WO2011108803A2 - Manufacturing method for three-dimensional helical actuator - Google Patents

Manufacturing method for three-dimensional helical actuator Download PDF

Info

Publication number
WO2011108803A2
WO2011108803A2 PCT/KR2010/008655 KR2010008655W WO2011108803A2 WO 2011108803 A2 WO2011108803 A2 WO 2011108803A2 KR 2010008655 W KR2010008655 W KR 2010008655W WO 2011108803 A2 WO2011108803 A2 WO 2011108803A2
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
photonic
dimensional
hema
polar
Prior art date
Application number
PCT/KR2010/008655
Other languages
French (fr)
Korean (ko)
Other versions
WO2011108803A3 (en
Inventor
정광운
진광용
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2011108803A2 publication Critical patent/WO2011108803A2/en
Publication of WO2011108803A3 publication Critical patent/WO2011108803A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0019Flexible or deformable structures not provided for in groups B81C1/00142 - B81C1/00182

Definitions

  • the present invention combines a high-molecular hydrogel, photonic crystal, and three-dimensional spiral structure, and uses a new actuator that can be applied to fabricate a new device using characteristics that change shape, color, and structure according to external stimuli. Is to implement.
  • Actuator manufacturing method based on the basic principle of the existing actuator through the introduction of photonic crystals and hydrogel to provide a basis for a variety of color and morphological changes to have a more stubborn and higher functionality than the conventional actuator
  • the present invention provides a method of manufacturing a photonic actuator applicable to a technical field such as photon, electric and magnetic devices and chemical and biological sensors.
  • thermosetting reaction by adding and infiltrating a nonpolar PDMS (polydimethylsiloxane) precursor to the space of the photonic crystal;
  • a fifth step of performing UV curing by applying a polar polyurethane (PU) / 2-hydroxyethylmethacrylate (HEMA) layer Characterized in that it comprises a.
  • PU polar polyurethane
  • HEMA 2-hydroxyethylmethacrylate
  • the mold is characterized in that the tilting of the mold 0 ⁇ 45 ° in the process of the thermosetting reaction of the third step.
  • the component ratio of PU: HEMA in the PU / HEMA layer is characterized in that 1 ⁇ 9: 9 ⁇ 1.
  • Actuator manufacturing method can implement a new one-dimensional scroll structure and three-dimensional photonic actuator capable of simultaneously adjusting the color and shape by external stimulation by the combination of hydrogel, photonic crystal, and actuator
  • the manufacture of new actuators incorporating technology has excellent capabilities for applications in photonics, electricity, magnetic devices and chemical and biological sensors and related materials.
  • Tg glass transition temperature
  • HEMA component ratio
  • Figure 2 (a) is an actuator manufacturing process of the one-dimensional kenti lever structure.
  • Figure 2 (b) is a SEM photograph of the colloidal single crystal represented by [111].
  • Figure 2 (c) is a SEM image of a single crystal represented by.
  • Figure 2 (d) is a SEM photograph of the single crystal after the addition of PDMS
  • Figure 2 (e) is a photograph of the actuator of the one-dimensional kentilever structure.
  • Figure 3 is a 270nm silica colloidal photonic crystal produced by the manufacturing process of FIG.
  • Figure 5a is a scroll actuator photograph produced.
  • Figure 5b is a photograph showing the actuating process acting along the y-axis by the solvent.
  • FIGS. 5A and 5B are photographs showing the sides, the stomach, and the middle of FIGS. 5A and 5B, (a) a left-hand scroll actuator in a polar acetic acid solvent, and (b) a right-hand scroll actuator in a non-polar nucleic acid solvent.
  • Figure 7 (a) is a one-dimensional scroll photonic actuator structure, (b) is a three-dimensional polypeptide spring spiral actuator structure diagram, (c) is a schematic diagram of a three-dimensional DNA double spiral actuator.
  • FIG. 8 is a view showing a manufacturing process of a three-dimensional spiral photonic actuator.
  • FIG. 9 is a photograph of the operation of a three-dimensional spring photonic actuator in a capillary.
  • FIG. 10 is a photograph of the operation of a three-dimensional double helical actuator under nonpolar hexane solvent conditions.
  • 11 is a photograph showing computer simulation data of a three-dimensional double spiral actuator.
  • thermosetting reaction Adding a non-polar PDMS precursor to the space of the photonic crystal and infiltrating the thermosetting reaction;
  • the mold is produced using a unit in the mold can be observed with the eyes, the size of the actuator is characterized in that the production can be up to 100 ⁇ m ⁇ 1m.
  • the mold is characterized in that the tilting of the mold 0 ⁇ 45 ° in the process of the thermosetting reaction of the third step.
  • the component ratio of PU to HEMA in the PU / HEMA layer is characterized in that 1 ⁇ 9: 9 ⁇ 1.
  • the actuator according to the present invention by combining a polymer hydrogel, photonic crystal, and three-dimensional spiral structure, a new three-dimensional photonic actuator that simultaneously changes shape and color according to an external stimulus is intended.
  • the simplest and simplest existing actuator is a one-dimensional cantilever structure that is mainly used in MEMS (microelectromechanical systems).
  • the one-dimensional centrifugal actuator of the present invention was manufactured using silicon nanoparticles and a polymer.
  • the polymer used in the actuator is considered to be an ideal material because it can change the surface freely and easily change the shape and size in response to the external environment compared to the silicon inorganic material.
  • the polymer material is used as a material for silicon-based electronic devices and bio devices that are currently being studied in various fields because they can easily change molecular structure and have chemical and mechanical stability.
  • a flexible, transparent, heat-curable polydimethylsiloxane (PDMS) and a UV-curable polyurethane / 2-hydroxyethylmethacrylate (PU / HEMA) elastomer composite are respectively non-polar ( Selective swelling experiments were performed in polar / nonpolar solvents by selecting hydrophobic) and polar (hydrophilic) materials.
  • PDMS polydimethylsiloxane
  • PU / HEMA 2-hydroxyethylmethacrylate
  • Figure 1 (a) is a change in Tg due to the difference in the component ratio of HEMA
  • Figure 1 (b) is a change in physical properties according to the difference in the component ratio of PU / HEMA.
  • DSC differential scanning calorimeter
  • DMA dynamic mechanical analysis
  • UMT universal mechanical tester
  • PU and HEMA were manufactured with various component ratios, and the thermal and mechanical analysis showed the best thermal and mechanical properties at the composition ratio of 7: 3, and was selected as the optimal PU / HEMA component ratio for the manufacture of actuators.
  • a one-dimensional scroll photonic actuator capable of reversibly adjusting colors and shapes in both directions depending on the polarity or nonpolarity of the solvent may be implemented.
  • the one-dimensional scroll photonic actuator was manufactured through a total of five steps as shown in (a) of FIG. 2, and the crystal structure of the photonic crystal formed during the assembly process from (b) to (d) of FIG. was observed by SEM.
  • thermosetting reaction Adding a non-polar PDMS precursor to the space of the photonic crystal and infiltrating the thermosetting reaction;
  • Applying a polar PU / HEMA layer is to undergo a fifth step of performing UV curing.
  • FIG. 2 (b) is an SEM photograph of the colloidal single crystal represented by [111]
  • FIG. 2 (c) is an SEM photograph of the colloidal single crystal represented by [011].
  • FIG. 2D is a photograph of SEM of a single crystal after adding PDMS.
  • the one-dimensional scroll photonic actuator separated from the mold after curing is shown in FIG. 3.
  • the fabricated one-dimensional scroll photonic actuator is transparent in the visible region. This is because, firstly, the PDMS layer and the PU / HEMA layer material do not absorb light in the visible region, and secondly, the refractive index (n) of the PDMS layer and silica colloid is equal to 1.43.
  • FIG. 4 is a reflection spectrum of the assembled photonic crystal
  • (a) of FIG. 4 is silica
  • (b) is PDMS / silica
  • FIG. 4 (c) is PDMS / silica in a hexane solvent
  • FIG. 4 (D) is the spectrum of PDMS / silica in acetic acid solvent.
  • the silica colloidal crystal having a diameter of 270 nm used in the present invention exhibits a reflection peak of 70% maximum intensity at a green wavelength of 596 nm, but the reflection peak disappears through infiltration with PDMS having the same refractive index as silica, thereby obtaining a transparent sample. .
  • the reflection spectra under solvent conditions show a different pattern: the swelled silica / PDMS photonic crystals in hexane solvent show a broad and low intensity 7% reflection peak at a wavelength of 459 nm, while the swelled silica / PDMS photo in acetic acid solvent The nick crystal will show a reflection peak of 20% maximum intensity at a wavelength of 659 nm.
  • the reason for the occurrence of such a reflection peak is that as soon as the solvent infiltrates the colloidal template, low transmittance is observed due to the high crystallinity of the silica colloidal crystal in the silica / PDMS layer.
  • the one-dimensional scroll photonic actuator is the x-axis in the width direction, the y-axis in the xy-plane according to the three-dimensional Cartesian coordinate system It is perpendicular to the longitudinal direction, and the z axis is expressed in the thickness direction.
  • the prepared scroll photonic actuator was stretched in the long axis direction.
  • the scroll photonic actuator was bent toward the PDMS layer having a larger restoring force as shown in FIG. Therefore, in order to give the direction of the actuator, the left / right hand orientation was determined based on the PDMS layer with the + z axis as shown by the Cartesian coordinate system.
  • the left / right hand orientation of the actuator acts as an important distinguishing factor in distinguishing the color and form according to the solvent in the actuator driving experiment.
  • the fabricated one-dimensional scroll photonic actuator was placed in a polar / non-polar solvent to observe changes in structure and color according to swelling time.
  • the one-dimensional scroll photonic actuator is blue, yellow / green, and red according to a viewing point in which the deformation occurs in the right hand direction in acetic acid, a polar solvent, according to the left / right hand orientation.
  • hexane which is a non-polar solvent, as shown in FIG.
  • one-dimensional scroll photonic actuator can be realized by the destruction of one-dimensional symmetrical structure, and reversible actuating with one-dimensional cantilever structure that shows left / right hand orientation and various colors according to the polarity / non-polarity of solvent. Causes a reaction.
  • the advanced three-dimensional spiral photonic actuator is an actuator that can simultaneously adjust color and shape according to external stimulus by applying a spiral structure to one-dimensional scroll photonic actuator. It is a spring spiral like polypeptide and double spiral like DNA. Two three-dimensional spiral photonic actuators of structure were fabricated. The three-dimensional spiral photonic actuator realizes a spiral structure by changing the symmetrical structure in the one-layer scroll photonic actuator having a bilayer structure, and responds to the external environment change more sensitively and accurately.
  • the same swelling action as that of the one-dimensional scrolling structure is used as the driving force of the actuator, and the left / right hand is swelled by the selective swelling action depending on the polarity of the solvent in the PU / HEMA layer or the PDMS layer.
  • Three-dimensional spring spiral structure in the direction is implemented.
  • the fabrication of the three-dimensional spring spiral photonic actuator is performed through the process shown in FIG. 8, and the manufacturing process is the same as that of the one-dimensional scroll photonic actuator, and the material used in the manufacturing is also the same PDMS and PU / as the one-dimensional scroll photonic actuator. HEMA was used.
  • the difference between the manufacturing process of the one-dimensional scroll photonic actuator and the three-dimensional spring spiral photonic actuator is the formation of silica nanocolloidal FCC single crystals followed by infiltration of non-polar PDMS precursors to tilt the mold 0-45 ° during thermal curing. This is because the PDMS layer and the PU / HEMA layer are arranged diagonally to implement a spiral structure in the swelling process.
  • the slope of the mold was 11.3 ° as an angle that takes into account the lengths of the x and z axes.
  • the manufacturing process of the 3D double spiral photonic actuator is the same as that of FIG. 8, and two prepared spring spiral photonic actuators are prepared and bonded by PU / HEMA layers to yz-plane. 9 and 10 show the manufactured three-dimensional spring helical photonic actuator to observe the color and shape over time under polar / non-polar solvent conditions.
  • the three-dimensional spring helical photonic actuator was subjected to swelling experiments in a confined space called a capillary tube to more accurately observe the distortion in the helical structure.
  • FIG. 9 is a photograph of the operation of a three-dimensional spring photonic actuator in a capillary, illustrating: (a) swelling in the right hand direction in a nonpolar hexane solvent in a 1 nm diameter capillary; (b) in the left hand direction in a polar acetic acid solvent. Swelled state, (c) loosened in the right hand direction, (d) loosened in the left hand direction, (e) loosened in the right hand direction in a 2 mm diameter capillary tube, and (f) loosened in the left hand direction.
  • the diameter of the capillary tube used in the swelling experiment was tested using (a) to (d) of Fig. 11 and Fig. 11 (e) and (f) of 2 mm, and the three-dimensional spring spiral photonic actuator in the capillary was polarized. It was placed in the left hand / right hand direction by acting on a nonpolar solvent.
  • the three-dimensional double spiral photonic actuator is spontaneously implemented through a swelling process under non-polar hexane solvent conditions.
  • the three-dimensional double helical photonic actuator uses a non-polar hexane solvent to implement a double helical structure by using a selective swelling action on the non-polar PDMS layer surrounding both sides of the polar PU / HEMA layer (Fig. 10 ( a)). Also, in order to confirm the degree of swelling of the PDMS layer and the PU / HEMA layer, both ends are partially cut by the yz-plane of the three-dimensional double spiral photonic actuator in FIG. 10 (b), and the nonpolarity is the same as in FIG. 10 (a). Swelling was observed in hexane solvent.
  • the three-dimensional double spiral photonic actuator shows a difference in the swelling process that there is no left hand / right hand orientation with the one-dimensional scroll structure or the three-dimensional spring spiral structure.
  • the PDMS layer is asymmetrically arranged on both sides of the PU / HEMA layer, so that the left / right hand orientation is not established.
  • the PDMS layer shows a double helical structure surrounded by the outward shape. A distinct color is indicated in the hexane solvent of.
  • FIG. 11 is computer simulation data of a three-dimensional double spiral actuator, and the principle of driving and twisting the dual spiral actuator is understood through computer simulation in which the amount of stress applied to the inside of the actuator in the three-dimensional double spiral photonic actuator is measured.
  • the present invention can be used in the manufacture of new devices in the field of mechanical, electrical and electronic biotechnology in the nano / micro unit and is industrially applicable.

Abstract

The present invention relates to a manufacturing method for a photonic actuator. The present invention comprises the following five steps: (1) forming a silica nanocolloid FCC single crystal on a surface of a mold, which has been treated with fluorosilane; (2) forming a photonic crystal through self-assemby of said single crystal; (3) adding a non-polar PDMS precursor to, infiltrating, and thermal-curing said photonic crystallization area; (4) adding a methacryloxypropyl-trimethoxysilane monolayer onto an oxygen plasma-treated PDMS layer; and (5) applying a polar PU-HEMA layer and UV-curing. The present invention provides a method for manufacturing a new actuator, which brings together a variety of technologies, and the invention enables a new one-dimensional scroll structure and a three-dimensional photonic actuator, wherein the colors and forms thereof can be adjusted simultaneously, through an external stimulus from the combination of a hydrogel, a photonic crystal, and an actuator.

Description

3차원 나선형 액추에이터의 제조방법Manufacturing Method of 3D Spiral Actuator
본 발명은 고분자 하이드로 젤, 포토닉 결정, 그리고, 3차원 나선형구조를 결합시켜, 외부의 자극에 따라 형태와 색깔, 그리고 구조가 변하는 특성을 이용하여 새로운 디바이스 등을 제작하는데 응용할 수 있는 새로운 액추에이터를 구현하는 것이다.The present invention combines a high-molecular hydrogel, photonic crystal, and three-dimensional spiral structure, and uses a new actuator that can be applied to fabricate a new device using characteristics that change shape, color, and structure according to external stimuli. Is to implement.
본 발명에 사용된 하이드로 젤, 포토닉 결정, 그리고 액추에이터에 대한 연구개발은 이전에도 많은 관심을 가지고 연구가 되었는데, 각각의 기술에 대한 연구와 시장 적용사례는 쉽게 찾아볼 수 있으나, 각각의 기술에만 치중되어 있으며 이러한 다양한 기술의 결합에 대한 연구 자체는 이루어지지 않았다. 유기화합물인 고분자 소재를 사용하여 제조된 다양한 형태의 고기능성의 포토닉 액추에이터는 기존의 어느 기술 분야에도 존재하지 않았다. 나노/마이크로 단위의 기계, 전기, 전자 바이오의 분야에서 새로운 디바이스를 제작하는 데 있어서 응용성이 풍부한 고기능성의 포토닉 액추에이터의 필요성이 대두되었다. Research and development on the hydrogel, photonic crystal, and actuator used in the present invention has been studied with a lot of interests before, research on each technology and market applications can be easily found, but only for each technology There is a lot of research into the combination of these various technologies. Various types of highly functional photonic actuators manufactured using polymer materials, which are organic compounds, have not existed in any existing technical field. There is a growing need for highly functional photonic actuators for the application of new devices in the field of mechanical, electrical and electronic biotechnology at the nano / micro scale.
본 발명에 의한 액추에이터의 제조방법은 기존의 액추에이터의 기본적인 원리에 기초하여 포토닉 결정과 하이드로 젤의 도입을 통하여 다양한 색상과 형태 변화의 기초를 마련하여 기존의 액추에이터에 비하여 더욱 고집적이고 고기능성을 갖추어 광자, 전기, 자기 디바이스와 화학, 생물학적 센서와 같은 기술분야에 적용 가능한 포토닉 액추에이터의 제조방법을 제공하는 데 있다.Actuator manufacturing method according to the present invention based on the basic principle of the existing actuator through the introduction of photonic crystals and hydrogel to provide a basis for a variety of color and morphological changes to have a more stubborn and higher functionality than the conventional actuator The present invention provides a method of manufacturing a photonic actuator applicable to a technical field such as photon, electric and magnetic devices and chemical and biological sensors.
본 발명에 의한 3차원 나선형 액추에이터 제조방법은 The three-dimensional spiral actuator manufacturing method according to the present invention
실리카나노 콜로이드 FCC 단결정을 불소가 치환된 몰드의 표면에 형성하는 제 1단계;Forming a silica nano colloidal FCC single crystal on the surface of a mold substituted with fluorine;
상기 단결정을 자가 조립하여 포토닉 결정을 형성하는 제 2단계;A second step of self-assembling the single crystal to form a photonic crystal;
상기 포토닉 결정의 공간에 비극성 PDMS (polydimethylsiloxane) precursor를 첨가, 침윤시켜 열경화 반응시키는 제 3단계;A third step of thermosetting reaction by adding and infiltrating a nonpolar PDMS (polydimethylsiloxane) precursor to the space of the photonic crystal;
Methacryloxypropyl-trimethoxysilane 단층을 산소 플라즈마 처리한 PDMS층에 올리는 제 4단계;A fourth step of raising the methacryloxypropyl-trimethoxysilane monolayer on the oxygen plasma treated PDMS layer;
극성인 polyurethane(PU)/2-hydroxyethylmethacrylate(HEMA)층을 적용하여 UV 경화를 실시하는 제 5단계; 를 포함하는 것을 특징으로 한다.A fifth step of performing UV curing by applying a polar polyurethane (PU) / 2-hydroxyethylmethacrylate (HEMA) layer; Characterized in that it comprises a.
또한, 상기 제3단계의 열경화 반응시키는 과정에서 상기 몰드를 0~45°기울이는 것을 특징으로 한다. In addition, the mold is characterized in that the tilting of the mold 0 ~ 45 ° in the process of the thermosetting reaction of the third step.
더 나아가, 상기 PU/HEMA층에서 PU:HEMA의 성분비는 1~9 : 9~1인 것을 특징으로 한다. Furthermore, the component ratio of PU: HEMA in the PU / HEMA layer is characterized in that 1 ~ 9: 9 ~ 1.
기타 본 발명의 구현 예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of the embodiments of the present invention are included in the following detailed description.
본 발명에 의한 액추에이터 제조방법은 하이드로 젤, 포토닉 결정, 그리고 액추에이터의 결합에 의한 외부자극에 의하여 색과 형태를 동시에 조율할 수 있는 새로운 1차원 스크롤 구조와 3차원 포토닉 액추에이터를 구현할 수가 있어서 다양한 기술이 접합된 새로운 액추에이터의 제조로 광자, 전기, 자기 디바이스와 화학, 생물학적 센서 등의 분야와 관련 소재분야에 적용할 수 있는 우수한 기능을 갖는 것이다.Actuator manufacturing method according to the present invention can implement a new one-dimensional scroll structure and three-dimensional photonic actuator capable of simultaneously adjusting the color and shape by external stimulation by the combination of hydrogel, photonic crystal, and actuator The manufacture of new actuators incorporating technology has excellent capabilities for applications in photonics, electricity, magnetic devices and chemical and biological sensors and related materials.
도 1은 PU/HEMA복합체에서 HEMA성분비에 의한 유리전이온도(Tg)와 물리적 특성을 나타낸 도면으로, (a)는 HEMA의 성분비 차이에 의한 Tg의 변화룰 나타내는 그래프,(b)는 PU/HEMA의 성분비 차이에 의한 물성적 변화를 나타내는 그래프.1 is a view showing the glass transition temperature (Tg) and the physical characteristics of the PU / HEMA composite by the HEMA component ratio, (a) is a graph showing the change in Tg due to the difference in the component ratio of HEMA, (b) PU / HEMA Graph showing changes in physical properties due to differences in component ratios.
도 2(a)는 1차원 켄티레버 구조의 액추에이터 제조공정. Figure 2 (a) is an actuator manufacturing process of the one-dimensional kenti lever structure.
도 2(b)는 [111]로 표현된 콜로이드 단결정의 SEM사진.Figure 2 (b) is a SEM photograph of the colloidal single crystal represented by [111].
도 2(c)는 [011]로 표현된 단결정의 SEM사진.Figure 2 (c) is a SEM image of a single crystal represented by.
도 2(d)는 PDMS를 첨가한 후 단결정의 SEM사진Figure 2 (d) is a SEM photograph of the single crystal after the addition of PDMS
도 2(e)는 1차원 켄티레버 구조의 액추에이터 사진.Figure 2 (e) is a photograph of the actuator of the one-dimensional kentilever structure.
도 3은 도 2의 제조공정으로 제작된 270nm 실리카 콜로이드 포토닉 결정.Figure 3 is a 270nm silica colloidal photonic crystal produced by the manufacturing process of FIG.
도 4는 조립된 포토닉 결정의 반사 스펙트럼의 도면.4 is a diagram of a reflection spectrum of assembled photonic crystals.
도 5a는 제조된 스크롤 액추에이터 사진.Figure 5a is a scroll actuator photograph produced.
도 5b는 용매에 의하여 y축을 따라 작용하는 엑추에이팅 과정을 나타내는 사진.Figure 5b is a photograph showing the actuating process acting along the y-axis by the solvent.
도 6은 도 5a와 도 5b의 측면과, 위, 중간을 나타내는 사진으로 (a)는 극성아세트산 용매에서의 왼손 스크롤 액추에이터, (b)는 비극성 핵산 용매에서의 오른손 스크롤 액추에이터.6 is a photograph showing the sides, the stomach, and the middle of FIGS. 5A and 5B, (a) a left-hand scroll actuator in a polar acetic acid solvent, and (b) a right-hand scroll actuator in a non-polar nucleic acid solvent.
도 7의 (a)는 1차원 스크롤 포토닉 액추에이터 구조, (b)는 3차원 폴리 펩타이드 스프링 나선형 액추에이터 구조도, (c)는 3차원 DNA 이중 나선형 액추에이터의 모식도. Figure 7 (a) is a one-dimensional scroll photonic actuator structure, (b) is a three-dimensional polypeptide spring spiral actuator structure diagram, (c) is a schematic diagram of a three-dimensional DNA double spiral actuator.
도 8은 3차원 나선형 포토닉 액추에이터의 제조공정을 나타내는 도면.8 is a view showing a manufacturing process of a three-dimensional spiral photonic actuator.
도 9는 모세관 안에서의 3차원 스프링 포토닉 액추에이터의 작동 사진.9 is a photograph of the operation of a three-dimensional spring photonic actuator in a capillary.
도 10은 비극성의 헥산 용매 조건하의 3차원 이중 나선형 액추에이터의 작동사진.10 is a photograph of the operation of a three-dimensional double helical actuator under nonpolar hexane solvent conditions.
도 11은 3차원 이중 나선형 액추에이터의 컴퓨터 시뮬레이션자료를 나타내는 사진.11 is a photograph showing computer simulation data of a three-dimensional double spiral actuator.
상기와 같은 과제를 해결하기 위하여 본 발명에 의한 액추에이터의 제조방법은 In order to solve the above problems, the manufacturing method of the actuator according to the present invention
실리카 나노 콜로이드 FCC 단결정을 불소가 치환된 몰드의 표면에 형성하는 제 1단계;Forming a silica nanocolloidal FCC single crystal on the surface of a mold substituted with fluorine;
상기 단결정을 자가 조립하여 포토닉 결정을 형성하는 제 2단계;A second step of self-assembling the single crystal to form a photonic crystal;
상기 포토닉 결정의 공간에 비극성 PDMS precursor를 첨가, 침윤시켜 열경화 반응시키는 제 3단계;Adding a non-polar PDMS precursor to the space of the photonic crystal and infiltrating the thermosetting reaction;
Methacryloxypropyl-trimethoxysilane 단층을 산소 플라즈마 처리한 PDMS층에 올리는 제 4단계;A fourth step of raising the methacryloxypropyl-trimethoxysilane monolayer on the oxygen plasma treated PDMS layer;
극성인 PU/HEMA층을 적용하여 UV 경화를 실시하는 제 5단계;를 포함하는 것을 특징으로 한다. And a fifth step of performing UV curing by applying a polar PU / HEMA layer.
나아가, 상기 몰드는 상기 몰드는 눈으로 관찰할 수 있는 범위인 단위를 사용해 제작하며, 상기 액추에이터의 크기는 100㎛~1m까지 제작이 가능한 것을 특징으로 한다.Further, the mold is produced using a unit in the mold can be observed with the eyes, the size of the actuator is characterized in that the production can be up to 100㎛ ~ 1m.
또한, 상기 제3단계의 열경화 반응시키는 과정에서 상기 몰드를 0~45°기울이는 것을 특징으로 한다. In addition, the mold is characterized in that the tilting of the mold 0 ~ 45 ° in the process of the thermosetting reaction of the third step.
부가적으로, 상기 PU/HEMA층에서 PU : HEMA의 성분비는 1~9 : 9~1인 것을 특징으로 한다. In addition, the component ratio of PU to HEMA in the PU / HEMA layer is characterized in that 1 ~ 9: 9 ~ 1.
이와 같은 본 발명에 의하면, 포토닉 결정을 이용한 신개념의 다양한 광자/전기/디바이스, 화학/생물학적 센서, 그리고 포토닉 액추에이터 등을 개발하여 다른 많은 산업분야에 적용 가능한 장점이 있는 것이다.According to the present invention, it is possible to develop a variety of photons / electric / devices, chemical / biological sensors, photonic actuators, and the like using a new concept using photonic crystals, which can be applied to many other industrial fields.
이하에서는 도면을 참조하여 본 발명의 양호한 실시예를 상세히 설명하도록 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[실시예]EXAMPLE
본 발명에 의한 액추에이터의 제조과정은 고분자 하이드로 젤, 포토닉 결정, 그리고 3차원 나선형 구조를 결합시켜, 외부 자극에 따라 형태와 색깔이 동시에 변하는 새로운 3차원 포토닉 액추에이터를 구현하고자 하였다 In the manufacturing process of the actuator according to the present invention, by combining a polymer hydrogel, photonic crystal, and three-dimensional spiral structure, a new three-dimensional photonic actuator that simultaneously changes shape and color according to an external stimulus is intended.
기존에 존재하는 가장 만들기 쉽고 간단한 액추에이터는 MEMS (microelectromechanical systems)에서 주로 사용되고 있는 1차원 켄티레버 (cantilever) 구조이다. 본 발명의 1차원 켄티레버 액추에이터는 실리콘 나노입자와 고분자를 이용해 제작하였다. 액추에이터에 사용된 고분자 물질은 실리콘 무기물에 비해 표면을 자유자재로 바꿀 수 있고 외부 환경에 반응하여 모양과 크기를 쉽게 바꿀 수 있어 이상적인 물질로 인식된다. 또한 고분자 물질은 분자구조를 용이하게 바꿀 수 있고 화학, 기계적인 안정성을 갖기 때문에 실리콘을 바탕으로 하는 전자 디바이스와 현재 다양한 분야로 많이 연구되고 있는 바이오 디바이스의 소재로 쓰이고 있다.The simplest and simplest existing actuator is a one-dimensional cantilever structure that is mainly used in MEMS (microelectromechanical systems). The one-dimensional centrifugal actuator of the present invention was manufactured using silicon nanoparticles and a polymer. The polymer used in the actuator is considered to be an ideal material because it can change the surface freely and easily change the shape and size in response to the external environment compared to the silicon inorganic material. In addition, the polymer material is used as a material for silicon-based electronic devices and bio devices that are currently being studied in various fields because they can easily change molecular structure and have chemical and mechanical stability.
본 발명에서 켄티레버(cantilever) 형태의 바이레이어 구조를 구현하기 위해 유연하고 투명하며 열 경화가 가능한 polydimethylsiloxane(PDMS)와 UV 경화가 가능한 polyurethane/2-hydroxyethylmethacrylate(PU/HEMA) 엘라스토머 복합체를 각각 비극성(소수성)과 극성(친수성) 물질로 선택함으로써 극성/비극성 용매에서 선택적인 팽윤실험을 실시하였다. 도 1은 PU/HEMA복합체에서 HEMA성분비에 의한 유리전이온도(Tg)와 물리적 특성을 나타낸 도면이다. 도 1의 (a)는 HEMA의 성분비 차이에 의한 Tg의 변화도이고, 도 1의 (b)는 PU/HEMA의 성분비 차이에 따른 물성 변화이다. 여기에 도시되었듯이, 선택된 PU/HEMA의 최적의 반응조건을 찾기 위해 PU와 HEMA의 성분비를 달리하여 differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal mechanical tester(UMT) 실험을 실시함으로써 PU/HEMA 복합체에서 HEMA 성분비에 따른 유리전이온도(Tg)와 물리적 특성을 파악하였다.In order to realize the cantilever type bilayer structure in the present invention, a flexible, transparent, heat-curable polydimethylsiloxane (PDMS) and a UV-curable polyurethane / 2-hydroxyethylmethacrylate (PU / HEMA) elastomer composite are respectively non-polar ( Selective swelling experiments were performed in polar / nonpolar solvents by selecting hydrophobic) and polar (hydrophilic) materials. 1 is a view showing the glass transition temperature (Tg) and physical properties by the HEMA component ratio in the PU / HEMA composite. Figure 1 (a) is a change in Tg due to the difference in the component ratio of HEMA, Figure 1 (b) is a change in physical properties according to the difference in the component ratio of PU / HEMA. As shown here, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and universal mechanical tester (UMT) experiments are performed by varying the component ratios of PU and HEMA to find the optimal reaction conditions of the selected PU / HEMA. The glass transition temperature (Tg) and physical properties according to the HEMA component ratio in PU / HEMA composites were investigated.
PU와 HEMA는 다양한 성분비로 제조되어 열분석과 기기분석을 통해 7 : 3의 조성비에서 가장 우수한 열적, 기계적 특성을 보이는 것을 확인하였으며 액추에이터의 제작을 위한 최적의 PU/HEMA 성분비로 선택되었다.PU and HEMA were manufactured with various component ratios, and the thermal and mechanical analysis showed the best thermal and mechanical properties at the composition ratio of 7: 3, and was selected as the optimal PU / HEMA component ratio for the manufacture of actuators.
3차원 나선형 포토닉 액추에이터를 구현하기에 앞서, 용매의 극성 또는 비극성에 따라 양방향으로 가역적으로 색깔과 형태를 조율할 수 있는 1차원 스크롤 포토닉 액추에이터를 구현할 수 있는 것이다.Prior to implementing a three-dimensional spiral photonic actuator, a one-dimensional scroll photonic actuator capable of reversibly adjusting colors and shapes in both directions depending on the polarity or nonpolarity of the solvent may be implemented.
이하에서는 1차원 스크롤 포토닉 액추에이터의 제조과정에 관하여 설명하기로 한다.Hereinafter, a manufacturing process of the one-dimensional scroll photonic actuator will be described.
1차원 스크롤 포토닉 액추에이터의 제조Fabrication of 1-D Scroll Photonic Actuators
1차원 스크롤 포토닉 액추에이터는 도 2의 (a)에 나타낸 것처럼 총 5단계 공정을 거쳐 제조되었으며, 도 2의 (b)에서 도 2의 (d)까지의 조립공정 중에 형성된 포토닉 결정의 결정 구조를 SEM으로 관측하였다. The one-dimensional scroll photonic actuator was manufactured through a total of five steps as shown in (a) of FIG. 2, and the crystal structure of the photonic crystal formed during the assembly process from (b) to (d) of FIG. Was observed by SEM.
이에 관한 과정을 설명하면, 액추에이터 제조방법에 있어서,Referring to the process related to this, in the actuator manufacturing method,
실리카나노 콜로이드 FCC 단결정을 불소가 치환된 몰드(mold)의 표면에 형성하는 제 1단계;Forming a silica nanocolloidal FCC single crystal on the surface of a mold substituted with fluorine;
상기 단결정을 자가 조립하여 포토닉 결정을 형성하는 제 2단계;A second step of self-assembling the single crystal to form a photonic crystal;
상기 포토닉 결정의 공간에 비극성 PDMS precursor를 첨가, 침윤시켜 열경화 반응시키는 제 3단계;Adding a non-polar PDMS precursor to the space of the photonic crystal and infiltrating the thermosetting reaction;
Methacryloxypropyl-trimethoxysilane 단층을 산소 플라즈마 처리한 PDMS층에 올리는 제 4단계;A fourth step of raising the methacryloxypropyl-trimethoxysilane monolayer on the oxygen plasma treated PDMS layer;
극성인 PU/HEMA층을 적용하여 UV 경화를 실시하는 제 5단계를 거치게 되는 것이다. Applying a polar PU / HEMA layer is to undergo a fifth step of performing UV curing.
도면을 설명하면, 도 2의 (b)는 [111]로 표현된 콜로이드 단결정의 SEM사진이고, 도 2의 (c)는 [011]로 표현된 코로이드 단결정의 SEM사진이다. 도 2의 (d)는 PDMS를 첨가한 후의 단결정의 SEM의 사진이다.2 (b) is an SEM photograph of the colloidal single crystal represented by [111], and FIG. 2 (c) is an SEM photograph of the colloidal single crystal represented by [011]. FIG. 2D is a photograph of SEM of a single crystal after adding PDMS.
또한, 액추에이터 조립공정을 거쳐 제조된 1차원 포토닉 액추에이터는 길이 단위를 확인하기 위해 도 2의 (e)에 사진으로 나타내었다.In addition, the one-dimensional photonic actuator manufactured through the actuator assembly process is shown in the photograph (e) of Figure 2 to confirm the length unit.
상기 제5단계에서, 경화 후 몰드(mold)에서 분리해낸 1차원 스크롤 포토닉 액추에이터는 도 3과 같다. 제작한 1차원 스크롤 포토닉 액추에이터는 가시광선 영역에서 투명성을 띈다. 그 이유는 첫째로 PDMS 층과 PU/HEMA 층 물질이 가시광선 영역에서 빛을 흡수하지 않기 때문이며, 둘째로 PDMS 층과 실리카 콜로이드의 굴절률 (n)이 1.43으로 동일하기 때문이다. In the fifth step, the one-dimensional scroll photonic actuator separated from the mold after curing is shown in FIG. 3. The fabricated one-dimensional scroll photonic actuator is transparent in the visible region. This is because, firstly, the PDMS layer and the PU / HEMA layer material do not absorb light in the visible region, and secondly, the refractive index (n) of the PDMS layer and silica colloid is equal to 1.43.
도 4에 도시되었듯이, 포토닉 액추에이터의 투명성과 색깔 변화 사이의 연관성을 확인하기 위해 포토닉 결정을 [111] 영역에 수직하게 반사 스펙트럼을 측정하였다. 도 4는 조립된 포토닉 결정의 반사 스펙트럼으로 도 4의 (a)는 실리카, 도 4의 (b)는 PDMS/실리카이고, 도 4의 (c)는 헥산 용매내 PDMS/실리카이고, 도 4의 (d)는 아세트산 용매내 PDMS/실리카의 스펙트럼이다. As shown in FIG. 4, the reflection spectrum was measured perpendicular to the [111] region of the photonic crystal in order to confirm an association between the transparency and the color change of the photonic actuator. 4 is a reflection spectrum of the assembled photonic crystal, (a) of FIG. 4 is silica, (b) is PDMS / silica, FIG. 4 (c) is PDMS / silica in a hexane solvent, and FIG. 4 (D) is the spectrum of PDMS / silica in acetic acid solvent.
본 발명에서 사용된 270㎚ 직경을 갖는 실리카 콜로이드 결정은 596㎚의 녹색 파장에서 최대 강도 70%의 반사 피크를 나타내지만 실리카와 굴절률이 동일한 PDMS와의 침윤을 통해 반사 피크가 사라져 투명한 샘플을 얻을 수 있다. 반면에 용매 조건 하에서의 반사 스펙트럼은 다른 양상을 보이는데 헥산 용매에서 팽윤된 실리카/PDMS 포토닉 결정은 459㎚의 파장에서 넓고 낮은 강도 7%의 반사 피크를 보이는 반면, 아세트산 용매에서 팽윤된 실리카/PDMS 포토닉 결정은 659㎚의 파장에서 최대 강도 20%의 반사 피크를 나타내게 된다.The silica colloidal crystal having a diameter of 270 nm used in the present invention exhibits a reflection peak of 70% maximum intensity at a green wavelength of 596 nm, but the reflection peak disappears through infiltration with PDMS having the same refractive index as silica, thereby obtaining a transparent sample. . On the other hand, the reflection spectra under solvent conditions show a different pattern: the swelled silica / PDMS photonic crystals in hexane solvent show a broad and low intensity 7% reflection peak at a wavelength of 459 nm, while the swelled silica / PDMS photo in acetic acid solvent The nick crystal will show a reflection peak of 20% maximum intensity at a wavelength of 659 nm.
용매 조건 하에서 특정 파장에서의 반사 피크는 용매가 제거되면 원래의 투명성이 발현된다. 이러한 반사피크의 발생 원인은 콜로이드 템플레이트에 용매가 침윤되자마자 실리카/PDMS 층에서 실리카 콜로이드 결정의 높은 결정화도 때문에 낮은 투과율이 관측되기 때문이다. Reflection peaks at specific wavelengths under solvent conditions exhibit original transparency when the solvent is removed. The reason for the occurrence of such a reflection peak is that as soon as the solvent infiltrates the colloidal template, low transmittance is observed due to the high crystallinity of the silica colloidal crystal in the silica / PDMS layer.
상기와 같이 제작된 1차원 스크롤 포토닉 액추에이터의 엑츄에이팅 과정을 살펴보면, 도 5의 (a)에서 1차원 스크롤 포토닉 액추에이터는 3차원 카테시안 좌표계에 따라 x 축은 너비 방향, y 축은 xy-평면에 수직이면서 길이 방향이며, z 축은 두께 방향으로 표현하였다.Looking at the actuating process of the one-dimensional scroll photonic actuator produced as described above, in Figure 5 (a) the one-dimensional scroll photonic actuator is the x-axis in the width direction, the y-axis in the xy-plane according to the three-dimensional Cartesian coordinate system It is perpendicular to the longitudinal direction, and the z axis is expressed in the thickness direction.
제조된 스크롤 포토닉 액추에이터를 장축 방향으로 연신시켰다 힘을 제거해주면 도 5의 (b)처럼 복원력이 보다 큰 PDMS층 방향으로 구부러진다. 따라서 액추에이터의 방향성을 부여하기 위해 카테시안 좌표계로 나타낸 것처럼 PDMS층을 +z축으로 기준으로 왼손/오른손 방향성을 정하였다. 액추에이터의 왼손/오른손 방향성은 액추에이터의 구동실험에서 용매에 따른 색깔과 형태를 구분하는데 중요한 구분 요인으로 작용한다. The prepared scroll photonic actuator was stretched in the long axis direction. When the force was removed, the scroll photonic actuator was bent toward the PDMS layer having a larger restoring force as shown in FIG. Therefore, in order to give the direction of the actuator, the left / right hand orientation was determined based on the PDMS layer with the + z axis as shown by the Cartesian coordinate system. The left / right hand orientation of the actuator acts as an important distinguishing factor in distinguishing the color and form according to the solvent in the actuator driving experiment.
도 6에서 나타났듯이, 제작된 1차원 스크롤 포토닉 액추에이터를 극성/비극성 용매에 넣어서 팽윤 시간에 따른 구조 및 색깔의 변화를 관찰하였다 .As shown in FIG. 6, the fabricated one-dimensional scroll photonic actuator was placed in a polar / non-polar solvent to observe changes in structure and color according to swelling time.
도 6의 (a)에서 왼손/오른손 방향성에 따라 1차원 스크롤 포토닉 액추에이터는 극성 용매인 아세트산에서 오른손 방향으로 변형이 일어나며 바라보는 시점에 따라 파란색, 노란색/녹색, 붉은색을 나타낸다. 반대로, 도 6의 (b)처럼 비극성 용매인 헥산에서는 왼손 방향으로 변형이 일어나며 시점에 관계없이 파란색을 나타낸다. 여기서 왼손/오른손 방향성을 갖는 1차원 스크롤 포토닉 액추에이터가 다른 색깔을 띄는 이유는, 낮은 굴절률(n=1.37)을 갖는 용매들이 PDMS 층에 흡수되어 있는 실리카와 충분한 유전율의 차이를 보이고, 시점에 따라 서로 간의 결정 구조의 d-spacing을 변화시키기 때문이다.In FIG. 6A, the one-dimensional scroll photonic actuator is blue, yellow / green, and red according to a viewing point in which the deformation occurs in the right hand direction in acetic acid, a polar solvent, according to the left / right hand orientation. On the contrary, in hexane, which is a non-polar solvent, as shown in FIG. The reason why the one-dimensional scroll photonic actuator with left / right hand orientation is different in color is that solvents with low refractive index (n = 1.37) show a sufficient difference in dielectric constant from silica absorbed in the PDMS layer. This is because the d-spacing of the crystal structures between each other is changed.
극성인 아세트산에서는 시점에 따라 다른 색깔을 보이지만 비극성인 핵산에서는 시점에 관계없이 파란색을 띄는데 그 이유는 실리카 콜로이드 결정 안에서의 long-range positional order가 사라졌거나 d-spacing이 너무 멀어져 첫 번째 포토닉 밴드 갭이 near-IR 영역으로 이동하고 눈에 보이는 파란색이 두 번째 포토닉 밴드 갭이기 때문이다. In polar acetic acid, the color varies with time, but in non-polar nucleic acids, it appears blue regardless of time, because the long-range positional order in the silica colloidal crystal has disappeared or the d-spacing is too far away. This is because the gap moves into the near-IR region and the visible blue is the second photonic band gap.
그러므로 1차원 스크롤 포토닉 액추에이터는 1차원 대칭구조의 파괴에 의해 실현 가능하며, 용매의 극성/비극성에 따라 왼손/오른손 방향성과 다양한 색상을 나타내는 1차원 켄티레버(cantilever) 구조로 가역적인 액추에이팅 반응을 일으킨다.Therefore, one-dimensional scroll photonic actuator can be realized by the destruction of one-dimensional symmetrical structure, and reversible actuating with one-dimensional cantilever structure that shows left / right hand orientation and various colors according to the polarity / non-polarity of solvent. Causes a reaction.
3차원 스프링 나선형과 3차원 DNA이중 나선형 액추에이터의 제조Fabrication of 3D Spring Helical and 3D DNA Dual Helical Actuators
발전된 형태의 3차원 나선형 포토닉 액추에이터는 1차원 스크롤 포토닉 액추에이터에 나선형 구조를 적용하여 외부 자극에 따라 색깔과 형태를 동시에 조율할 수 있는 액추에이터로써, 폴리펩타이드와 같은 스프링 나선형과 DNA와 같은 이중 나선형 구조의 두 가지 3차원 나선형 포토닉 액추에이터를 제작하였다. 3차원 나선형 포토닉 액추에이터는 바이레이어 구조를 갖는 1차원 스크롤 포토닉 액추에이터에서 대칭구조의 변화를 통해 나선형 구조를 구현하였으며 보다 민감하고 정확하게 외부의 환경 변화에 반응한다. 3차원 스프링 나선형 구조에서도 1차원 스크롤 구조와 동일하게 선택적인 팽윤작용이 액추에이터의 원동력으로 사용되며, PU/HEMA층이나 PDMS층에서 용매의 극성에 따라 선택적인 팽윤작용을 이용하여 팽창시킴으로써 왼손/오른손 방향의 3차원 스프링 나선형 구조를 구현하였다. The advanced three-dimensional spiral photonic actuator is an actuator that can simultaneously adjust color and shape according to external stimulus by applying a spiral structure to one-dimensional scroll photonic actuator. It is a spring spiral like polypeptide and double spiral like DNA. Two three-dimensional spiral photonic actuators of structure were fabricated. The three-dimensional spiral photonic actuator realizes a spiral structure by changing the symmetrical structure in the one-layer scroll photonic actuator having a bilayer structure, and responds to the external environment change more sensitively and accurately. In the three-dimensional spring spiral structure, the same swelling action as that of the one-dimensional scrolling structure is used as the driving force of the actuator, and the left / right hand is swelled by the selective swelling action depending on the polarity of the solvent in the PU / HEMA layer or the PDMS layer. Three-dimensional spring spiral structure in the direction is implemented.
도 7에서 나타나 있듯이, 바이레이어 대칭구조의 기울기를 조절한 새로운 대칭구조의 구현을 통하여 외부의 환경변화에 따라 3차원 스프링 나선형이나 이중나선형의 포토닉 액추에이터를 제작하여 다양한 형태와 색상의 조절이 가능한 것이다. As shown in Figure 7, through the implementation of a new symmetrical structure by adjusting the inclination of the bilayer symmetric structure through the production of a three-dimensional spring spiral or double-helical photonic actuator according to the change of the external environment, it is possible to adjust various forms and colors will be.
도 7의 (a)에 나타낸 xz-평면에 평행한 바이레이어 대칭구조는 극성/비극성 용매에서 가역적으로 스크롤 구조로 변형되는 것을 1차년도 연구에서 확인하였으며, 도 7의 (b)처럼 바이레이어 대칭구조의 기울기를 조절하여 대각선으로 배치시키면 폴리펩타이드와 같은 스프링 나선형 구조를 구현할 수 있다. 보다 발전된 이중 나선형 구조를 구현하고자, PDMS층을 추가로 적용하여 2개의 PDMS층이 중앙의 PU/HEMA층을 대각선으로 양쪽에서 감싸서 DNA와 같은 이중 나선형 구조를 구현하였다(도 7의 (c)). 이 같은 대칭구조는 도 7의 (b)의 대칭구조 2개를 접착함으로써 제작 가능한 것이다.The bilayer symmetrical structure parallel to the xz-plane shown in (a) of FIG. 7 was confirmed in the first year study to be reversibly transformed into a scroll structure in a polar / nonpolar solvent, and as shown in FIG. By adjusting the tilt of the structure and placing it diagonally, a spring spiral structure such as a polypeptide can be realized. In order to implement a more advanced double helical structure, by further applying a PDMS layer, two PDMS layers are diagonally wrapped on both sides of the central PU / HEMA layer diagonally to implement a double helical structure such as DNA (FIG. 7C). . Such a symmetrical structure can be produced by bonding two symmetrical structures of FIG.
3차원 스프링 나선형 포토닉 액추에이터의 제작은 도 8에서 나타낸 공정을 통해 이루어지는데, 제조공정은 1차원 스크롤 포토닉 액추에이터와 동일하며 제조에 사용된 물질 역시 1차원 스크롤 포토닉 액추에이터와 동일한 PDMS와 PU/HEMA를 사용하였다.The fabrication of the three-dimensional spring spiral photonic actuator is performed through the process shown in FIG. 8, and the manufacturing process is the same as that of the one-dimensional scroll photonic actuator, and the material used in the manufacturing is also the same PDMS and PU / as the one-dimensional scroll photonic actuator. HEMA was used.
1차원 스크롤 포토닉 액추에이터와 3차원 스프링 나선형 포토닉 액추에이터의 제조공정상의 차이점은 실리카 나노 콜로이드 FCC 단결정을 형성한 후 비극성의 PDMS precursors를 침윤시켜 열 경화 과정에서 몰드를 0~45°기울이는 것이다. 이는 PDMS층과 PU/HEMA층을 대각선으로 배치시켜 팽윤과정에서 나선형 구조를 구현하기 위해서이다. 몰드의 기울기는 x축과 z축의 길이를 고려하여 나온 각도로서 11.3°사용하였다. The difference between the manufacturing process of the one-dimensional scroll photonic actuator and the three-dimensional spring spiral photonic actuator is the formation of silica nanocolloidal FCC single crystals followed by infiltration of non-polar PDMS precursors to tilt the mold 0-45 ° during thermal curing. This is because the PDMS layer and the PU / HEMA layer are arranged diagonally to implement a spiral structure in the swelling process. The slope of the mold was 11.3 ° as an angle that takes into account the lengths of the x and z axes.
3차원 이중 나선형 포토닉 액추에이터의 제조공정은 도 8과 동일하며, 제작된 스프링 나선형 포토닉 액추에이터를 두 개 준비하여 yz-평면으로 PU/HEMA층끼리 접착하여 제작하였다. 도 9와 도 10은 제작된 3차원 스프링 나선형 포토닉 액추에이터를 극성/비극성 용매 조건하에 시간의 경과에 따른 색깔과 형태를 관찰한 것이다.The manufacturing process of the 3D double spiral photonic actuator is the same as that of FIG. 8, and two prepared spring spiral photonic actuators are prepared and bonded by PU / HEMA layers to yz-plane. 9 and 10 show the manufactured three-dimensional spring helical photonic actuator to observe the color and shape over time under polar / non-polar solvent conditions.
3차원 스프링 나선형 포토닉 액추에이터는 나선형 구조내의 뒤틀림을 일으키는 것을 더욱 정확하게 관찰하기 위해 모세관이라는 한정된 공간 내에서 팽윤 실험을 실시하였다. The three-dimensional spring helical photonic actuator was subjected to swelling experiments in a confined space called a capillary tube to more accurately observe the distortion in the helical structure.
도 9는 모세관 안에서 3차원 스프링 포토닉 액추에이터의 작동 사진으로, 이를 설명하면, 1㎚ 직경의 모세관에서 (a) 비극성 헥산 용매에서 오른손 방향으로 팽윤된 상태, (b) 극성 아세트산 용매에서 왼손 방향으로 팽윤된 상태, (c) 오른손 방향으로 풀리는 상태, (d) 왼손 방향으로 풀리는 상태, 그리고 2㎜ 직경의 모세관에서 (e) 오른손 방향으로 풀리는 상태, (f) 왼손 방향으로 풀리는 상태이다.FIG. 9 is a photograph of the operation of a three-dimensional spring photonic actuator in a capillary, illustrating: (a) swelling in the right hand direction in a nonpolar hexane solvent in a 1 nm diameter capillary; (b) in the left hand direction in a polar acetic acid solvent. Swelled state, (c) loosened in the right hand direction, (d) loosened in the left hand direction, (e) loosened in the right hand direction in a 2 mm diameter capillary tube, and (f) loosened in the left hand direction.
팽윤 실험에 사용된 모세관의 직경은 1㎜ 도 11의 (a)~(d)와 2㎜ 도 11 (e)와 (f)를 사용하여 실험하였으며, 모세관 내의 3차원 스프링 나선형 포토닉 액추에이터는 극성/비극성 용매에 작용시켜 왼손/오른손 방향으로 배치시켰다. The diameter of the capillary tube used in the swelling experiment was tested using (a) to (d) of Fig. 11 and Fig. 11 (e) and (f) of 2 mm, and the three-dimensional spring spiral photonic actuator in the capillary was polarized. It was placed in the left hand / right hand direction by acting on a nonpolar solvent.
도 9의 (a)와 도 9의 (b)는 용매 조건하에 팽윤 후의 액추에이터로써 스프링이 압축된 형태이며, 비극성 용매인 헥산에서는 오른손 방향성과 파란색을 나타내고 극성 용매인 아세트산에서는 왼손 방향성과 주황색을 나타났다. 여기에 용매를 제거해주면 도 9의 (c)와 (d)처럼 팽윤 상태가 풀리면서 펼쳐진 스프링 형태가 구현되며 원래의 투명한 액추에이터로 돌아왔다. 도 9의 (e)와 (f)에서 모세관의 직경을 2㎜로 증가시킴으로써 팽윤과정에서 액추에이터의 스프링 직경을 증가시킬 수 있는데, 도 9의 (c)와 도 9의 (d)와 비교하였을 때 모세관의 영향을 덜 받게 되어 뒤틀림각이 감소하는 것을 확인할 수 있다. 9 (a) and 9 (b) show a spring compressed form as an actuator after swelling under solvent conditions, and shows right hand orientation and blue color in hexane, a nonpolar solvent, and left hand orientation and orange color in acetic acid, a polar solvent. . If the solvent is removed here, as shown in (c) and (d) of FIG. 9, the swelling state is released and the spring form is unfolded and returned to the original transparent actuator. In Figure 9 (e) and (f) by increasing the diameter of the capillary tube to 2mm it is possible to increase the spring diameter of the actuator during the swelling process, compared with Figure 9 (c) and Figure 9 (d) It can be seen that the angle of distortion decreases due to less capillary influence.
도 10을 보면, 3차원 이중 나선형 포토닉 액추에이터는 비극성의 헥산 용매 조건하에 팽윤과정을 거쳐 자발적으로 이중 나선형 구조가 구현된다. Referring to FIG. 10, the three-dimensional double spiral photonic actuator is spontaneously implemented through a swelling process under non-polar hexane solvent conditions.
3차원 이중 나선형 포토닉 액추에이터는 비극성의 헥산 용매를 이용하여 극성의 PU/HEMA층을 양쪽에서 감싸고 있는 비극성의 PDMS층에 대한 선택적인 팽윤작용을 이용하여 이중 나선형 구조를 구현하였다(도 10의 (a)). 또한 PDMS층과 PU/HEMA층의 팽윤 정도를 확인하기 위해 도 10의 (b)에서 3차원 이중 나선형 포토닉 액추에이터의 yz-평면으로 양끝을 부분 절단하여 도 10의 (a)에서와 동일하게 비극성의 헥산 용매하에 팽윤작용을 관찰하였다. The three-dimensional double helical photonic actuator uses a non-polar hexane solvent to implement a double helical structure by using a selective swelling action on the non-polar PDMS layer surrounding both sides of the polar PU / HEMA layer (Fig. 10 ( a)). Also, in order to confirm the degree of swelling of the PDMS layer and the PU / HEMA layer, both ends are partially cut by the yz-plane of the three-dimensional double spiral photonic actuator in FIG. 10 (b), and the nonpolarity is the same as in FIG. 10 (a). Swelling was observed in hexane solvent.
반면에 3차원 이중 나선형 포토닉 액추에이터는 팽윤과정에서 1차원 스크롤 구조나 3차원 스프링 나선형 구조와는 왼손/오른손 방향성이 존재하지 않는다는 차이점을 보인다. 이는 PDMS층이 PU/HEMA층의 양쪽에 비대칭적으로 배열되어 왼손/오른손 방향성이 성립되지 않으며, 팽윤과정에서 PDMS층이 바깥쪽으로 둘러싼 형태로 이중 나선형 구조를 나타내기 때문에 PDMS와 반응하여 팽윤하는 비극성의 헥산 용매에서 뚜렷한 색상을 나타낸다. On the other hand, the three-dimensional double spiral photonic actuator shows a difference in the swelling process that there is no left hand / right hand orientation with the one-dimensional scroll structure or the three-dimensional spring spiral structure. This is because the PDMS layer is asymmetrically arranged on both sides of the PU / HEMA layer, so that the left / right hand orientation is not established. In the swelling process, the PDMS layer shows a double helical structure surrounded by the outward shape. A distinct color is indicated in the hexane solvent of.
도 11은 3차원 이중 나선형 액추에이터의 컴퓨터 시뮬레이션 자료로서, 3차원 이중 나선형 포토닉 액추에이터에서 액추에이터 내부에 걸리는 응력량을 측정한 컴퓨터 시뮬레이션을 통하여 이중 나선형 액추에이터의 구동과 뒤틀림에 대한 원리를 파악하였다. FIG. 11 is computer simulation data of a three-dimensional double spiral actuator, and the principle of driving and twisting the dual spiral actuator is understood through computer simulation in which the amount of stress applied to the inside of the actuator in the three-dimensional double spiral photonic actuator is measured.
3차원 이중 나선형 포토닉 액추에이터의 컴퓨터 시뮬레이션은 실험과 동일한 조건으로 실시하였으며 이중 나선형 구조의 팽윤반응 동안 PDMS층과 PU/HEMA층 사이의 응력량을 비교함으로써 두 층의 팽윤 정도를 파악하였다. 도 11의 (a) 측면 모습에서는 액추에이터의 중간에 위치한 PU/HEMA층에서 PDMS층의 팽윤과 액추에이터 자체의 뒤틀림에 의해 높은 응력이 생성되어 압축 작용이 발생하며, 바깥쪽으로 갈수록 PDMS층의 팽윤에 의해 낮은 응력이 생성되는 것을 확인할 수 있다. 도 11의 (b)에 나타낸 윗 모습에서는 액추에이터의 중심에서 PU/HEMA층의 영향으로 바깥쪽의 PU/HEMA층과 인접한 PDMS층에서 보다 높은 응력이 생성되어 팽윤이 충분히 일어나지 못하는 것을 확인하였다. 컴퓨터 시뮬레이션에서 측정된 응력의 분포를 살펴봄으로써 PDMS층의 팽윤반응에 의해 PU/HEMA층의 압축이 발생하고, 이를 통해 팽윤과 압축 작용 사이에서 뒤틀림이 발생하여 이중 나선형 구조가 구현되는 것을 확인하였다.The computer simulation of the three-dimensional double spiral photonic actuator was carried out under the same conditions as the experiment. The degree of swelling of the two layers was determined by comparing the amount of stress between the PDMS layer and the PU / HEMA layer during the double helical swelling reaction. In Figure 11 (a) side view the high stress is generated by the swelling of the PDMS layer and the distortion of the actuator itself in the PU / HEMA layer located in the middle of the actuator, the compression action occurs, the swelling of the PDMS layer toward the outside It can be seen that low stress is produced. In the upper view shown in (b) of FIG. 11, it was confirmed that higher stress was generated in the PDMS layer adjacent to the outer PU / HEMA layer due to the influence of the PU / HEMA layer at the center of the actuator, so that swelling did not sufficiently occur. By examining the stress distribution measured in the computer simulation, it was confirmed that the compression of the PU / HEMA layer occurred due to the swelling reaction of the PDMS layer, and the distortion between the swelling and the compressive action was realized to realize the double spiral structure.
이상과 같이, 본 발명을 바람직한 실시예에 따라 도면을 참조하여 설명을 하였으나, 본 발명은 실시예에 의하여 설명되고 도면으로 도시된 구성 및 작용으로 한정되는 것이 아니다. 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명의 다수의 변경과 수정이 가능하다는 것을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정이 본 발명의 범위에 속하는 것은 자명한 것이다.As mentioned above, although this invention was demonstrated with reference to drawings according to the preferred embodiment, this invention is not limited to the structure and operation which were demonstrated by embodiment and shown by drawing. Those skilled in the art will appreciate that many modifications and variations of the present invention are possible without departing from the spirit and scope of the appended claims. It is therefore evident that all such suitable changes and modifications fall within the scope of the present invention.
본 발명은 나노/마이크로 단위의 기계, 전기, 전자 바이오의 분야에서 새로운 디바이스를 제작하는 데 사용될 수 있어 산업상 이용가능하다. The present invention can be used in the manufacture of new devices in the field of mechanical, electrical and electronic biotechnology in the nano / micro unit and is industrially applicable.

Claims (5)

  1. 액추에이터의 제조방법에 있어서,In the manufacturing method of the actuator,
    실리카나노 콜로이드 FCC단결정을 불소가 치환된 몰드의 표면에 형성하는 제 1단계;Forming a silica nano colloidal FCC single crystal on the surface of a mold substituted with fluorine;
    상기 단결정을 자가 조립하여 포토닉 결정을 형성하는 제 2단계;A second step of self-assembling the single crystal to form a photonic crystal;
    상기 포토닉 결정의 공간에 비극성 PDMS precursor를 첨가, 침윤시켜 열경화 반응시키는 제 3단계;Adding a non-polar PDMS precursor to the space of the photonic crystal and infiltrating the thermosetting reaction;
    methacryloxypropyl-trimethoxysilane 단층을 산소 플라즈마 처리한 PDMS층에 올리는 제 4단계;a fourth step of raising the methacryloxypropyl-trimethoxysilane monolayer on the oxygen plasma treated PDMS layer;
    극성인 PU/HEMA층을 적용하여 UV 경화를 실시하는 제 5단계;를 포함하는 것을 특징으로 하는 액추에이터의 제조방법. And a fifth step of performing UV curing by applying a polar PU / HEMA layer.
  2. 제1항에 있어서, 상기 몰드는 눈으로 관찰할 수 있는 범위인 단위를 사용해 제작하며, 상기 액추에이터의 크기는 100㎛~1m까지 제작이 가능한 것을 특징으로 하는 액추에이터의 제조방법.The method of claim 1, wherein the mold is manufactured using a unit that can be observed by the eye, and the size of the actuator can be manufactured to 100 µm to 1 m.
  3. 제1항에 있어서, 상기 제 3단계의 열경화 반응시키는 과정에서 상기 몰드를 0~45°기울이는 것을 특징으로 하는 액추에이터의 제조방법. The method of claim 1, wherein the mold is tilted at 0 ° to 45 ° during the thermosetting reaction of the third step.
  4. 제1항에 있어서, 상기 PU/HEMA층에서 PU : HEMA의 성분비는 1~9 : 9~1인 것을 특징으로 하는 액추에이터의 제조방법. The method of claim 1, wherein the component ratio of PU: HEMA in the PU / HEMA layer is 1-9: 9-1.
  5. 제1항 내지 제4항 중 어느 하나의 항에 따라 제조된 것을 특징으로 하는 액추에이터.An actuator manufactured according to any one of claims 1 to 4.
PCT/KR2010/008655 2010-03-04 2010-12-06 Manufacturing method for three-dimensional helical actuator WO2011108803A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0019370 2010-03-04
KR1020100019370A KR101177981B1 (en) 2010-03-04 2010-03-04 Process for the Preparation of 3D Spiral and Helical Photonic Actuators

Publications (2)

Publication Number Publication Date
WO2011108803A2 true WO2011108803A2 (en) 2011-09-09
WO2011108803A3 WO2011108803A3 (en) 2011-11-10

Family

ID=44542678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008655 WO2011108803A2 (en) 2010-03-04 2010-12-06 Manufacturing method for three-dimensional helical actuator

Country Status (2)

Country Link
KR (1) KR101177981B1 (en)
WO (1) WO2011108803A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147582A (en) * 1999-03-04 2000-11-14 Raytheon Company Substrate supported three-dimensional micro-coil
US6245444B1 (en) * 1997-10-02 2001-06-12 New Jersey Institute Of Technology Micromachined element and method of fabrication thereof
KR20020036964A (en) * 1999-06-28 2002-05-17 추후제출 Microfabricated elastomeric valve and pump systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245444B1 (en) * 1997-10-02 2001-06-12 New Jersey Institute Of Technology Micromachined element and method of fabrication thereof
US6147582A (en) * 1999-03-04 2000-11-14 Raytheon Company Substrate supported three-dimensional micro-coil
KR20020036964A (en) * 1999-06-28 2002-05-17 추후제출 Microfabricated elastomeric valve and pump systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWANG-UN JEONG ET AL. JOURNAL OF METERIALS CHEMISTRY vol. 19, 2009, pages 1956 - 1959 *

Also Published As

Publication number Publication date
KR20110100409A (en) 2011-09-14
KR101177981B1 (en) 2012-08-28
WO2011108803A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
Li et al. Bioinspired multi‐stimuli responsive actuators with synergistic color‐and morphing‐change abilities
Arsenault et al. Towards the synthetic all-optical computer: science fiction or reality?
Jethmalani et al. Diffraction of visible light by ordered monodisperse silica− Poly (methyl acrylate) composite films
US20090169866A1 (en) Nanocomposite materials with dynamically adjusting refractive index and methods of making the same
WO2015016685A1 (en) Oriented film for liquid crystal lens, and mould for forming same
WO2020203080A1 (en) Composition, light shielding film, color filter, optical element, sensor, solid-state imaging element, and headlight unit
JP2018028693A (en) Nano structured material and method for forming the material
WO2014193047A1 (en) Polarization-dependent lens structure and manufacturing method therefor
US20150349194A1 (en) Nanostructure material methods and devices
US11215899B2 (en) Optoelectronic element
US20150241613A1 (en) Optical grating
WO2016060476A1 (en) Optical film coating composition and optical film comprising same
US20110262750A1 (en) Resin Material for Optical Use and Optical Device
Li et al. Patterned SiO2/Polyurethane acrylate inverse opal photonic crystals with high color saturation and tough mechanical strength
WO2019117588A1 (en) Wearable device
WO2019132243A1 (en) Method for producing transparent electrode
WO2011108803A2 (en) Manufacturing method for three-dimensional helical actuator
WO2009119899A1 (en) Organic-inorganic hybrid composition and method for producing same, shaped article and optical component
US20070160826A1 (en) Polymer composite with silane coated nanoparticles
WO2003058289A2 (en) Non-linear photonic switch and method of making the same
Mimura et al. High refractive index and dielectric properties of BaTiO3 nanocube/polymer composite films
WO2011030950A9 (en) Organic-inorganic hybrid photonic crystal, and preparation method thereof
WO2013051761A1 (en) Transparent polymer structure including a graphene layer and method for manufacturing same
Coppola et al. Twofold self-assembling of nanocrystals into nanocomposite polymer
WO2011108786A1 (en) Manufacturing method for three dimensional folding actuator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847101

Country of ref document: EP

Kind code of ref document: A2