의 상기 와이어의 중앙에는 방사선비투과성 물질로 형성된 코어부가 삽입되어 있는 스텐트가 제공된다.The stent is provided with two or more wires and a core portion formed of a radiopaque material is inserted in the center of each of the wires.
상기 코어부는 상기 와이어 직경의 20% 이상 60% 이하의 직경을 갖는 원형단면을 갖는다. The core portion has a circular cross section having a diameter of 20% or more and 60% or less of the wire diameter.
상기 방사선 비투과성물질은 백금, 금, 팔라듐, 또는 탄탈륨 중 어느 하나이다.The radiopaque material is any one of platinum, gold, palladium, or tantalum.
또한, 상기 스텐트는 중앙부분의 와이어 밀도가 상기 스텐트 양단의 와이어 밀도보다 크도록 상기 스텐트의 중앙부분에서 조밀하게 편조된다. In addition, the stent is densely braided at the central portion of the stent such that the wire density at the center portion is greater than the wire density at both ends of the stent.
본 발명에 따른 스텐트는 스텐트에 필요한 항내압성, 유연성, 및 탄성의 성질을 유지하면서도 뇌동맥류 부위에 추가적인 색전 및 혈류의 유입을 효과적으로 차단할 수 있다.The stent according to the present invention can effectively block the inflow of additional embolism and blood flow to the cerebral aneurysm site while maintaining the properties of anti-pressure, flexibility, and elasticity required for the stent.
또한, 본 발명에 따른 스텐트는 방사선비투과성(radiopacity)를 향상시켜 혈관 내 스텐트의 위치를 용이하게 확보할 수 있다. In addition, the stent according to the present invention can easily secure the position of the intravascular stent by improving radiopacity.
도 1 및 2는 종래의 스텐트를 도시한 개념도이고, 1 and 2 is a conceptual diagram showing a conventional stent,
도 3은 본 발명의 제 1 실시예에 따른 스텐트의 도면이고,3 is a view of a stent according to a first embodiment of the present invention,
도 4는 본 발명의 제 1 실시예에 따른 스텐트 와이어의 밀도변화를 나타내는 도면이고,4 is a view showing the density change of the stent wire according to the first embodiment of the present invention,
도 5는 본 발명의 제 2 실시예에 따른 스텐트의 도면이고,5 is a view of a stent according to a second embodiment of the present invention,
도 6는 본 발명의 제 2 실시예에 따른 스텐트 와이어의 밀도변화를 나타내는 도면이고,6 is a view showing the density change of the stent wire according to the second embodiment of the present invention,
도 7는 본 발명의 실시예에 따른 스텐트에 사용되는 와이어의 단면도이고,7 is a cross-sectional view of the wire used in the stent according to the embodiment of the present invention,
도 8은 본 발명의 실시예에 따른 스텐트에 사용되는 와이어의 다른 실시예의 일부 확대도이다.8 is an enlarged view of a portion of another embodiment of a wire used in a stent in accordance with an embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들에 따른 스텐트에 대하여 상세히 설명한다. 이하의 설명에서 동일한 참조번호는 동일한 부재 또는 구성요소를 지칭한다. 이하의 구체적인 실시예는 본 발명에 따른 스텐트에 대하여 예시적으로 설명하는 것일 뿐, 본 발명의 범위를 제한하는 것으로 의도되지 아니한다.Hereinafter, a stent according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the following description refer to like elements or components. The following specific examples are only illustrative of the stent according to the present invention, and are not intended to limit the scope of the present invention.
도 3은 본 발명의 제 1 실시예에 따른 스텐트의 도면이다.3 is a view of a stent according to a first embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 스텐트(10)는 복수개의 와이어(13)를 편조하여 제작된다. 편조 시, 둘 이상의 와이어(13)가 나선형상으로 회전하여 감기며 길이방향으로 연장되어 전체적으로 원통형의 그물망 형상으로 형성된다.As shown in FIG. 3, the stent 10 according to the first embodiment of the present invention is manufactured by braiding a plurality of wires 13. During braiding, two or more wires 13 are rotated and wound in a spiral shape and extend in the longitudinal direction to form a generally cylindrical mesh shape.
이 때, 원통형 형상의 스텐트(1)는 길이방향에 수직인 단면의 형상이 원형이며, 이는 혈관의 단면 형상에 부합한다. At this time, the cylindrical stent 1 has a circular cross section perpendicular to the longitudinal direction, which corresponds to the cross sectional shape of the blood vessel.
스텐트(10)는 복수개의 와이어(13)가 편조되어 형성되며, 스텐트(10)의 외주면에서 와이어(13)간 공극(H)이 서로 다르게 형성될 수 있으며, 이러한 공극이 큰 경우에는 와이어 밀도가 낮은 것으로, 반대로 작은 경우에는 와이어 밀도가 높은 것을 의미한다.The stent 10 is formed by braiding a plurality of wires 13, and the voids H between the wires 13 may be different from each other on the outer circumferential surface of the stent 10. Low, on the contrary small, means high wire density.
출혈성 뇌혈관 질환에 사용되는 스텐트(10)는 혈관의 일부가 부풀어오른 뇌동맥류(Intracranial Aneurysm)(AN)에 색전 및 혈류가 추가적으로 유입되는 것을 방지하기 위하여 이러한 부분에는 와이어(13)의 밀도가 크게 형성되어야 한다.The stent 10 used for hemorrhagic cerebrovascular disease has a high density of wire 13 in these portions to prevent additional embolism and blood flow into the intracranial aneurysm (AN). It must be formed.
이를 위해, 뇌동맥류의 목 부분과 직접 면하게 되는 중앙부(CE)에서 와이어(13)가 서로 교차하는 부분에 있어서 둔각으로 160도 이상, 바람직하게 161.54도로 되는 것이 바람직하다. 와이어(13)가 교차하는 부분에 있어서 둔각으로 160도 이하가 되면, 색전 또는 혈류가 와이어(13) 간의 공극(H)을 통하여 이동할 수 있게 되어 색전 또는 혈류의 차단의 효율성이 저하되므로 스텐트(10)로서의 기능을 수행할 수 없게 된다. 중앙부(CE) 이외의 영역에서는 뇌동맥류(AN)의 목(Neck)부분과 닿지 않으므로, 와이어(13)가 교차하는 각도가 둔각으로 160도 미만이 될 수 있다.For this purpose, it is preferable that the oblique angle is 160 degrees or more, preferably 161.54 degrees at the portion where the wires 13 cross each other in the central portion CE directly facing the neck of the cerebral aneurysm. When the wire 13 is at an obtuse angle of 160 degrees or less, the embolism or the blood flow can move through the gap H between the wires 13, and the efficiency of blocking the embolism or the blood flow is lowered. Can not function as). Since the area of the cerebral aneurysm AN does not come into contact with the neck of the cerebral aneurysm in the region other than the central portion CE, the angle at which the wire 13 intersects may be less than 160 degrees as an obtuse angle.
여기서, 소정 거리는 당업자의 입장에서 자유롭게 선택 가능하나, 뇌동맥류 부위와 맞닿게 되는 중앙부(CE)는 스텐트(10)에서 가장 높은 밀도를 가지면서 소정거리를 점유하고 있어야 하며, 이는 뇌동맥류(AN)와 직접적으로 닿아 색전 및 혈류의 추가적인 유입을 막아 스텐트(10)의 기능을 달성하기 위함이다. 이를 위하여 중앙부(CE)는 혈액 비투과성의 밀도를 가질 수 있다.Here, the predetermined distance may be freely selected by those skilled in the art, but the central portion CE, which is in contact with the site of the cerebral aneurysm, should occupy the predetermined distance with the highest density in the stent 10, which is the cerebral aneurysm (AN). It is in order to achieve the function of the stent 10 by preventing direct inflow of embolism and blood flow in direct contact with. To this end, the central portion CE may have a blood impermeable density.
이러한 중앙부(CE)는 스텐트(10) 전체 길이에 대하여 20% 이상 50% 이하일 수 있다. 여기서, 20% 미만으로 중앙부(CE)가 줄어들게 되면, 뇌동맥류의 목부분을 중앙부(CE)가 충분히 차단하지 못하여 추가적인 색전 및 혈류의 유입을 막을 수 없게 되며, 50% 이상으로 형성되는 경우에는 스텐트(10) 재료의 낭비, 제조상의 곤란성, 및 탄성의 감소의 문제가 발생하게 된다.The central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 10. If the central portion (CE) is reduced to less than 20%, the central portion (CE) of the cerebral aneurysm may not be sufficiently blocked to prevent further embolism and inflow of blood flow. (10) Problems such as waste of material, difficulty in manufacturing, and reduction of elasticity occur.
본 발명의 제 1 실시예에 따르면, 도 3에 도시된 바와 같이, 본 발명의 스텐트(10)는 직경 0.05mm의 와이어(13)를 사용하여, 길이 25.86 mm, 직경 5 mm의 원통형으로 편조되며, 이 스텐트(10)는 길이방향으로 공극 면적과 와이어 밀도가 연속하여 변하는 A, B, C, 및 D 부분을 포함한다. According to the first embodiment of the present invention, as shown in FIG. 3, the stent 10 of the present invention is braided into a cylindrical shape having a length of 25.86 mm and a diameter of 5 mm using a wire 13 having a diameter of 0.05 mm. This stent 10 includes A, B, C, and D portions in which the pore area and the wire density vary continuously in the longitudinal direction.
스텐트(10)의 양측의 말단부분인 A 부분에서는 복수의 와이어(13)가 만나는 부분의 공극(H)은 마름모의 형상을 갖게 되며, 이 마름모의 대각선 중 긴 대각선은 0.785 mm, 짧은 대각선은 0.262 mm의 길이를 가질 수 있으며, 와이어(13)가 만나는 부분의 둔각은 143.09도가 될 수 있다.In part A, which is a distal end portion of both sides of the stent 10, the space H where the plurality of wires 13 meets has a rhombus shape, the long diagonal of which is 0.785 mm and the short diagonal is 0.262 It may have a length of mm, and the obtuse angle of the portion where the wire 13 meets may be 143.09 degrees.
또한, 스텐트(10)의 중앙부(CE)의 B 부분은 공극의 넓이가 가장 작고 와이어 밀도가 가장 높다. B 부분에서, 마름모의 대각선 중 긴 대각선은 A와 같이 0.785 mm의 길이를 가지나, 짧은 대각선은 0.131 mm의 길이를 갖게 되어, 공극(H)이 줄어든 것을 볼 수 있으며, 상기 수치상으로는 공극의 면적이 1/2로 줄어든 것[마름모의 면적공식 (긴 대각선 길이)*(짧은 대각선 길이)/2 에서 짧은 대각선의 길이가 반으로 됨]을 확인할 수 있다. 여기서, 스텐트(10)의 중앙부(CE)는 일정한 와이어 밀도를 가질 수 있으며, 혈액의 투과가 제한되는 정도의 밀도를 가질 수 있다.In addition, the portion B of the central portion CE of the stent 10 has the smallest width of the void and the highest wire density. In part B, the long diagonal of the rhombus has a length of 0.785 mm like A, but the short diagonal has a length of 0.131 mm, so that the void (H) is reduced. You can see that it is reduced to one half (the area formula of the rhombus (long diagonal length) * (short diagonal length) / 2 is half the length of the short diagonal). Here, the central portion CE of the stent 10 may have a predetermined wire density, and may have a density such that blood permeation is limited.
다음으로, 상기 A 부분과 B 부분의 사이에 위치하는 C 부분과 D 부분에서는 와이어(13)가 만나 생성하는 공극(H)의 마름모 형상에서 긴 대각선의 길이는 동일하나, 짧은 대각선은 각각 0.236 mm 에서 0.145 mm로 중앙부(CE)의 B 부분으로 갈수록 점차적으로 감소한다. 이 때, C 부분과 D 부분에서 와이어(13)가 만나는 부분의 둔각은 각각 146.53도 및 157.24도일 수 있다.Next, in the C and D portions located between the A and B portions, the length of the long diagonal line is the same in the rhombus shape of the void H generated by the wire 13, but the short diagonal lines are 0.236 mm each. It gradually decreases from 0.145 mm to the B part of the center (CE). At this time, the obtuse angle of the portion where the wire 13 meets in the C portion and the D portion may be 146.53 degrees and 157.24 degrees, respectively.
스텐트(10)의 길이방향으로, 스텐트(10)의 말단부분인 A 부분에서 중앙부인 B 부분으로 가면서, 공극(H)이 점차 줄어들게 되며, 이는 와이어(13)가 점차적으로 촘촘히 감기면서 와이어 밀도가 점차 증가하게 되는 것을 의미한다.In the longitudinal direction of the stent 10, the gap H gradually decreases from the A portion, which is the distal end of the stent 10, to the B portion, which is the center portion, and the wire density is gradually tightened while the wire 13 is gradually wound tightly. It means increasing gradually.
여기서, 이러한 와이어 밀도의 변화는 스텐트(10)의 길이방향으로 연속적 또는 단속적으로 변할 수 있다.Here, the change of the wire density may vary continuously or intermittently in the longitudinal direction of the stent 10.
구체적으로, 스텐트(10)의 길이방향으로 각 영역마다 서로 다른 공극(H)의 크기 및 와이어 밀도를 가질 수 있으며, 도 4a 및 4b는 스텐트(10)의 일단에서 중앙부(CE)의 진입부까지 와이어(13)의 와이어 밀도가 연속적으로 변하는 경우를, 도 4c는 와이어(13)의 와이어 밀도가 단속적으로 변하는 경우를 도시한다. 도 4d는 스텐트(10)의 일단에서 중앙부(CE)의 진입부까지 와이어 밀도가 변화하는 부분이 한정되어 있는 경우를 도시한다. 도 4a 내지 도 4d에서 가로축은 스텐트(10)의 길이를 의미하며, 세로축은 와이어 밀도를 의미한다. Specifically, each of the areas in the longitudinal direction of the stent 10 may have different sizes and wire densities of pores (H), Figures 4a and 4b from one end of the stent 10 to the entrance of the central portion (CE) The case where the wire density of the wire 13 changes continuously is shown, FIG. 4C shows the case where the wire density of the wire 13 changes intermittently. FIG. 4D illustrates a case where the portion where the wire density changes from one end of the stent 10 to the entrance of the central portion CE is limited. 4A to 4D, the horizontal axis means the length of the stent 10, and the vertical axis means the wire density.
도 4a는 스텐트(10)의 일단으로부터 중앙부(CE)까지의 부분에서 와이어 밀도의 변곡점이 존재하는 경우이며, 도 4b는 이와는 달리 변곡점이 존재하지 않는 경우이다. 그래프 상에서 A, B, C, 및 D는 도 3의 A, B, C, 및 D 부분을 표시한다.4A illustrates a case where an inflection point of the wire density exists in a portion from one end of the stent 10 to the central portion CE, and FIG. 4B illustrates a case where the inflection point does not exist. A, B, C, and D on the graph indicate the A, B, C, and D portions of FIG.
또한, 도 4c는 와이어 밀도가 계단식으로 변하는 경우로서, A, B, C, D 부분에서는 와이어 밀도가 각기 일정하게 유지되며, 각 부분의 사이에는 와이어 밀도가 단속적으로 변하는 경우이다.In addition, FIG. 4C is a case where the wire density changes in a stepwise manner, in which the wire densities are kept constant in the A, B, C, and D portions, and the wire density is intermittently changed between the portions.
다음으로 도 4d는 스텐트(10)의 일측의 말단 부분에서 와이어 밀도(제 1 밀도)가 일정하게 유지되다가(A 부분, 제 1 영역), 소정 거리 이후에 밀도가 증가하는 영역이 존재하며(C 및 D 부분, 제 2 영역), 다음으로 밀도가 가장 높은(제 2 밀도) 중앙부(B 부분, 제 3 영역)가 이어지게 된다. 물론, 스텐트(10)는 중앙부(CE)에 대하여 양단이 대칭적으로 형성될 수 있으므로, 와이어 밀도가 감소하는 영역(제 4 영역) 및 다시 밀도가 일정(제 3 밀도)하게 유지되는 타측의 말단 영역(제 5 영역)이 존재할 수 있고, 제 1 영역과 제 5 영역의 와이어 밀도는 동일할 수 있다. Next, in FIG. 4D, the wire density (first density) is kept constant at the end portion of one side of the stent 10 (part A, the first region), and there is an area where the density increases after a predetermined distance (C And part D, the second region), followed by the central portion (part B, the third region) having the highest density (second density). Of course, both ends of the stent 10 may be formed symmetrically with respect to the center portion CE, so that the area where the wire density decreases (fourth area) and the other end where the density is maintained constant (third density) again. There may be a region (a fifth region), and the wire density of the first region and the fifth region may be the same.
여기서, 제 3 영역에서 와이어(13)가 서로 교차하는 부분은 색전 및 혈류 차단의 효율성을 고려하여 그 교차 각도는 둔각으로 160도 이상일 수 있으며, 제 1 영역과 제 5 영역은 뇌동맥류(AN)의 목(Neck)부분과 닿지 않으므로, 와이어(13)가 교차하는 각도가 둔각으로 160도 미만이 될 수 있다.Here, the intersection of the wires 13 with each other in the third region may be 160 degrees or more at an obtuse angle in consideration of the efficiency of embolization and blood flow blocking, and the first and fifth regions may be cerebral aneurysms (AN). Since it does not touch the neck portion of the neck, the angle at which the wire 13 intersects may be less than 160 degrees at an obtuse angle.
여기서, 소정 거리는 당업자의 입장에서 자유롭게 선택 가능하나, 뇌동맥류의 목 부분과 면하게 되는 중앙부(CE)는 스텐트(10)에서 가장 높은 와이어 밀도를 가지면서 뇌동맥류의 목 부분과 면하면서 뇌동맥류의 목 부분을 통한 색전 및 혈류의 유입을 차단할 수 있도록 소정 거리 이상을 점유하고 있어야 하며, 이는 스텐트(10)의 색전 및 혈류 차단의 기능을 달성하기 위함이다. 여기서, 중앙부(CE)는 혈액의 투과가 제한되는 정도의 밀도를 가질 수 있다.Here, the predetermined distance can be freely selected by those skilled in the art, but the central portion CE facing the neck of the cerebral aneurysm has the highest wire density in the stent 10 and faces the neck of the cerebral aneurysm while facing the neck of the cerebral aneurysm. Must occupy a predetermined distance or more so as to block the inflow of embolism and blood flow through the part, in order to achieve the function of blocking the embolism and blood flow of the stent 10. Here, the central portion CE may have a density such that blood penetration is limited.
이러한 중앙부(CE)는 스텐트(10) 전체 길이에 대하여 20% 이상 50% 이하일 수 있다. 여기서, 20% 미만으로 중앙부(CE)가 줄어들게 되면, 뇌동맥류의 목부분을 중앙부(CE)가 충분히 차단하지 못하여 추가적인 색전 및 혈류의 유입을 막을 수 없게 되며, 중앙부(CE)가 50% 이상인 경우에는 스텐트(10) 재료의 낭비, 제조상의 곤란성, 및 탄성의 감소의 문제점이 발생하게 된다.The central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 10. In this case, when the central portion (CE) is reduced to less than 20%, the central portion (CE) does not sufficiently block the neck of the cerebral aneurysm, preventing additional embolism and inflow of blood flow, and the central portion (CE) is 50% or more. This results in waste of the stent 10 material, difficulty in manufacturing, and reduction of elasticity.
도 5는 본 발명의 제 2 실시예에 따른 스텐트를 도시한다. 이하의 설명에서 동일한 참조번호는 동일한 부재 또는 부분을 지칭하며, 동일한 부분에 대한 설명은 생략하도록 한다.5 shows a stent according to a second embodiment of the present invention. In the following description, the same reference numerals refer to the same members or parts, and the description of the same parts will be omitted.
본 발명의 제 2 실시예에서는 제 1 실시예의 경우와 달리 스텐트(20)의 중앙부(CE)에서는 제 1 실시예의 B 부분과 같은 높은 와이어 밀도를 갖도록 형성되고, 그 외의 부분에서는 제 1 실시예의 A 부분과 같은 낮은 와이어 밀도를 갖도록 형성된다. 다시 말해서, 본 발명의 제 2 실시예에서는 와이어 밀도의 분포를 두 부분으로 나누고, 두 부분 사이의 영역에서 와이어(23) 밀도가 급격히 변하도록 한 것이다.In the second embodiment of the present invention, unlike the case of the first embodiment, the central portion CE of the stent 20 is formed to have the same high wire density as the B portion of the first embodiment, and in other parts, the A of the first embodiment is used. It is formed to have the same low wire density as the part. In other words, in the second embodiment of the present invention, the distribution of the wire density is divided into two parts, and the density of the wire 23 is rapidly changed in the area between the two parts.
본 발명의 제 2 실시예에 따른 와이어 밀도의 분포를 그래프로 도시하면 도 6과 같다.6 is a graph illustrating the distribution of wire density according to the second embodiment of the present invention.
여기서, B 부분에서 와이어(23)가 교차하는 각도는 둔각으로 160도 이상일 수 있으며, 제 1 영역과 제 5 영역은 뇌동맥류(AN)의 목(Neck)부분과 닿지 않으므로, 와이어(23)가 교차하는 각도가 둔각으로 160도 미만이 될 수 있다.Here, the angle at which the wires 23 intersect at the portion B may be 160 degrees or more as an obtuse angle, and since the first and fifth regions do not contact the neck portion of the cerebral aneurysm, the wire 23 is The intersecting angle may be less than 160 degrees at an obtuse angle.
여기서, 와이어 사이의 소정 거리는 당업자의 입장에서 자유롭게 선택 가능하나, 뇌동맥류의 목부분과 맞닿게 되는 중앙부(CE)는 스텐트(20)에서 가장 높은 밀도를 가지면서 소정거리를 점유하고 있어야 하며, 이는 뇌동맥류 내부로의 색전 및 혈류를 차단하는 스텐트(20)의 기능을 달성하기 위함이다. 이를 위하여 중앙부(CE)는 혈액의 투과가 제한되는 정도의 와이어 밀도를 가질 수 있다. 이러한 중앙부(CE)는 스텐트(20) 전체 길이에 대하여 20% 이상 50% 이하일 수 있다. 여기서, 20% 미만으로 중앙부(CE)가 줄어들게 되면, 스텐트의 중앙부(CE)가 색전 및 혈류의 유입을 효과적으로 차단 할 수 없게 되며, 중앙부(CE)가 50% 이상인 경우에는 스텐트(10) 재료의 낭비 및 제조상의 곤란성이 발생하게 된다.Here, the predetermined distance between the wires can be freely selected by those skilled in the art, but the central portion CE which comes into contact with the neck of the cerebral aneurysm should occupy the predetermined distance with the highest density in the stent 20. This is to achieve the function of the stent 20 to block the embolus and blood flow into the cerebral aneurysm. To this end, the central portion CE may have a wire density such that blood permeation is limited. The central portion CE may be 20% or more and 50% or less with respect to the entire length of the stent 20. Here, if the central portion (CE) is reduced to less than 20%, the central portion (CE) of the stent is not able to effectively block the inflow of embolism and blood flow, when the central portion (CE) is more than 50% of the stent 10 material Waste and manufacturing difficulties arise.
여기서, 뇌동맥류의 목부분과 직접 닿게 되는 중앙부(CE)에서는 와이어(13)가 서로 교차하는 각도는 둔각으로 160도 이상으로 되는 것이 바람직하다. 와이어(13)가 교차하는 각도가 둔각으로 160도 이하가 되면, 색전 및 혈류가 와이어(13) 간의 공극(H)을 통하여 이동할 수 있게 되어 색전 및 혈류의 차단의 효율성이 저하되어 스텐트(10)로서의 기능을 수행할 수 없게 된다. Here, in the central portion CE directly contacting the neck of the cerebral aneurysm, the angle at which the wires 13 cross each other is preferably at least 160 degrees at an obtuse angle. When the angle at which the wires 13 intersect is less than 160 degrees at an obtuse angle, the embolism and blood flow can move through the gap H between the wires 13, thereby reducing the efficiency of blocking the embolism and blood flow, thereby stent 10 You will not be able to function as.
본 발명의 제 2 실시예에서는 B 부분에서 복수의 와이어(23)가 교차하여 형성된 공극(H)은 마름모의 형상을 갖게 되며, 이 마름모 형상의 긴 대각선의 길이가 0.785 mm 이고, 짧은 대각선의 길이가 0.131 mm 이며, 와이어(23)가 교차하는 각도는 둔각으로 161.54도 일 수 있다. 여기서, B 부분을 포함하는 중앙부(CE)는 뇌동맥류(도 1의 참조부호 AN)의 목(Neck) 부분을 차단하는데 사용되는 영역으로서, 공극(H)의 짧은 대각선의 길이를 줄여 혈액의 투과가 제한되는 정도의 밀도를 가지도록 형성할 수 있다. 또한, A 부분에서 복수의 와이어(23)가 교차하여 형성된 공극(H)은 마름모 형상을 갖고, 이 마름모 형상의 긴 대각선의 길이가 0.785 mm 이고, 짧은 대각선의 길이가 0.262 mm 이며, 와이어(23)가 교차하는 각도는 둔각으로 143.09도 일 수 있다. In the second embodiment of the present invention, the space H formed by crossing the plurality of wires 23 in the portion B has a rhombus shape, and the length of the long diagonal of the rhombus shape is 0.785 mm, and the length of the short diagonal is Is 0.131 mm, and the angle at which the wires 23 intersect may be 161.54 degrees at an obtuse angle. Here, the central portion CE including the B portion is an area used to block the neck portion of the cerebral aneurysm (AN of FIG. 1), and reduces the length of the short diagonal of the air gap H to penetrate the blood. It may be formed to have a density of a limited degree. In addition, the space H formed by crossing the plurality of wires 23 in the portion A has a rhombus shape, the long diagonal of the rhombus shape is 0.785 mm, the length of the short diagonal is 0.262 mm, and the wire 23 The angle at which) crosses may be 143.09 degrees with an obtuse angle.
본 발명의 제 2 실시예에 사용되는 와이어의 개수는 32개 또는 48개로 할 수 있다. 와이어의 직경은 32개의 경우 0.002 inch이며, 48개의 경우 0.0015 inch 일 수 있다.The number of wires used in the second embodiment of the present invention may be 32 or 48. The diameter of the wire is 0.002 inch for 32 pieces and 0.0015 inch for 48 pieces.
도 7은 본 발명의 전술한 실시예들에 따른 스텐트에 사용되는 와이어를 도시한다. 도 7에 도시된 바와 같이, 와이어(33)는 그 내부에 방사선비투과성물질이 중앙부에 형성된 코어부(35)를 포함한다. 와이어의 재료로 사용되는 나이티놀(nitinol)은 스텐트의 탄성을 확보하는데에는 유리하나, 방사선투과성이 높아 스텐트의 시술 중 또는 시술 후에 스텐트의 위치를 X선 등의 방사선으로 확인하기가 어려운 단점이 있다. 그러나, 본 발명의 와이어(33)는 방사선비투과성물질을 중앙부에 형성한 코어부(35)를 형성한 것이다.7 illustrates a wire used in a stent in accordance with the aforementioned embodiments of the present invention. As shown in FIG. 7, the wire 33 includes a core portion 35 in which a radiopaque material is formed in a central portion thereof. Nitinol, which is used as a wire material, is advantageous for securing the stent's elasticity, but it has a disadvantage in that it is difficult to confirm the position of the stent by X-ray radiation during or after the procedure because of high radiotransmittance. . However, the wire 33 of the present invention forms a core portion 35 having a radiopaque material formed in the center thereof.
코어부(35)는 와이어(33) 직경의 60% 이하의 직경을 가질 수 있다. 코어부(35)가 60%를 초과하는 직경을 가질 경우, 와이어(33)의 탄성에 영향을 주어 스텐트의 기능저하를 유발할 수 있다. 또한, 코어부(35)가 와이어(33) 직경의 20% 이하의 직경을 가지는 경우, X선 등의 방사선으로 스텐트의 위치를 확보하는 것이 어려워지는 바, 20% 이상의 직경을 갖는 것이 바람직하다.The core portion 35 may have a diameter of 60% or less of the diameter of the wire 33. When the core part 35 has a diameter exceeding 60%, the elasticity of the wire 33 may be affected, which may cause the stent to deteriorate. In addition, when the core part 35 has a diameter of 20% or less of the diameter of the wire 33, it becomes difficult to secure the position of the stent by radiation such as X-rays, and therefore it is preferable to have a diameter of 20% or more.
도 8은 본 발명의 전술한 실시예에 따른 스텐트에 사용되는 와이어의 다른 실시예를 도시한다. 도 8에 도시된 바와 같이, 스텐트는 적어도 두 종류의 제1 및 제2 와이어(43 및 45)를 혼용하여 편조되며, 이 중 제 1와어어(43)는 나이티놀이며, 제 2 와이어(45)는 방사선 비투과성물질인 백금 금, 팔라듐, 또는 탄탈륨 중 어느 하나의 재료로 제작될 수 있다.8 shows another embodiment of a wire used in a stent according to the above embodiment of the present invention. As shown in FIG. 8, the stent is braided with a mixture of at least two types of first and second wires 43 and 45, of which the first wire 43 is nitinol and the second wire 45. ) May be made of any one of the radiopaque material platinum, palladium or tantalum.
방사선 비투과성물질을 사용한 제2 와이어(45)는 편조된 스텐트에서 전체 와이어 개수의 5% 내지 30% 의 개수를 갖는 것이 바람직하다. 제2 와이어(45)가 전체 와이어 중 5% 미만의 개수를 가지는 경우에는 X선 등의 방사선으로 스텐트의 위치를 확보하는 것이 어려워지게 되고, 30% 초과의 개수를 가지는 경우에는 스텐트(40) 전체의 탄성에 영향을 주어 스텐트(40)의 기능 저하를 유발할 수 있다. The second wire 45 using the radiopaque material preferably has a number of 5% to 30% of the total number of wires in the braided stent. When the second wire 45 has less than 5% of the total wires, it is difficult to secure the position of the stent by X-rays or the like, and when the second wire 45 has more than 30%, the entire stent 40 Influence of the elasticity of the stent 40 may cause a decrease in function.
이상 본 발명의 실시예들에 따른 스텐트의 구체적인 실시형태를 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않으며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 각 구성요소의 재질, 크기 등을 적용 분야에 따라 변경할 수 있으며, 개시된 실시형태들을 조합/치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 포함되는 것은 명백하다.Although the specific embodiments of the stent according to the embodiments of the present invention have been described above, this is merely an example, and the present invention is not limited thereto and should be construed as having the broadest scope in accordance with the basic idea disclosed herein. Those skilled in the art can change the material, size, etc. of each component according to the application field, it is possible to implement a pattern of a timeless shape by combining / replacing the disclosed embodiments, this also does not depart from the scope of the present invention. In addition, those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, it is apparent that such changes or modifications are included in the scope of the present invention.

Claims (12)

  1. 스텐트로서,As a stent,
    나선형상으로 회전하여 감기면서 길이방향으로 연장되어 편조되는 둘 이상의 와이어를 포함하며,Comprising two or more wires that are spirally rotated and wound and extended in the longitudinal direction and braided,
    상기 와이어는 상기 스텐트 중앙부분의 와이어 밀도가 상기 스텐트 양단의 와이어 밀도보다 크도록 상기 스텐트의 중앙부에서 조밀하게 편조되며, The wire is densely braided at the center of the stent such that the wire density at the center of the stent is greater than the wire density at both ends of the stent,
    상기 스텐트 양단과 상기 스텐트 중앙부분 사이의 와이어 밀도는 연속되게 변하는 스텐트.A stent in which the wire density between the both ends of the stent and the central portion of the stent varies continuously.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 중앙부분은 상기 스텐트의 가운데에서 상기 스텐트의 길이에 대하여 20% 이상 50% 이하의 영역을 점유하는 스텐트. The central portion occupies an area of 20% or more and 50% or less with respect to the length of the stent in the center of the stent.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 중앙부분에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 이상인 스텐트. The stent at which the at least two wires cross each other at the central portion is 160 degrees or more.
  4. 스텐트로서,As a stent,
    나선형상으로 회전하여 감기면서 길이방향으로 연장되어 편조되는 둘 이상의 와이어를 포함하고,Comprising two or more wires which are braided to extend in a longitudinal direction while being wound in a spiral shape,
    상기 스텐트의 일단으로부터 제 1 와이어 밀도를 갖도록 편조된 제 1 영역과,A first region braided to have a first wire density from one end of the stent,
    상기 제 1 영역으로부터 와이어 밀도가 증가하도록 편조된 제 2 영역과,A second region braided from the first region to increase wire density,
    상기 제 2 영역과 이어지며, 제 2 와이어 밀도를 갖도록 편조된 상기 스텐트 중앙의 제 3 영역과,A third region in the center of the stent that is connected to the second region and braided to have a second wire density,
    상기 제 3 영역으로부터 와이어 밀도가 감소하도록 편조된 제 4 영역과,A fourth region braided to reduce wire density from the third region,
    상기 제 4 영역과 이어지며, 상기 스텐트의 끝단까지 제 3 와이어 밀도를 갖도록 편조된 제 5 영역을 포함하는 스텐트.A stent comprising a fifth region connected to said fourth region and braided to have a third wire density to an end of said stent.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 와이어 밀도와 상기 제 3 와이어 밀도는 동일한 스텐트.The stent and the third wire density are the same.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 3 영역은 상기 스텐트의 가운데 부분에서 상기 스텐트의 길이에 대하여 20% 이상 50% 이하의 영역을 점유하는 스텐트. And the third region occupies an area of 20% or more and 50% or less with respect to the length of the stent in a central portion of the stent.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 3 영역에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 이상인 스텐트. And the angle at which the two or more wires cross each other in the third region is greater than 160 degrees.
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 영역 및 상기 제 5 영역에서 상기 둘 이상의 와이어가 서로 교차하는 각도는 160도 미만인 스텐트.The stent of which the two or more wires cross each other in the first area and the fifth area is less than 160 degrees.
  9. 스텐트로서,As a stent,
    나선형상으로 회전하여 감기며 길이방향으로 연장되어 편조되는 다수의 와이어를 포함하며,It includes a plurality of wires that are wound in a spiral shape and extended in the longitudinal direction and braided,
    상기 와이어는 둘 이상이고, 각각의 상기 와이어의 중앙에는 방사선비투과성 물질로 형성된 코어부가 삽입되어 있는 스텐트.The stent having two or more wires, each of the core is inserted into the core portion formed of a radiopaque material.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 코어부는 상기 와이어 직경의 20% 이상 60% 이하의 직경을 갖는 원형단면을 갖는 스텐트. The core portion has a stent having a circular cross section having a diameter of 20% or more and 60% or less of the wire diameter.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 방사선 비투과성물질은 백금, 금, 팔라듐, 또는 탄탈륨 중 어느 하나인 스텐트.The radiopaque material is any one of platinum, gold, palladium, or tantalum.
  12. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,The method according to any one of claims 9 to 11,
    상기 스텐트는 중앙부분의 와이어 밀도가 상기 스텐트 양단의 와이어 밀도보다 크도록 상기 스텐트의 중앙부분에서 조밀하게 편조되는 스텐트.The stent is densely braided at the central portion of the stent such that the wire density at the center portion is greater than the wire density at both ends of the stent.
PCT/KR2011/000307 2010-01-29 2011-01-14 Biometal strip-type stent for therapy of cerebral aneurysm WO2011093608A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0008741 2010-01-29
KR1020100008741A KR20110088975A (en) 2010-01-29 2010-01-29 Stent

Publications (2)

Publication Number Publication Date
WO2011093608A2 true WO2011093608A2 (en) 2011-08-04
WO2011093608A3 WO2011093608A3 (en) 2011-12-01

Family

ID=44319955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000307 WO2011093608A2 (en) 2010-01-29 2011-01-14 Biometal strip-type stent for therapy of cerebral aneurysm

Country Status (2)

Country Link
KR (1) KR20110088975A (en)
WO (1) WO2011093608A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738305A (en) * 2016-01-22 2018-11-02 韦恩堡金属研究产品公司 Woven or woven tubular metal structure
CN111134920A (en) * 2020-01-22 2020-05-12 北京弘海微创科技有限公司 Close net support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196226B1 (en) * 2019-01-28 2020-12-29 이재희 Stent and method for production the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US6214042B1 (en) * 1998-11-10 2001-04-10 Precision Vascular Systems, Inc. Micro-machined stent for vessels, body ducts and the like
US20010010015A1 (en) * 1999-10-05 2001-07-26 Hijlkema Lukas J. Flexible endoluminal stent and process of repairing a body lumen
US6355059B1 (en) * 1998-12-03 2002-03-12 Medinol, Ltd. Serpentine coiled ladder stent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US6214042B1 (en) * 1998-11-10 2001-04-10 Precision Vascular Systems, Inc. Micro-machined stent for vessels, body ducts and the like
US6355059B1 (en) * 1998-12-03 2002-03-12 Medinol, Ltd. Serpentine coiled ladder stent
US20010010015A1 (en) * 1999-10-05 2001-07-26 Hijlkema Lukas J. Flexible endoluminal stent and process of repairing a body lumen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738305A (en) * 2016-01-22 2018-11-02 韦恩堡金属研究产品公司 Woven or woven tubular metal structure
EP3405145A4 (en) * 2016-01-22 2019-12-11 Fort Wayne Metals Research Products Corporation Woven or braided tubular metal construct
US11497538B2 (en) 2016-01-22 2022-11-15 Fort Wayne Metals Research Products, Llc Woven or braided tubular metal construct
CN111134920A (en) * 2020-01-22 2020-05-12 北京弘海微创科技有限公司 Close net support
CN111134920B (en) * 2020-01-22 2023-08-08 北京弘海微创科技有限公司 Close net support

Also Published As

Publication number Publication date
KR20110088975A (en) 2011-08-04
WO2011093608A3 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
DE69822331T2 (en) MULTI-WIRE MICROCABLE, IN PARTICULAR FOR VESSEL-CLOSING DEVICE FOR TREATING ANEURISMS
JP4065665B2 (en) Vascular occlusion device and manufacturing method thereof
IL301895B1 (en) Occlusion device
BRPI0620993B1 (en) INTRAVASCULAR DISTRIBUTION STENT FOR ABDOMINAL AORTIC ANEURISM STRENGTHENING
CN102429750B (en) Intravascular stent with improved developing performance and method for improving developing performance of intravascular stent
EP1097728A1 (en) Stent (or stent graft) indwelling device
US20100063578A1 (en) Bifurcated medical device for treating a target site and associated method
EP3572011B1 (en) Devices for the treatment of vascular defects
JP2003522550A (en) Occlusion, fixation, tensioning, and diverting devices and methods of use
JP2002523125A (en) Vaso-occlusive coil
BR102015020455A2 (en) enhanced radiopacity multifilament implant
AU6786894A (en) Stent delivery systems
WO2011093608A2 (en) Biometal strip-type stent for therapy of cerebral aneurysm
CA2918220A1 (en) High flow embolic protection device
WO2022179095A1 (en) Vascular stent
CN111920558A (en) Intracranial aneurysm blood flow guiding bracket
CN114052820B (en) Vascular stent
EP4279112A1 (en) Ureteral stent and manufacturing method
CN112972864A (en) Medical catheter
KR20200016189A (en) Systems and methods of using a braided implant
CN114287989A (en) Blood flow guider support
WO2022166538A1 (en) Catheter reinforcement layer and catheter
WO2022198810A1 (en) Guiding catheter and guiding catheter system
WO2023200118A1 (en) Blood flow restriction device comprising multi-layered structure and composite material
CN218685681U (en) Dilation device and guidance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737247

Country of ref document: EP

Kind code of ref document: A2