WO2011099374A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2011099374A1
WO2011099374A1 PCT/JP2011/051639 JP2011051639W WO2011099374A1 WO 2011099374 A1 WO2011099374 A1 WO 2011099374A1 JP 2011051639 W JP2011051639 W JP 2011051639W WO 2011099374 A1 WO2011099374 A1 WO 2011099374A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
emitting layer
ring
group
Prior art date
Application number
PCT/JP2011/051639
Other languages
English (en)
French (fr)
Inventor
孝弘 甲斐
正樹 古森
山本 敏浩
松本 めぐみ
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201180008997.XA priority Critical patent/CN102754237B/zh
Priority to US13/577,238 priority patent/US9156843B2/en
Priority to KR1020127023471A priority patent/KR101313730B1/ko
Priority to JP2011553796A priority patent/JP5215481B2/ja
Priority to EP11742121.4A priority patent/EP2535957B1/en
Publication of WO2011099374A1 publication Critical patent/WO2011099374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to an organic electroluminescent device containing an indolocarbazole compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 an indolocarbazole compound as shown below is disclosed as a hole transport material.
  • Patent Document 4 discloses an indolocarbazole compound as shown below as a hole transport material.
  • Patent Document 5 discloses an indolocarbazole compound as shown below.
  • the above compound is a compound in which an aromatic heterocycle is directly substituted on nitrogen of an indolocarbazole skeleton, and does not disclose a compound having an aromatic hydrocarbon as a linking group.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention provides an organic electroluminescent device in which an anode, an organic layer including a phosphorescent light emitting layer and a cathode are laminated on a substrate, and at least one selected from the group consisting of a light emitting layer, an electron transport layer and a hole blocking layer.
  • the organic layer contains an indolocarbazole compound represented by the general formula (1) in an organic layer.
  • ring A represents the aromatic ring or heterocyclic ring represented by formula (1a) that is condensed with an adjacent ring at an arbitrary position
  • ring B is condensed with an adjacent ring at an arbitrary position
  • the heterocyclic ring represented by Formula (1b) is represented.
  • a 1 and A 2 each independently represent an aromatic hydrocarbon group having 6 to 50 carbon atoms
  • B 1 and B 2 each independently represent carbon.
  • X represents methine or nitrogen
  • R 1 and R 2 each independently represents hydrogen, an aliphatic hydrocarbon group of 1 to 10 carbon atoms, 6 to 12 carbon atoms Or an aromatic heterocyclic group having 3 to 11 carbon atoms, wherein R 3 is hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or An aromatic heterocyclic group having 3 to 11 carbon atoms, which may be condensed with a ring containing X to form a condensed ring; m represents an integer of 1 to 3, and n represents an integer of 0 to 3. When m and n are 2 or more, the plurality of B 1 and B 2 may be the same or different.
  • indolocarbazole compounds represented by general formula (1) indolocarbazole compounds represented by any of the following general formulas (2) to (5) are preferred compounds.
  • a 1 , A 2 , B 1 , B 2 , R 1 to R 3 , m and n are the same as those in the general formula (1).
  • indolocarbazole compounds represented by any one of the general formulas (2) to (5) indolocarbazole compounds represented by any one of the following general formulas (6) to (9) are more preferable compounds. Can be mentioned.
  • the organic layer containing the indolocarbazole compound is a light emitting layer containing a phosphorescent dopant.
  • an organic layer containing an indolocarbazole compound includes a phosphorescent dopant having a maximum emission wavelength at 440 nm to 510 nm and an indolocarbazole compound represented by either general formula (4) or (5).
  • a layer is preferred.
  • the indolocarbazole compound represented by the general formula (1) has excellent injecting and transporting holes and electrons by connecting the indolocarbazole skeleton and at least one aromatic heterocycle with an aromatic hydrocarbon group. It is considered to exhibit properties and high durability.
  • the organic EL device using this has a low driving voltage.
  • this indolocarbazole compound is contained in the light emitting layer, the recombination probability is improved because the balance of both charges is improved, and high minimum excitation is achieved. Since it has the energy of the triplet state, it has the characteristics that the transfer of triplet excitation energy from the dopant to the host molecule can be effectively suppressed, and is considered to give excellent light emission characteristics.
  • since it exhibits good amorphous characteristics and high thermal stability and is electrochemically stable it is considered that an organic EL element having a long driving life and high durability can be realized.
  • the organic electroluminescent device of the present invention contains an indolocarbazole compound represented by the general formula (1).
  • This indolocarbazole compound has a structure in which two nitrogen atoms are substituted with aromatic hydrocarbons, and one of them is substituted with at least one aromatic heterocyclic ring.
  • ring A represents the aromatic ring or heterocyclic ring represented by formula (1a) that is condensed with an adjacent ring at an arbitrary position
  • ring B is condensed with an adjacent ring at an arbitrary position
  • the heterocyclic ring represented by Formula (1b) is represented.
  • a 1 and A 2 each independently represents an aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • An aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable, and an aromatic hydrocarbon group having 6 to 18 carbon atoms is more preferable.
  • a 1 is an m + 1 valent aromatic hydrocarbon group
  • a 2 is an n + 1 valent aromatic hydrocarbon group.
  • Specific examples of A 1 and A 2 include benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, or an m + 1-valent or n + 1-valent group generated by removing hydrogen from an aromatic compound in which a plurality of these are connected. Can be mentioned.
  • the total number of carbon atoms is 10 to 50.
  • Preferred are benzene, naphthalene, anthracene and phenanthrene, and more preferred is benzene.
  • a plurality of the aromatic compounds are connected, they may be the same or different.
  • the aromatic ring is a group derived from an aromatic compound in which a plurality of aromatic rings are connected, the number connected is preferably 2 to 5, more preferably 2 or 3.
  • Specific examples of the group formed by removing hydrogen from the above-described aromatic compounds linked to each other include biphenyl, terphenyl, phenylnaphthalene, diphenylnaphthalene, phenylanthracene, diphenylanthracene, diphenylfluorene, and the like.
  • the connection position between A 1 and indolocarbazole and B 1 is not limited, and it may be a terminal ring or a central ring.
  • the aromatic hydrocarbon group may have a substituent. When the aromatic hydrocarbon group has a substituent, preferred substituents are an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, and an acetyl group. .
  • a group generated from an aromatic compound in which a plurality of aromatic rings are connected is a divalent group, for example, represented by the following formulas (11) to (13).
  • Ar 1 to Ar 6 represent an unsubstituted monocyclic or condensed aromatic ring
  • a 1 , A 2 , B 1 , B 2 and R 1 to R 3 are an aromatic hydrocarbon group, an aromatic heterocyclic group, or an aliphatic hydrocarbon group and have a substituent
  • the total number is 1-10. Preferably it is 1-6, more preferably 1-4. Moreover, when it has two or more substituents, they may be the same or different.
  • the carbon number of the substituent is included.
  • B 1 and B 2 each independently represents a monovalent aromatic heterocyclic group having 3 to 50 carbon atoms. Preferred is an aromatic heterocyclic group having 3 to 30 carbon atoms, and more preferred is an aromatic heterocyclic group having 3 to 17 carbon atoms. However, neither B 1 nor B 2 becomes an indolocarbazolyl group. When a plurality of aromatic heterocycles are linked, the total number of carbon atoms is 6-50.
  • B 1 and B 2 include pyrrole, pyridine, pyrimidine, triazine, indole, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, acridine, furan, benzofuran, dibenzofuran, thiophene, benzothiophene, dibenzothiophene, or a combination thereof.
  • a monovalent group generated from the aromatic compound formed Preferable examples include monovalent groups formed from pyridine, pyrimidine, triazine, carbazole, dibenzofuran, and dibenzothiophene. When a plurality of the aromatic compounds are connected, they may be the same or different.
  • the aromatic ring is a group derived from an aromatic compound in which a plurality of aromatic rings are connected, the number connected is preferably 2 to 5, more preferably 2 or 3.
  • Specific examples of the group generated by removing hydrogen from the above-described aromatic compounds linked to each other include bipyridine, bipyrimidine, vitriazine, pyridylpyrimidine, pyridylcarbazole, pyrimidylcarbazole and the like.
  • the aromatic heterocyclic ring may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, a carbon number 6 to 12 aromatic hydrocarbon groups. More preferably, they are a phenyl group and a naphthyl group.
  • n represents an integer of 1 to 3.
  • B 1 may be the same or different.
  • n represents an integer of 0 to 3.
  • n is an integer of 0-2.
  • B 2 may be the same or different.
  • m + n is preferably 1 to 3.
  • R 1 and R 2 are each independently hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic group having 3 to 11 carbon atoms. Represents a heterocyclic group.
  • Preferred are hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, a naphthyl group, a pyridyl group, a pyrimidyl group, a triazyl group, and a carbazolyl group. More preferably, they are hydrogen, a phenyl group, and a carbazolyl group.
  • R 3 is hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, an aromatic heterocyclic group having 3 to 11 carbon atoms, or
  • X represents a group condensed with a ring containing When the ring is fused to a six-membered ring containing X in formula (1a), this ring may be a condensed ring.
  • an indole ring is preferable, and in this case, diindolocarbazole is formed. At this time, the indole ring may have a substituent.
  • the indolocarbazole compounds represented by the general formula (1) are mentioned as preferred compounds, and the above general formulas (6) to (9) ) Is a more preferred compound.
  • Indolocarbazole compounds represented by the general formulas (1) to (9) can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • indolocarbazole skeleton represented by the general formula (2) or (6) is described below with reference to the synthesis example shown in Archiv der Pharmazie (Weinheim, Germany), 1987, 320 (3), p280-2. It can be synthesized by the reaction formula of
  • the indolocarbazole skeleton of the indolocarbazole compound represented by the general formula (3) or (7) is Synlett, 2005, No. 1; 1, p42-48 can be synthesized according to the following reaction formula with reference to the synthesis example.
  • the indolocarbazole skeleton of the indolocarbazole compound represented by the general formula (4), (5), (8) or (9) includes The ⁇ Journal of Organic Chemistry, 2007, 72 (15) 5886 and Tetrahedron. , 1999, 55, p2371, and can be synthesized according to the following reaction formula.
  • the indolocarbazole compounds represented by the general formulas (1) to (9) are obtained by substituting hydrogen on nitrogen of each indolocarbazole skeleton obtained by the above reaction formula with a corresponding aromatic group according to a conventional method. Can be synthesized.
  • indolocarbazole compounds represented by the general formulas (1) to (9) are shown below, but the materials used for the organic electroluminescence device of the present invention are not limited thereto.
  • Indolocarbazole compound represented by general formula (1) or any one of general formulas (2) to (9) (hereinafter, indolocarbazole compound of the present invention or indolocarbazole compound represented by general formula (1)) Is also provided in at least one organic layer of an organic EL device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate, thereby giving an excellent organic electroluminescence device.
  • the organic layer to be contained is a light emitting layer, an electron transport layer or a hole blocking layer. More preferably, it may be contained as a host material of a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and at least selected from a light emitting layer, an electron transport layer, or a hole blocking layer.
  • One organic layer contains the indolocarbazole compound of the present invention.
  • the indolocarbazole compound of the present invention is included in the light emitting layer together with a phosphorescent dopant.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a phosphorescent light emitting layer and includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Such organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of phosphorescent dopant contained in the light emitting layer is preferably in the range of 1 to 50% by weight. More preferably, it is 5 to 30% by weight.
  • the host material in the light emitting layer it is preferable to use an indolocarbazole compound represented by the general formula (1).
  • the material used for the light emitting layer may be a host material other than the indolocarbazole compound.
  • An indolocarbazole compound and another host material may be used in combination.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability or an electron transporting ability, prevents the emission of light from becoming longer, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • metal complexes typified by metal complexes of Russianine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the indolocarbazole compound represented by the general formula (1) for the hole blocking layer.
  • a known hole blocking layer is used. Materials may be used.
  • a hole-blocking layer material the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • Examples of the material for the exciton blocking layer include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq). It is done.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin compounds, aromatic tertiary amine compounds, and styryl. It is preferable to use an amine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • an indolocarbazole derivative represented by the general formula (1) for the electron transport layer, any one of conventionally known compounds can be selected and used.
  • a nitro-substituted fluorene derivative Diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the indolocarbazole compound used in the present invention was synthesized by the route shown below.
  • the compound number corresponds to the number assigned to the above chemical formula.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • compound 3-1 obtained in Synthesis Example 1 as a host material, tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) as a phosphorescent dopant, and Were co-deposited from different deposition sources to form a light emitting layer with a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 in the light emitting layer was 10.0 wt%.
  • tris (8-hydroxyquinolinato) aluminum (III) (Alq3) was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • aluminum (Al) was formed as an electrode to a thickness of 70 nm to produce an organic EL element.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-11 was used as the host material for the light emitting layer.
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-15 was used as the host material for the light emitting layer.
  • Example 4 An organic EL device was produced in the same manner as in Example 1 except that Compound 2-6 was used as the host material for the light emitting layer.
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that Compound 2-30 was used as the host material for the light emitting layer.
  • Example 6 An organic EL device was produced in the same manner as in Example 1 except that Compound 3-3 was used as the host material for the light emitting layer.
  • Example 7 An organic EL device was produced in the same manner as in Example 1 except that Compound 3-13 was used as the host material for the light emitting layer.
  • Example 8 An organic EL device was produced in the same manner as in Example 1 except that Compound 3-23 was used as the host material for the light emitting layer.
  • Example 9 An organic EL device was produced in the same manner as in Example 1 except that Compound 4-3 was used as the host material for the light emitting layer.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that 4,4′-bis (9-carbazolyl) biphenyl (CBP) was used as the host material for the light emitting layer.
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 1 except that the following compound H-1 was used as the host material for the light emitting layer.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 1 except that the following compound H-2 was used as the host material for the light emitting layer.
  • Table 1 shows that the indolocarbazole compound used in the organic EL device of the present invention exhibits good emission characteristics with respect to CBP generally known as a phosphorescent host.
  • the indolocarbazole compound exhibits excellent light emission characteristics compared to H-1 in which an aromatic heterocyclic ring is directly bonded to indolocarbazole and H-2 having no aromatic heterocyclic compound in the molecule. The advantage of is clear.
  • Example 10 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed. First, copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO as a hole injection layer. Next, NPB was formed to a thickness of 90 nm as a hole transport layer.
  • CuPC copper phthalocyanine
  • compound 3-1 as a host material of the light emitting layer and an iridium complex [iridium (III) bis (4,6-di-fluorophenyl) -pyridinate as a blue phosphorescent material as a dopant -N, C2 ′] picolinate] (FIrpic) were co-deposited from different deposition sources to form a light emitting layer with a thickness of 30 nm. The concentration of FIrpic was 10 wt%.
  • Alq3 was formed to a thickness of 30 nm as an electron transport layer.
  • LiF was formed to a thickness of 1.0 nm as an electron injection layer on the electron transport layer.
  • Al was formed as an electrode to a thickness of 70 nm on the electron injection layer.
  • the obtained organic EL device has a layer structure in which an electron injection layer is added between the cathode and the electron transport layer in the organic EL device shown in FIG.
  • Example 11 An organic EL device was produced in the same manner as in Example 10 except that Compound 3-4 was used as the host material for the light emitting layer.
  • Example 12 An organic EL device was produced in the same manner as in Example 10 except that Compound 3-23 was used as the host material for the light emitting layer.
  • Comparative Example 4 An organic EL device was produced in the same manner as in Example 10 except that CBP was used as the host material of the light emitting layer.
  • Comparative Example 5 An organic EL device was produced in the same manner as in Example 10 except that H-1 was used as the host material for the light emitting layer.
  • Table 2 also shows that the organic EL elements of the examples show better light emission characteristics than the organic EL elements of the comparative examples, which shows the superiority of the present invention.
  • the organic EL device according to the present invention has practically satisfactory levels in terms of light emission characteristics, driving life and durability, flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission, etc. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 素子の発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)を提供する。 この有機EL素子は、基板上に、陽極、燐光発光層を含む有機層及び陰極が積層されており、発光層、電子輸送層及び正孔阻止層から選ばれる少なくとも一つの有機層中に、一般式(1)で表されるインドロカルバゾール化合物を含有する。燐光発光性ドーパントとホスト材料を含む発光層にこのインドロカルバゾール化合物を含有する場合は、ホスト材料として含有させる。インドロカルバゾール化合物としては、下記式(2)で表される化合物がある。A1、A2は芳香族炭化水素基を表し、B1、B2は芳香族複素環基を表し、R1~R3は水素、アルキル基、シクロアルキル基、芳香族炭化水素基又は芳香族複素環基を表し、mは1~3の整数を表し、nは0~3の整数を表す。

Description

有機電界発光素子
  本発明はインドロカルバゾール化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に燐光発光ドーパント材料の研究が多数行われている。
特表2003-515897号公報 特開2001-313178号公報 特開平11-162650号公報 特開平11-176578号公報 WO2008-056746号公報
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPの正孔を流し易く電子を流しにくい特性上、電荷バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献3においては、正孔輸送材料として以下に示すようなインドロカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000004
 
  また、特許文献4においては、正孔輸送材料として以下に示すようなインドロカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000005
 
  しかしながら、これらはインドロカルバゾール骨格を有する化合物の正孔輸送材料としての使用を推奨し、また蛍光発光素子においてのみの実施例であり、燐光発光素子用材料としての使用を開示するものではない。
  また、特許文献5には以下に示すようなインドロカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000006
 
  しかしながら、上記化合物はインドロカルバゾール骨格の窒素上に直接芳香族複素環が置換したものであり、芳香族炭化水素を連結基とした化合物を開示するものではない。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、芳香族複素環が芳香族炭化水素基で連結されたインドロカルバゾール化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
  本発明は、基板上に、陽極、燐光発光層を含む有機層及び陰極が積層されてなる有機電界発光素子において、発光層、電子輸送層及び正孔阻止層からなる群れから選ばれる少なくとも一つの有機層中に、一般式(1)で表されるインドロカルバゾール化合物を含有することを特徴とする有機電界発光素子に関する。

Figure JPOXMLDOC01-appb-I000007
 
  一般式(1)中、環Aは隣接環と任意の位置でと縮合する式(1a)で表される芳香族環又は複素環を示し、環Bは隣接環と任意の位置でと縮合する式(1b)で表される複素環を表す。一般式(1)、(1a)及び(1b)中、A1、A2はそれぞれ独立して炭素数6~50の芳香族炭化水素基を表し、B1、B2はそれぞれ独立して炭素数3~50の芳香族複素環基を表し、Xはメチン又は窒素を表し、R1、R2はそれぞれ独立に、水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示し、R3は水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示し、Xを含む環と縮合して縮合環を形成しても良い。mは1~3の整数を表し、nは0~3の整数を表す。m、nが2以上の場合、複数のB1及びB2はそれぞれ同一でも異なっていても良い。
  一般式(1)で表されるインドロカルバゾール化合物の中でも、下記一般式(2)~(5)のいずれかで表されるインドロカルバゾール化合物が好ましい化合物として挙げられる。
Figure JPOXMLDOC01-appb-I000008
 
  一般式(2)~(5)中、A1、A2、B1、B2、R1~R3、m及びnは一般式(1)のそれらと同意である。
  一般式(2)~(5)のいずれかで表されるインドロカルバゾール化合物の中でも、下記一般式(6)~(9)のいずれかで表されるインドロカルバゾール化合物が、より好ましい化合物として挙げられる。
Figure JPOXMLDOC01-appb-I000009
 
  一般式(6)~(9)中、B1、B2、R1~R3、m及びnは一般式(1)のそれらと同意である。
  上記インドロカルバゾール化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることが好ましい。
  特に、インドロカルバゾール化合物を含む有機層が、440nm~510nmに最大発光波長を有する燐光発光ドーパントと、一般式(4)又は(5)のいずれかで表されるインドロカルバゾール化合物を含有する発光層であることが好ましい。
  一般式(1)で表されるインドロカルバゾール化合物は、インドロカルバゾール骨格と少なくとも1つの芳香族複素環が、芳香族炭化水素基で連結されることにより、良好な正孔と電子の注入輸送特性を示し、かつ高い耐久性を有すると考えられる。これを用いた有機EL素子は駆動電圧が低く、特に、発光層中にこのインドロカルバゾール化合物を含む場合、両電荷のバランスが良好になることから再結合確率が向上し、また、高い最低励起三重項状態のエネルギーを有しているために、ドーパントからホスト分子への三重項励起エネルギーの移動を効果的に抑えることができるなどの特徴を有し、優れた発光特性を与えると考えられる。加えて、良好なアモルファス特性と高い熱安定性を示し、また電気化学的に安定であることから、駆動寿命が長く、耐久性の高い有機EL素子を実現することができると考えられる。
有機EL素子の一構造例を示す断面図である。 インドロカルバゾール化合物3-1の1H-NMRチャートを示す。 インドロカルバゾール化合物3-13の1H-NMRチャートを示す。
  本発明の有機電界発光素子は、前記一般式(1)で表されるインドロカルバゾール化合物を含有する。このインドロカルバゾール化合物の2つの窒素が芳香族炭化水素で置換され、更にそのうちの1つが少なくとも1つの芳香族複素環で置換された構造を有することにより、優れた効果をもたらすと考えられる。
  一般式(1)において、環Aは隣接環と任意の位置でと縮合する式(1a)で表される芳香族環又は複素環を示し、環Bは隣接環と任意の位置でと縮合する式(1b)で表される複素環を表す。
  一般式(1)において、A1及びA2はそれぞれ独立して炭素数6~50の芳香族炭化水素基を表す。好ましくは炭素数6~30の芳香族炭化水素基であり、より好ましくは炭素数6~18の芳香族炭化水素基である。A1はm+1価の芳香族炭化水素基であり、A2はn+1価の芳香族炭化水素基である。A1及びA2の具体例としてはベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、又はこれらが複数連結された芳香族化合物から水素を除いて生じるm+1価又はn+1価の基が挙げられる。芳香族炭化水素基が複数連結されている場合、その総炭素数は10~50である。好ましくはベンゼン、ナフタレン、アントラセン、フェナントレンが挙げられ、より好ましくはベンゼンが挙げられる。上記芳香族化合物が複数連結される場合、それらは同一でも異なっていてもよい。芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~5が好ましく、より好ましくは2又は3である。上記複数連結された芳香族化合物から水素を除いて生じる基の具体例としては、ビフェニル、ターフェニル、フェニルナフタレン、ジフェニルナフタレン、フェニルアントラセン、ジフェニルアントラセン、ジフェニルフルオレン等が挙げられる。A1と、インドロカルバゾール及びB1との連結位置は限定されず、末端の環であっても中央部の環であっても構わない。上記芳香族炭化水素基は置換基を有しても良く、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基である。
  ここで、芳香環が複数連結された芳香族化合物から生じる基は、2価の基の場合、例えば、次式(11)~(13)で表わされる。
Figure JPOXMLDOC01-appb-I000010
 
(式(11)~(13)中、Ar1~Ar6は無置換の単環又は縮合環の芳香環を示す)
  A1、A2、B1、B2及びR1~R3が、芳香族炭化水素基、芳香族複素環基、又は脂肪族炭化水素基であって、置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。また、上記芳香族炭化水素基、芳香族複素環基又は脂肪族炭化水素基の炭素数の計算において、置換基を有する場合、その置換基の炭素数を含む。
  一般式(1)において、B1、B2はそれぞれ独立に1価の炭素数3~50の芳香族複素環基を表す。好ましくは炭素数3~30の芳香族複素環基であり、より好ましくは炭素数3~17の芳香族複素環基である。ただし、B1、B2はいずれもインドロカルバゾリル基となることはない。芳香族複素環が複数連結されている場合、その総炭素数は6~50である。B1、B2の具体例としてはピロール、ピリジン、ピリミジン、トリアジン、インドール、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン、フラン、ベンゾフラン、ジベンゾフラン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン又はこれらが複数連結された芳香族化合物より生じる1価の基が挙げられる。好ましくはピリジン、ピリミジン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェンより生じる1価の基が挙げられる。上記芳香族化合物が複数連結される場合、それらは同一でも異なっていてもよい。芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~5が好ましく、より好ましくは2又は3である。上記複数連結された芳香族化合物から水素を除いて生じる基の具体例としては、ビピリジン、ビピリミジン、ビトリアジン、ピリジルピリミジン、ピリジルカルバゾール、ピリミジルカルバゾール等が挙げられる。上記芳香族複素環は置換基を有しても良く、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~12の芳香族炭化水素基である。より好ましくは、フェニル基、ナフチル基である。
  一般式(1)において、mは1~3の整数を表す。好ましくは、mは1又は2である。mが2以上の場合、B1は同一であっても異なっていても良い。
  nは0~3の整数を表す。好ましくは、nは0~2の整数である。nが2以上の場合、B2は同一であっても異なっていても良い。ここで、m+nは1~3であることが好ましい。
  一般式(1)において、R1、R2はそれぞれ独立して水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。好ましくは水素、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、フェニル基、ナフチル基、ピリジル基、ピリミジル基、トリアジル基、カルバゾリル基である。そして、より好ましくは水素、フェニル基、カルバゾリル基である。
  一般式(1)において、R3は水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基、炭素数3~11の芳香族複素環基、又はXを含む環と縮合する基を表す。式(1a)中のXを含む六員環に縮合する環である場合、この環は縮合環であってもよい。縮合環である場合はインドール環が好ましく、この場合、ジインドロカルバゾールを形成することになる。このとき、インドール環は、置換基を有してもよい。
  一般式(1)で表されるインドロカルバゾール化合物の中でも、上記一般式(2)~(5)で表されるインドロカルバゾール化合物が好ましい化合物として挙げられ、上記一般式(6)~(9)で表されるインドロカルバゾール化合物がより好ましい化合物として挙げられる。
  一般式(1)~(9)において、それぞれ同一の記号及び式は特に断らない限り同一の意味を有すると解される。
  一般式(1)~(9)で表されるインドロカルバゾール化合物は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
  例えば、一般式(2)又は(6)で表されるインドロカルバゾール骨格は、Archiv der Pharmazie (Weinheim, Germany),1987,320(3),p280-2に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000011
 
  また、一般式(3)又は(7)で表されるインドロカルバゾール化合物のインドロカルバゾール骨格は、Synlett,2005,No.1,p42-48に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000012
 
  また、一般式(4)、(5)、(8)又は(9)で表されるインドロカルバゾール化合物のインドロカルバゾール骨格は、The Journal of Organic Chemistry,2007,72(15)5886 ならびに、Tetrahedron,1999,55,p2371に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000013
 
  前述の反応式で得られる各インドロカルバゾール骨格の窒素上の水素を、定法に従い、対応する芳香族基に置換させることで、一般式(1)~(9)で表されるインドロカルバゾール化合物を合成することができる。
  一般式(1)~(9)で表されるインドロカルバゾール化合物の具体例を以下に示すが、本発明の有機電界発光素子に用いられる材料はこれらに限定されない。
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 
Figure JPOXMLDOC01-appb-I000016
 
Figure JPOXMLDOC01-appb-I000017
 

Figure JPOXMLDOC01-appb-I000018
 
  
Figure JPOXMLDOC01-appb-I000019
 
Figure JPOXMLDOC01-appb-I000020
 
  
Figure JPOXMLDOC01-appb-I000021
 

Figure JPOXMLDOC01-appb-I000022
 
Figure JPOXMLDOC01-appb-I000023
 

Figure JPOXMLDOC01-appb-I000024
 
Figure JPOXMLDOC01-appb-I000025
 
Figure JPOXMLDOC01-appb-I000026
 
  
Figure JPOXMLDOC01-appb-I000027
 
Figure JPOXMLDOC01-appb-I000028
 

Figure JPOXMLDOC01-appb-I000029
 
  一般式(1)又は一般式(2)~(9)のいずれかで表されるインドロカルバゾール化合物(以下、本発明のインドロカルバゾール化合物又は一般式(1)で表されるインドロカルバゾール化合物ともいう)は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては、発光層、電子輸送層又は正孔阻止層である。より好ましくは、燐光発光ドーパントを含有する発光層のホスト材料として含有させることがよい。
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ発光層、電子輸送層又は正孔阻止層から選ばれる少なくとも一つの有機層は、本発明のインドロカルバゾール化合物を含む。有利には、燐光発光ドーパントと共に本発明のインドロカルバゾール化合物を発光層中に含む。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は燐光発光層であり、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、(Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
  
Figure JPOXMLDOC01-appb-I000030
 
Figure JPOXMLDOC01-appb-I000031
 
  前記燐光発光ドーパントが発光層中に含有される量は、1~50重量%の範囲にあることが好ましい。より好ましくは5~30重量%である。
  発光層におけるホスト材料としては、前記一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましい。しかし、該インドロカルバゾール化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はインドロカルバゾール化合物以外の他のホスト材料であってもよい。また、インドロカルバゾール化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能又は電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましいが、インドロカルバゾール化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には一般式(1)で表されるインドロカルバゾール誘導体を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
  以下に示すルートにより本発明に用いたインドロカルバゾール化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物3-1の合成
  
Figure JPOXMLDOC01-appb-I000032
 
  窒素雰囲気下、5,12-ジヒドロインドロ[3,2-a]カルバゾール(IC-1) 10.0 g(0.039 mol)、ヨードベンゼン39.8 g(0.20 mol)、銅6.2g(0.098 mol)、炭酸カリウム8.1 g(0.059 mol)、テトラグライム200 mlを加えて撹拌した。その後190 ℃まで加熱し、24 時間撹拌した。反応溶液を室温まで冷却した後に、銅、無機物をろ別した。ろ液に水200 mlを加えて撹拌し、析出した結晶をろ別した。これを減圧乾燥した後、カラムクロマトグラフィーで精製して白色粉末の中間体A 9.7 g(0.029 mol、収率75 %)を得た。
  窒素雰囲気下、中間体A25.0 g(0.075 mol)、4-(3-ブロモフェニル)-2,6-ジフェニルピリジン 25.6 g(0.066 mol)、ヨウ化銅 25.5 g(0.13 mol)、炭酸カリウム 31.0g(0.22 mol)、1,3-ジメチル-2-イミダゾリジノン 500 mlを加え、185 ℃で45 時間撹拌した。反応溶液を室温まで冷却した後に、無機物をろ別した。水4000  mlに得られたろ液を加えて撹拌し、析出した結晶をろ別した。これを減圧乾燥した後、カラムクロマトグラフィーで精製して白色粉末の化合物3-1 23.7 g(0.037mol、収率56 %)を得た。
APCI-TOFMS, m/z 638 [M+H]1H-NMR測定結果(測定溶媒:THF-d8)を図2に示す。 
合成例2
化合物3-13の合成

Figure JPOXMLDOC01-appb-I000033
 
  窒素雰囲気下、IC-1 9.9 g(0.039 mol)、4-(3-ブロモフェニル)-2,6-ジフェニルピリジン 14.6 g(0.038 mol)、ヨウ化銅 13.5 g(0.071 mol)、炭酸カリウム 16.6 g(0.12 mol)、1,3-ジメチル-2-イミダゾリジノン 350 mlを加え、185 ℃で30 時間撹拌した。反応溶液を室温まで冷却した後に、無機物をろ別した。水4000 mlに得られたろ液を加えて撹拌し、析出した結晶をろ別した。これを減圧乾燥した後、カラムクロマトグラフィーで精製して白色粉末の中間体B20.5 g(0.036 mol、収率94 %)を得た。
  窒素雰囲気下、中間体B19.1 g(0.034 mol)、4-(3-ブロモフェニル)-2,6-ジフェニルピリジン 12.9 g(0.034 mol)、ヨウ化銅 12.2 g(0.064 mol)、炭酸カリウム 15.8 g(0.12 mol)、1,3-ジメチル-2-イミダゾリジノン 300 mlを加え、185 ℃で45 時間撹拌した。反応溶液を室温まで冷却した後に、無機物をろ別した。水4000 mlに得られたろ液を加えて撹拌し、析出した結晶をろ別した。これを減圧乾燥した後、カラムクロマトグラフィーで精製して白色粉末の化合物3-13 8.3 g(0.010 mol、収率28 %)を得た。
APCI-TOFMS, m/z 867 [M+H]1H-NMR測定結果(測定溶媒:THF-d8)を図3に示す。
  また、上記合成例及び明細書中に記載の合成方法に準じて、化合物1-11、1-15、2-6、2-30、3-3、3-23及び4-3を用意し、有機EL素子の作製に供した。
実施例1
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層させた。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物3-1と、燐光発光ドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)3)とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。発光層中のIr(ppy)3の濃度は10.0 wt%であった。次に、電子輸送層としてトリス(8-ヒドロキシキノリナト)アルミニウム(III)(Alq3)を20 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nmの厚さに形成し、有機EL素子を作製した。
実施例2
  発光層のホスト材料として、化合物1-11を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例3
  発光層のホスト材料として、化合物1-15を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例4
  発光層のホスト材料として、化合物2-6を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例5
  発光層のホスト材料として、化合物2-30を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例6
  発光層のホスト材料として、化合物3-3を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例7
  発光層のホスト材料として、化合物3-13を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例8
  発光層のホスト材料として、化合物3-23を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例9
  発光層のホスト材料として、化合物4-3を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例1
  発光層のホスト材料として、4,4'-ビス(9-カルバゾリル)ビフェニル(CBP)を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例2
  発光層のホスト材料として、下記化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例3
  発光層のホスト材料として、下記化合物H-2を用いた以外は実施例1と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-I000034
 
  実施例1~9及び比較例1~3で得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、10mA/cm2での値を示す。なお、素子発光スペクトルの極大波長はいずれも530 nmであり、Ir(ppy)3からの発光が得られていると同定された。
Figure JPOXMLDOC01-appb-T000035
  表1より、本発明の有機EL素子で使用するインドロカルバゾール化合物は、燐光ホストとして一般的に知られているCBPに対して良好な発光特性を示すことが判る。また、インドロカルバゾールに直接芳香族複素環が結合するH-1や、分子中に芳香族複素環化合物を持たないH-2と比較して、良好な発光特性を示し、上記インドロカルバゾール化合物の優位性が明らかである。
実施例10
  膜厚 110 nm のITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度 2.0×10-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 25 nm の厚さに形成した。次に、正孔輸送層としてNPBを90 nm の厚さに形成した。次に、正孔輸送層上に、発光層のホスト材料としての化合物3-1とドーパントとしての青色燐光材料であるイリジウム錯体[イリジウム(III)ビス(4,6-ジ-フルオロフェニル)-ピリジネート-N,C2']ピコリネート](FIrpic)とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。FIrpicの濃度は 10 wt%であった。次に、電子輸送層として Alq3 を 30 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてAlを70 nm厚さに形成した。得られた有機EL素子は、図1に示す有機EL素子において、陰極と電子輸送層の間に、電子注入層が追加された層構成を有する。
実施例11
  発光層のホスト材料として、化合物3-4を用いた以外は実施例10と同様にして有機EL素子を作製した。
実施例12
  発光層のホスト材料として、化合物3-23を用いた以外は実施例10と同様にして有機EL素子を作製した。
比較例4
  発光層のホスト材料として、CBPを用いた以外は実施例10と同様にして有機EL素子を作製した。
比較例5
  発光層のホスト材料として、H-1を用いた以外は実施例10と同様にして有機EL素子を作製した。
 実施例10~12及び比較例4~5で得られた有機EL素子について、外部電源を接続し直流電圧を印加したところ、表2のような発光特性を有することが確認された。表2において、輝度、電圧、及び発光効率は、2.5 mA/cm2での値を示す。なお、素子発光スペクトルの極大波長はいずれも475 nmであり、FIrpicからの発光が得られていると同定された。
Figure JPOXMLDOC01-appb-T000036
 
  表2からも、実施例の有機EL素子は比較例の有機EL素子に対して良好な発光特性を示すことが判り、本発明の優位性が示される。
産業上の利用の可能性
  本発明による有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (5)

  1.   基板上に、陽極、燐光発光層を含む有機層及び陰極が積層されてなる有機電界発光素子において、発光層、電子輸送層及び正孔阻止層からなる群れから選ばれる少なくとも一つの有機層中に、一般式(1)で表されるインドロカルバゾール化合物を含有することを特徴とする有機電界発光素子。

    Figure JPOXMLDOC01-appb-I000001
     
     一般式(1)中、環Aは隣接環と任意の位置で縮合する式(1a)で表される芳香族環又は複素環を示し、環Bは隣接環と任意の位置で縮合する式(1b)で表される複素環を表す。一般式(1)、(1a)及び(1b)中、A1及びA2はそれぞれ独立して炭素数6~50の芳香族炭化水素基を表し、B1及びB2はそれぞれ独立して炭素数3~50の芳香族複素環基を表し、Xはメチン又は窒素を表し、R1及びR2はそれぞれ独立に、水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示し、R3は水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示し、Xを含む環と縮合して縮合環を形成しても良い。mは1~3の整数を表し、nは0~3の整数を表す。m、nが2以上の場合、複数のB1及びB2はそれぞれ同一でも異なっていても良い。
  2.   一般式(1)で表されるインドロカルバゾール化合物が、一般式(2)~(5)のいずれかである請求項1に記載の有機電界発光素子。

    Figure JPOXMLDOC01-appb-I000002
     
     一般式(2)~(5)中、A1、A2、B1、B2、R1~R3、m及びnは一般式(1)と同意である。
  3.   一般式(2)~(5)のいずれかで表されるインドロカルバゾール化合物が、一般式(6)~(9)のいずれかで表されるインドロカルバゾール化合物である請求項2に記載の有機電界発光素子。

    Figure JPOXMLDOC01-appb-I000003
     
    (一般式(6)~(9)中、B1、B2、R1~R3、m及びnは一般式(1)と同意である。)
  4.   インドロカルバゾール化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項1~3のいずれかに記載の有機電界発光素子。
  5.   インドロカルバゾール化合物を含む有機層が、440nm~510nmに最大発光波長を有する燐光発光ドーパントを含有し、かつ一般式(4)又は(5)で表されるインドロカルバゾール化合物を含有する発光層であることを特徴とする請求項2に記載の有機電界発光素子。
PCT/JP2011/051639 2010-02-12 2011-01-27 有機電界発光素子 WO2011099374A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180008997.XA CN102754237B (zh) 2010-02-12 2011-01-27 有机电致发光元件
US13/577,238 US9156843B2 (en) 2010-02-12 2011-01-27 Organic electroluminescent device comprising an organic layer containing an indolocarbazole compound
KR1020127023471A KR101313730B1 (ko) 2010-02-12 2011-01-27 유기 전계 발광 소자
JP2011553796A JP5215481B2 (ja) 2010-02-12 2011-01-27 有機電界発光素子
EP11742121.4A EP2535957B1 (en) 2010-02-12 2011-01-27 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-028567 2010-02-12
JP2010028567 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099374A1 true WO2011099374A1 (ja) 2011-08-18

Family

ID=44367655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051639 WO2011099374A1 (ja) 2010-02-12 2011-01-27 有機電界発光素子

Country Status (7)

Country Link
US (1) US9156843B2 (ja)
EP (1) EP2535957B1 (ja)
JP (1) JP5215481B2 (ja)
KR (1) KR101313730B1 (ja)
CN (1) CN102754237B (ja)
TW (1) TWI429650B (ja)
WO (1) WO2011099374A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056880A (ja) * 2010-09-08 2012-03-22 Idemitsu Kosan Co Ltd インドロカルバゾール化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2013011891A1 (ja) * 2011-07-15 2013-01-24 出光興産株式会社 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
WO2013109045A1 (en) * 2012-01-16 2013-07-25 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2013133223A1 (ja) * 2012-03-05 2013-09-12 東レ株式会社 発光素子
JP2013538793A (ja) * 2010-07-21 2013-10-17 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを含む有機電界発光素子
WO2013175746A1 (ja) * 2012-05-22 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013175747A1 (ja) * 2012-05-22 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子
KR101452578B1 (ko) 2012-07-23 2014-10-23 주식회사 두산 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
US20140374711A1 (en) * 2013-06-14 2014-12-25 Samsung Display Co., Ltd. Organic light-emitting device
CN104271582A (zh) * 2012-05-02 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2017159152A1 (ja) 2016-03-15 2017-09-21 新日鉄住金化学株式会社 有機電界発光素子
KR101791739B1 (ko) * 2015-07-30 2017-10-30 이-레이 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 유기 전자발광 디바이스용 인광 물질
US10128456B2 (en) 2011-10-26 2018-11-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, and material for organic electroluminescence element
WO2019181465A1 (ja) 2018-03-19 2019-09-26 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2022085777A1 (ja) 2020-10-23 2022-04-28 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2022085776A1 (ja) 2020-10-23 2022-04-28 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2023008779A1 (ko) * 2021-05-07 2023-02-02 주식회사 엘지화학 유기 발광 소자
KR20240037890A (ko) 2021-07-30 2024-03-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167259A1 (en) * 2014-04-29 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
KR102491209B1 (ko) * 2014-04-29 2023-01-26 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR101558495B1 (ko) * 2014-06-27 2015-10-12 희성소재 (주) 다환 화합물 및 이를 이용한 유기발광소자
KR102256932B1 (ko) 2014-09-18 2021-05-28 삼성디스플레이 주식회사 유기 발광 소자
TWI562996B (en) * 2015-10-07 2016-12-21 E Ray Optoelectronics Tech Co Organic materials for organic electroluminscent devices
KR102497280B1 (ko) * 2015-11-26 2023-02-08 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
US11818950B2 (en) * 2015-12-28 2023-11-14 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescence element
US10957861B2 (en) * 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
KR102529341B1 (ko) 2016-10-05 2023-05-09 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US11283028B2 (en) 2016-10-05 2022-03-22 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR102639854B1 (ko) 2016-10-31 2024-02-22 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
CN109326741A (zh) * 2017-08-01 2019-02-12 江苏三月光电科技有限公司 一种含有氮杂苯类化合物的有机发光器件
US11723269B2 (en) * 2017-08-22 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
KR20190053792A (ko) 2017-11-10 2019-05-20 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물, 이를 포함하는 유기 전계 발광 재료, 및 유기 전계 발광 소자
US11217757B2 (en) 2018-03-12 2022-01-04 Universal Display Corporation Host materials for electroluminescent devices
CN108440537B (zh) * 2018-04-18 2021-04-27 石家庄诚志永华显示材料有限公司 咔唑衍生物、包含该咔唑衍生物的材料和有机电致发光器件
CN109651406B (zh) * 2019-01-23 2021-01-08 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件
KR20210039565A (ko) * 2019-10-02 2021-04-12 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
CN110759918B (zh) 2019-10-31 2021-07-06 上海天马有机发光显示技术有限公司 一种化合物、显示面板及电子设备
CN111233861A (zh) * 2020-02-13 2020-06-05 吉林奥来德光电材料股份有限公司 一种有机发光化合物、其制备方法及有机电致发光器件
CN115466265A (zh) 2021-06-10 2022-12-13 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN116082341A (zh) 2021-11-02 2023-05-09 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162650A (ja) 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
JPH11167215A (ja) * 1997-10-02 1999-06-22 Xerox Corp インドロカルバゾールを含む光伝導性の画像形成部材
JPH11176578A (ja) 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2009136596A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子
WO2009148016A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148015A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1805280B1 (en) 2004-09-20 2011-02-09 LG Chem, Ltd. Carbazole derivative and organic light emitting device using same
JP2009085657A (ja) 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 走査型電子顕微鏡を用いた試料の観察方法およびそのシステム
EP2284920B1 (en) 2008-05-08 2015-07-29 Nippon Steel & Sumikin Chemical Co., Ltd. Compound for organic electric field light-emitting element and organic electric field light-emitting element
US8049411B2 (en) 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8057919B2 (en) 2008-06-05 2011-11-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8318323B2 (en) 2008-06-05 2012-11-27 Idemitsu Kosan Co., Ltd. Polycyclic compounds and organic electroluminescence device employing the same
EP2393900B1 (en) * 2009-02-03 2013-04-17 Nitto Denko Corporation Ambipolar host in organic light emitting diode
JP5723764B2 (ja) 2009-03-31 2015-05-27 新日鉄住金化学株式会社 有機電界発光素子
KR101801048B1 (ko) * 2009-06-08 2017-11-28 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162650A (ja) 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
JPH11167215A (ja) * 1997-10-02 1999-06-22 Xerox Corp インドロカルバゾールを含む光伝導性の画像形成部材
JPH11176578A (ja) 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2009136596A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子
WO2009148016A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148015A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARCHIVE DER PHARMAZIE, vol. 320, 1987
See also references of EP2535957A4
SYNLETT., 2005, pages 42 - 48
TETRAHEDRON, vol. 55, 1999, pages 2371
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 72, no. 15, 2007, pages 5886

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538793A (ja) * 2010-07-21 2013-10-17 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを含む有機電界発光素子
JP2012056880A (ja) * 2010-09-08 2012-03-22 Idemitsu Kosan Co Ltd インドロカルバゾール化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2013011891A1 (ja) * 2011-07-15 2013-01-24 出光興産株式会社 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2013040105A (ja) * 2011-07-15 2013-02-28 Idemitsu Kosan Co Ltd 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
US10043977B2 (en) 2011-07-15 2018-08-07 Idemitsu Kosan Co., Ltd. Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
US10707434B2 (en) 2011-10-26 2020-07-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, and material for organic electroluminescence element
US10128456B2 (en) 2011-10-26 2018-11-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, and material for organic electroluminescence element
WO2013109045A1 (en) * 2012-01-16 2013-07-25 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN104136440A (zh) * 2012-01-16 2014-11-05 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和使用该化合物的有机电致发光器件
WO2013133223A1 (ja) * 2012-03-05 2013-09-12 東レ株式会社 発光素子
KR20140143357A (ko) 2012-03-05 2014-12-16 도레이 카부시키가이샤 발광 소자
CN104271582A (zh) * 2012-05-02 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2013175746A1 (ja) * 2012-05-22 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013175747A1 (ja) * 2012-05-22 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子
KR101452578B1 (ko) 2012-07-23 2014-10-23 주식회사 두산 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
US20140374711A1 (en) * 2013-06-14 2014-12-25 Samsung Display Co., Ltd. Organic light-emitting device
US10158086B2 (en) * 2013-06-14 2018-12-18 Samsung Display Co., Ltd. Organic light-emitting device
KR101791739B1 (ko) * 2015-07-30 2017-10-30 이-레이 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 유기 전자발광 디바이스용 인광 물질
WO2017159152A1 (ja) 2016-03-15 2017-09-21 新日鉄住金化学株式会社 有機電界発光素子
US11088334B2 (en) 2016-03-15 2021-08-10 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
WO2019181465A1 (ja) 2018-03-19 2019-09-26 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2022085777A1 (ja) 2020-10-23 2022-04-28 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2022085776A1 (ja) 2020-10-23 2022-04-28 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子
KR20230088691A (ko) 2020-10-23 2023-06-20 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광소자용 재료 및 유기 전계 발광소자
KR20230093246A (ko) 2020-10-23 2023-06-27 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광소자용 재료 및 유기 전계 발광소자
WO2023008779A1 (ko) * 2021-05-07 2023-02-02 주식회사 엘지화학 유기 발광 소자
KR20240037890A (ko) 2021-07-30 2024-03-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자

Also Published As

Publication number Publication date
KR20120125368A (ko) 2012-11-14
US20120305903A1 (en) 2012-12-06
US9156843B2 (en) 2015-10-13
CN102754237B (zh) 2015-06-17
EP2535957A1 (en) 2012-12-19
TW201136933A (en) 2011-11-01
EP2535957B1 (en) 2017-01-04
KR101313730B1 (ko) 2013-10-01
JP5215481B2 (ja) 2013-06-19
CN102754237A (zh) 2012-10-24
TWI429650B (zh) 2014-03-11
EP2535957A4 (en) 2014-09-24
JPWO2011099374A1 (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5215481B2 (ja) 有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP5662994B2 (ja) 有機電界発光素子
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP5596706B2 (ja) 有機電界発光素子
JP6091428B2 (ja) 有機電界発光素子
JP6140146B2 (ja) 有機電界発光素子
JP5834023B2 (ja) 有機電界発光素子
JP5972884B2 (ja) 有機電界発光素子
JP5723764B2 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
JP5914500B2 (ja) 有機電界発光素子
JP5395161B2 (ja) 有機電界発光素子
WO2011081061A1 (ja) 有機電界発光素子
WO2011049063A1 (ja) 有機電界発光素子
JP5953237B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008997.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742121

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011553796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13577238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011742121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011742121

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127023471

Country of ref document: KR

Kind code of ref document: A