WO2011113302A1 - 平板玻璃及其制备方法 - Google Patents

平板玻璃及其制备方法 Download PDF

Info

Publication number
WO2011113302A1
WO2011113302A1 PCT/CN2011/000409 CN2011000409W WO2011113302A1 WO 2011113302 A1 WO2011113302 A1 WO 2011113302A1 CN 2011000409 W CN2011000409 W CN 2011000409W WO 2011113302 A1 WO2011113302 A1 WO 2011113302A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
temperature
viscosity
oxide
content
Prior art date
Application number
PCT/CN2011/000409
Other languages
English (en)
French (fr)
Inventor
杨德宁
Original Assignee
Yang Dening
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dening filed Critical Yang Dening
Priority to US13/985,116 priority Critical patent/US9108878B2/en
Priority to JP2013553757A priority patent/JP5770314B2/ja
Priority to KR1020137021452A priority patent/KR101584417B1/ko
Priority to EP11755619.1A priority patent/EP2687491A4/en
Priority to RU2013138253/03A priority patent/RU2583393C2/ru
Publication of WO2011113302A1 publication Critical patent/WO2011113302A1/zh
Priority to ZA2013/06244A priority patent/ZA201306244B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a predetermined specific range of sodium oxide, iron oxide, aluminum oxide, silicon oxide, calcium oxide, magnesium oxide, or also titanium oxide, cerium oxide, and predetermined silicon oxide, calcium oxide.
  • the technical solution of the special proportional relationship between magnesium oxide overcomes the traditional technical prejudice that must be composed of sodium or boron to form a fluxing component.
  • the key is to use one of the components of silicon, calcium and magnesium.
  • the proportional relationship changes the technical solution of the invention, and the technical solution for the invention of the sodium or boron component is omitted, and a new eutectic having a high annealing point property and a fluxing function or a high content of alumina is produced as expected.
  • the strength of the products produced is increased by 1-3 times.
  • the technical invention discloses and proposes a variation invention on the proportional relationship between the technical elements of silicon, calcium and magnesium, and compares the various elements of the existing flat glass technology, the proportional relationship between the silicon, calcium and magnesium end values.
  • Modern flat panel and industrial flat glass produced by float process, flat pull process, grid process, overflow process and calendering process such as (1) building door, window, curtain wall glass, (2) automobile and Glass for ships, (3) glass for high-speed rail, (4) LCD display glass, (5) PDP display glass, (6) TFT display glass and high-strength panel glass for smartphones and iPads, (7) craft glass Etc.
  • it has major defects in the formulation of the production process, there is a technical bias, all using sodium oxide or boron oxide components to melt the silicon oxide component, the traditional technology in the melting process
  • the composition of the eutectic composition, technical bias and limitations are limited to the intrinsic components of silicon, calcium, magnesium, aluminum, and when adding about 13% of sodium oxide or about 8-15% of boron oxide, but the viscosity Still very high, even more afraid to add a large amount of alumina to enhance the strength of the product and the annealing point, because this will make the products of the prior art solution unable to control the product quality and output at higher
  • the existing alkali-free borosilicate glass technology especially the representative of the US2002/0011 () 8 () A1 liquid crystal display of the alkali-free glass
  • the patented material indicates that the silicon oxide reaches 40- 70%, in the actual borosilicate glass and the examples, the proportion of silicon is 60-70%, and the boron oxide content is 5-20%.
  • boron oxide is in the product. The content is up to -15%. It mainly uses boron oxide instead of sodium oxide to achieve the purpose of fluxing.
  • the boron component above must be added 2-3 times on the raw material.
  • the glass of boron content of 103 ⁇ 4 must be added to 25-30.
  • the raw material of the content of boron oxide (because most of it will become toxic gas volatilization at high temperatures).
  • One of its technical defects is that its silicon content is too high and it is very difficult to melt; the second technical flaw is that it will cause serious damage to environmental protection; the third technical flaw lies in the fact that when the boron content reaches 5-20%, the reality In the production, the molten pool will be seriously corroded (so all the TFT liquid crystal displays used in the current high-boron glass melting pool will be cold repaired in one year, which causes serious problems in work efficiency and cost. Especially in the production of flat panel liquid crystal display.
  • the process is expressed as storing small pieces of glass frit in a mold box, so that crystallization enters the interior from the glass surface, and the glass frit is fused to each other to control the size of the glass frit... to obtain marble and granite.
  • the appearance of the pattern has a large number of crystallization process representations of the mold frame, and it can be seen that it uses a process of particle-shaped microcrystalline glass.
  • the color pattern and opaque product characteristics are obviously not determined by the material composition, and the crystal, color and pattern of the product are determined from the surface of each glass particle added to the process described in the application document, so each of them A pellet is grown from the outside to the inside of the crystal and is absolutely opaque. It is impossible to achieve a good visible light transmittance of 65%-95%, and it is necessary to overcome these traps.
  • the glass materials are softened and deformed, and melted and integrated into each other, and the precipitated glass crystals conform to the size and shape of the small glass frits ( See page 7).
  • the insiders know that the main drawback is that the product cloth is loose when it is granulated, so there is a lot of unevenness in the plane of the product after firing.
  • the crystal of this kind of grain like all glass-ceramics, has to grow up. 5 ⁇ -l. 5 ⁇ , The granules have a surface roughness of 0. 5mm-l.
  • the mold forming process the product plane is uneven, and the mold frame is fired with refractory material, and the unevenness of the surface and the four corners becomes larger and larger with each firing deformation, so the thickness difference of the finished product is In 1. 5mm-2mm, all products should be smoothed on the front and back sides, and at least 1mm-2 Sa thickness can be thrown at each scraping. Even if the scraping is reversed, the thickness difference of the product will reach 1mm or more, so its Defects and waste are big.
  • the thickness difference between the glass and the normal flat glass of the present invention is very different between 0.3 and 3 legs. This defect is also completely caused by its process, not by the material composition, and its technical solution does not contain iron oxide and titanium oxide, cerium oxide and the like, which is quite different from the present invention. So you need to overcome these shortcomings.
  • the first embodiment of the present invention provides a flat glass having a high annealing point, a high-strength, high-flatness and low-viscosity characteristic with high annealing point and poor protection and energy saving, wherein the glass comprises silicon oxide and is oxidized.
  • the oxidized content of 0. 01-14%, oxidized.
  • the content of alumina is 0. 01-39%, the silicon oxide
  • the content of the calcium oxide is 1. 2 times - 4. 1 times, the content of calcium oxide is 1.2 times - 1. 6 times; the lower limit of the annealing temperature of the glass (ie, the endothermic temperature of the endothermic peak)
  • the thickness of the glass is less than 0.3 mm; the water absorption is in the range of 0-0. 3%; and the flexural strength is 50-180 Mp.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the content of alumina is 0, 01-30% by weight percentage, ⁇ Oxide: 2. 0-3, 6 times, calcium oxide: magnesium oxide is - 1. 3-1, 49 times, sodium oxide is 0.
  • boron oxide is 0-1%, oxidation
  • the fluorine content is 0-1%; the lower temperature lower limit of the glass (ie, the endothermic peak starting temperature) is 61 (TC-7l 0 : ; the glass has a viscosity of ⁇ ⁇ Pa-sec) and the temperature is 150 (TC) - 1640 ° C ; The temperature at a viscosity of 10 1 (Pa ⁇ s) is 1450 ° C to 1580 ° C; The viscosity at a viscosity of 10 2 (Pa ⁇ s) is 1210 ° C - 1350 ° C; The viscosity is 10 The temperature at 3 (Pa's sec) is 107 ⁇ TC-123 (TC; the glass has a flexural strength of 50-180 MPa.
  • the content of the alumina is 0. 01-19%, according to the first embodiment of the present invention, having a high-strength, high-intensity, low-viscosity, low-viscosity, and
  • the oxidized calcium is 2. 0-3. 6 times, calcium oxide: magnesium oxide is 1. 3-1. 49 times, sodium oxide is 0.
  • boron oxide is 0-1%
  • the content of the glass is 0-1%; the lower limit of the annealing temperature of the glass (ie, the endothermic temperature of the endothermic peak) is 61 ⁇ TC-68 (TC; the temperature of the glass at a viscosity of 10 ° ⁇ 5 (Pa's) is 1500 °C-158 (TC; temperature at 10 1 (Pa ⁇ s) is 1450 ° C - 1520 ° C; viscosity at 10 2 (Pa.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the content of alumina is _19-30% by weight percentage, oxidation Silicon oxide: 2. 0-3. 6 times, calcium oxide: magnesium oxide is 1. 3-1. 49 times, sodium oxide is 0.
  • boron oxide is 0-1%, fluorine oxide content Is 0-1%;
  • the lower annealing temperature of the glass ie, the endothermic peak starting temperature
  • the glass has a temperature of 155 (TC) at a viscosity of 10 ° ⁇ 5 (Pa ⁇ s) - 1640 ° C;
  • the temperature at a viscosity of 10 1 (Pa. sec.) is 145 ⁇ TC-158 ⁇ TC;
  • the viscosity at a viscosity of 10 2 (Pa ⁇ s) is 121 (TC-1350 ° C; viscosity is 10 3 (Pa. seconds)
  • the temperature is 1080 -1230 ° (: ;
  • the glass has a flexural strength of 130-180 MPa.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the content of alumina is 8-30% by weight percentage, silicon oxide Calcium oxide is 2. 0-3. 6 times, calcium oxide: magnesium oxide is 1. 3-1. 49 times, sodium oxide is 0.
  • the high-strength, high-flatness, low-viscosity characteristic of the high-annealing point of the first embodiment of the present invention wherein the amount of alumina is 19-30 by weight percent. %, the content of boron oxide is 0-1%, the content of sodium oxide is 0.01- 2%, the content of fluorine oxide is 0-1%; the lower limit of annealing temperature of the glass (ie, the endothermic peak endothermic temperature) is 610.
  • the temperature of the glass at a viscosity of 10 ⁇ ⁇ 5 (Pa ⁇ s) is 151 ⁇ TC-1680°C; the temperature at a viscosity of 10 1 (Pa ⁇ s) is 1420°C- 1600'C; the viscosity at a viscosity of 10 2 (Pa. sec.) is 127 (TC-1360 ° C; the viscosity at a viscosity of 10 3 (Pa ⁇ s) is 1160 ° C-128 (TC; the resistance of the glass
  • the folding strength is 120-1 pieces of pa.
  • a flat glass having a high annealing point, a high-strength, high-flatness and low-viscosity characteristic with environmental protection and energy saving and emission reduction has a layer on the surface of the flat glass attached thereto.
  • a polycrystalline silicon layer that is sintered by amorphous silicon is a polycrystalline silicon layer that is sintered by amorphous silicon.
  • a flat glass having a high annealing point and a high-strength, high-flatness, low-viscosity characteristic of environmental protection and energy saving and emission reduction according to an embodiment of the present invention, wherein the flat glass has a layer containing quartz or alumina or mullite A resin layer of crystals.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the alumina content is 3.1-39% by weight.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the content of titanium oxide is by weight percentage 0. 0003-4. 9%.
  • the 8% of the content of the sodium oxide is 0. 01 8. 8% by weight, the percentage of the content of the sodium oxide is 0. 01 8. 8%, according to the first embodiment of the present invention, the high-strength, low-viscosity, low-viscosity of the flat glass. .
  • a flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving and emission reduction according to the first embodiment of the present invention, wherein the visible light transmittance is in the range of 40% to 95%, by weight percentage 01-14% ⁇
  • the content of the total content of the cerium oxide is 0. 01-14%.
  • the flat glass having high-strength, high-flatness and low-viscosity characteristics with high annealing point environmental protection and energy saving and emission reduction, wherein the calcium oxide food consumption is 1. 5 ⁇
  • the content of the content of the calcium oxide is 1. 0 times - 3. 6 times, the content of magnesium oxide is 10. 1-19. 9%, the content of alumina is 19-39 %.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein (1), by weight percentage, of the product content thereof: 1 magnesium oxide 7 ⁇ The range of 2. 2 times - 3. 8 times of calcium oxide, 5 alumina is 0. 1-30%, 6 sodium oxide is 0-18%, and 7 yttrium oxide is 0-5%; (2), The strain point temperature of the product is in the range of 560 ° C - 72 (TC; (3), the water absorption of the product is in the range of 0-0. 001%; (4), by weight, the oxidation in the product The sum of the contents of magnesium, calcium oxide and silicon oxide is 51%-100%.
  • the first embodiment of the present invention there is a high-strength, high-flatness, low-viscosity flat glass having a high annealing point and environmental protection and energy saving and emission reduction, wherein (1), by weight percentage, its product content: 1 calcium oxide
  • the content of the content of the magnesium oxide is 0.3 times - 2. 4 times, the content of the silicon oxide is 1.3 times - 5. 8 times, and the content of the silicon oxide is the content of calcium oxide. 1. 3 times - 5. 8 times, 4 alumina is 0-1-30%, 5 sodium oxide is 0-18%, 6 yttrium oxide is 0-20%; (2), among which magnesium oxide, calcium oxide, 001% ⁇
  • the content of the three components of the silicon oxide is 51% - 99. 9%; (3) the water absorption of the product is in the range of 0-0. 001%.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein (1), by weight percentage, of the product content thereof: 1 magnesium oxide 5 ⁇ ,3 ⁇ , Oxygen, the content of the magnesium oxide is 1. 0 times -1. 8 times, 3 oxygen -30. The amount of the content of the oxidized calcium is 1. 2 times - 3. 8 times, 5 alumina is 0.
  • a flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving and emission reduction, wherein, in terms of weight percentage, the content of the product is: calcium oxide is magnesium oxide 1. 15 times - 1. 8 times.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein (1), by weight percentage, of the product content thereof: 1 magnesium oxide 5 ⁇ -5.
  • the content of the content of the magnesium oxide is 2. 8 times - 5.
  • the content of the content of the magnesium oxide is 2. 8 times - 5.
  • the content of silicon oxide is 2. 3 times - 3. 8 times the range of 5, alumina is 0. 1-30%, 6 sodium oxide is 0-18%, 7 yttrium oxide 0 ⁇
  • the strain point temperature of the product is in the range of 560 ° C - 720 ° C; (3), the ice absorption rate of its products in the range of 0-0. 001%; 4 ⁇
  • the total content of magnesium oxide, calcium oxide, silicon oxide in the product is 51% -99.9%.
  • the 8% of the aluminum oxide content of the product is 0-3. 8%, by weight, the aluminum oxide content of the product is 0. 8% by weight.
  • the urethane content of the product is 3. 8-15%, by weight, by weight, by weight, by weight, by weight.
  • the flat glass having high annealing point and high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction, wherein the alumina content in the product is 15-23% by weight percentage:
  • the melting process temperature of 10 1 (Pa ⁇ s) is 1360 ° C - 1550 ° C; the viscosity of 10 2 (Pascals per second) is clarified, and the bubble discharge process temperature is 125 (TC- 143 (TC; viscosity is 10 3 (Pa. seconds)
  • the molding process temperature is 1060 ° C - 120 (TC; its product has a flexural strength of 100-180 MPa.
  • a flat glass having a high annealing point and a high-strength, high-flatness, low-viscosity characteristic of environmental protection and energy saving and emission reduction according to the first embodiment of the present invention, wherein the glass comprises silicon oxide, magnesium oxide and calcium oxide, wherein, by weight percentage I.
  • the visible light transmittance is in the range of 65% - 95%; the water absorption is in the range of 0-0. 3%; and the flexural strength is 50-180 MPa.
  • a high-strength, high-flatness, low-viscosity flat glass having a high annealing point and environmental protection and energy saving and emission reduction, wherein, in the glass, the amount of silicon oxide is oxidized by weight percentage ⁇ 3. 4 ⁇
  • the content of the content of the calcium oxide is 2. 4 times - 3. 4 times.
  • a flat glass having a high annealing point and a high strength, high flatness and low viscosity characteristic of poor protection and energy saving, wherein the content of calcium oxide is 1 by weight of magnesium oxide. 5 ⁇ -1. 5 ⁇ More than 0.
  • the glass has a high-strength, low-viscosity, low-viscosity, high-strength, low-viscosity, and low-viscosity. Fluctuation.
  • the 5% of the lithium oxide content is 0.5% by weight, based on the first embodiment of the present invention, having a high-strength, low-viscosity, high-intensity, low-viscosity, and low-viscosity.
  • the cerium oxide content of the cerium oxide content is 0. 005-8%, according to the first embodiment of the present invention, having a high-strength, low-viscosity, low-viscosity.
  • the cerium oxide content of the cerium oxide content is 0. 01-5% ? ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • the arsenic oxide content of the oxidized arsenic is 0. 01-3%.
  • High-strength high-level flat with high annealing point and environmental protection and energy saving and emission reduction according to the first embodiment of the present invention
  • the content of sodium oxide is 0.012% by weight, based on the weight percent, of the first embodiment of the present invention, having a high-intensity, high-intensity, low-viscosity, and low-viscosity.
  • the high-strength, high-flatness, low-viscosity flat glass having a high annealing point and environmental protection and energy saving and emission reduction, wherein the content of sodium oxide is percentage by weight 2-14%.
  • the flat glass having high-strength, high-flatness and low-viscosity characteristics with high annealing point, environmental protection and energy saving and emission reduction, wherein the amount of sodium oxide is 8-14 by weight percentage %.
  • the flat glass having high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving, wherein the content of alumina is 3.1-19% by weight.
  • the first embodiment of the present invention there is a high-strength, high-level, low-viscosity flat glass having a high annealing point and environmental protection and energy saving, wherein the content of alumina is 10-19% by weight.
  • the thickness of the glass is 0. 3-1. 8 hidden.
  • the first embodiment of the present invention there is a high-strength, high-flatness, low-viscosity flat glass having a high annealing point and environmental protection and energy saving, wherein the thickness of the glass is .
  • a second embodiment of the present invention provides a method for preparing a flat glass having high-strength, high-flatness and low-viscosity characteristics with high annealing point, environmental protection and energy saving and emission reduction according to the above embodiments, wherein:
  • the glass formulation configuration of any one of the first embodiments requires various predetermined, intrinsic, special ranges of sodium oxide, iron oxide, aluminum oxide, silicon oxide, calcium oxide, a raw material of magnesium oxide, or a component of titanium oxide, cerium oxide, and a predetermined ratio between a predetermined silicon oxide and a calcium oxide magnesia, which are melted at a melting temperature corresponding to each glass formulation after being mixed and stirred to form a predetermined viscosity of the molten glass, homogenization, clarification, discharge of bubbles, forming a flowable melt; Step 2, using float process, flat pull process, grid process, calendering process, overflow process, medium A process for forming glass.
  • the step 1 includes: placing the prepared raw materials in respective raw material containers, and passing various raw materials through the raw material conveying line, after measuring, according to the It needs to be fed into the raw material mixing and agitating device, and then mixed and mixed into the large material pipe or silo for loading the ingredients; the mixed raw materials enter the molten pool and melt at the melting temperature corresponding to each glass formula to form a predetermined viscosity.
  • step 2 The molten glass, re-homogenized, clarified, and discharged bubbles to form a flowable melt; use floater in step 2:
  • the tin kiln must be prepared in advance, after the process in step 1, the melt
  • the flowable melt at the tail of the pool flows into the tin kiln for flattening, polishing, and drawing, and is pulled by the puller in the direction specified by the process and pulled by the tractor to pull out the tin bath, and After gradually cooling, annealing, and after cooling, the glass can be obtained by cutting.
  • the method according to the second embodiment of the present invention wherein the content of alumina in the glass is 30% or less by weight, and the glass has a viscosity of 10. 5 (Pa sec) at a temperature of 1480; C - 1640 ° C; viscosity at 10 ⁇ Pa ⁇ s) at a temperature of 1410 ° C to 1600 ° C; viscosity at 10 2 (pa-sec)
  • the temperature is from 1180 ° C to 1340 ° C; the temperature at a viscosity of 10 3 (Pa ⁇ s) is from 1040 ° C to 1220 V; the thickness difference of the glass is less than 0.3 ⁇ ; the visible light transmittance of the glass is 40% - 95% of the range; the water absorption of the glass is in the range of 0-0.
  • the lower limit of the annealing temperature of the glass ie, the endothermic temperature of the endothermic peak
  • the flexural strength of the glass 5 ⁇ ) ⁇ L8GMPa
  • the coefficient of thermal expansion of the glass is between 150 ° C and 30 ° (the difference between the two ends of the TC is 1. 1 part per million - 0. parts per million; 0; at 550 ° C - 600 °
  • the difference in the value of the two ends of C is 1. 1 - 2 parts per million.
  • a third embodiment of the present invention provides a liquid crystal display panel comprising: an array substrate including a substrate and a pixel structure on the substrate, the substrate being a high annealing point according to any one of the first embodiments And a glass plate with high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction; a color filter plate, the color filter plate includes a bottom and a color filter on the bottom
  • the substrate is a glass plate made of flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic according to any one of the first embodiments; the liquid crystal layer is interposed Between the array substrate and the color filter substrate; and a backlight system.
  • a fourth embodiment of the present invention provides a photovoltaic solar device comprising a solar cell and a glass substrate or cover sheet fabricated using the glass according to any of the above embodiments.
  • Fig. 1 is a plan view showing a flat glass article having high-strength, high-flatness and low-viscosity characteristics with high annealing point and environmental protection and energy saving and emission reduction.
  • FIG. 2 is a schematic flow chart of a float process for forming a flat glass having high annealing point, high strength, high flatness and low viscosity characteristic with high annealing point and environmental protection and energy saving and emission reduction.
  • Fig. 3 is a side cross-sectional view showing a state in which a process for preparing a flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of the present invention has a high annealing point and a low-viscosity characteristic.
  • a flat glass having high annealing point, high strength, high flatness and low viscosity characteristic with high annealing point and environmental protection and energy saving and emission reduction wherein the glass comprises silicon oxide, calcium oxide and magnesium oxide.
  • the content of the oxidized iron is 0. 01-14%, the content of iron oxide is 0. 01-14%, the content of iron oxide is 0. 01%, the content of iron oxide is 0. 01-14%, the content of iron oxide is 0. 01 ⁇ Oxide content of the oxide is 0. 2-1, the content of the oxide is 8. 1-22. 2%, the content of alumina is 0. 01-39%, the amount of silica is oxidized 2 ⁇ -1.
  • the lower limit of the annealing temperature of the glass ie, the endothermic peak endothermic temperature
  • the content of the calcium oxide is 1. 2 times - 4. 1 times.
  • the glass has a thickness difference of less than 0.3 ⁇ i; its water absorption is in the range of 0 to 0.3%; and its flexural strength is 50-180 Mp.
  • the viscosity of the examples of the present invention was measured using a US TH TA rotary high temperature viscometer.
  • Melting temperature The temperature of a flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic according to an embodiment of the present invention is 10 ⁇ ⁇ 5 (Pa's) is 1540 ° C-1620 e C; viscosity 101 temperature (Pascal seconds) at the time of 1450 ° C- 1520 ° C.
  • the melting temperature of 10 5 (Pa. sec) and 10 1 (Pa. sec.) is much higher than 165 ⁇ rC-170 (TC, it is not detected at all by the US THETA rotary high temperature viscometer; Calcium soda glass (containing only 1% alumina) can only measure a melting temperature of 10 1 ⁇ 5 (Pascal * sec) at a temperature of 1580 ° C.
  • the description of its description on page 14 is 10 2 ( Pa ⁇ second)
  • the temperature is preferably 1690 ° C, more preferably 1670 °: This is the base value of the viscosity of all the liquid crystal display glasses, and the melting temperature is not only higher than the 10 ⁇ ⁇ 5 of the present invention. • sec) or a temperature of 10 1 (Pa ⁇ s) viscosity, and the temperature at a viscosity of 10 2 (Pa ⁇ s) from the clarified, vented bubble is greater at a difference of several hundred degrees, the alumina of the present invention is The examples in the case of 28 are 1230°01300°C, and the above-mentioned techniques are used.
  • the glass is at 1380 ° C - 140 (TC, and the alkali-free borosilicate glass enamel tester can not detect at all (it is higher than 1600 ⁇ ), and the PDP glass is preferably 1690 - 1670 ° according to the above-mentioned comparative patent.
  • the examples in the case where the alumina content of the present invention is within 28% are from 1090 ° C to 1160.
  • the existing calcium soda glass is 1210 ° C - 1250 ° C
  • the alkali-free high boron glass and PDP glass are up to 1380 °01420 ° (:. Because the viscosity performance of the invention is much better, so the industry knows that The production of a flat glass with a lower quality, a better quality, a better yield, a thinner glass, and a thinner one. 0. 3 legs, 0. 2mm display glass.
  • the invention is particularly advantageous in that the alumina content can be increased by from 19 to 28 ° /.
  • the intensity is up to about
  • alkali-free borosilicate glass is also inferior in strength when it contains 7-15% alumina.
  • the above is also an advantage that the technical solution of the present invention can promote the strength improvement without the boron component.
  • the linearity characteristic of the expansion coefficient of the invention is outstanding, and the variation of different temperature ranges is extremely small.
  • the coefficient of expansion of the glass according to an embodiment of the present invention is measured in accordance with the standard GB/T 7320. 1-2000.
  • Traditional technology bias mainly uses alumina addition to increase the strain point temperature (the strain point temperature is the lower limit of the temperature at which the glass is annealed during glass forming), and the strain point is up to 550 60 (TC or up to 600).
  • the purpose of °C-65CTC or above is to solve the problem that at higher temperatures, the product does not undergo excessive deformation or burst when it is heated or cooled rapidly.
  • the technical solution of the present invention can have a better linearity of expansion coefficient. In particular, a small viscoelastic mutation of the glass is produced, and the coefficient of thermal expansion of the product is 150-100 ° C.
  • the value of the difference is from 1 part per million to 3 parts per million. 0; °C-60 ⁇ The difference between the two ends of the value of TC is 2 parts per million. 2. The difference between the values of the two ends of the alkali-free glass at 600 °C - 650 °C is 100 parts. I-100% of the points. In terms of display screen, than the plasma PDP glass or liquid crystal display TFT glass 55 ⁇ rC-60 (the difference between the values of the thermal expansion system of TC is 16-16 parts, which is 5-16 times better than LCD calcium sodium glass 550 °C The difference in the value of the thermal expansion system at -600 °C is 7-20 times better than 20 parts per million.
  • This also provides a large range of processes for adding fire-resistant glass, cooker glass, glassware glass, LCD glass, PDP glass, TFT glass, etc., with a large amount of alumina or no alumina.
  • rapid heating or rapid cooling or in the environment of industrial and daily use and construction, there will be better deformation, stability, and non-mutation than the existing glass, and it is not easy to burst.
  • the glass viscoelasticity has a great advantage.
  • the present invention can be controlled in the critically heated sintering temperature zone such as 150 6 0300 ° C or 550 ° C - 600 ° C and 60 (TC - 650 ° C).
  • the value difference between the two ends of the rapid heating sintering coefficient is between 1: 1 part per million and 3.0 parts per million.
  • a new functional material has been formed, which can be creatively upgraded to a higher level. It is understood by people in the electronics industry, and will make it the core technology, the liquid crystal display of the substrate with the higher-definition alkali-free glass that is more advanced than the current level of more than ten pixel digits of the LCD screen.
  • melt viscosity temperature is lower than the prior art 200 ° C - 300 ° C, and the energy consumption is mainly in the high temperature zone, it can save 30-40% and reduce carbon dioxide emissions by 30-40%.
  • the melting temperature is greatly reduced, the erosion of the refractory material will be greatly reduced, the life of the furnace will be greatly extended, and the cold repair time and cost which seriously affect the production capacity will be greatly reduced.
  • the refractory material used is high zirconium material, not only the material cost is 3-4 times higher. And still have a lot of it to change every year.
  • the life of the molten pool for fabricating the glass according to the embodiment of the present invention may be longer than that of the alkali-free borosilicate glass, and the glass according to the embodiment of the present invention has a lower viscosity than the float calcium soda glass and is completely free of boron. It can be used for at least 10 years before it can be cold repaired.
  • the water absorption of the glass according to the embodiment of the present invention is measured in accordance with the standard GB/T 3810. 3-2006. 3% ⁇ The glass according to the embodiment of the present invention, the water absorption of the product in the range of Q-Q. 3%.
  • an LCD, a PDP, and a TFT glass according to an embodiment of the present invention have excellent tangential characteristics and water repellency.
  • Thickness difference (measured according to GB/T1216 standard)
  • the thickness difference of the glass is less than 0.3.
  • the embodiment of the present invention it is possible to produce a glass which has a transparent property and conforms to the transparency required in the relevant field, and the visible light transmittance of the glass is 40% to 95% (measured according to GB/T2680).
  • the lower limit of the annealing temperature (the starting point of the endothermic peak) is determined by a comprehensive thermal analyzer.
  • the sample is 6, 3, 8, 9, 10 is in a preferred calcium oxide is 1. 3, 1.5 times the magnesium oxide, the silica is 2. 3 times the calcium oxide and the alumina content is Among the better range of 19-30%, especially the difference between the viscosity and the coefficient of linear expansion and the temperature index are the best.
  • samples 1, 2, 3, 4, 5, 11 are all within the content of the technical scheme of the present invention, and it can be seen that the viscosity, the strength, the expansion coefficient or the prior art TFT liquid crystal display borosilicate, PDP plasma display Screen glass and all the prior art flat glass are good.
  • the samples 1, 2, and 3. 4 are examples of the upper limit, the lower limit, and the ratio range of the upper limit and the lower limit of the magnesium, calcium, and silicon ratios of the technical solution of the present invention, and the samples 1 and 5 are the sum of silicon, calcium, and magnesium. 59. 5 99. Examples of upper and lower limits of 8%.
  • the iron, bismuth and titanium are in a certain range, the visible light transmittance is 40-95%, and it is suitable for use in various transparent glasses, and the samples 10, 11 are due to the iron content of 1 to 1.3, and It has a higher content of yttria and titanium oxide, and it will become opaque brown or brownish yellow. It is more innovative than the prior art flat glass in terms of strength, viscosity temperature and strain point. High-quality wall coverings, especially for façades under the façade of the exterior wall and the use of high-grade decorative flat glass materials for furniture.
  • Table 2 lists some of the prior art glass formulations and related properties. As can be seen from Table 2, firstly, the range of boron, iron, titanium and sodium of the four samples is different from the present invention, and the ratio between silicon and calcium, and between calcium oxide and magnesium oxide is the same as that of the present invention. 2 ⁇ -1.6 ⁇ ,SiO2, the ratio of the amount of the oxide is 1. 2 times - 1. 6 times, silicon oxide It is 1. 9 times - 4. 1 times of the calcium oxide content, and the silica of these products is completely different than the content of magnesium oxide and calcium oxide. of. From Table 2
  • the melting of the substrate so its viscosity, especially the melting process temperature of 10 ⁇ ⁇ 5 (Pa ⁇ s), 10 1 (Pa ⁇ s), can not be measured with a standard rotational viscometer (because its viscosity is too high) It can be seen that it is difficult or too difficult to overcome the energy consumption in the melting process, overcome the defects and stones, and improve the production efficiency. Its temperature at normal bubble and homogenization of 10 2 (Pa. sec.) is also 15 ⁇ TC-300 ° C higher than the sample of Table 1 of the present invention, showing difficulty in exhausting and homogenizing.
  • the invention Compared with the energy saving and easy control of the craft handbench of the invention, for the molding process temperature of 10 3 (Pa ⁇ s), the invention has great technical controllability for the molding, for the flatness and thickness difference of the product.
  • the article of the invention is also 2 to 3 times its linear temperature expansion coefficient, especially related to the linear characteristics of the linear characteristics of the viscoelastic value of the fire-retardant vibrating plate when sintering the film transistor on the glass. There is also a great advantage in the difference in the difference.
  • Table 3 is a comparative example which is completely different from the technical scheme of the present invention, firstly all of which are products containing no boron, no titanium, no iron, no sodium, and wherein Comparative Examples 1 and 2 are magnesium contents. Also within the scope of 8. 1-22. 2% of the present invention, silicon: calcium or calcium: magnesium also exceeds the sample of the technical solution of the present invention. Comparative Examples 3, 4, 5, and 6 are representative sample samples of the liquid crystal display panel US2002/0011080A1, which have the same boron content as the 5% of all existing liquid crystal borosilicate patent documents and products. (1) The sample of the present invention is 0. 01-3. 9%, which is free of iron (and the present invention of Table 1 contains iron in the 0.01-5%), 8%.
  • the 8% of the sample of the present invention is in the range of 0. 01-8. 8% And the present invention is in the form of calcium or magnesium in the range of 12 to 60 times (the present invention is 1. 9-4. 1. 2-1. 6 times).
  • the six comparisons are in the melting and enthalpy, the clarification, the viscous, the viscous temperature, and the viscosity of the molding process are higher than 150 ° C -300 ° C; the technical effect of the flexural strength 2 - 3 times worse (mainly because there are too few alumina components, or the same amount of alumina, because too much boron is added (in the range of 5 - 15%, the process of boron is caused by a large amount of volatilization, resulting in uneven composition, resulting in The material network structure is loose and greatly affects the flexural strength.
  • the present invention can achieve a reduction in temperature at each viscosity when the glass is melted, thereby achieving a better combination of glass properties and material saving and energy consumption.
  • the present invention is not limited to the following examples, but may be adjusted and changed as needed on the basis of the present invention.
  • the content of the defined alumina is 0.01-30% by weight
  • the silica: the calcium oxide is 2.0-3.6 times
  • the calcium oxide: the magnesium oxide is 1.3-1.49 times, oxidized.
  • the sodium is 0.01-2%
  • the boron oxide is 0-1%
  • the fluorine oxide content is 0-1%
  • the annealing temperature lower limit of the glass ie, the endothermic peak starting temperature
  • the annealing temperature lower limit of the glass ie, the endothermic peak starting temperature
  • the glass The temperature at a viscosity of 10 a 5 (Pa's) is 1500 ° C - 1640 ° C; the viscosity at a viscosity of 10 1 (Pa.
  • the content of the defined alumina is 0.01-19% by weight
  • the silica the calcium oxide is 2.0 3.6 times
  • the oxidation: the magnesium oxide is 1.3 4.49 times
  • the sodium oxide is 0.01. - 2%
  • boron oxide is 0-1%
  • the content of fluorine oxide is 0-1%
  • the lower limit of annealing temperature of the glass ie, the endothermic peak endothermic temperature
  • 6i rc-68 ⁇ rc
  • the viscosity of the glass is The temperature at ⁇ ° ⁇ 5 (Pa ⁇ s) is 1500°C-158 (TC; the viscosity at a viscosity of 10 1 (Pa ⁇ s) is 145 (TC-1520 °C; viscosity is 10 2 (Pa's seconds)
  • the temperature at which the temperature is 1210 131 (TC; the viscosity is 10 3 (pa * sec) is 1070 ° C - 1160 ° C; the flexural strength of the glass is 50
  • the content of the defined alumina is 19-30% by weight
  • the silica the calcium oxide is 2.0-3.6 times
  • boron oxide is 0-1%
  • oxyfluoride content is 0-1%
  • the annealing temperature lower limit of the glass ie, the endothermic peak starting temperature
  • TC the endothermic peak starting temperature
  • TC ° C - 68
  • the glass is The viscosity at a temperature of 10 ° 5 (Pa's sec) is 155 (TC- 164 (TC; temperature at a viscosity of 10 1 (Pa ⁇ s) is 1450 ° C - 1580 V; viscosity is 10 2 (Pa's seconds)
  • the temperature at which the temperature is 1210 ° C - 135 (TC; the viscosity is 10 3 (Pa. seconds) is 1080 X 1230 ° C; the glass has a flexural strength
  • the content of alumina is limited by weight percentage. 8 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1%, the content of fluorinated fluorine is 0-1%; the lower limit of annealing temperature of the glass (ie, the endothermic peak endothermic temperature) is 610 ⁇ 680 ⁇ ; the temperature of the glass at a viscosity of 10 ⁇ 5 (Pa ⁇ s) is 1520° C- 1640 ° C; temperature at a temperature of 10 1 (Pa ⁇ s) is 1450 ° C - 1580; viscosity at a temperature of 10 2 (Pa's) is 1210
  • the content of the defined alumina is 19-30% by weight, the content of boron oxide is 0-1%, the content of sodium oxide is 0, 01-2%, oxidation.
  • the fluorine content is 0-1%; the lower limit of the annealing temperature of the glass (ie, the endothermic peak onset temperature) is 61 ⁇ TC-71 ⁇ TC; the temperature of the glass at a viscosity of 10° 5 (Pa's) is 1510.
  • viscosity is ⁇ ⁇ ⁇ Pa ⁇ sec) temperature is 1420 ° C - 1600 ° C; viscosity is 10 2 (Pa s) when the temperature is 1270 ° C - 1360 ° C; viscosity The temperature at 10 3 (Pa ⁇ sec) is 1160 ° C - 1280 ° C; the glass has a flexural strength of 120-180 MPa.
  • the alumina is limited to 3. 1-39% by weight.
  • the content of the titanium oxide is 0. 0003-4. 9%, based on the above-mentioned first embodiment.
  • the glass has a visible light transmittance of 40% to 95%, and the total content of silicon oxide, calcium oxide and magnesium oxide in terms of weight percentage. 01-14 ⁇ / ⁇ The content of cerium oxide is 0. 01-14 ° /. .
  • the content of sodium oxide is 0. 01%, the content of sodium oxide is 0. 01-2%,
  • the content of fluorine oxide is 0-1%; the lower limit of the annealing temperature of the glass (ie, the endothermic temperature of the endothermic peak) is 61 (TC-710 ° C; the temperature of the glass at a viscosity of 10 ° ⁇ 5 (Pa's) ⁇ is 1450 ° C -1680 ° C; viscosity is 10 Pa.
  • the content of alumina is limited by weight percentage.
  • the amount of boron oxide is 0-1%, the amount of sodium oxide is 0.01-2%, the content of fluorinated fluorine is 0-1%;
  • the lower limit of annealing temperature of the glass ie, the end of the endothermic temperature) ) is 610 ° C - 710 ° C;
  • the temperature of the glass at a viscosity of 10 ° 5 is 1500 ° C - 1640 ° C; the viscosity is 14 ⁇ frame 'seconds) when the temperature is 1420 ° C -160 (TC;
  • the temperature at a viscosity of 10 2 (Pa ⁇ s) is 12KTC-1360 °C;
  • the viscosity at a temperature of ⁇ 0 3 (Pa.s.) is 1070 ° C - 1280 ° C;
  • the intensity is 90-18 a.
  • the content of the defined alumina is 19-30% by weight, the amount of boron oxide is 0-1%, the content of sodium oxide is 0.01-2%, and the fluorine is oxidized.
  • the rounding amount is 0-1%; the lower limit of the annealing temperature of the glass (ie, the endothermic peak starting temperature) is 610 ° C - 71 (TC; the temperature of the glass at a viscosity of 10 ° ⁇ 5 (Pa ⁇ s) is 1510 °C-1680 ° C; viscosity is 10!
  • (Pascal 'seconds) temperature is 1420 ° C - 1600 ° €;; viscosity is 10 2 (Pa ⁇ s) when the temperature is 1270 ° C -1360 ° C; The temperature at a viscosity of 10 3 (Pa ⁇ s) is from 1160 ⁇ to 1280 ° C; the glass has a flexural strength of 120-1 for Pa.
  • the content of the determined calcium oxide is 1.3 times to 1.6 times the amount of the magnesium oxide, and the content of the silicon oxide is 2.0 times the amount of the calcium oxide - 3. 6
  • the alumina content is 19-39%.
  • the content of the product is defined as (1) by weight percentage: 1% of magnesium oxide is 7-20%, and 2 parts of calcium oxide is 1.0 times to 1.8 times of magnesium oxide. 3 silicon oxide is in the range of 2.6 #-5.6 times of magnesium oxide, 4 silicon oxide is 2.2 times - 3.8 times of calcium oxide, 5 aluminum oxide is 0.1-30%, and 6 sodium oxide is 0-18%. 7 yttrium oxide is 0-5%;
  • the strain point temperature of the product is in the range of 560 ° C - 720 ° C;
  • the water absorption rate of the product is in the range of 0-0.001%
  • the amount of trimming is 1.3 times - 5.8 times, the content of 3 silicon oxide is 1.3 times - 5.8 times that of calcium oxide, 4 aluminum oxide is 0.1-30%, 5 sodium oxide is 0-18%, and 6 cerium oxide is 0. -20%;
  • the content of the content of the magnesium oxide is 2. 1 times - 6 5 ⁇ 4.
  • the ratio of the content of the calcium oxide is 1.8 times - 4. 6 times;
  • the properties of the glass are as follows;
  • the thickness difference of the glass is less than 0.3.
  • the flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving and emission reduction, the glass glazing of the glass is 0-0. .
  • the content of lithium oxide is 0. 01-5%.
  • the cerium oxide content is 0. 005-8% by weight percentage.
  • the content of cerium oxide is 0. 01-5% by weight percentage.
  • Example 21 01 ⁇ 3% ⁇ The content of arsenic oxide is 0. 01-3%.
  • the content of sodium oxide is 0. 01-0. 99%.
  • the 5% by weight of the alumina is 0. 1-5% by weight.
  • the content of sodium oxide is from 1 to 8% by weight, based on the weight percentage.
  • the content of the alumina is 0. 1-19 ° / by weight percentage, based on the weight percentage. .
  • the content of sodium oxide is defined to be 2-8% by weight.
  • the content of sodium oxide is limited to 2 to 14% by weight.
  • the content of sodium oxide is limited by weight percentage.
  • the glass has a twist of Q. 3-1. 8 fine.
  • the glass has a thickness of 1. 8 - 5 faces.
  • Example 32 According to a first embodiment of the invention, the glass has a thickness of 5-20 let.
  • the second implementation of the present invention provides a method for preparing flat glass having high annealing point, high strength, high flatness and low viscosity characteristic with environmental protection and energy saving and emission reduction, and is characterized in that:
  • Step 1 Various predetermined and indispensable special ranges of sodium oxide, cerium oxide, aluminum oxide, silicon oxide, calcium oxide, oxidation required for the glass formulation configuration according to any one of claims 1-5 a material of magnesium, or a composition of titanium oxide, cerium oxide, and a predetermined ratio of a specific ratio between silicon oxide, calcium oxide, and magnesium oxide, which are melted after being mixed and stirred at a melting temperature corresponding to each glass formulation.
  • Step 2 Forming the glass by a float process, a flat pull process, a lattice process, a calendering process, an overflow process, or any one of the processes.
  • a method according to a second embodiment characterized in that:
  • the step 1 includes:
  • the various raw materials prepared are placed in the respective raw material containers, and the various raw materials are passed through the raw material conveying line, and after being metered, they are sent to the raw material mixing and stirring device in the required proportion, stirred and mixed, and then loaded into the bulk material for loading the ingredients.
  • the raw material mixing and stirring device in the required proportion, stirred and mixed, and then loaded into the bulk material for loading the ingredients.
  • a tube or silo In a tube or silo;
  • the mixed raw materials are introduced into the molten pool, melted at a melting temperature corresponding to each glass formulation, and a glass liquid having a predetermined viscosity is formed, and then homogenized, clarified, and discharged to form a flowable melt;
  • Process In the process, the town kiln must be prepared in advance. After the process of step 1, the flowable melt at the tail of the molten pool is flowed into the kiln for arbitrarily, polished, and thinned processes, and After the tensioning machine pulls in the direction specified by the process and the traction of the tractor, the tin bath is pulled out, and the glass is gradually cooled and annealed, and after being cooled, the glass is obtained by cutting.
  • the content of alumina in the glass is 30% or less by weight, and the temperature of the glass at a viscosity of 10° ⁇ 5 (Pa.s.) is 148 (TC-164 (rC; viscosity is 10 1 (Pa.
  • the temperature in seconds is 1410 ° C - 160 (TC; the temperature is 1180 ° C - 134 CTC when the viscosity is 10 2 (Pa. sec); the temperature 10 is 1040 o C when the viscosity is 10 3 (Pa-sec) 3% ⁇
  • the glass has a visible light transmittance in the range of 40% - 95%; the glass has a water absorption of 0-0.
  • the temperature of the strain point of the glass is in the range of 56 ⁇ TC-720 °C; the flexural strength of the glass is 50-180 MPa; the coefficient of thermal expansion of the glass is between 150 ° C and 30 (the values of the two ends of the TC)
  • the difference is 1 part per million. 0- parts per million. 0; the difference between the values of 550-600 is 1. 1 part per million.
  • the content of alumina in the glass is 0-35% by weight, and the temperature of the glass at a viscosity of 10 ° 5 (Pa's) is 148 ⁇ TC-168 (TC; viscosity is 10 1 (Pa)
  • the temperature at sec (seconds) is 144 (TC - 1600 ° C; the temperature at a viscosity of 10 2 (Pa ⁇ s) is 118 ⁇ TC-1350 ° C; the temperature at a viscosity of 10 3 (Pa ⁇ s) is 1040 ⁇ - 1220 ° C.
  • composition and characteristics of the flat glass having the high annealing point and the high-strength, high-flatness and low-viscosity characteristics of environmental protection and energy saving and emission reduction according to the embodiment of the present invention are described below, and the following describes the fabrication of the high annealing point according to the embodiment of the present invention.
  • a method of environmentally-friendly and energy-saving emission reduction of high-strength, high-flatness and low-viscosity flat glass are described below, and the following describes the fabrication of the high annealing point according to the embodiment of the present invention.
  • Fig. 1 is a plan view schematically showing a flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving and emission reduction according to an embodiment of the present invention.
  • the reference mark 1 indicates a flat glass product with high annealing point and high strength, high flatness and low viscosity characteristics of environmental protection and energy saving.
  • Fig. 2 is a schematic view showing the flow of a float process for the preparation process of the flat glass having high annealing point, high-strength, high-flatness and low-viscosity characteristics with high annealing point and environmental protection and energy saving and emission reduction.
  • the process of the molding process is to put the predetermined raw materials into the feed bin, and then transfer the raw materials from the feed bin to the molten pool kiln, into the molten pool to melt at a predetermined temperature and discharge the bubbles, and then It is a liquid melt that enters the tin bath (a protective gas station with a nitrogen-hydrogen gas beside the tin bath inputs a protective gas into the tin bath), which is flattened, pulled, and pulled on the tin surface of the tin bath.
  • a protective gas station with a nitrogen-hydrogen gas beside the tin bath inputs a protective gas into the tin bath
  • FIG. 3 is a side cross-sectional view showing a state in which a preparation process of a flat glass having a high annealing point, high environmental strength, energy saving and emission reduction, high strength, high flatness and low viscosity is formed by a float process.
  • reference numeral 2 denotes a silo feed port
  • reference numeral 3 denotes a silo
  • reference numeral 4 denotes a predetermined mixed raw material
  • reference numeral 5 denotes a molten pool kiln in which the mixed raw material enters the molten pool (with an icon)
  • reference numeral 12 denotes a float line substrate
  • reference numeral 6 denotes a molten pool kiln
  • reference numeral 7 denotes a molten pool.
  • the liquid molten material body enters the flow channel of the tin bath
  • reference numeral 8 denotes a tin bath of a float process
  • reference numeral 9 denotes a transition roll table formed in the tin bath into the annealing kiln
  • reference numeral 10 denotes Annealing kiln
  • reference numeral 11 denotes a cutting and dispensing station for slitting the shaped article.
  • the preparation process of the flat glass with high annealing point, high strength, high flatness and low viscosity characteristic of environmental protection and energy saving and emission reduction is further described by a float forming process, and the manufacturing process thereof includes the following Steps:
  • the raw materials are prepared, and the raw material is calculated according to the first embodiment and its various modifications and examples of the flat glass composition with high annealing point and high strength, high flatness and low viscosity characteristics of environmental protection and energy saving and emission reduction. ratio.
  • the predetermined compounded mixture shown by reference numeral 4 prepared in the step U) is shown by reference numeral 2 of FIG.
  • the feed port of the silo is conveyed into the raw material bin shown by the reference numeral 3 in the form of a raw material conveying belt, and the mixed material prepared in the step (1) is prepared by the molten pool kiln mouth shown by the reference numeral 5. It is fed into the molten pool of the predetermined high temperature resistant kiln shown in reference numeral 6, and gradually forms a liquid melt with good fluidity in a temperature zone corresponding to the melting temperature of each glass formulation, and is gradually formed through the high temperature zone. The bubbles in the liquid raw material are discharged, that is, a mixed raw material melt having a good fluidity which can enter the molding step is formed.
  • the molten pool shown by the reference numeral 6 is shown.
  • the kiln passes through the nip of the guide groove indicated by reference numeral 7 and flows into the tin surface of the tin bath (also called tin kiln) indicated by the reference numeral 8 of the float line, and is then flattened.
  • the pulling of the edger and the traction of the tractor are polished and flattened on the tin liquid surface, and the semi-finished strip is formed into the roller kiln shown by the reference numeral 10 after exiting the kiln through the transition roller shown by reference numeral 9.
  • the annealing kiln of the cooling and cooling system is cooled, and then enters the cutting and dispensing station shown by reference numeral 11, and after cutting and dispensing, the first embodiment and various modifications thereof according to the above-described first embodiment are obtained. And the various compositions of the high-strength, high-half, low-viscosity, high-grade, high-level, semi-finished, flat-walled glass products with high annealing points and environmental protection and energy saving.
  • the above-mentioned glass can be obtained by subjecting the flowable melt formed in the melting step to thinning, forming, annealing, cooling, and slitting which are characterized by a flat drawing process.
  • the above-mentioned glass can be obtained by calendering, forming, annealing, cooling, and slitting the flowable melt formed in the melting step by a grid process.
  • the above-mentioned glass can be obtained by calendering, forming, annealing, cooling, and slitting the flowable melt formed in the melting step by calendering.
  • the flowable melt formed in the melting step is subjected to downflow, forming, annealing, cooling, and slitting by an overflow process to obtain the glass.
  • the melting function of the present invention greatly reduces the melting temperature of the glass, which makes the glass particularly suitable for the float process and the overflow process.
  • the field has been limited to the glass formulation of the high silicon component, and in the case where high strength is required and more alumina is required, various means or even extremes have to be utilized. The conditions are to melt the raw materials.
  • the float or overflow process is suitable for the glass having a high degree of flatness, especially for the product of 1. lmm-0. 7 legs or 0. 5mm thickness of the display screen, first raw material
  • the requirements are high, there can be no stones formed by infusibility, so the melting viscosity is high, otherwise the defects are obvious, the product is unqualified; then, the product is homogenized and the foaming viscosity is high, otherwise the bubble row is not clean.
  • the present invention overcomes the prior art prejudice technical solution, and melts, homogenizes the bubble discharge and leveling in the float process and the overflow process, the calender process, the grid process, and the flat process.
  • the viscosity of the three most important process stages of molding and the viscosity of the polishing process of the float process in particular have significant substantial technological advancements.
  • the glass of the present invention can better reflect its technology especially in various flat glass production processes.
  • the high-strength, high-flatness, low-viscosity flat glass with high annealing point and environmental protection and energy saving and emission reduction can be applied to break the aforementioned three types of conventional technical biases, and can be applied to (1) Building doors, windows, curtain wall glass, (2) glass for cars and ships, (3) glass for high-speed rail, (4) LCD display glass, (5) PDP display glass, (6) TFT display glass and smart High-strength panel glass for mobile phones and iPads, (7) process glass and other products and reworked tempered products, (S) liquid crystal display, (9) photovoltaic solar installations.
  • a third embodiment of the present invention discloses a liquid crystal display screen comprising: an array substrate including a glass plate made of glass according to the first embodiment and its various modifications and examples as a substrate and a substrate a pixel structure, the substrate is a glass plate made of flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic according to any one of claims 1 to 5; and a color filter substrate;
  • the color filter substrate comprises a substrate and a color filter layer on the substrate, the substrate is a high annealing point with high annealing point and environmental protection and energy saving and emission reduction according to any one of claims 1-5 a glass plate made of flat glass; a liquid crystal layer interposed between the array substrate and the color filter substrate; and a backlight system.
  • the glass according to the present invention can lower the viscosity, it can be molded into a thinner glass. If such thinned glass is used for the substrate or cover plate of a photovoltaic solar device, the visible light transmittance can be increased to enhance the absorption efficiency of the solar cell.
  • the present invention also provides a photovoltaic solar device comprising a solar cell and a glass substrate or cover sheet made of glass according to the present invention.
  • the sixth embodiment of the present invention discloses that the present invention is based on the above-described first embodiment Annealing point and ring ⁇ and high-strength, high-flatness and low-viscosity flat glass with energy saving and emission reduction, the surface of the flat glass is adhered with a polysilicon layer which is sintered by amorphous silicon.
  • a seventh embodiment of the present invention discloses a flat glass having high annealing point and high strength, high flatness and low viscosity characteristic of the present invention having high annealing point and environmental protection and energy saving and emission reduction based on the first embodiment.
  • a layer of resin containing stone clips or alumina or mullite crystals there is a layer of resin containing stone clips or alumina or mullite crystals.
  • the invention provides a high-strength, high-flatness and low-viscosity flat glass with high annealing point and bad protection and energy saving and emission reduction.
  • the novel technical solution of the flat glass in the field of flat glass is: the glass comprises silicon oxide, calcium oxide, oxidation
  • the content of the oxidized iron is 0. 01-14%
  • the content of iron oxide is 0. 01-14%
  • the content of iron oxide is 0. 01-14%
  • the content of iron oxide is 0. 01-5°/.
  • the sulphate content is 1. 9 times the content of the calcium oxide.
  • the content of the silicon oxide is 1. 9 times the calcium oxide content.
  • the ratio of the content of the calcium oxide is 1.2 times - 1.
  • the lower limit of the annealing temperature of the glass ie, the endothermic peak endothermic temperature
  • the thickness difference of the glass is less than 0.3 s; its water absorption is in the range of 0-0. 3%; its flexural strength is 50-180 Mp.
  • the present invention discloses a novel type of product found to be transferred to a new type of invention, and is also an invention that produces an unexpected effect (i.e., through various flat glass processing methods, in terms of new flat glass applications, Can produce [1] excellent new viscosity temperature and product at different process stages, [2] thickness difference, [3] water absorption, [4] flexural strength, [5] visible light transmittance, [6] waviness [7] Annealing temperature lower limit (ie, endothermic peak starting temperature), [8] linear thermal expansion coefficient characteristics and other new properties of flat glass, new use characteristics).
  • the present invention finds new viscosity reducing temperatures and eutectic properties of products which have never been disclosed in the prior art, viscosity temperature during the melting process, homogenization, defoaming, viscosity temperature during the clarification process, In particular, it controls the flatness or thickness of the waviness, and the viscosity temperature of the thinning process (or polishing in the float process) of the molding process.
  • the technical solution of the present invention and the new properties of the discovered products break the technical bias, and can be invented due to changes in the relationship between the elements of silicon, calcium and magnesium, and the new properties of the products produced in the use of flat glass
  • the sodium content is within 0-1%, it can be 15 times lower than the viscosity of several stages of the high-sodium flat glass of the prior art ( ⁇ 250 ⁇ :, which will generate energy saving for children and favorable quality control products.
  • the quality of the flat glass has a reduced range of defects, stone rate, bubble rate, unacceptable thickness difference, and unacceptable waviness rate, forming a much larger range of technical control platforms.
  • the first part of the product of the present invention. -0. 1% of a new product property which omits the sodium component, which is omitted from the invention, is that the factor ratio relationship of the silicon, calcium and magnesium of the present invention changes the technical solution of the invention, overcoming the prior art only by
  • the aluminum component or the boron component is increased to produce a technical bias in the rise of the annealing temperature, resulting in a new product with a low annealing temperature of about 100 ° C at low aluminum and low boron (only 1% or less), and low sodium. At the content (or below 1%), the annealing temperature will rise more new product properties (see sample example).
  • the lower temperature of the annealing temperature of the glass is 61 (rC-71 (TC, yiyi is 6KTC-650 ° (or more alumina content, resulting in a more preferred 650 ° C - Product properties at 710 ° C, found due to sodium
  • the more the composition, the lower the annealing temperature lower limit of the glass (ie, the endothermic peak starting temperature), and the lower limit of the annealing temperature of the building flat glass of 99% or more of the 13% sodium content (ie, the endothermic peak starting temperature) is only 490.
  • the lower limit of the annealing temperature (ie, the endothermic peak onset temperature) of the sodium-free (or only 0.01-1%) boron-free flat glass of the present invention is 610 ° C - 710 ° C, because the technical solution of the present invention 6% (typically 15%), with a minimum of 1. 2%, and a minimum of 1.2%. Above), this is the main reason for the sharp rise in the lowering temperature of the annealing temperature (ie, the starting temperature of the endothermic peak), which is 120 °C-200 °C higher than the ordinary calcium-sodium flat glass.
  • the boron component can be omitted.
  • the lower limit of the annealing temperature of the glass ie, the endothermic temperature of the endothermic peak
  • the sodium oxide up to 2 1 3% is also greatly increased, but the lower limit of the annealing temperature of the product than the sodium-free or low-sodium product (ie, the end of the endothermic peak)
  • the temperature rises less, but it does not mean that the addition of calcium and magnesium can achieve the purpose of production, because it must also have the appropriate sub-plate glass, especially the lower viscosity of the bubble. .
  • the prior art flat glass if only the content of calcium and magnesium is increased, instead of having the mutual proportional relationship between the silicon, calcium and magnesium of the present invention, the prior art is to increase the calcium and magnesium content and the viscosity temperature thereof. It will be higher than the 15Q ° C-30 (TC of the present invention, and also the alkali-free boron flat glass, which is added with 8-15% flux of boron, only 8-10% alumina is added, and the viscosity is 10 2 (Pa. sec.)
  • the temperature of the bubble-discharging process is as high as 150 (TC or more, and the high-efficiency platinum bubble-discharging channel must be used to complete the bubble-discharging process with a shallow molten pool (only 10-10 cm of glass depth).
  • the lower limit of the annealing temperature ie, the temperature of the end of the endothermic peak
  • the invention features instead of taking the ratio of the change of the relationship of the present invention, the invention of choice, and are not take into account the cost of The unexpected combination of the lower limit of the annealing temperature (ie, the endothermic peak onset temperature).
  • the unexpected technical effect is not only the lowering temperature of the chasing temperature (ie, the endothermic peak starting temperature) of the low-aluminum product of the invention without sodium or boron, and the temperature at 150 ° C - 30 (TC and 61) 0 °C -650 °C or 680 °C linear expansion coefficient value, there can be high quality, low cost, high dozens Double production efficiency can simultaneously meet the technical requirements of producing TFT liquid crystal glass and achieve better economic cost targets, and can also reach the lower limit of annealing temperature (ie, the endothermic peak starting temperature) in the substrate use of a general PDP display.
  • the target higher than 580 °C makes the deformation in the sintering process at 580 °C very small, and if more alumina is added, it will be higher, and the lower limit of the annealing temperature of the liquid crystal standard (ie, the endothermic peak starting temperature) ) Above 6 50 ° C - 71 ⁇ rC standard, the glass substrate can be deformed to a minimum of 3 parts per million when the film is burned at 6 00 ° C - 6 50 ° C. It is much better than the existing PDP substrate glass and TFT alkali-free borosilicate glass.
  • the existing mid-level LCD display can improve its technical level, which is beneficial to the upgrade of the LCD display and greatly improve the accuracy of the resolution.
  • the prior art LCD glass plate uses the current annealing temperature.
  • the lower limit ie, the endothermic peak starting temperature
  • 49 TC 13% sodium content of the flat glass; another technical effect is that because the viscosity temperature is lower than the existing soda glass 200 ° C, LCD and PDP and TFT display
  • the direction of the glass has a high level of thickness difference and the quality of the waviness is premised on the thinner 0. 1-0.
  • the present invention is boron-free, sodium-free, and fluorine-free (ie, 0-1%), alumina.
  • alumina When the content is 3.1% or 16% or 20% or 25%, the prior art is considered to have a large increase in viscosity, but the viscosity of the present invention changes only 2 ⁇ TC-4.
  • ⁇ TC when the alumina is about 1-30% large change, the viscosity temperature only rises by 4 ⁇ TC-8 (TC TC (see the sample of 11 samples in Table 1 and the sample comparison of Table 2).
  • the viscosity temperature is 1001C - 200 ⁇ compared to flat glass products with 13% sodium oxide or 8-15% boron oxide.
  • the invention can increase the alumina content by 19-28%, the strength can reach about 140-160 MPa or 180 MPa, which is much higher than 2-3 times of the strength of various prior art flat glass, and because of the viscosity temperature Compared with the prior art, only 25% of the alumina content is 15 ⁇ TC-25 (TC, so if the technical solution of the present invention forms the viscosity of the alkali-free high boron glass, then there should be equivalent to adding more alumina to 29- 39% of the viscosity space that can be melted and a large space of the strength J liter (the bending strength of the glass in the present specification and the embodiment of the present invention, by cutting the sample into strips of 50 mm X 50 ⁇ X 5 mm, using a bending strength meter According to the standard GB/T3810, 4-2006.;).
  • the present invention can produce a flexural strength of up to 90-145 MPa or 145-180 MPa while having a high aluminum content and a boron-free content due to the new properties of silicon, calcium, and magnesium eutectics having a high aluminum content. Moreover, it has a more energy-efficient, lower-cost and more viscous temperature process range, which can control melting during the viscosity temperature phase of the melting process, overcome stones and prevent defects from being melted, and slab glass during clarification and control molding.
  • the thickness difference and waviness (because the lower the viscosity, the softer the flat glass product in this stage of the process has more control range, and the higher the viscosity, the harder the flat glass product in this process stage, the harder it is to pull and pull , or calendering, or flattening, thinning, polishing, etc., controlling the thickness difference and waviness).
  • this combination discovery is a flat glass product that can produce an unexpected combination of light, thin, high strength, large-scale glass high-end resources, and saving raw material costs. This is a technical effect that is not high in strength, light and thin, and saves raw material resources, and greatly saves the raw material cost by 10 times.
  • the invention Since the invention is omitted from the technical elements, the prior art such as alkali-free borosilicate glass, and in the case of stones, defects, bubble ratio, flatness, and thickness which are better than the prior art, Under the premise of quality control, under the premise of lowering and saving energy before the process temperature rises, the deboration component can be omitted, and the flat process can be melted, defoamed, formed, and thinned.
  • the alkali-free borosilicate glass of flat panel display can not add 8-15% boron component, and ensure high bubble quality, flatness, thickness difference, ripple
  • the product quality guarantee can solve the technical prejudice of the prior art TFT display glass production device that can only use the overflow process plus platinum channel. The highest is that the float process can be used to ensure the thickness difference and flatness. Under the premise of the quality of waviness, the production efficiency can be increased by 20-40 times, the investment can be saved 30-50 times, and the unexpected effect of 20 times of the land plant can be saved.
  • the technical solution of the present invention has new new properties that are not disclosed and disclosed, and such properties are incapable of speculation, unpredictable and inferable, and overcome the traditional flat glass.
  • the technical technology has solved the above-mentioned major problems that people are eager to solve in the industry.
  • the technical effects have produced the changes of "quality” and "quantity”. It shows that the technical solution is non-obvious, with outstanding substantive features, significant technological progress, and creativity.
  • composition and properties of the glass of the present invention as well as the manufacturing process, application and technical effects of the glass of the present invention have been described above in connection with specific embodiments.
  • the following is a high-intensity high with high annealing point and environmental protection and energy saving and emission reduction according to an embodiment of the present invention.
  • the characteristics of flat glass with flatness and low viscosity characteristics that is, its fundamental difference from the prior art, are summarized as follows:
  • the technical solution has 40-70% silicon oxide, 0-15% calcium oxide, 0-10% magnesium oxide, and 5-20% boron oxide.
  • the present invention is advantageous for a value within the range of 3 ⁇ 4, which is different in novelty, and the prior art has a boron oxide content of 5-20%, does not contain sodium oxide, and does not contain iron oxide. 01 ⁇ 8% ⁇ 8%.
  • the oxidizing agent is 0. 01-8. 8%. Due to the difference in technical solutions, the invention changes the proportion relationship of silicon, calcium and magnesium elements, and produces new product properties.
  • the low viscosity temperature of the present invention is very advantageous for controlling defects and stones in the melting process of flat glass, It is easy to melt fully, and it is very beneficial to control the bubble rate in the process of bubble discharge and clarification (all the current alkali-free borosilicate glass uses the high-cost pulverization process of the platinum channel device at high temperature viscosity temperature).
  • the low viscosity of the present invention is of course more advantageous for forming flat glass, especially for the ultra-thin glass of the molded TFT, which has the control flatness, the thickness difference, and the quality level of the wave.
  • the alkali-free of all TFT liquid crystal displays Boron glass is limited to the process of overflow method.
  • the liquid crystal display glass can be produced without boron, it can completely solve the boron gas emission in the current production of boron glass (for example, when the boron content in the product is 10%, about 30% of boron is added to the raw material, When melting, about 20% of boron poisonous gas is emitted.
  • the prior art 10 tons/day overflow process requires 2 tons of boron gas to be discharged every day.
  • 200 tons/day capacity has 20 tons of boron.
  • Gas emissions, and the 200 tons / day float line of the technical solution of the present invention can be free of any boron gas emissions.
  • the technical effect of viscosity temperature above TC the technical effect of viscosity temperature above TC; technical effect of 1-2 times better in strength, resulting in the industry People don't expect Technical effect of the above described technical effect of the present invention is non-obvious, it is inventive.
  • the technical effects described in any of the above are not disclosed or disclosed in the production of all existing liquid crystal display boron glass, and are not obvious.
  • the technical effects of any one of them reflect the inventiveness of the technical solution of the present invention. .
  • the invention is different from the existing glass technology 2: the prior art SU581097A1 discloses a kind of opaque glass, the silicon oxide is 50-63%, the calcium oxide is 22-33%, and the magnesium oxide is 13-21%. , the alumina is 1-3%, the sodium oxide is 0. 5-2%, the calcium: the magnesium is 1. 4-1. 5. It is completely different from the technical field and use of the flat glass, but only one to produce opacity
  • the technology of effect glass, the main difference from the present invention is that the present invention is a completely different feature produced by various flat glass processes, such as thickness difference of ⁇ 0.3 ⁇ , waviness of 20 in-plane undulation is 0 -0.
  • the flexural strength is 50-180 MPa, preferably 0-180 MPa or 145-180 MPa, and the present invention contains iron oxide, and the sodium oxide is 2. 1-14%, and the control and clear oxidation Technical process index of viscosity temperature, strength, annealing temperature, etc. of the process stage of each flat glass in different cases of 0. 01- 30% or 3. 8-30% or 19-30°/.
  • the present invention is one of the types of patented inventions that are completely different in new
  • the use of high-flatness levels of architectural, industrial, display and other flat glass in the discovery of new properties of the product and the production of unexpected technical effects of the type of invention, is also a new nature of this never revealed product Combined with the existing flat glass process technology, a combination of unexpected technical results has been produced.
  • One of the discoveries of the new nature of the product overcomes one of the elements of the sodium oxide technology of flat calcium sodium glass produced by the conventional technology bias.
  • the prior art sodium flat glass which contains about 13% sodium, is mainly used. To fluxing, especially for the melting of silicon components, to form a controllable viscosity reduction at various stages of the process.
  • the present invention is distinguished from the existing three glasses technology:
  • the prior art patent publication number is
  • CN1053047A is entitled "Crystal Glass with Natural Marble-like Surface Pattern and Method for Producing Same", which defines a wide range of content values for various contents in the claims.
  • CN1053047A is a natural marble-like surface patterns of the crystalline broken glass
  • the plate glass 5 of the present invention is a transdermal completely different structural features.
  • CNl 053047A The technical problem to be solved is to realize the pattern by crystal precipitation of certain components in the glass, and the process determines its inevitable product defects, rather than the defects of its products determined by the composition of the product.
  • the present invention contains sodium oxide 0. 01-8. 8%, iron oxide 0. 01-5%, titanium oxide 0. 0003-4. 9%, and this prior art has no above
  • the composition, and examples thereof, are not related to the ratio of silicon, calcium, and magnesium of the present invention.
  • the process is expressed as storing small pieces of glass frit in the mold box, so that crystallization enters the interior from the glass surface, and the glass frit is fused to each other to control the size of the glass frit... It has a marble, granite look. Moreover, this document has a large number of crystallization process representations of the mold frame, and it can be seen that it uses a process of particle viscous crystallization of the color-patterned glass-ceramics.
  • the viscosity characteristic of the present invention is a viscosity material which can be produced on the basis of a float method, an overflow method, a lattice method, a calendering method, or a flat-drawing method.
  • the characteristics of the product revealed the product strength characteristics (such as the prior art method described in the prior art is impossible to have good strength); the water absorption rate product characteristics are produced (compared with the prior art process water absorption rate) It must be high); the characteristics of the product that produces the thickness difference (the prior art method of the comparison document is the particle sticking process of the glass ceramic in the mold, it is impossible to have a good thickness difference); The visible light transmittance product characteristics (compared to the prior art process is not transparent). Therefore, many of the product features of the technical solution of the present invention are product features produced by a prior art process that is completely different from the comparative document, and are not component-determined features, and are completely novel.
  • the product plane is uneven, and the mold frame is fired with refractory material, and the surface and the four corners are uneven.
  • the degree of deformation with each firing is getting bigger and bigger, so the thickness difference of the finished product is 1.
  • the difference between the thickness of the glass of the present invention and the normal flat glass is very different from that of the inner legs of 0.3.
  • the invention is different from the existing glass technology 4; compares all the prior art calcium sodium float glass actual production technology (for table 2) and all patents or various offerings, all of which float calcium sodium I glass
  • the technical solutions of all plasma glasses are different from the general technical solutions of the present invention by 4-6, and the present invention is novel.
  • the present invention differs from the existing five of the glass technologies:
  • Part of the technical solution of the present invention relates to the composition range of silicon, calcium and magnesium and to silicon, calcium and magnesium.
  • the present invention is different from the prior art of the glass technology.
  • the present invention provides a liquid crystal display panel comprising: an array substrate, the array substrate comprising a substrate and a pixel structure on the substrate, the substrate being according to claims 1-5 A glass plate made of flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving; a color filter substrate, the color filter substrate including a substrate and a filter on the substrate a color plate layer, which is a glass plate made of flat glass having a high annealing point and a high-strength, high-flatness and low-viscosity characteristic of environmental protection and energy saving and emission reduction according to any one of the embodiments of the present invention; Between the array substrate and the color filter substrate; and a backlight system.
  • the difference between the liquid crystal display of the present invention and the existing liquid crystal display is mainly as follows: First, due to the high content of aluminum silicon, calcium, A new feature of the eutectic properties of magnesium, which has a glass substrate that can be produced at a lower cost by adding 25-30% alumina, and can have a higher technical TFT.
  • the strength of the alkali-free borosilicate glass is 1-2 times, so in the manufacturing design, it can be 1-2 times thinner while maintaining the same strength, which will greatly reduce its weight, especially in the lighter requirements.
  • Mobile phones, tablets, laptops, etc. are better for thinner and lighter to use, and because the glass substrate is thinner, it is more transparent and the image is clearer.
  • the glass strength will increase by 1-2 times.
  • the breakage rate is greatly reduced, especially in the safety and non-destructive use effect of the smartphone or tablet that is often used in mobile phones.
  • the production efficiency of glass can be floated, which is 30-40 times higher than the efficiency of the existing liquid crystal display glass overflow process, and the investment wife is 40 times less, so the cost will decrease, and the cost of the display product will also decrease. It is of great significance to drive up production and increase the number of users.
  • the present invention is different from the prior art of the glass technology:
  • the present invention provides a photovoltaic solar device comprising a solar cell and a glass substrate or cover plate manufactured using the glass according to any of the above embodiments.
  • the difference from the prior art photovoltaic solar device is as follows: First, due to the special cost of increasing the alumina content (such as increasing to 25-30%) in large production, aluminum, calcium, magnesium eutectic The characteristics of the nature, so the use of the flat glass of the present invention, can be formed in the case of no change in equipment, the cost is not increased, the production intensity is increased by 1-2 times, so the production, assembly, installation and more severe of the solar device, Use in complex environments, probability of damage Greatly reduced, the arrangement and integrity will be greatly improved; Secondly, since the glass substrate can be produced with a strength of 1-2 times, the glass product can be designed to be 1-2 times thinner, which is very suitable for the photovoltaic solar device of the present invention.
  • the glass comprises silicon oxide. a component of calcium oxide, magnesium oxide, aluminum oxide, iron oxide, titanium oxide, sodium oxide, in a percentage by weight, a boron oxide content of 0-3.9%, a sodium oxide content of 0.01-8.8%, and oxidation
  • the content of iron is 0.01-5%
  • the content of fluorinated fluorine is 0-2.8%
  • the content of titanium oxide is 0.0003-4.9%
  • the content of magnesium oxide is 8.1-22.2%
  • the content of alumina is 0.01-39%
  • the content of silicon oxide is
  • the content of calcium oxide is 1.9 times - 4.1 times or 2.0 times - 3.6 times
  • the content of calcium oxide is 1.2 times - 1.6 times or 1.3 times - 1.49 times the content of magnesium oxide
  • the thickness difference of the glass is less than 0.3 mm; It is in the range of 0-0.3%
  • Step 1 according to the glass formulation configuration, various predetermined special indispensable special ranges of sodium oxide, iron oxide, aluminum oxide, silicon oxide and calcium oxide. a material of magnesium oxide, or a component of titanium oxide, cerium oxide, and a predetermined ratio of a specific ratio between silicon oxide, calcium oxide, and magnesium oxide, which is melted at a melting temperature corresponding to each glass formulation after being mixed and stirred.
  • Step 2 Forming a predetermined viscosity of the glass frit, homogenizing, clarifying, and discharging the bubbles to form a flowable melt; Step 2, using a float process, a flat drawing process, a lattice process, a calendering process, an overflow process, One of the processes shapes the glass. Moreover, this is a new type of combined invention, which has created new uses, discovered new product properties, and produced many of the above-mentioned unexpected technical effects.
  • the invention is different from the new technical solutions of the above various types of flat glass and can generate energy saving, environmental protection, input-output ratio, production efficiency, cost reduction, low viscosity temperature and high strength, etc., all of which are industrial. Unexpected non-obvious technical effects; can save 30--40% due to melting temperature, and reduce carbon dioxide emissions by 30-40%; also increase product strength by 2 to 3 times, And the invention of a combination of a new performance display and a photovoltaic solar device.
  • the present invention has been made by the inventors through years of practical experience and innovative design.
  • the present invention and any prior art technical solutions are mainly inventions in which the technical element structure and its mutual proportional relationship are changed. And discovering new product uses, discovering new product properties and distinguishing product features formed by innovative methods (because any prior art rights or examples are 3-5 with the technical features of the technical solution of the present invention or 4-5 points are different), so the "individual contrast" principle judged by the novelty should be novel in the product of the invention and the preparation process described in the claims refined from the present specification.
  • the technical solution of the present invention can be obtained not by a logical reasoning or a simple experiment which is considered afterwards, and in particular, the unexpected technological progress effect generated by the technology solution is not obvious to the insiders.
  • these technical problems are nearly ten to twenty years. Thousands of companies and hundreds of thousands of technicians in the global electronic display materials industry and the flat glass industry are studying the problems that have been solved and have not been solved. Since the present invention solves the above-mentioned major technical problems that people in the global flat glass and display industry and the solar industry are eager to solve but have not succeeded, and many other people are eager to solve There are no more than a dozen technical problems mentioned above that have been successful.
  • the resulting high annealing temperature lower limit ie, endothermic peak onset temperature
  • product properties and low viscosity characteristics, high strength characteristics in the absence of boron components, breaking the prior art bias, and prior art sodium or boron or fluorine The technical solution of the present invention is omitted from the omission of the conventional technology biased elements, and the new technical solution produces unexpected technical effects. The nature of these technical products cannot be presupposed and unpredictable.
  • the present invention overcomes various technical prejudices and has solved the technical problems that the above-mentioned flat glass and display industries and new energy industries are eager to solve but have not solved yet. Unexpected effects of "quality” and “quantity” change, indicating that the solution of the present invention is non-obvious, with outstanding substantive features and significant technological advancement, and creativity
  • the above description is only for the purpose of illustrating the preferred preferred embodiments of the present invention, but it is not intended to limit the invention, and any person skilled in the art may change or modify the equivalents by using the technical contents disclosed above.
  • the equivalent embodiment can implement high-strength, high-flatness and low-viscosity flat glass with high annealing point and environmental protection and energy saving and emission reduction according to different requirements and performances. It can be seen that any simple modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention are still within the scope of the technical solutions of the present invention without departing from the technical scope of the present invention. .

Description

平板玻璃及其制备方法
技术领域
本发明涉及有预定的必不可少的特别范围内的氧化钠、氧化铁、氧化铝、 氧化硅、氧化钙、 氧化镁、或还有氧化钛、氧化钡的成份以及预定的氧化硅、 氧化钙、 氧化镁之间的特殊比例关系的成份的技术方案, 克服了各种传统的 必须用钠或硼成份来组成助熔成份的技术偏见, 关键在于采用了对硅, 钙, 镁成份要素的一种比例关系变化发明的技术方案,和对钠或硼成份的妻素省 略发明的技术方案,产生了预料 到的新的有高退火点性质和助熔功能或高 含量氧化铝的共熔体以及产生的制品强度上升 1-3倍, 义可以在节能、 无硼 毒气排放的环保性及高品质质量控制的前提下,加大投资生产效率 10-30倍, 并产生新的产品性质和新的用途与功能,形成一种有高退火点及环保和节能 减排的高强度高平整度低粘度特征的平板玻璃及其制备方法、及使用该玻璃 的显示屏、 光伏太阳能装置的基板玻璃和外罩玻璃。
本技术发明就是揭示和提出了一种对硅、 钙、 镁技术要素的比例关系的 变化发明, 比较一切现有平板玻璃技术的这几种要素, 硅、 钙、 镁端值之间 比例关系的窄的范围的选择发明, '以及对钠、硼等传统助熔成份的省略发明, 和其它成份范围的新的选择发明, 在平板玻璃各种新用途中, 揭示了新产品 性质和产生了预料不到的多种技术效果。 背景技术
采用浮法工艺、 平拉工艺、 格法工艺、 溢流法工艺、 压延工艺生产的现 代平板建筑与工业用的平板玻璃, 如(1 )建筑用门、 窗、 幕墙玻璃, (2 ) 汽车及船舶用玻璃, (3 ) 高铁用玻璃, (4 ) LCD显示屏玻璃, ( 5 ) PDP显示 屏玻璃, ( 6 ) TFT显示屏玻璃及智能手机和 iPad的高强度面板玻璃, ( 7 )工 艺玻璃等, 其在生产工艺的配方上具有重大缺陷, 存在一种技术偏见, 全都 采用氧化钠或氧化硼成份来熔化氧化硅成份, 传统的技术在熔制过程中, 对 共熔体的成份组成, 有技术偏见及局限 其局限于对硅、 钙、 镁、 铝的固有 组份, 而且在加入 13%左右的氧化钠或 8- 15%左右的氧化硼时, 但是粘度还 是很高, 更不敢加入大量氧化铝成份来提升产品强度和退火点, 因为如此的 话就会使现有技术方案的制品无法控制更高粘度温度下的产品品质和产量, 而且节能效果很差, 强度也差, 尤其硼成份大量挥发, 使现有的一切无碱硼 玻璃生产有严重环境问题。
( 1 )、 现有的无碱硼玻璃技术, 尤其代表性的 US2002/0011 ()8()A1 的液 晶显示屏的无碱玻璃,在成份技术方案中,其专利材料指出氧化硅达 40-70%, 在实际这类一切产品中的硼玻璃和实施例中,硅的比例都在 60-70%之多, 而 氧化硼含量为 5- 20%, 在实际运用中, 氧化硼在产品中含量达 - 15%。 其主 要是把氧化硼来替代氧化钠成份达到助熔的目的, 而如^以上的硼成份,在 原料上就必须加入 2-3倍,如 10¾的硼含量的玻璃就必须要加入 25-30%的氧 化硼的含量的原料(因为大部分会在高温中变为有毒气体挥发)。 其技术缺 陷之一是, 其硅含量太高, 十分不易熔化; 其技术上缺陷之二, 是会造成环 保的严重破坏; 其技术缺陷之三在于, 硼成份达 5- 20%时, 现实的生产中会 把熔池严重腐蚀(所以现在的一切 TFT液晶显示器用高硼玻璃熔池只一年时 间就要冷修, 这就造成了工效、 成本的严重问题。 尤其在生产平板液晶显示 屏用硼玻璃时, 而且硼的成份太高, 在同样的氧化铝含量的情况下, 会使强 度下降一倍; 而且现有的一切液晶显示屏玻璃, 由于硼的高含量, 只能用溢 流法来生产, 其产量仅 6-10吨 /天, 是浮法工艺 (如最小的 150吨 /天) 的 5%以下的产能。 而且仅其^ "条 6-10吨 /天的溢流法生产线, 设备成本比 150 吨 /天的浮法线还高出 2- 3倍。 所以如何在液晶玻璃生产中, 降成本并大幅 提高效率, 能如同普通浮法玻璃工艺一样 10年才冷修, 并降低粘度, 节能, 成了人们十分渴望解决的产业性难题。
( 2 ), 现有的钙钠平板玻璃, 如 [i]建筑用门, 窗、 幕墙玻璃, 〖2]汽车 及船舶用玻璃, 〖3Ϊ高铁用玻璃, W PDP显示屏玻璃, Ϊ5)工 破璃等, 由于 对其熔体成份的认识局限, 熔制和排泡均化过程中粘度温度高子本发明 150 °C-20{TC , 生产能耗大, 每公斤能耗达 1500大卡或达高于 1500大卡以上。
( 3 )、 在汽车玻璃、 高速列车用玻璃的应用上, 现有工业玻璃产品的抗 折强度、 抗冲击性能也是不能达到很高要求的, 如汽车玻璃强度差则安全保 障性不高, 船舶玻璃常有被海浪击破的事故, 尤其是在汽车玻璃上对抗冲击 性能的要求水平上还有很大的差距。
( 4 )、 由于现有工业玻璃产品的抗折强度低(一般在 50MPa左右, 有的 50MPa都不到),抗冲击性能更差,所以在飞机前方及左右的窗户的玻璃应用 上, 要加很厚才行, 这样就加大了重量, 影响飞机的自重还影响视线的清晰 度。
( 5 )、 而在建筑的应用中, 因现有玻璃产品的退火点低以及其强度性能 的局限, 其使用范围也受到很大的局限, 也有向轻薄化、 高强度、 节能上发 展的必要。
( 6 ), 现有技术防火玻璃或有急升温的灶板玻璃、 炉用玻璃或微玻炉用 玻璃及厨房或餐台面板破璃,现有的钙钠破璃的膨胀率 ¾有优异的均匀上升 及下降的线性特征, 粘弹性变化大, 有易爆裂的缺陷, 所以这方面的应用存 在缺陷。
( 7 )、 另外, 现有一种公开号为 CN 1053047A的 "具有天然大理石状表 面花纹的结晶玻璃及其生产方法"专利申请, 其工艺就决定了其必然的产品 缺陷, 而不是产品成份上决定的其产品的缺陷。
1、 其工艺表述为将小块玻璃料储集在模箱中, 使……结晶从玻璃表面 进入内部, 并且玻璃料彼此熔合一结合, 控制玻璃料大小……, 获得具有大 理石、 花岗石花纹的外观。 而且此文件有大量结晶工艺过程的表述的模具框 的, 可见其釆用的是颗粒粘熔析晶的 种色彩花纹微晶玻璃的工艺。
其彩色花纹和不透明的产品特征显然不是由材料成份决定的,是由申请 文件表述的工艺方法中加入的从每一玻璃颗粒表面到内部来决定其产品的 晶体、 彩色和花紋的, 所以其每一颗粒料都从外到内长满了晶体, 是绝不透 明的, 根本不可能达到有良好的 65%-95%的可见光透射比的制品, 而需要克 服这些块陷。
由于其工艺上是由不同大小的颗粒材料进行, 使其我璃料软化和变形, 并彼此熔融结合成一体, ... ...同时析出的玻璃结晶符合小块玻璃料的大小和 形状(见其第 7 页)。 业内人士都知道, 最主要的缺陷是产品布颗粒时是松 散的, 所以烧成后产品平面有大量的凹凸不平处, 这种颗粒的晶体, 正如一 切微晶玻璃一样是要长大的, 各种粒状使表面之不平度都在 0. 5mm-l. 5腿, 而且这种模框成型工艺, 产品平面 ί艮不平, 又加之模框都用耐火材料烧制, 表面及四角的不平整度随每一次烧成变形越来越大, 所以其成品的厚薄差都 在 1. 5mm-2mm,所有的产品要正反面刮平抛光,最少各刮抛去 1mm- 2薩厚度, 而即使刮抛正反两后, 其产品的厚薄差也会达 1mm以上, 所以其缺陷和浪费 都大。与本发明玻璃及正常平板玻璃的厚薄差在 0. 3腿以内相比较相差甚远。 这个缺陷也完全是由其工艺方法导致的, 而不是材料成份产生的, 而且其技 术方案中不含氧化铁和氧化钛、 氧化钡等成份, 与本发明也大不一样。 所以 需要克服这些缺陷。
( 8 )、对于先有技术申请号为 2008801044692 (公布号为 CN101784494A ) 的 "玻璃板及其制造方法以及 TFT面板的制造方法" 的专利申请, 其公布的 技术方案也是钠舍量为 0-9%, 其达 2%以上会在加温工艺中产生对电路的严 重侵蚀, 而且其技术方案中粘度为 102 (帕 ·秒) 时的温度高达 1690°C , 还 揭示 1670°C更好; 粘度为 104 (帕 .秒) 时的温度达 1300Γ, 并揭示 1280 °C更好, 并认定作为排泡工艺温度, 显然会排泡十分困难, 而且均化也十分 困难。在 167{TC-169(TC的熔化原料,对耐火材料的侵独太大, 成本十分高, 能耗也大, 熔化困难, 极易出现结石、 碴点, 成品率不会高。 发明内容
有鉴于上述现有技术的缺陷和不足, 本发明人基于从事此类产品设计制 造多年的务实经验及专业知识, 积极加以研究创新, 以期能克服现有技术的 不足和缺陷,在解决了复杂的生产工艺问题后,提出具有新颖性的技术方案, 经过浮法工艺、 或平拉工艺、 或溢流法工艺、 或格法工艺、 或压延工艺生产 的有实用价值的有预定的必不可少的特别范围内的氧化铝及含有氧化钠、氧 化铁、 氧化硅、 氧化钙、 氧化镁、 或还有氧化钛、 氧化钡的成份以及预定的 氧化硅、 氧化钙、 氧化镁之间的特殊比例关系的成份的创新技术方案, 并且 见, 并能产生预料不到的平板玻璃产品的高退火点性质 A助溶或共熔体功能 以及产生的制品强度上升 1_3倍、 环保、 节能减排等的技术效杲。
本发明的第一实施例提供了一种有高退火点及坏保和节能减排的高强 度高平整度低粘度特征的平板玻璃, 其特征在于: 该玻璃包含氧化硅、 氧化 钙、 氧化镁、 氧化铝、 氧化铁、 氧化钠的成份, 按重量百分率计, 在该玻璃 中氧化硼的含量为 0-3. 9%, 氧化钠的含量为 0. 01-14%, 氧化铁含量为 0. 01-5%, 氧化氟的含量为 0-2. 8%, 氧化镁含量为 8. 1-22. 2%, 氧化铝含量 为 0. 01-39%, 其氧化硅的含量是氧化钙含量的 1. 9倍- 4. 1倍, 氧化钙的含 量是氧化镁的含量的 1. 2倍- 1. 6倍; 该玻璃的退火温度下限(即吸热峰起点 温度)为 550°C-710°C ; 该玻璃的厚薄差小于 0. 3麵; 其吸水率在 0-0. 3%的 范围内; 其抗折强度达 50-180Mp。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重百分率计, 氧化铝的含量是 0, 01-30%, 氧化硅: 氧化钙为 2. 0-3, 6倍, 氧化钙: 氧化镁为— 1. 3-1, 49倍, 氧化钠为 0. 01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退 温 度下限(即吸热峰起点温度)为 61(TC-7l 0 : ;该玻璃在粘度为 ΙίΤ ί帕 -秒) 时的温度为 150(TC- 1640°C ; 粘度为 101 (帕 ·秒)时的温度为 1450°C-1580 °C ; 粘度为 102 (帕 ·秒)时的温度为 1210°C- 1350°C ; 粘度为 103 (帕 '秒) 时的温度为 107{TC-123(TC ; 该玻璃的抗折强度为 50-180MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重百分率计, 氧化铝的含量是 0. 01-19%, 氧化硅: 氧化钙为 2. 0-3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧化钠为 0. 01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 61 {TC-68(TC ;该玻璃在粘度为 10°·5 (帕 '秒) 时的温度为 1500°C-158(TC ; 粘度为 101 (帕 ·秒)时的温度为 1450°C-1520 °C ; 粘度为 102 (帕 .秒)时的温度为 1210°C- 1310 °C ; 粘度为 103 (帕 ·秒) 时的温度为 1070°C- 1160°C ; 该玻璃的抗折强度为 5G-145MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃,其中,按重百分率计,氧化铝的含量是 _19-30%, 氧化硅: 氧化钙为 2. 0-3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧化钠为 0. 01-2¾,氧化硼为 0-1%,氧化氟的含量是 0-1%;该玻璃的退火温度下限(即 吸热峰起点温度)为 610°C- 68(TC ; 该玻璃在粘度为 10°·5 (帕 ·秒) 时的温 度为 155(TC- 1640°C; 粘度为 101 (帕 .秒)时的温度为 145{TC-158{TC ; 粘 度为 102 (帕 ·秒) 时的温度为 121(TC- 1350°C ; 粘度为 103 (帕 .秒) 时的 温度为 1080 -1230°(: ; 该玻璃的抗折强度为 130- 180MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中,按重百分率计, 氧化铝的含量是 8-30%, 氧化硅: 氧化钙为 2. 0-3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧化钠为 0. 01-2%,氧化硼为 ( l%,氧化氟的含量是 0=1%; 该玻璃的退火温度下限(即 吸热峰起点温度)为 610°C- 680°C ; 该玻璃在粘度为 10°·5 (帕 ·秒)时的温 度为 1520°C- 1640°C ; 粘度为 101 (帕 .秒)时的温度为 1450 1580 °C ; 粘 度为 102 (帕 ·秒) 时的温度为 1210°C- 1350°C ; 粘度为 103 (帕 ·秒) 时的 温度为 1070°C-123(TC ; 该玻璃的抗折强度为 75- 180MPa。
4艮椐本发明第一实施例的有高退火点 ¾1环保和节能减排的高强度高平 整度低粘度特征的乎板玻璃, 其中, 按重量百分率计, 氧化铝的舍量是 19-30%, 氧化硼的含量是 0-1%, 氧化钠的含量是 0. 01- 2%, 氧化氟的含量是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 610°C- 710 °C ; 该玻 璃在粘度为 10β·5 (帕 ·秒)时的温度为 151{TC-1680°C ; 粘度为 101 (帕 ·秒) 时的温度为 1420°C- 1600'C ; 粘度为 102 (帕 .秒)时的温度为 127(TC- 1360 °C ; 粘度为 103 (帕 ·秒)时的温度为 1160°C-128(TC ; 该玻璃的抗折强度为 120- 1篇 pa。
另外, 在上述笫一实施例的基础上, 根据本发明实施例的有高退火点及 环保和节能减排的高强度高平整度低粘度特征的平板玻璃,其平板玻璃的表 面附着有 层由非晶硅烧结而转化之多晶硅层。
根椐本发明笫一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 所述平板玻璃之上, 有一层含石英或氧化铝或 莫来石晶体的树脂层。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘庋特征的平板玻璃, 其中, 接重量百分率计, 氧化钛含量为 1. 3-1. 49%
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃,其中,按重量百分率计,氧化铝含量为 3. 1-39%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钛的含量是 0. 0003-4. 9%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钠的含量是 0. 01 8. 8%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 其可见光透射比在 40%-95%的范围内, 按重量百分率计, 其氧化硅、 氧化钙、 氧化镁三者的含量总和为 51- 99. 8%, 氧化钡的含量是 0. 01-14%。
根据本发明第一实旄例的有高退火点 环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钙的食量是氧化 镁的含量的 1. 3倍- 1. 6倍, 氧化硅的含量是氧化钙的含量的 1. 0倍 -3. 6倍, 氧化镁的含量为 10. 1-19. 9%, 氧化铝的含量为 19-39%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, (1 )、 按重量百分率计, 其制品含量中: ①氧化镁占 7-20% , ②氧化钙是氧化镁的 1. 0倍 -1. 8倍的范围内 , ③氧化硅 是氧化镁的 2. 6倍 -5. 6倍的范围内, ④氧化硅是氧化钙的 2. 2倍 -3. 8倍的 范围内, ⑤氧化铝为 0. 1-30%, ⑥氧化钠为 0-18%, ⑦氧化钡为 0-5%; ( 2 )、 其制品的应变点温度在 560 °C - 72(TC的范围内; (3 )、 其制品的吸水率在 0-0. 001%的范围内; (4 )、 按重量百分率计, 其制品中氧化镁、 氧化钙、 氧 化硅三种成份的含量总和达 51%-100%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, (1 )、 按重量百分率计, 其制品含量中: ①氧化钙的含量是氧化镁的含量的 0. 6倍- 2. 4倍,②氧化硅的含量是氧化镁 的含量的 1. 3倍- 5. 8倍,③氧化硅的含量是氧化钙的含量的 1. 3倍- 5. 8倍, ④氧化铝为 0- 1-30% , ⑤氧化钠为 0-18%, ⑥氧化钿为 0-20%; ( 2 )、 其中氧 化镁、 氧化钙、 氧化硅三种成份的含量总和达 51%- 99. 9%; ( 3 ) 其制品的吸 水率在 0-0. 001%的范围内。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, (1 )、 按重量百分率计, 其制品含量中: ①氧化镁占 7-20%, ②氧化钙的含量是氧化镁的含量的 1. 0倍 -1. 8倍, ③氧 化硅的含量是氧化镁的含量的 2. 6倍 -5. 6倍,④氧化硅的含量是氧化钙的含 量的 1. 2倍- 3. 8倍, ⑤氧化铝为 0. 1-30%, ⑥氧化钠为 0-18%, ⑦氧化钡为 0-5%; ( 2 )、 其制品的应变点温度在 560°C-72(TC的范围内; (3 )、 其制品的 吸水率在 0-0. 001%的范围内; (4 )、 按重量百分率计, 其制品中氧化镁、 氧 化钙、 氧化硅三种成份的含量总和达 51%- 99. 9%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 其制品含量中.: 氧化 钙是氧化镁的 1. 15倍- 1. 8倍。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, (1 )、 按重量百分率计, 其制品含量中: ①氧化镁占 9. 1-22%, (D氧化钙的含量是氧化镁的含量的 0. 6倍- 2. 0倍, (I) 氧化硅的含量是氧化镁的含量的 2. 8倍 -5. 6倍,④氧化硅的含量是氧化钙的 含量的 2. 3倍- 3. 8倍的范围内, ⑤氧化铝为 0. 1-30%, ⑥氧化钠为 0-18%, ⑦氧化钡为 0-5%; ( 2 )、其制品的应变点温度在 560°C- 720°C的范围内;(3 )、 其制品的吸氷率在 0-0. 001%的范围内; (4 )、 按重量百分率计, 其制品中氧 化镁、 氧化钙、 氧化硅三种成份的含量总和达 51%-99. 9%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 制品中氧化铝含量达 0-3. 8%时: 粘度为 101 (帕 ·秒) 的熔化工艺温度为 130{TC-140(rC ; 粘度 为 102(帕 '秒)的澄清、排气泡工艺温度为 1120"€- 1260 ;粘度为 103(帕 ·秒) 的成型工艺温度为 lOltTC- 1060°C ; 其制品的抗折强度达 60-100MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 制品中氧化铝含量达 3. 8-15%时: 粘度为 101 (帕 .秒)的熔化工艺温度为 1320Γ - 1430°C ; 粘度 为 102(帕 '秒)的澄清,排气泡工艺温度为 1140°C- 1290°C ;粘度为 103(帕 '秒 ) 的成型工艺温度为 1040°C-1130°C ; 其制品的抗折强度达 80- 130MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 制品中氧化铝含量达 15-23%时: 粘度为 101 (帕 ·秒) 的熔化工艺温度为 1360°C- 1550°C ; 粘度 为 102(帕,秒)的澄清、排气泡工艺温度为 125(TC- 143(TC ;粘度为 103(帕 .秒) 的成型工艺温度为 1060°C- 120(TC ; 其制品的抗折强度达 100- 180MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 该玻璃包含氧化硅、 氧化镁和氧化钙, 其中, 按重量百分率计, 在该玻璃中氧化硅的含量是氧化镁的含量的 2. 1倍 -6. 5倍, 氧化硅的含量是氧化钙的含量的 1. 8 #=4. 6倍; 该玻璃的厚薄差 小于 0. 3隱; 其可见光透射比在 65% - 95%的范围内; 其吸水率在 0-0. 3%的范 围内; 其抗折强度达 50-180MPa。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特 的平板玻璃, 其中, 按重量百分率计, 在该玻璃中, 氧化硅 的舍量是氧化镁的含量的 2, 6倍 -5倍, 氧化硅的含量是氧化钙的含量的 2. 4 倍- 3. 4倍。
根据本发明第一实施例的有高退火点及坏保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钙的含量是氧化 镁的含量的 1. 0倍- 1. 6倍, 更优选 1. 2倍 -1. 5倍。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 该玻璃的玻纹度在 20ram距离内为 0-0. 03mm的起伏度。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化锂的含量为 0. 0卜 5%。
根据本发明第 实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化锶的含量为 0. 005-8%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钸的含量为 0. 01-5%?
根据本发明第一实施例的有高退火点及环保和节能减排的高強度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化砷的含量为 0. 01-3%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钠的含量为
0. 01-0. 99% 0
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化钠的含量为 0. 01 2%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平
οο/
Figure imgf000011_0001
Δ~θ 7 ο 才艮据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃,其中,按重量百分率计,氧化钠的含量为 2-14%。
4艮据本发明第一卖施例的有高退火点^环保和节能减排的高强度高平 整度低粘度特征的平板玻璃,其中,按重量百分率计,氧化钠的舍量为 8-14%。
根据本发明第一实施例的有高退火点及坏保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化铝的含量为 0. 1-3%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化铝的含量为 3. 1-19%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 按重量百分率计, 氧化铝的含量为 10-19%。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 该玻璃的厚度为 0. 3-1. 8隱。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 该玻璃的厚度为 , 卿。
根据本发明第一实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其中, 该玻璃的厚度为 5- 20mm。
本发明的第二实施例提供一种制备上述各实施例的有高退火点及环保 和节能减排的高强度高平整度低粘度特征的平板玻璃的制备方法,其特征在 于: 步骤 1, 根据第一实施例的任一项所迷的玻璃配方配置所需的各种有预 定的必不可少的特别范围内的氧化钠、 氧化铁、 氧化铝、 氧化硅、 氧化钙、 氧化镁、 或还有氧化钛、 氧化钡的成份以及预定的氧化硅、 氧化钙 氧化镁 之间的特殊比例关系的成份的原料,经混合搅拌之后在对应于各玻璃配方的 熔化温度熔化, 形成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成 可流动的熔融体; 步骤 2, 釆用浮法工艺、 平拉工艺、 格法工艺、 压延工艺、 溢流法工艺、 中任一种工艺对玻璃进行成型。
根据本发明第二实施例的方法, 其中, 所述步骤 1包括: 将所备之各类 原料, 放置于各自的原料容器之中, 使各种原料通过原料输送线, 经过计量 后, 按所需比例送入原料混合搅拌装置中, 搅拌混合后进入装载配料的大料 管或料仓中; 使配合好的原料进入熔池中, 在对应于各玻璃配方的熔化温度 熔化, 形成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成可流动的 熔融体; 步骤 2中使用浮法工 ¾ : 在本工艺中还须预先备好锡窑, 在步骤 1 的工序后, 使熔池的尾部的可流动的熔融体流入锡窑中进行淌平、 抛光、 拉 薄的工艺过程, 并经拉边机在工艺规定的方向的导拉和牵引机的牵引, 拉出 锡槽, 并经逐步降温、 退火, 待冷却后, 经切割, 即可制得所述玻璃。
根据本发明第二实施例的方法, 其中, 按重量百分率计, 该玻璃中氧化 铝的含量小于等于 30%, 该玻璃在粘度为 10。.5 (帕 ·秒)时的温度为 1480;C - 1640°C ;粘度为 10^帕 ·秒)时的温度为 1410°C-1600°C ;粘度为 102(帕 -秒) 时的温度为 1180°C- 1340°C ; 粘度为 103 (帕 ·秒)时的温度为 1040°C-1220 V; 该玻璃的厚薄差小于 0. 3匪; 该玻璃的可见光透射比在 40%- 95%的范围 内; 该玻璃的吸水率在 0-0. 3%的范围内; 该玻璃的退火温度下限(即吸热峰 起点温度)为 55{TO710°C ; 该玻璃的抗折强度为 5{)^ L8GMPa; 该玻璃的热 膨胀系数在 150°C-30(TC的两端数值的差别为百万分之 1. 0-百万分之 3. 0; 在 550°C-600°C的两端数值的差别为百万分之 1. 0 -百万分之 2. 8。
本发明的第三实施例提供一种液晶显示屏, 包括: 阵列基板, 该阵列基 板包括基底及在该基底上的像素结构,该基底为根据第一实施例的任一项的 有高退火点及环保和节能减排的高强度高平整度低粘度特征的平板破璃^ 造的玻璃板; 滤色器碁板, 该滤色器碁板包括碁底以及在该碁底上的滤色器 层,该基底为才艮据第一实施例的任一项的有高退火点及坏保和节能减排的高 强度高平整度低粘度特征的平板玻璃制造的玻璃板; 液晶层, 夹设在该阵列 基板和该滤色器基板之间; 以及背光源系统。 本发明的第四实施例提供一种光伏太阳能装置,该光伏太阳能装置包含 太阳能电池以及利用根据上述实施例任一项的玻璃制造的玻璃基板或外罩 板。 附图说明
图 1是本发明一种有高退火点及环保和节能减排的高强度高平整度低粘 度特征的平板玻璃制品的平面示意图。
图 2是本发明一种有高退火点及环保和节能减排的高强度高平整度低粘 度特征的平板玻璃的制备工艺的浮法工艺成型的流程示意图。
图 3是本发明一种有高退火点及环保和节能减排的高强度高平整度低粘 度特征的平板玻璃的制备工艺的浮法工艺成型的状态的侧剖面示意图。
附图标记说明
1; 有高退火点及环保和节能减排的高强度高平整庋低粘度特征的平板 玻璃
2: 料仓进料口
3: 料仓
4: 预定配制的混合原料
5 : 原料进入熔池的熔池窑口
6: 熔池窑
7: 导流槽
8: 锡槽
9: 过渡辊台
10: 退火窑
11 : 切割分装台
12: 浮法生产线基体 具体实施方式
下面, 对本发明的实施例进行详细的说明 (另外, 在本说明书中, 除非 特别指明, 玻璃中各种成份的含量均为重量百分比)。
第一实施例 根据本发明一个实 ^fe例提供了一种有高退火点及环保和节能减排的高 强度高平整度低粘度特征的平板玻璃, 其特征在于: 该玻璃包含氧化硅、 氧 化钙、 氧化镁、 氧化铝、 氧化铁、 氧化钠的成份, 按重量百分率计, 在该玻 璃中氧化硼的含量为 0-3. 9%, 氧化钠的含量为 0. 01-14%, 氧化铁含量为 0. 01-5%, 氧化氟的含量为 0-2. 8%, 氧化镁含量为 8. 1-22. 2%, 氧化铝含量 为 0. 01-39%, 其氧化硅的舍量是氧化钙含量的 1. 9倍- 4. 1倍, 氧化钙的含 量是氧化镁的含量的 1. 2倍 -1. 6倍; 该玻璃的退火温度下限(即吸热峰起点 温度)为 550 °C-710°C ; 该玻璃的厚薄差小于 0. 3i i; 其吸水率在 0-0. 3%的 范围内; 其抗折强度达 50-180Mp。
而一切先有技术的平板玻璃, 如钙钠玻璃、 PDP玻璃、 液晶显示器之无 碱硼玻璃与本发明技术方案的技术要素都有 3 5或 4 处不同(祥见后表 1、 表 2、 表 3 )
粘度性能
本发明实施例中粘度的测定釆用美国 TH TA旋转高温粘度计。
从表 1、 表 2、 表 3的实例可 , 从几个关键的粘度数据比较而言 (在 氧化铝含量达 28%以下时):
( 1 )、 熔化温度: 根据本发明实施例的有高退火点及坏保和节能减排的 高强度高平整度低粘度特征的平板玻璃粘度为 10β· 5(帕 '秒)时的温度为 1540 °C-1620eC ; 粘度为 101 (帕 .秒) 时的温度为 1450°C- 1520°C。
PDP和 TFT液晶面板玻璃的生产企业, 在申请号为 2008801044692 (公 布号为 CN101784494A ) 的 "玻璃板及其制造方法以及 TFT面板的制造方法" 的专利申请内容和现有技术液晶显示器无碱硼玻璃实际制品中, 由于粘度 10 5 (帕 .秒)及 101 (帕 .秒)的熔化温度大大高于 165{rC-170(TC, 所以 采用美国 THETA旋转高温粘度计根本测不出; 尤其常规的钙钠玻璃(含氧化 铝仅 1% )只能测出的粘度 101·5 (帕 *秒) 时的温度为 1580°C的熔化温度。 其说明书第 14页中表述, 其 102 (帕 ·秒)温度较好的是 1690°C , 更好的是 1670°:。 这是一切全部现液晶显示玻璃的粘度的基数值, 其熔制温度不仅高 于本发明 10β·5 (帕 ·秒)或 101 (帕 ·秒)粘度的温度, 而且是在差别几百 度的粘度更大的从澄清、 排气泡的粘度 102 (帕 ·秒) 时的温度, 本发明氧 化铝在 28 以内时的各例为 1230°01300°C, 而上迷之现有技术低的钙钠玻 璃在 1380°C- 140(TC, 而无碱高硼玻璃釆用测试仪都根本测不出 (其都高于 1600Ό ), PDP玻璃按其上述比较专利的优选较好的是 1690 - 1670 °C 6
从成型粘度 103 (帕 ·秒)时的温度, 本发明氧化铝含量在 28%以内时的 各例为 1090°C-1160。C, 而现有的钙钠玻璃为 1210°C-1250 °C, 无碱高硼玻 璃和 PDP玻璃都达 1380 °01420° (:。 由于本发明粘度性能好很多, 所以业内 人士都知道, 可以比现有技术生产, 控制出更少气泡缺陷、 更少碴点, 更好 玻紋度, 更好品质, 更好成品率的平板玻璃和能生产有品质保障的更薄的如 0. 5薩、 0. 3腿、 0. 2mm的显示屏玻璃。
强度性能
本发明尤其由于可以加大氧化铝的含量达 19- 28°/。时, 強度可达约
140-160Mpa或 180Mpa , 大大高于各种先有技术平板玻璃强度的 2-3倍, 而 且由于粘度温度还较先有技术仅 1-25%氧化铝含量时低 15(TC- 250°C, 所以 如果本发明技术方案形成无碱高硼玻璃的粘度时,那应当还有相当于加多氧 化铝到 29-39%的可以熔化的粘度空间和强度上升的较大空间。本说明书及本 发明实施例玻璃的抗折强度, 通过把样品切成 50mm x 50mm χ 5mm的小条, 采 用抗折强度仪, 按标准 GB/T3810、 4-2006测定。
先有技术的无碱高硼制品, 因氧化硼成份的挥发过程, 会造成成份的不 均, 使氧化铝参与的材料网状结构受损, 大大影响应有的强度。
这是无碱高硼玻璃就是含 7-15%氧化铝的时也强度较差的重要原因。 以上也是本发明技术方案可以无硼成份的有利于强度提升的优势所在。 本发明膨胀系数线性特征突出, 不同温度区间变化极小。
根据本发明实施例的玻璃的膨胀系数按照标准 GB/T7320. 1-2000测定。 ( 1 )、 传统技术偏见主要是用加氧化铝成份来提升应变点温度(应变点 温度为在玻璃成型时对玻璃进行退火的温度的下限), 而提升应变点达 550 60(TC或达 600 °C- 65CTC或 650 以上之目的在于解决在较高的温度下, 制品急剧加温或冷却时不会有过多的变形或出现爆裂。但是本发明之技术方 案能有更好的膨胀系数线性特狃, 产生很小的玻璃粘弹性突变, 具体其制品 的热膨胀系数在 150 °C - 300 °C的两端数值的羞别为百万分之 1-百万分之 3. 0;在 550°C-60{TC的两端数值的差别为百万分之卜百万分之 2. 8; 用于无 碱玻璃在 600 °C- 650°C的两端数值的差别为百方分之 i-百方分之 0。 在显 示屏方面, 比等离子 PDP玻璃或液晶显示的 TFT玻璃 55{rC-60(TC的热膨胀 系两端数值的差别为百万分之 16要好出 5-16倍,比 LCD钙钠玻璃 550 °C-600 °C的热膨胀系两端数值的差别为百万分之 20要好出 7- 20倍。
这还为防火玻璃、 灶具玻璃、 微玻炉具玻璃、 LCD玻璃、 PDP玻璃、 TFT 玻璃等制品,提供了一个很大的可以加大量氧化铝或不加氧化铝的选择工艺 范围。 在急升温或急降温的工艺或工业及日用及建筑的使用环境下应用, 会 有比现有各种玻璃有更好的变形小、 稳定而不突变、 极不易爆裂, 在急升降 温时玻璃粘弹性急变小的很大优势。
相比较 TFT- LCD液晶玻璃基板的优势而言:本发明由于这种可以控制在 关键急加温烧结温区如 15060300°C或 550°C-600 °C及 60(TC-650°C之间的 急加温烧结膨胀系数的两端数值差在百万分之 1-百万分之 3. 0的功能,其实 已形成了 种新功能材料,就可以创造性地提升更加高水平的而且是电子行 业内人士都懂得的, 将使其为核心技术, 对制造世界最新最先进水平的超过 现在一切液晶显示屏十多个像素位精度的更高清晰度的无碱玻璃为基板的 液晶显示屏和生产更大尺寸并且更薄(如 0. 2-0. 5麵厚度)从而重量更轻的 高清像素位的显示屏制品, 形成更高清晰度像素位和分辨率的液晶手机、 电 视、 掌上电视、 手提电脑、 平面电脑、 及平面液晶电视的新的技术品质标杆 的产生。
节能减排的优势特点:
由于尤其熔化粘度温度低于现有技术 200°C- 300°C , 又由于能耗主要在 高温区, 所以可以节能 30-40%, 减少二氧化碳排放 30- 40%。
节约装备成本, 冷修成本和不必要的先有技术工艺成本。
由于熔化温度大大降低, 对耐火材料的侵蚀将大大减低, 会使熔炉寿命 大大延长, 大大减少严重影响产能的冷修时间和费用。 如无碱硼玻璃, 尤其 是 TFT液晶玻璃, 每 8-10个月, 就要冷修最少停产 2-3个月, 而且使用的 耐火材料为高锆材料,不但材料成本高出 3-4倍,而且还要年年作大量 it换。 而制造根据本发明实施例的玻璃的熔池的寿命会比无碱硼玻璃的更长, 而根 据本发明实施例的玻璃的粘度比浮法钙钠玻璃更低, 又可完全不含硼, 最少 可以使用达 10年才冷修。
所以各种 PDP等离子玻璃或 TFT液晶显示玻璃的专利文献,和真正的实 施工艺中, 都提出了加吹氧、 加排泡、 加浅池装备等工艺手段, 其成本高 效率低, 而 TFT玻璃全部采用昂贵的铂金作排气泡通道, 大大上升温度, 其 日产 6-7吨的小炉, 铂金通道成本达 3-5亿元人民币左右, 如果要达到 150 吨曰产量, 仅铂金通道就达近 100亿人民币, 成本高效率低是非常明显的。
吸水率
根据本发明实施例的玻璃的吸水率按照标准 GB/T3810. 3-2006测定。 根据本发明实施例的玻璃, 其制品的吸水率在 Q-Q. 3%的范围内。
另外, 根据本发明的实施例的 LCD、 PDP、 TFT玻璃, 其具有很好的遶明 特征和防水性。
厚薄差 (按 GB/T1216标准规定测定)
根据本发明实施例的玻璃, 该玻璃的厚薄差小于 0. 3議。
另外, 根据本发明实施例, 均可以制作成为具有透明特性而符合相关领 域所需透明特性的玻璃, 其玻璃的可见光透射比是 40%- 95% (按 GB/T2680 规定测定)。
为了更详细地描述根据本发明实施例的技术方案,在下面的表 1中列举 出根据本发明的实施例的有高退火点及环保和节能减排的高强度高平整度 低粘度特征的平板玻璃样品的技术方案及相应的性能。
Figure imgf000018_0001
Figure imgf000018_0002
注: 退火温度下限(吸热峰的起点) , 是采用综合热分析仪来测定的。
表 1 (续)
Figure imgf000019_0001
* 用高温旋转粘度计测不出, 经推算而得到。
表 2 (现有技术)
Figure imgf000020_0001
* 用高温旋转粘度计测不出, 经推算而得到。 从上表 1可见:
对于实施例中所阐述的氧化硼在 0-3. 9%,氧化铁在 0. 01-5%,氧化钛在 0. 0003-4. 95 , 氧化钡在 0. 01-14% , 氧化钠在 0. 01- 8. 8%及氧化 4美在 8. 1-22. 2°/。,以及氧化硅: 氧化钙是 1. 9-4. 1倍, 氧化钙: 氧化镁是 1. 2-1. 6 倍的本发明技术方案的范围内之样品, 首先在粘度上全都好于现有一切技术 的在 10°· 5 ( ¼ ·秒)、 101 (帕 ·秒 )时的熔化粘庋, 102 ( -秒 )时的排气 泡、 澄清、 均化粘度, 都比现有技术好 150。C- 40(TC (可参考比较表 2和表 3 )。而且其线热膨胀系数在 150°C-30(TC、在 550°C- 600 °C、以及在 600Ό - 650 °C的两端数值的差值, 也比现钙钠玻璃、 PDP玻璃、 无碱液晶屏用高硼玻璃 要好。
样品 6、 7、 8、 9、 10是处于一个优选的氧化钙是氧化镁的 1. 3-,1. 5倍, 氧化硅是氧化钙的 2.卜3. 3倍的而且氧化铝含量在 19-30%的更优范围之中, 尤其粘度和线膨胀系数的差值及温度指标等技术效果指标最好。
而样品 1、 2、 3、 4、 5、 11 , 都处于本发明技术方案的内容之内, 可见 其粘度、强度、膨胀系数还是比一切现有技术的 TFT液晶显示屏硼玻璃、 PDP 等离子显示屏玻璃和一切现有技术平板玻璃好。
而样品 1、 2、 3. 4是采用的本技术发明方案的镁、 钙、 硅比例的上限、 下限及交叉上下限的比例范围的实例, 而样品 1 和 5是硅、 钙、 镁总和为 59. 5 99. 8%的上、 下限的实例。
从样品 1-9可见, 由于铁、钡、钛在一定范围,可见光透射比为 40-95%, 适应各种透明玻璃使用, 而样品 10, 11 , 由于铁含量在 1到 1. 3, 而且有较 高的氧化钡、 氧化钛含量而会变戍不透明的褐黄或棕黄色, 以适应在强度、 粘度温度和应变点等特征都比现有技术平板玻璃好很多的又完全可以作为 创新的高品质墙地面,尤其外墙不透明之窗下幕墙部分和家具的高级装饰平 板玻璃材料的应用。
表 2列出了一些现有技术的玻璃配方及相关的性能。 从表 2可以看出, 首先由于四种样品的硼、铁、钛、钠的范围与本发明不一样, 又由于硅与钙、 以及氧化钙与氧化镁之间的比例关系都与本发明的特殊比例关系完全不同, 其氧化硅与氧化钙以及氧化钙与氧化镁比例大大高出本发明, 本发明的比例 为氧化钙是氧化镁舍量的 1. 2倍 -1. 6倍、氧化硅是氧化钙含量的 1. 9倍- 4. 1 倍, 而这些产品的氧化硅比氧化钙和氧化钙比氧化镁的含量都是完全不一样 的。从表 2
熔的基体, 所以其粘度, 尤其是 10β· 5 (帕 ·秒)、 101 (帕 ·秒) 时的熔化工 艺温度, 采用标准的旋转粘度计都根本测不出 (因其粘度太高), 可见其在 熔化中要克服能耗, 克服碴点、 结石, 提升生产效率的难度较大或很大。 其 在正常的排气泡和均化的 102 (帕 .秒) 时的温度, 也比本发明的表 1样品 高出 15{TC-300°C , 可见其排气 和均化的困难, 和本发明的工艺手台的节 能和易控制比较优势, 对于 103 (帕 ·秒) 的成型工艺温度, 本发明对于成 型, 对于制品的平整度、 厚薄差也有很大的技术易控制的比较优势, 而且在 产品强度方面, 本发明制品也是其 2- 3倍, 在线性膨胀系数, 尤其关系到在 玻璃上烧结簿膜晶体管时或防火防爆的粘弹性值的线性特征的几个重要温 区的差值变化上也有十分大的优势。
而表 3是完全不同于本发明技术方案的对比例,首先其全部都是不含硼、 不含钛、 不含铁、 不含钠成份的产品, 而且其中对比例 1和 2是镁的含量也 不在本发明 8. 1-22. 2%之内, 硅: 钙或钙: 镁也超过本发明技术方案 ¾围的 样品。 而对比例 3、 4、 5、 6 则是有代表性的液晶显示屏用玻璃 US2002/0011080A1的实例样品,其和所有的现有液晶硼玻璃专利文献及产品 一样, 其硼含量在 5%以上(表 1之本发明 1-11样品为 0. 01-3. 9% ), 其都不 含铁 (而表 1之本发明卜 11样品含铁在 0. 01-5% ), 都不含钛 (表 1之本发 明 1-11样品含钛在 0. 0001-4. 9% ),其都不含钠(表 1之本发明 1-11样品含 钠在 0. 01-8. 8% ), 而其硅: 钙都在 12倍到 60倍(本发明为 1. 9-4. 1倍), 钙: 镁都在或 0. 25倍或 1. 75倍或无限倍(本发明在 1. 2-1. 6倍)。 而技术 效泉上, 其六个对比例在熔化粘庋温麾、 澄清排 ^粘庋温庋, 成型工艺粘度 温度都高出 150°C-300°C以上; 在抗折强度的技术效果上差出 2 - 3倍(主要 因为或者氧化铝成份太少,或者同样多的氧化铝时,因为硼加太多(在 5- 15% 的范围会造成工艺上的硼的大量挥发引起成份不均, 产生材料网状结构疏 松, 大大影响抗折强度, 如对比例 1的氧化铝 16-20%含量时, 因含有 8. 5% 的硼的其强度也只有 50 60Mpa, 而表 1的本发明的实例在约 20 的氧化铝含 量时可达 130-150MPa。 ( *表示用高温旋转粘度计测不出)
Figure imgf000023_0001
通过以上的描述可以知道,本发明能够实现玻璃熔制时各个粘度下温度 的降低, 从而在玻璃性能和节约成份与耗能两方面取得较好的结合。 然而, 本发明并不限于以下示例, 而是在本发明的基础上可以根据需要加以调整和 变更。
示例 1
在上迷第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 0.01-30%, 氧化硅: 氧化钙为 2.0-3.6倍, 氧化钙: 氧化镁为 1.3-1.49倍, 氧化钠为 0.01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 610°C- 710°C;该玻璃在粘度为 10a 5(帕 '秒) 时的温度为 1500°C- 1640°C; 粘度为 101 (帕 .秒)时的温度为 1450°C- 1580 °C; 粘度为 102 (帕 '秒)时的温度为 UIOO- 1350"C; 粘度为 103 (帕 '秒) 时的温度为 107{rC-123(TC; 该玻璃的抗折强度为 50-180MPa。
示例 2
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 0.01-19%, 氧化硅: 氧化钙为 2.0 3.6倍, 氧化 : 氧化镁为 1.3=4.49倍, 氧化钠为 0.01- 2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 6i(rc-68{rc;该玻璃在粘度为 ιο°·5(帕 ·秒) 时的温度为 1500°C-158(TC; 粘度为 101 (帕 ·秒)时的温度为 145(TC-1520 °C; 粘度为 102 (帕 '秒)时的温度为 1210 131(TC; 粘度为 103 (帕 *秒) 时的温度为 1070°C-1160°C; 该破璃的抗折强度为 50- 145MPaP
示例 3
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 19-30%, 氧化硅: 氧化钙为 2.0-3.6倍, 氧化钙: 氧化镁为 1.3-1.49倍, 氧化钠为 0.01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 610°C- 68(TC;该玻璃在粘度为 10° 5(帕 '秒) 时的温度为 155(TC- 164(TC; 粘度为 101 (帕 ·秒)时的温度为 1450°C- 1580 V; 粘度为 102 (帕 '秒)时的温度为 1210°C- 135(TC; 粘度为 103 (帕 .秒) 时的温度为 1080X 1230°C; 该玻璃的抗折强度为 130- 180MPa。
示例 4
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 8-30%, 氧化硅: 氧化钙为 2. 0 - 3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧 化钠为 0. 01- 2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温度 下限(即吸热峰起点温度)为 610Χ 680Ό ; 该玻璃在粘度为 10β 5 (帕 ·秒) 时的温度为 1520°C- 1640°C ; 粘度为 101 (帕 ·秒)时的温度为 1450°C-1580 ; 粘度为 102 (帕 '秒)时的温度为 1210X 1350 ; 粘度为 103 (帕 '秒) 时的温度为 1070°C- 1230°C ; 该玻璃的抗折强度为 75-180MPa。
示例 5
在 J迷第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 19-30%, 氧化硼的含量是 0-1%, 氧化钠的含量是 0, 01- 2%, 氧化氟的含量是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 61{TC-71 {TC ; 该玻 璃在粘度为 10° 5 (帕 '秒)时的温度为 1510'C- 1680°C ; 粘度为 Ι Ο^帕 ·秒) 时的温度为 1420°C- 1600°C; 粘度为 102 (帕 ·秒)时的温度为 1270°C- 1360 °C; 粘度为 103 (帕 ·秒)时的温度为 1160°C- 1280°C ; 该玻璃的抗折强度为 120-180Mpa。
示例 6
在上述第一实施例的基础上,按重量百分率计, 限定氧化铝为 3. 1-39%。 示例 7
在上述第一实施例的基础上, 按重量百分率计, 限定氧化钛的含量是 0. 0003-4. 9%。
示例 8
在上述笫一实施例的基础上, 按重量百分率计, 限定氧化钠的含量是 0. 01-8. 8%。
示例 9
在上迷第一卖施例的基础上, 该玻璃的特性是其可见光透射比在 40%- 95%的范围内, 按重量百分率计, 其氧化硅、 氧化钙、 氧化镁三者的含 量总和为 51-99. 8%, 氧化钡的含量是 0. 01-14°/。。
示例 10
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 0. 01-30%, 氧化硼的含量是 0-1%, 氧化钠的含量是 0. 01-2%, 氧化氟的含量 是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 61 (TC- 710°C ; 该 玻璃在粘度为 10°· 5 (帕 '秒)时的温庋为 1450°C-1680°C ;粘度为 10 帕 .秒) 时的温度为 1420°G- 1600°C; 粘度为 102 (帕 ·秒)时的温度为 1210°C- 1360 "C; 粘度为 103 (帕 ·秒)时的温度为 1070Ό- 128(TC; 该玻璃的抗折强度为 50-1讓 Pa。
示例 11
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是
8-30%, 氧化硼的舍量是 0-1%, 氧化钠的舍量是 0.01-2%, 氧化氟的含量是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 610°C- 710°C; 该玻 璃在粘度为 10°5 (帕 '秒)时的温度为 1500°C- 1640°C; 粘度为 ΙΟ^幀 '秒) 时的温度为 1420°C-160(TC; 粘度为 102 (帕 ·秒)时的温度为 12KTC-1360 °C; 粘度为 Ί03 (帕 .秒)时的温度为 1070°C- 1280°C; 该玻璃的抗折强度为 90-18匿 a。
示例 12
在上述第一实施例的基础上, 按重量百分率计, 限定氧化铝的含量是 19-30%, 氧化硼的舍量是 0-1%, 氧化钠的含量是 0.01-2%, 氧化氟的舍量是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 610°C- 71(TC; 该玻 璃在粘度为 10°·5 (帕 ·秒)时的温度为 1510°C-1680°C; 粘度为 10! (帕 '秒) 时的温度为 1420°C- 1600°€;; 粘度为 102 (帕 ·秒)时的温度为 1270°C-1360 °C; 粘度为 103 (帕 ·秒)时的温度为 1160Ό- 1280°C; 该玻璃的抗折强度为 120- 1讓 Pa。
示例 13
在上述第一实施例的基础上, 按重量百分率计, 限定氧化钙的含量是氧 化镁的舍量的 1.3倍- 1.6倍, 氧化硅的含量是氧化钙的舍量的 2.0倍- 3.6 倍, 氧化铝的含量为 19-39%。
示例 14
在上述第一实施例的基础上, 限定(1)、 按重量百分率计, 其制品含量 中: ①氧化镁占 7-20%, ②氧化钙是氧化镁的 1.0倍 -1.8倍的范围内, ③氧 化硅是氧化镁的 2.6 #-5.6倍的范围内, ④氧化硅是氧化钙的 2.2倍- 3.8 倍的范围内, ⑤氧化铝为 0.1-30%, ⑥氧化钠为 0-18%, ⑦氧化钡为 0-5%;
( 2 )、 其制品的应变点温度在 560°C- 720°C的范围内;
(3)、 其制品的吸水率在 0-0.001%的范围内;
(4)、 按重量百分率计, 其制品中氧化镁、 氧化钙、 氧化硅三种成份的 含量总和达 51%- 100%。
示例 15
在上述第一实施例的基础上, 限定(1 )、 按重量百分率计, 其制品含量 中: ①氧化钙的含量是氧化镁的含量的 0.6倍 -2.4倍, ②氧化硅的含量是氧 化镁的舍量的 1.3倍- 5.8倍,③氧化硅的含量是氧化钙的含量的 1.3倍 -5.8倍, ④氧化铝为 0.1-30%, ⑤氧化钠为 0-18%, ⑥氧化钡为 0-20%;
( 2 )、其中氧化镁、氧化钙、氧化硅三种成份的含量总和达 51%-99.9%;
( 3 )、 其制品的吸水率在 0-0.001%的范围内。
示例 16
在上述第一实施例的基础上,限定该玻璃包含氧化硅、氧化镁和氧化钙, 其中, 按重量百分率计, 在该玻璃中氧化硅的含量是氧化镁的含量的 2. 1倍 -6. 5倍, 氧化硅的含量是氧化钙的含量的 1. 8倍- 4. 6倍; 该玻璃的性能如 下;
该玻璃的厚薄差小于 0. 3隱;
其可见光透射比在 65%-95%的范围内;
其吸水率在 3%的范围内;
其抗折强度达 50-180Mpa。
示例 17
根据本发明第 实施例的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃,该玻璃的玻纹度在 20mm距离内为 0-0. 03腿的 起伏度。
, ^例 18
在上述第一实施例的基础上, 限定按重量百分率计, 氧化锂的含量为 0. 01-5%。
示例 19
在上述第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化锶的含量为 0. 005-8%。
示例 20
在上迷第一卖旛例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化钸的含量为 0. 01-5%。
示例 21 在上述第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化砷的含量为 0. 01-3%。
示例 22
在上迷第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化钠的含量为 0. 01-0. 99%。
示例 23
在上述第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化铝的含量为 0. 1-5%。
示例 24
在上述第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化钠的含量为 1-8%。
示例 25
在上迷第一实施例的基础上, 限定按重量百分率计, 按重量百分率计, 氧化铝的含量为 0. 1-19°/。。
示例 26
在上述第一实施例的基础上, 限定^ ^重量百分率计, 氧化钠的含量为 0. 01-2%。
示例 27
在上述第一实施例的基础上, 限定按重量百分率计, 氧化钠的含量为 2-8%。
示例 28
在上述第一实施例的基础上, 限定按重量百分率计, 氧化钠的含量为 2-14%。
示例 29
在上迷第一实施例的基础上, 限定按重量百分率计, 氧化钠的含量为
8-1 % 0
示例 30
根据本发明第一实施例, 该玻璃的庳度为 Q. 3-1. 8細.。
示例 M
根据本发明第一实施例, 该玻璃的厚度为 1. 8-5麵。
示例 32 根据本发明第一实施例, 该玻璃的厚度为 5-20讓。
第二实施例
本发明的第二实施提供了一种有高退火点及环保和节能减排的高强度 高平整度低粘度特征的平板玻璃的制备方法, 其特征在于:
步骤 1, 根据权利要求 1-5任一项所述的玻璃配方配置所需的各种有预 定的必不可少的特别范围内的氧化钠、 氧化铗、 氧化铝、 氧化硅、 氧化钙、 氧化.镁、 或还有氧化钛、 氧化钡的成份以及预定的氧化硅、 氧化钙、 氧化镁 之间的特殊比例关系的成份的原料,经混合搅拌之后在对应于各玻璃配方的 熔化温度熔化, 形成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成 可流动的熔融体;
步骤 2, 采用浮法工艺、 平拉工艺、格法工艺、压延工艺、 溢流法工艺、 中任一种工艺对玻璃进行成型。
第二实施例的变型 1
根据第二实施例的方法, 其特征在于:
所述步骤 1包括:
将所备之各类原料, 放置于各自的原料容器之中, 使各种原料通过原料 输送线, 经过计量后, 按所需比例送入原料混合搅拌装置中 搅拌混合后进 入装载配料的大料管或料仓中;
使配合好的原料进入熔池中, 在对应于各玻璃配方的熔化温度熔化, 形 成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成可流动的熔融体; 步骤 2中使用浮法工艺: 在本工艺中还须预先备好镇窑, 在步骤 1的工 序后, 使熔池的尾部的可流动的熔融体流入锡窑中进行淌乎、 抛光、 拉薄的 工艺过程,并经拉边机在工艺规定的方向的导拉和牵引机的牵引,拉出锡槽, 并经逐步降温、 退火, 待冷却后, 经切割, 即可制得所述玻璃。
第二实施例的变型 2
根据笫二实施例的方法, 其特征在于:
按重量百分率计, 该玻璃中氧化铝的含量小于等于 30%, 该玻璃在粘度 为 10°· 5 (帕 .秒)时的温度为 148(TC-164(rC ; 粘度为 101 (帕 .秒)时的温 度为 1410°C- 160(TC ; 粘度为 102 (帕 .秒)时的温度为 1180°C- 134CTC ; 粘 度为 103 (帕 -秒)时的温麾为 1040oC-1220°C ; 该破璃的厚薄差小于 0. 3細 ,· 该玻璃的可见光透射比在 40%-95%的范围内; 该玻璃的吸水率在 0-0. 3%的范 围内; 该玻璃的应变点温度在 56{TC-720°C的范围内; 该玻璃的抗折强度为 50-180MPa;该玻璃的热膨胀系数在 150°C- 30(TC的两端数值的差别为百万分 之 1. 0-百万分之 3. 0; 在 550 -600 的两端数值的差别为百万分之 1. 0-百 万分之 2. 8。
第 实施例的变型 3
根椐第二实施例的方法, 其特征在于:
按重量百分率计, 该玻璃中氧化铝的含量小于等于 0-35%, 该玻璃在粘 度为 10° 5 (帕 '秒)时的温度为 148{TC-168(TC ; 粘度为 101 (帕 ·秒)时的 温度为 144(TC- 1600°C ; 粘度为 102 (帕 ·秒) 时的温度为 118{TC-1350°C ; 粘度为 103 (帕 ·秒) 时的温度为 1040Γ- 1220°C。
以上对根据本发明实施例的有高退火点及环保和节能减排的高强度高 平整度低粘度特征的平板玻璃的组成及其特性, 下面描述制造根据本发明实 施例的有高退火点及环保和节能减排的高强度高平整度低粘度特征的平板 玻 的方法。
第^实施例
图 1是根据本发明的实施例的有高退火点及环保和节能减排的高强度高 平整度低粘度特征的平板玻璃及制备工艺的制品平面示意图。 从图可见, 附 图标记 1表示有高退火点及环保和节能减排的高强度高平整度低粘度特征的 平板玻璃制品。
图 2是本发明有高退火点及环保和节能减排的高强度高平整度低粘度特 征的平板玻璃的制备工艺所釆用的浮法工艺成型的流程示意图。 从图可见, 其成型工艺的流程是将预定配制的原料放入进料仓 , 然后从进料仓中将原料 输送到熔池窑中, 进入了熔池按预定温度进行熔融并排出气泡, 接着是液态 的熔融体, 进入到锡槽中(锡槽的旁边设有氮氢气体的保护气体站向锡槽中 输入保护气体), 在锡槽的锡面上淌平、 经拉边、 牵引, 形成抛光平整的半 成品带, 从过渡辊台进入到退火窑进行降温冷却, 而得到玻璃制品, 再经切 割分装台上进入预定尺寸的切割分装, 得到成品。
图 3是本发明有高退火点及环保和节能减排的高强度高平整度低粘度特 征的平板玻璃的制备工艺采用浮法工艺成型的状态的侧剖面示意图。从图可 见, 附图标记 2表示料仓进料口, 附囷标记 3表示料仓, 附 标记 4表示预 定配制的混合原料, 附图标记 5表示混合原料进入熔池的熔池窑 (附图标 记 4所示的预定配制的混合原料由此输送到熔池窑的熔池中), 附图标记 12 表示浮法线基体, 附图标记 6表示熔池窑, 附图标记 7表示熔池中的液态熔 融原料体进入锡槽的导流槽, 附图标记 8表示浮法工艺的锡槽, 附图标记 9 表示锡槽中形成的半成品带进入退火窑的过渡辊台, 附图标记 10表示退火 窑, 附图标记 11表示将成型制品进行分切包装的切割分装台。
现将本发明有高退火点及环保和节能减排的高强度高平整度低粘度特 征的平板玻璃的制备工艺的以浮法成型工艺方法制作其制品做进一步说明, 、其制造过程包括以下一些步骤:
( 1 )、 首先, 配制原料, 根据上述第一实施例及其各种变型及示例的有 高退火点及环保和节能减排的高强度高平整度低粘度特征的平板玻璃组成 来计算原料配比。
( 2 )、 准备好如图 3所示的浮法工艺的包括原料仓、 熔池窑、 含锡液的 锡窑、 以及拉边机、 牵引机、 过渡辊台、 退火窑冷却系统、 切割分装台等设 施在内的浮法生产线。
( 3 )、 按图 3及图 2所示的浮法工艺的生产流程, 把第 U )步骤配制 的附图标记 4所示的预定配制的混合料,从图 3的附图标记 2所示的料仓进 料口, 以原料输送带方式输送入附图标记 3所示的原料仓中, 再经附图标记 5所示的熔池窑口,将第( 1 )步骤配制好的混合料送入到附图标记 6所示的 预定耐高温的熔池窑的熔池中,逐步在对应于各玻璃配方的熔化温度的温度 区时形成流动性好的液态融熔体, 经过高温区逐步排出液态原料中的气泡, 即形成了可以进入成型工序的流动性较好的混合原料熔融体。
( 4 )、 按图 2所示的浮法工艺的生产流程和图 3所示, 使第 (3 ) 步骤 的可流动性能较好的混合原料熔融体,从附图标记 6所示的熔池窑经附图标 记 7所示的导流槽的夹口, 流入到浮法生产线之附图标记 8所示的锡槽 (也 可称为锡窑)的锡面上, 再经淌平, 经拉边机拉边和牵引机的牵引, 在锡液 面上抛光抛平, 形成半成品带通过附图标记 9所示的过渡辊台出锡窑后, 进 入附图标记 10所示的辊道的降温冷却系统的退火窑冷却, 再进入到附图标 记 11所示的切割分装台, 经切割、 分装, 即可制得如图 1所示的根据上述 第一实施例及其各种变型和示例的各种组成的有高退火点及环保和节能减 排的高强度高半整度低粘庹特 4ί的平板破璃制品。
第三实施例的变型 对于根据本发明实施例的玻璃的成型工艺, 除了上述浮法工艺之外, 还 可以采用平拉工艺、 格法工艺、 压延工艺、 溢流法工艺、 重新引下法工艺、 压制成型工艺成型中任一种工艺。
对于平拉工艺,对在熔制步骤中形成的可流动的熔融体进行有平拉工艺 特征的拉薄、 成型、 退火、 冷却、 分切, 即可制得上述玻璃。
对于格法工艺,对熔制步骤中形成的可流动的熔融体采用格法工艺进行 压延、 成型、 退火、 冷却、 分切, 即可制得上述玻璃。
对于压延工艺,对熔制步骤中形成的可流动的熔融体采用压延工艺进行 压延、 成型、 退火、 冷却、 分切, 即可制得上述玻璃。
对于溢流法工艺,对熔制步骤中形成的可流动的熔融体采用溢流法工艺 进行引下、 成型、 退火、 冷却、 分切, 即可制得上迷玻璃。
对于上述形成各种制造根据本发明实施例的有高退火点及环保和节能 减排的高强度高平整度低粘度特征的平板玻璃,其中一个很重要的方面是本 发明的具有助熔功能的成份的全新技术方案, 大大降低: f玻璃的熔化温度, 从而使得这种玻璃也特别适用于浮法工艺、 溢流法工艺。 在常规浮法工艺、 溢流法工艺中, 本领域一直限制在高硅组分的玻璃配方下, 在需要高强度而 需要加多氧化铝的情况下, 不得不利用各种手段甚至是较极端的条件对原料 进行熔化。 至少在现有的浮法工艺、 溢流法工艺中, 还未应用过根据本发明 实施例的玻璃配方。 下面较详细地介绍一下, 才艮据本发明实施例的有高退火 点及环保和节能减排的高强度高平整度低粘度特征的平板玻璃配方对这三 种玻璃形成方法的适用原因。
现有技术中,尤其是浮法或溢流法工艺,适用于平面度要求很高的玻璃, 尤其用在显示屏的 1. lmm-0. 7腿或 0. 5mm的厚度的产品, 首先原料要求高, 不能有不熔化形成的结石碴点, 所以对熔化粘度要求高, 不然就缺陷明显, 产品不合格; 然后是,对产品的均化、排泡粘度要求高, 不然气泡排不千净, 也在玻璃中会很明显, 造成产品不合格; 尤其对成型温度粘度的要求也高, 因为在浮法成型时有一个淌平、 流平的工艺过程, 如果粘度高了, 就会太浓 而淌平†曼, 影响产量, 也会因流平、 淌平工艺阶段的厚薄差大和不平整, 影 响到形成抛光、 拉薄工艺阶段的产品表面的厚薄差和不平整度也大, 产品表 面有波浪块缺陷, 如现在的 PDP玻璃, 全部都要经过对浮法产品二次抛光, 就是因为成型淌平工艺阶段玻璃的粘度太大造成的。 所以本发明克服先有传统技术偏见的技术方案,在浮法工艺和溢流法工 艺、 压延法工艺、 格法工^、 平拉法工艺中对熔化、.均化排泡和流平淌平的 成型的三个最主要工艺阶段的粘度和尤其浮法工艺的抛光拉薄工艺的粘度 有显著的实质性技术进步效果。
综上所述,本发明的玻璃尤其在各种平板玻璃生产工艺更能体现其技术
^案的优越性, 并克服了这些领域的技术僞见。
应用
由于根据本发明实施例的上迷有高退火点及环保和节能减排的高强度 高平整度低粘度特征的平板玻璃, 能够在突破前述之三类传统的技术偏见, 可以应用于 (1 )建筑用门、 窗、 幕墙玻璃, (2 ) 汽车及船舶用玻璃, ( 3 ) 高铁用玻璃, ( 4 ) LCD显示屏玻璃, ( 5 ) PDP显示屏玻璃, ( 6 ) TFT显示屏玻 璃及智能手机和 iPad的高强度面板玻璃, (7 )工艺玻璃等产品以及再加工 的钢化产品, (S )液晶显示屏, (9 ) 光伏太阳能装置。
第四实施例
本发明的第三实施例公开了一种液晶显亲屏, 包括: 阵列基板, 该阵列 基板包括根据上述第一实施例及其各种变型和示例的玻璃制造的玻璃板作 为基底以及在该基底上的像素结构,该基底为根据权利要求 1-5任一项的有 高退火点及环保和节能减排的高强度高平整度低粘度特征的平板玻璃制造 的玻璃板;滤色器基板,该滤色器基板包括基底以及在该基底上的滤色器层, 该基底为根据权利要求 1-5任一项的有高退火点及环保和节能减排的高强度 高平整度低粘度特征的平板玻璃制造的玻璃板; 液晶层, 夹设在该阵列基板 和该滤色器基板之间; 以及背光源系统。
第五实施例
由于根据本发明的玻璃能够降低粘度, 因此, 可以成型为更薄的玻璃。 如果这样薄化的玻璃用于光伏太阳能装置的基板或外罩板, 则可以提高可见 光透射比, 以增强太阳能电池的吸收效率。 由此, 本发明还提供了一种光伏 太阳能装置, 该光伏太阳能装置包括太阳能电池以及以及根据本发明的玻璃 制造的玻璃基板或外罩板。
第六实施例
本发明的第六实施例公开了在上述第一实施例的基础上的本发明有高 退火点及环 ■和节能减排的高强度高平整度低粘度特征的平板玻璃,其平板 玻璃的表面附着有一层由非晶硅烧结而转化之多晶硅层。
第七实施例
本发明的第七实施例公开了在上迷第一实施例的基础上的本发明有高 退火点及环保和节能减排的高强度高平整度低粘度特征的平板玻璃, 所述平 板玻璃之上, 有一层含石夹或氧化铝或莫来石晶体的树脂层。
本发明一种有高退火点及坏保和节能减排的高强度高平整度低粘度特 征的平板玻璃在平板玻璃领域中有新颖性的技术方案是: 该玻璃包含氧化 硅、 氧化钙、 氧化镁、 氧化铝、 氧化铁、 氧化钠的成份, 按重量百分率计, 在该玻璃中氧化硼的含量为 0-3. 9%, 氧化钠的含量为 0. 01-14%, 氧化铁含 量为 0. 01-5°/。, 氧化氟的含量为 0-2. 81, 氧化镁含量为 8. 1-22. 2%, 氧化铝 含量为 0. 01-39%, 其氧化硅的含量是氧化钙含量的 1. 9倍 -4. 1倍, 氧化钙 的含量是氧化镁的含量的 1. 2倍- 1. 6倍;该玻璃的退火温度下限(即吸热峰 起点温度)为 550°C- 710°C ;该玻璃的厚薄差小于 0. 3薩;其吸水率在 0-0. 3% 的范围内; 其抗折强度达 50-180Mp。
本发明技术方案的特征有以下几个层次:
其一, 对一切现有技术的平板玻璃而言, 是一种对铝、硅、钙、 镁、 铁、 钠的成份范围的选择发明和对硅、 钙、 镁成份之间, 这些技术要素的比例关 系的改变发明的类型。 在本发明之要素比例关系的改变的选择发明上, 其技 术方案为硅:钙为 2, Q-4, 1倍或 2. 0-3. 6倍,钙:镁为 1, 2-1. 6倍或 1. 3- L 49 倍的范围。 而现有技术的一切平板玻璃, 最少有上述之二个要素比例关系的 两个端值, 在本发明范围外, 也就是本发明上迷的要素比例关系的选择在一 切现有技术的窄范围之内, 具有新颖性 = 而且在平板玻璃用途中、 i艺中, 发现了新下述之产品性质, 产生了下述之预料不到的技术效果。
其二, 本发明揭示了发现的产品的新的性质转用新用途的发明类型, 也 是产生了预料不到的效果的发明(即通过各种平板玻璃加工方法, 在新的平 板玻璃用途方面, 能产生的 [1]不同工艺阶段的优秀的新的粘度温度及产品, [2]厚薄差, [3]吸水率, 〖4]抗折强度, [5]可见光透射比, [6]波紋度, [7] 退火温度下限(即吸热峰起点温度), [8]线性热膨胀系数特征等平板玻璃新 性质、 新用途特征)。 尤其在新用途中,本发明发现了现有技术所从来没有揭示过的产品的新 的降低粘度温度和共熔体性质, 熔化工艺阶段粘度温度, 均化, 排泡, 澄清 工艺阶段粘度温度, 尤其是控制波纹度的平整度或厚薄差、 成型工艺阶段的 拉薄(或浮法工艺中的抛光)工艺的粘度温度。
( A )、 产品新的性质的发现之一: 克服了传统技术偏见产生的对平板 钠玻璃的氧化钠技术的 种要素省略发明: 现有技术的钠平板玻璃, 其都含 有 13%左右的钠, 主要用来助熔, 尤其对硅成份的助熔, 形成各工艺阶段的 可以控制粘度的降低。 但本发明的技术方案和发现的产品的新性质, 打破了 这种技术偏见, 可以由于硅、 钙、 镁之间的要素关系的变化发明, 在平板玻 璃的用途中, 产生的产品新性质, 在钠含量在 0-1%以内时, 可以比现有技术 的高钠平板玻璃的几个工¾阶段的粘度温庹低 15(ΓΟ250Χ:, 这将产生大童 节能和有利子高品质控制产品厚薄差, 波纹度, 和熔化工艺不好产生的平板 玻璃结石、 碴点和排泡工艺不好产生的气泡率等缺陷, 尤其对于有一定要求 的如 0. 5-1. lmm的 LCD显示器超薄的平板玻璃的品质,有降低碴点、结石率、 气泡率、 不合格厚薄差率、 不合格波紋度率, 形成了一个范围大得多的技术 控制平台。
现有技术在操作中, 如果一旦产生任何一个工艺阶段的缺陷, 在操作上 都易于采用加高各工艺阶段的温度的方式来解决,但这就很易出现使熔池垮 顶, 大大缩短使用寿命。 而本发明提供了一个很有利于操控工艺的技术操控 的粘度可调范围。 从根本上解决了业内人士一直认为的现行钠 (高钠 )平板 玻璃 "料性短" 的产品性质 (即业内讲的 "料性") 的技术难趙。
( B )、 产品新的性质的发现之二: 由于上述之本发明对现有占平板玻璃 总量 99%的钙钠玻璃的 13%的钠成份变为 0. 01- 1%或 0. 01-0. 1%的几乎没有钠 成份的一种省略发明的新的产品性质的发现是, 本发明之硅、 钙、 镁的要素 比例关系变化发明的技术方案,克服了现有技术仅通过由于铝成份或硼成份 加大才能产生退火温度上升的技术偏见, 产生了在低铝、 低硼 (仅 1%以下) 时退火温度下限也能低 100°C左右的产品新性质, 而且在低钠含量(或 1%以 下)时, 退火温度会上升更多的产品新性质 (见样品例)。 产生了: 该玻璃 的退火温麾下限(即吸热峰起点温度)为 61 (rC-71 (TC, 优逸为 6KTC-650 °(或加多氧化铝含量, 产生更优选的 650°C- 710°C的产品性质, 发现由于钠 成份越多, 玻璃的退火温度下限(即吸热峰起点温度)就越低, 现 13%的钠 含量的 99%以上的建筑用平板玻璃的退火温度下限(即吸热峰起点温度)只 有 490 °C, 而本发明之无钠(或仅为 0. 01-1% )无硼平板玻璃的退火温度下 限(即吸热峰起点温度)为 610°C- 710°C, 因为本发明技术方案的平板玻璃 (同样铝在 1%以内时), 由于最低的镁为 8. 1% (—般在 12%以上), 钙为最少 1. 2倍, 也在 9. 6% (一般为 15%以上), 这是产生 f我璃的退火温庋下限(即 吸热峰起点温度)的大幅上升的主要原因, 比普通的现钙钠平板玻璃高 120 °C-200 °C , 是一种另外新的产品性质的发现。
这里要说明的是, 虽然加大钙、 镁的含量如达 19-50% (—般只含钙 +镁 共 10-12% )的超过现有技术的钙钠玻璃,可以省略硼成份就可以使玻璃的退 火温度下限(即吸热峰起点温度) 大大上升, 而且有氧化钠达 2 1 3%也会大 大上升, 只是比无钠或低钠的产品的退火温度下限(即吸热峰起点温度)上 升小一些, 但是并不是说加多钙和镁的成份就能达到生产之目的, 因为还要 必须同时具有合适子平板玻璃尤其是较低的排气泡的粘度溢度的工艺奈件。 现有技术的平板玻璃, 如果只加大钙和镁的含量, 而不是具有本发明之硅、 钙、镁之间的互相比例关系的比一切现有技术就是加大钙镁含量其粘度温度 还是会高于本发明 15Q°C-30(TC, 又比如无碱硼平板玻璃, 其加入了 8-15% 的助熔剂硼成份, 才只加入了 8- 10%的氧化铝, 在粘度为 102 (帕 .秒)时的 排泡工艺的温度高达 150 (TC以上,必须用 ^种浅熔池(玻璃液深度仅 5-10cm ) 的高昂的铂金排泡通道来完成排气泡工序, 而且日产仅几 p屯。 所以其与本发 明的低粘度, 又有高的退火温度下限(即吸热峰起点温度)的技术方案之可 以用几百吨日产量工艺生产(排泡 E熔池深度达 70- 100cm )相比较, 其产出 量差上百倍, 而投资却还多几十倍。 也就是讲, 在解决退火温度下限(即吸 热峰起点温度)的上升, 使之合乎各种显示器平板玻璃和彩釉及防火防爆等 平板玻璃的要求, 现有一切技术平板玻璃, 或只是加大钙 +镁达 20- 50βΑ的技 术方案, 而不是采取本发明之要素比例关系的变化发明、 选择发明的技术方 案, 都是不能兼顾成本和退火温度下限(即吸热峰起点温度)的预料不到的 组合技术效果的。
其产生预料不到的技术效杲不仅在于能在无钠或硼的低铝的本发明制 品的追火温度下限(即吸热峰起点温度) 质和在 150°C- 30(TC及在 61 0 °C -650°C或 680 °C的线性膨胀系数值, 完全可以还有高品质、 低成本、 高几十 倍生产效率等能同时兼顾地达到生产 TFT液晶玻璃的技术要求和形成更好的 经济成本目标, 而且还能在一般的 PDP显示器的基板使用中, 达到退火温度 下限(即吸热峰起点温度) 高于 580°C的目标, 使之在 580°C左右烧结工艺 中变形极小, 而且, 如果加多氧化铝, 还会更高, 可达到液晶标准的退火温 度下限(即吸热峰起点温度) 高于 650°C-71 {rC的标准, 使之在 600 °C -650 °C的烧结晶休管簿膜时玻璃基板变形极小, 都能达到百万分之三以内, 大大 优于现有的 PDP基板玻璃和 TFT无碱硼玻璃。而且用于现有的中端水平的 LCD 显示器, 其可以提升其技术层次, 有利于 LCD显示 的升级和大大提高分辨 率的相素精度 (现有技术 LCD玻璃板全部使用的是现在的退火温度下限(即 吸热峰起点温度)仅为 49(TC的 13%钠含量的平板玻璃; 再一个技术效果是, 由于粘度温度低于现有钠玻璃 200°C, 可以使 LCD和 PDP以及 TFT显示玻璃 的向又有高水准的厚薄差和波紋度的品质为前提的更薄的 0. 1-0. 3麵的产业 尖端方向发展。
( C )、 产品新的性质的发现之三: 克服了传统技术的偏见, 产生了对平 板玻璃的一种无碱硼玻璃的 "氧化硼"技术要素的一种要素省略发明: 现有 的尤其用于液晶显示器的无碱硼平板玻璃,其由于不能含超过 1%的钠(氧化 钠会逐步腐蚀附着在^:璃上的簿膜晶体管的极精细的电路), 所以全都采用 了 8-15%含量的硼成份来作助熔剂成份, 有认为非如此方行的技术偏见, 尤 其形成对硅的助熔, 以能形成高品质的平板玻璃各工艺阶段的粘度温度的降 低控制。 但本发明的技术方案和发现的新性质, 打破了这种技术偏见, 可以 由于硅、 钙、 镁之间的要素关系的变化发明, 在平板玻璃用途中, 产生新的 产品性质, 在没有氧化硼含量即为 0-1%时, 可以比现有技术的以 8- 15%含量 的硼的产品的粘度温度, 在平板玻璃的几个 艺阶段低 250°C- 350。C, 这将 会形成一个很大范围的控制工艺达到控制产品质量的新的技术平台,对于液 晶显示器用玻璃, 这种要求高水平厚薄差、 波紋度水准和几乎无气泡、 无碴 点、无结石缺陷的品质要求的 0. 5-0. 7mm厚度的超薄产品的成品率、优品率, 尤其是对于排气泡和澄清、 均化工艺阶段和成型、 拉薄的工艺阶段的粘度, 都提供了一种比现有技术好得多的工艺控制范围和工艺控制平台。
( D )、 产品的新的性质的发现之四: 克服了传统平板玻璃的一种认为加 大氧化铝必然产生粘度温庹大幅上升的技术徧见。 如现有技术钙钠破璃, 只 能加入 1%左右的氧化铝, 而现有的无碱硼平板玻璃, 也一般只加入 8%左右 氧化铝来提高应变点 加多了就会使本已十分高的各阶段工艺的粘度温度更 高, 无法控制工艺应达到的品质目标。 也认为无法在可以低成本的可控的工 艺条件下,把氧化铝加到 25-30%, 以提高产品强度。但本发明的技术方案和 发现的新的平板玻璃产品性质, 打破了这种技术偏见, 本发明在不含硼、 不 含钠、 不含氟成份时(即 0-1%时), 氧化铝含量为 3. 1%或 16%或 20%或 25% 左古时的大跨度定化时, 现有技术认为粘庋会大幅上升, 但本发明的粘麾温 度的变化仅 2{TC-4{TC , 就是氧化铝为 1-30%左右的大变化时, 粘度温度也 仅上升 4{TC-8(TC左右(见附表 1之 11个样品例及表 2的样品对比例)。
而且粘度温度比加入了 13%氧化钠或 8-15%氧化硼的平板玻璃产品还 1001C - 200匸。 这证明了本发明的技术方案中的硅、 钙、 镁的要素比例关系 变化范围的发明技术方案, 能和氧化铝在 25%或 30%含量时产生一种新的产 品性质, 逸就是一种新的高氧化铝含量的铝、 硅、 镁、 钙的共熔体性质, 能 产生高铝含量的低粘度温度的预料不到的技术效果和进而产生的高品质高 强度的预料不到的技术效果。 本发明尤其由于可以加大氧化铝的含量达 19-28%时, 强度可达约 140- 160Mpa或 180Mpa, 大大高于各种先有技术平板 玻璃强度的 2-3倍, 而且由于粘度温度还较先有技术仅卜 25%氧化铝含量时 低 15{TC-25(TC, 所以如果本发明技术方案形成无碱高硼玻璃的粘度时, 那 应当还有相当于加多氧化铝到 29-39%的可以溶化的粘度空间和强度 J升的 较大空间(本说明书及本发明实施例玻璃的抗折强度,通过把样品切成 50mm X 50誦 X 5mm的小条, 采用抗折强度仪, 按标准 GB/T3810、 4- 2006测定。;)。 先有技术的无碱高硼制品, 因氧化硼成份的挥发过程, 会造成成份的不均, 使氧化铝参与的材料网状结构受损, 大大影响应有的强度。 这是无碱高硼玻 璃就是含 7- 15%氧化铝的时也强度较差的重要原因。
所以本发明能在有高铝含量和无硼含量时, 因能有高铝含量的硅、 钙、 镁共熔体新性质, 能产生高达 90-145MPa或 145-180MPa的抗折強度的同时, 而且兼有更节能, 更低成本和有更大的粘度温度的工艺范围, 能在熔化工艺 粘度温度阶段控制熔化, 克服结石和防止产生没被熔化之碴点, 在澄清和控 制成型时平板玻璃的厚薄差、 波紋度(因为粘度越低, 此工艺阶段的平板玻 璃产品越软越有控制之范围,反之粘度越高,此工艺阶段平板玻璃产品越硬, 越不好在拉引、 平拉、 或压延、 或浮法的淌平、 拉薄、 抛光等工艺阶段控制 厚薄差和波紋度)。
( E )、加入氧化铁 0. 01- 4%,是一种组合发明, 能形成新的功能, 节约优 质资源, 大大降低成本。
其三, 由于新的上迷产品的性质的揭示和发现, 克服了上述之多种先有 技术偏见, 在各种建筑用、 TFT显示器用、 工业用、 装饰用、 防水用平板玻 璃领域, 产生了以下几个预料不到的效果的 (1 ) 由于粘度温度温度性质形 成了可很好的提升和控制工艺的熔化品质、 气泡品质、 平坦度、 厚薄差和波 度品质的技术效杲; (2 )蓣料不到的由于粘度温度下降的 20(TC以上的节 能效果; ( 3 )预料不到的由于共熔体性盾加入大量的铝(从 1%加到 25%以上), 产生的强度上升 2-3倍的技术效果; (4 )由于强度上升由此可产生的平板玻 璃可轻薄 2- 3倍的节能、 节约资源、 节约物流、 仓储 2- 3倍的预料不到的技 术效果; (5 )本发明新的技术效果还在于, 由于可以在氧化铁含量上用于不 透明或透明度不高的装饰材料平板玻璃中加大,可以节约日益减少的优盾玻 璃原料资源, 主要玻璃原料成本下降 10倍。 传统技术认为含铁量高一些的 原料影响玻璃产生兰绿色的缺陷, 但本发明能在平板玻璃中, 可以提升强度
2-3倍, 所以可薄 2- 3倍, 透光率皮而会上升, 兰錄色戾反而吏不明显, 不 影响透明玻璃的使用。 所以本组合发现是能产生一种预料不到的轻、 薄、 高 强度、 大大节约玻璃高端资源、 节约原料成本的综合效果的平板玻璃产品。 这是其它现有技术达不到的既有高强度、 又轻又薄、 又节约原料资源、.又大 大节约原料成本 10倍的技术效果。 (6 ) 由于采用了一种技术要素省略的发 明,对现有技术的如无碱硼玻璃,而且在可以比现有技术更好的结石、碴点、 气泡率、 平坦度度、 厚薄差的品质控制的前提下, 在工艺温度不上升前降低 且节能的前提下, 省略去硼成份, 都可以有平板工艺的熔化、 排泡、 成型、 拉薄各阶辣的吏好的性质和可加入更多氧化铝而产生的抗折强麾性质, 而且 预料不到的对平板显示器无碱硼玻璃可以不加入 8- 15%的硼成份, 而保证气 泡率高质、 平坦度、 厚薄差、 波纹度的产品品质的保障, 可以解决现有技术 TFT显示器玻璃生产装置只能用溢流法工艺加铂金通道的工艺的技术偏见, 更最高的是可以采用浮法工艺, 在保障厚薄差、 平坦度、 波纹度的品质前提 下,可以提高生产效率 20-40倍, 可以节约投资 30-50倍, 节约土地厂房 20 倍的预料不到的效果。 本发明技术方案与现有一切平板玻璃技术比较, 具有 新的没有被揭示和公开的新的性质, 而且这种性质是事先无法推测, 无法预 测和推理出来的, 并克服†传统的平板破璃技术的技术徧克, 解决了人们在 行业中渴望解决的上述重大问题, 技术效果产生了 "质" 和 "量" 者的变 化, 说明技术方案是非显而易见的, 具有突出的实质性特点, 具有显著的技 术进步, 具有创造性。
以上结合具体实施例对本发明玻璃的组成及性质、 以及玻璃的制造工艺 及应用和技术效果进行了描述, 下面对根据本发明实施例的有高退火点及环 保和节能减排的高强度高平整度低粘度特征的平板玻璃的特点,也就是其与 现有技术的根本区别, 再归纳总结如下:
本发明区别于现有技术之一:
相比较现有的 TFT液晶显示无碱的高含量硼成份玻璃,全球有数百个专 利和其它文献及数千实施例, 其代表性的 US2002/OO11080A1 的发明名称为 液晶显示器的无碱玻璃, 其中技术方案与本发明最大的区别首先在于: (1 ) 其技术方案中氧化硅为 40-70%、 氧化钙为 0-15%、 氧化镁为 0-10%、 氧化硼 为 5-20%的以硅、 钙、 镁三个技术要素之互相关系的比例关系的选择发明, 本发明钙: 镁的范围是 1. 2-1. 6倍, 而现有技术的上限范围是钙: 镁是 0: 10即小于 0. 1倍, 下限是 15: 0, 即大于 15倍。 所以本发明是优逸了其¾ 围之内的一个值数, 有新颖性的不同点, 而且其现有这类技术氧化硼含量为 5-20%, 没含氧化钠, 没含氧化铁, 而本发明技术方案氧化硼含量为 0-3. 9%, 氧化铁含量为 0. 01-5%, 氧化钠含量为 0. 01-8. 8%。 由于其技术方案的不同, 本发明之硅、 钙、 镁要素比例关系的变化发明, 产生了新的产品性质, 比较 而言, 在粘度性质的特征上, 这一类的一切无碱硼玻璃, 比本发明之不用加 入硼还加入了 10- 30%氧化铝的产品的 10。 5 (帕 '秒)、 101 (帕 .秒)时的粘 度温度, 102 (帕 ·秒)时的澄清、 均化和排泡粘度温度, 1 Q3 (帕 ·秒) 时 的成型友拉薄、 抛光等的粘度温度要高出 200°C-40(TC。 显然业内人士都知 道, 本发明之低的粘度温度, 十分有利于在平板玻璃的熔化工艺阶段控制碴 点和结石, 十分易于充分熔化, 在排气泡、 澄清工艺阶段十分有利于气泡率 的控制(而现一切的无碱硼玻璃都釆用了高温粘度温度下的高昂成本的铂金 通道装置的排气泡工艺), 本发明之低粘度当然更有利于成型平板玻璃, 尤 其是成型 TFT的超薄的玻璃的控制平坦度、厚薄差、波乡文度的品质水准。 ( 2 ) 现一切 TFT液晶显示屏的无碱硼玻璃限于溢流法的工艺方法生产, 由于对熔 池必然腐蚀严重, 其全球几百条生产线全部须每年冷修一次(约三个月), 每次费用高达上亿人民币, 而本发明由 成份中可以不用硼, 所以可克服这 个重大难题。 (3 )本发明可连续 8-10年生产而不冷修, 每年还多三个月不 用冷修期妁生产产能。 (4 ) 由于现有技术的成份中有 5-20%的硼含量, 现技 术生产中会有大量的硼的挥发, 产生组成成份不均的后果, 对成型时的平坦 度质量有危害, 而本发明无硼成份, 产品的平坦度很好。 (5 )由于溢流法工 艺现在只能采用 6-10吨 /天的设备, 而且造价高达 10亿人民币以上, 又因 为其高比例含量的氧化硼成份的使用, 会对熔池的严重腐蚀, 在理论上和现 实中, 根本不可以用大 p屯位的浮法熔池来生产, 而本发明的技术方案由于可 以无硼, 所以可以在 150吨 /天或 200吨 /天的浮法熔池工艺中生产, 其可以 产量上升 20-30倍, 而投资成本却只为同样产能的 40分之 1或 60分之 1 , 可大大节约(一条线仅 3-5亿元人民币)投资和折旧成本, 并节约大量的可 达 10倍以上的工业用地。 (6 ) 由于可以无硼成份生产液晶显示屏玻璃, 所 以可以完全解决现在硼玻璃的生产中的硼毒气排放(如产品中硼含量为 10% 时, 在原料中要加入约 30%的硼, 在熔化时会排放出约 20%的硼毒气挥发, 如现有技术的 10吨 /天溢流法工艺, 每天要有 2吨的硼毒气排出, 如 200吨 /天产能就有 20吨的硼毒气排放, 而本发明技术方案的 200吨 /天的浮法线 可没有任何硼毒气排放。 ( 7 ) 由于 5-20%的硼成份 (多数液晶硼玻璃实例的 硼为 8- 15% )会有大量挥发, 造成组成成份不均, 所以在同样的氧化铝含量 的成份时, 一切高硼的液晶显示玻璃的强度会下降 80%以上, 而本发明可无 硼或极低硼含量, 所以才会有这种高强度特征。 而现有技术其虽然在权项中 写了 "……氧化钙为 0-,15%, 氧化镁为 0-10%, 氧化硅为 40=70%" , 但其几十 个实例的氧化硅都为 60%左右,氧化钙绝大部分在 1-4%以下,只有二个 5. 4% , 一个 6. 2%, 全部不在本发明之氧化硅: 氧化钙的 1. 9倍 -4. 1倍的范围内, 而是在 10- 60倍的范围,其氧化镁也绝大多数为 4- 5%以下,也在本发明之氧 化镁为 8. 1-22. 2%的范围外。 按 "单独对比原则" 惯例, 本发明人通过对国 内外数百个显示器专利或者说文献的权项和实例的比较, 全部都是这样。 所 以本发明不但有新颖性, 而且从一切这类现有技术的权利要求、 说明书、 实 例来讲, 都没有揭示本发明的技术方案硅、 钙、 镁要素比例关系的变化发明 内容和产生的新的助熔共熔成份结构性质及形成的优秀的粘度、退火温度下 限(即吸热峰起点温度)、 强度、 节能、 低成本、 易于控制产品品质等等技 术效果。 尤其在粘度上, 比较现有一切液晶显示玻璃低 30(TC以上粘度温度 的技术效杲; 在强度上好 1-2倍的技术效果, 产生了业内人士预料不到的技 术效果。 说明本发明以上之技术效果是非显而易见的, 是有创造性的。 以上之任何一条所述的技术效果,都是在一切现有的液晶显示器硼玻璃 生产中没有揭示或公开过的, 都是非显而易见的, 任何一条的技术效果都反 映了本发明之技术方案的创造性。
本发明区别于现有的玻璃技术之二:现有技术 SU581097A1 ,公开了 ^"种 乳浊玻璃, 其氧化硅为 50-63%, 氧化钙为 22-33%, 氧化镁为 13-21%, 氧化 铝为 1-3%, 氧化钠为 0. 5-2%, 钙: 镁为 1. 4-1. 5。 其与平板玻璃的技术领域 及用途完全不同, 只是一种以生产乳浊效果玻璃的技术, 其与本发明的主要 区别在于本发明是一种有各种平板玻璃工艺产生的完全不同特征的如厚薄 差在 ± 0. 3誦、 波紋度在 20麵 内起伏度是 0-0. 03画 以内的、 抗折强度在 50-180MPa , 优选在 0- 180MPa或 145-180MPa, 而且本发明含有氧化铁, 而 氧化钠为 2. 1-14%, 以及控制和明确了氧化铝在 0. 01- 30%或 3. 8-30%或 19-30°/。或 26-39%的不同情况下的各个平板玻璃的工艺阶段的粘度温度、 强度、 退火温 度等技术工艺指标性质等的技术方案, 而且本发明是以平板玻璃为用途的完 全不同的发明, 并且采取的工艺方法是完全不同于这种技术的一种平板玻璃 的工艺, 如浮法工艺, 平拉工艺, 格法工艺, 压延工艺, 溢流法工艺等并采 用了新发现的在各平板玻璃工艺阶段粘度温度等产品性质来形成高平坦度、 高水准厚薄差及波纹度和高抗折强度技术效果的产品。而现有上述技术的发 明目的是制造一种有彩色乳浊不透明玻璃器 类制品,其完全没有揭示本发 明的产品的新的粘度、 强度、 平坦度、 厚薄差、 波紋度等产品性质的更没有 揭示任何本发明之预料不到的技术效果。本发明是专利发明类型中的一种在 新的完全不同用途的高平坦度水平的建筑、 工业、 显示器等平板玻璃中发现 制品新性质的并产生了预料不到的技术效果的发明类型,也是一种把这种从 来没有揭示过的产品的新的性质与现有的平板玻璃工艺技术进行組合,产生 了预料不到的技术放果的组合发明。 比如: 由于产品新的性质的发现之一克 服了传统技术偏见产生的对平板钙钠玻璃的氧化钠技术的一种要素省略发 明: 现有技术的钠平板玻璃, 其都含有 13%左右的钠, 主要用来助熔, 尤其 对硅成份的助熔, 形成各工艺阶段的可以控制粘度的降低。 但本发明的技术 方案和发现的产品的新性质, 打破了这种技术偏见, 可以由于硅、 钙、 镁之 间的要素关系的变化发明, 在平板玻璃的用途中, 产生的产品新性质, 在钠 含量在 0-1%以内时,可以比现有技术的高钠平板玻璃的几个工艺阶段的粘度 温度低 150°C-250°C , 这将产生大量节能和有利于高品质控制产品厚薄差 波纹度, 和熔化工艺不好产生的平板玻璃结石、 碴点和排泡工艺不好产生的 气泡率等缺陷,尤其对于有一定要求的如 0. 5-1. lmm的 LCD显示器超薄的平 板玻璃的品质, 降低碴点、 结石率、 气泡率、 不合格厚薄差率、 不合格波纹 度率。
另外, 由于新的上述产品的性质的揭示和发现, 克服了上述之多种先有 技术偏见, 在各种建筑用、 TFT显示器用、 工业用、 装饰用、 防水用平板玻 璃领域, 产生了以下几个预料不到的效果的 (1 ) 由于粘庋温度温度性质形 成了可 4艮好的提升和控制 i艺的熔化品质、 气泡品质、 平坦度、 厚薄差和波 纹度品质的技术效果; (2 )预料不到的由于粘度温度下降的 200°C以上的节 能效果; ( 3 )预料不到的由于共熔体性质加入大量的铝(从 1%加到 25 以上), 产生的强度上升 2-3倍的技术效果; (4 )由于强度上升由此可产生的平板玻 璃可轻薄 2- 3倍的节能、 节约资源、 节约物流、 仓储 2 倍的预料不到的技 术效果。
本发明区别于现有的玻璃技术之三: 先有技术之专利公开号为
CN1053047A名称为 "具有天然大理石状表面花紋的结晶玻璃及其生产方法" 文献, 其在权利要求中限定了各种含量的较宽泛的含量取值范围。 然而, CN1053047A是一种天然大理石状表面花紋的结晶破璃,与本发明平板5皮璃是 结构特点完全不同的。 CNl 053047A要解决的技术问题是通过玻璃中的某些成 份的晶体析出来实现花纹, 其工艺就决定了其必然的产品缺陷, 而不是产品 成份上决定的其产品的缺陷。
( 1 )、 在技术方案上, 本发明含氧化钠 0. 01-8. 8%, 氧化铁 0. 01-5%, 氧化钛 0. 0003-4. 9%, 而这个先有技术没有以上成份, 而且其实例也没有举 出与本发明的硅、 钙、 镁之比例关系。
( 2 )、 其工艺表述为将小块玻璃料储集在模箱中, 使……结晶从玻璃表 面进入内部, 并且玻璃料彼此熔合一结合, 控制玻璃料大小 ... ..., 获得具有 大理石、 花岗石花紋的外观。 而且此文件有大量结晶工艺过程的表述的模具 框的, 可见其采用的是颗粒粘熔析晶的 ^-种色彩花纹微晶玻璃的工艺。
其只是对玻璃颗粒熔融和粘合(一切结晶玻璃工艺只在 120(TC以内), 根本没有熔化液化、 澄清、 排泡、 成型的 1600°C以上降到 1200°C以下的平 板玻璃的必须的工艺过程, 不可能涉及粘度特征的揭示。 而且其专利文件也 没有任何粘度的记载,所以本发明的粘度特征是在浮法、或溢流法、或格法、 或压延法、 或平拉法的工艺方法的基础上才能产生的粘度材料特征的揭示 的, 才产生的产品强度特征(如后述对比文件先有技术工艺方法是不可能有 好的强度的); 才产生吸水率产品特征的 (对比文件的先有技术工艺方法吸 水率一定高); 才产生厚薄差的产品的特征(对比文件的先有技术的工艺方 法是微晶玻璃的在模具中的颗粒粘融工艺, 根本不可能有好的厚薄差的); 才产生好的可见光透射比产品特征(对比文件先有技术的工艺方法是不可能 透明的)。 所以本发明的技术方案中的许多产品特征, 是由完全不同于对比 文件之先有技术的工艺方法产生的产品特征, 不是成份决定的特征, 完全具 有新颖性的。
( 3 ), 前述之先有技术专利文件的技术方案, 由于其工艺上是由不同大 小的颗粒材料进行, 使其玻璃料软化和变形, 并彼此熔融结合成一体, ... ... 同时析出的玻璃结晶符合小块玻璃料的大小和形状(见其第 7页)。 业内人 士都知道, 最主要的缺陷是产品布颗粒时是松散的, 所以烧成后产品平面有 大量的凹凸不平处, 这种颗粒的晶体, 正如一切微晶玻璃一样是要长大的, 各种粒状使表面之不平度都在 0. 5誦- 1. 5腿, 而且这种模框成型工艺, 产品 平面 ί艮不平, 又加之模框都用耐火材料烧制, 表面及四角的不平整度随每一 次烧成变形越来越大, 所以其成品的厚薄差都在 1. 5靈- 2mm, 所有的产品要 正反面刮平抛光, 最少各刮抛去 lmm=2nun厚度, 而即使刮抛正反两后, 其产 品的厚薄差也会达 lmm以上, 所以其缺陷和浪费都大。 与本发明玻璃及正常 平板玻璃的厚薄差在 0. 3腿以内相比较相差甚远。此先有技术的这些缺陷也 完全是由其工艺方法导致的, 而不是材料成份产生的。 本发明克服了这些缺 陷, 所以本发明之此厚薄差特狃与此项先有技术比较, 具有新颖性。
本发明区别于现有的玻璃技术之四; 比较一切现有技术的钙钠浮法玻璃 的实际生产技术(兌表 2 )和一切专利或各种丈献, 其中一切的浮法钙钠我 璃、一切 等离子玻璃的权利要求技术方案都和本发明的总体技术方案有 4-6处不同, 本发明有新颖性。
本发明区别于现有的玻璃技术之五:
在本发明技术方案之局部的有关硅、 钙、 镁的成份范围和对硅、 钙、 镁 的比例关系变化的选择范围的发明类型的技术方案上,在现有之一切平板玻 璃的实例上,本发明人查阅了数百个文献全部没有氧化镁含量为 8. 1-22. 2%, 氧化硅: 氧化钙为 1. 9-4. 1倍, 氧化钙: 氧化镁为 1. 2- 1. 6倍的比例, 而且 其都不含氧化铁、 氧化钛。
本发明区别于现有的玻璃技术之六:本发明提供 ^"种液晶显示屏,包括: 阵列基板, 该阵列基板包括基底及在该基底上的像素结构, 该基底为根据权 利要求 1-5任一项的有高退火点及环保和节能减排的高强度高平整度低粘度 特征的平板玻璃制造的玻璃板; 滤色器基板, 该滤色器基板包括基底以及在 该基底上的滤色器层,该基底为根据本发明实施例的任一项的有高退火点及 环保和节能减排的高强度高平整度低粘度特征的平板玻璃制造的玻璃板; 液 晶层, 夹设在该阵列基板和该滤色器基板之间; 以及背光源系统。 本发明液 晶显示屏与现有液晶显示屏的区别主要在于: 其一, 由于所采用的本发明高 含量铝的硅、钙、镁的共熔体性质的新特征, 其有加入 25- 30%氧化铝而可以 在更好的低成本条件下生产的玻璃基板, 可以有更高的高出现有技术 TFT无 碱硼玻璃强度性能 1-2倍的性能, 所以在制造设计中, 在保持同样强度的情 况下,可以薄 1-2倍,这就将大大降低其重量,尤其在轻使化要求高的手机、 平板电脑、 手提电脑等有更好的轻薄化方便使用, 而且因为玻璃基板薄而会 更透明、 图像更清晰。 而且在如果同样厚度时的设计, 会使其玻璃强度上升 1-2倍, 对于运输, 安装、 使用中的破损率大大降低 尤其在用于在手机中 经常摆弄的智能手机或者平板电脑的安全性、 不易损性的使用效果十分重 要。 其二, 由于这种本发明基板玻璃的生产效率可采用浮法工, 比现有液晶 显示玻璃溢流法工艺的效率产能要高 30- 40倍, 投资妻少 40倍以上, 所以 成本会下降, 也将对显示器产品的成本下降有重大意义, 从而推动产量的上 升和用户量的上升。
本发明区别于现有的玻璃技术之七: 本发明提供一种光伏太阳能装置, 该光伏太阳能装置包含太阳能电池以及利用根据上述实施例之任一项的玻 璃制造的玻璃基板或外罩板。 其与现有技术的光伏太阳能装置的区别在于: 其一, 由于在大生产中可以低成本地加大氧化铝含量 (如加大到 25-30% )的 特殊, 铝、 钙、 镁共熔性质的特征, 所以采用了本发明之平板玻璃, 可以形 成在装备不改动、 成本不增加的情况下大生产强度上升 1-2倍, 所以对于太 阳能装置的生产、 组装、 安装及在更恶劣、 复杂的环境下的使用, 破损概率 大大降低, 安排性、 完整性将大大提升; 其二, 由于可以产生强度上升 1-2 倍的玻璃基板, 所以可以把玻璃产品设计薄 1-2倍, 很适合于本发明之光伏 太阳能装置的轻量化, 带来安装、 运输的方便, 成本上升的降低。 尤其对于 在欧、 美、 澳、 东南亚等拉美地区的木结构房顶和建筑的外墙的应用, 大大 降低建筑的重量负荷, 和木结构房屋使用的安全性、 可靠性和实用性, 十分 有利于推动新能源的应用; 其三, 由于可以使玻璃薄 1-2倍, 所以可以提升 太阳能的通过能力, 有利于提升太阳能发明效率。
从以上专利文件的权项或实例或现实产品实例的判断新颖性的 "单独对 比" 原则来判定本发明之技术方案也有新颖性。
本发明区别于现有的玻璃技术之八:是在于从来没有在各种专利及各种 文献中公开过采用本发明技术方案而进行的工艺方法, 本发明技术方案中, 该玻璃包含氧化硅、 氧化钙、 氧化镁、 氧化铝、 氧化铁、 氧化钛、 氧化钠的 成份, 按重量百分率计, 在该玻璃中氧化硼的含量为 0-3.9%, 氧化钠的含量 为 0.01-8.8%, 氧化铁含量为 0.01-5%, 氧化氟的含量为 0-2.8%, 氧化钛为 0.0003-4.9%, 氧化镁含量为 8.1-22.2%, 氧化铝含量为 0.01-39%, 其氧化硅 的含量是氧化钙含量的 1.9倍 -4.1倍或 2.0倍 -3.6倍,氧化钙的含量是氧化镁 的含量的 1.2倍 -1.6倍或 1.3倍 -1.49倍; 该玻璃的厚薄差小于 0.3mm; 其吸 水率在 0-0.3%的范围内; 其抗折强度达 50-180Mp。 本发明技术方案的工艺 方法特征在于: 步骤 1, 根据所述的玻璃配方配置所需的各种有预定的必不 可少的特别范围内的氧化钠、 氧化铁、 氧化铝、 氧化硅、 氧化钙、 氧化镁、 或还有氧化钛、 氧化钡的成份以及预定的氧化硅、 氧化钙、 氧化镁之间的特 殊比例关系的成份的原料, 经混合搅拌之后在对应于各玻璃配方的熔化温度 熔化, 形成预定的粘度的破璃液, 再均化, 澄清, 排出气泡, 形成可流动的 熔融体; 步骤 2, 采用浮法工艺、 平拉工艺、 格法工艺、 压延工艺、 溢流法 工艺、 中任一种工艺对玻璃进行成型。 而且这还是一个新用途的组合发明类 型, 产生了新的用途, 发现了新的产品性质, 并产生了上述之多种预料不到 的技术效果。
本发明区别于上述各种类型的平板玻璃的全新的技术方案并能产生的 节能、 环保、 投入产出比、 生产效率、 降成本及粘度温度低、 强度高的特征 等, 都是行业性的预料不到的非显而易见的技术效果; 可以因降熔化温度而 节能 30-—40%, 也减排放二氧化碳 30- 40%; 也可使制品强度上升 2- 3倍, 以 及出现新性能的显示器和光伏太阳能装置的组合发明等。
本发明是发明人经过多年实践经验的总结以及创新性地设计所作出的, 正如前述的本发明与任何先有技术的技术方案,都是主要由技术要素结构和 其互相的比例关系变化的发明, 及通过开拓新用途, 发现新的产品性质和创 新方法形成的产品特征的区别(因为任何现有技术的权项或实例都与本发明 的技术方案的技术要素特征都有 3-5处或 4-5处不同之处), 所以从本说明 书精炼出的权利要求所述之本发明产品及制备工艺方法, 按新颖性判断之 "单独对比" 原则应具有新颖性。
正如前述的本发明区别于现有技术的特点部分指出,本发明的技术方案 产生的预料不到的技术效果与解决了人们一直渴望解决,但始终没有获得成 功的平板玻璃产品及工艺方法的几个重大技术难题, 即 (1 )在尤其是 TFT 液晶显示屏的无碱硼玻璃生产中, 以及本发明可采用浮法工艺生产的产能效 率可上升 20-30倍的投资产出率可上升数十倍的难题的解决; (2 )生产中节 能减排的效果; (3 )有利于对全球半板破璃同样高强度变薄、 变轻为三分之 一后对节约原料 60%-70%, 节能 60%-70%, 减排 60%- 70%; ( 4 )无硼毒气排放 的环保问题的解决及冷修费用的解决等;以及(5 )制品强度提高的解决; ( 6 ) 平坦度问题的解决; (7 )对内陆及远洋运输的节能 60%-70%, 能减少运输的 碳排放 60%-70 ( 8 )建筑玻璃为建筑物轻量化应用; (9 )对于板玻璃的粘 度温度的可控性的上升产生的对产品品质保障的控制能带来提升等,这些技 术发展趋势的贡献上, 都有着重大意义。
所以本发明的技术方案不是一种事后认为的用筒单的逻辑推理或者简 单试验就可以得出的,尤其是逸种技术方案产生的预料不到的技术进步效杲 更不是业内人士显而易见的。 而且这些技术难题是近十到二十年, 全球电子 显示器材料业和平板玻璃行业的数千家企业及数十万技术人员,都在研究解 决的而一直没有解决的问题。 由于本发明解决了上述之有全球平板玻璃和显 示器产业及太阳能产业的技术发展趋势之人们渴望解决而又一直没有获得 成功的重大技术难题和本说明书提到的还有许多其它人们渴望解决而又没 有获得成功的前述之十多种技术难题。
上述之预料不到的技术效果,都是因为采用了改变技术方案的比例关系 的一种逸择发明技术方案和一种改变用途于平板破璃的,从来迓有被现有扶 术公开或揭示的新的产品性质如平板玻璃的各工艺阶段的粘度温度、还有高 铝含量时的硅、 钙、 镁的本发明技术方案之共熔体特征等及产生的强度和平 板玻璃的克服低铝或低硼(在 1%以内 )时,退火温度不能上升的技术偏见而 产生的高退火温度下限(即吸热峰起点温度)产品性质以及在无硼成份条件 下的低粘度特征、 高强度特征, 打破了现有技术偏见, 以及对现有技术之钠 或硼或氟等传统技术偏见的助熔要素的省略的本发明技术方案, 而新的技术 方案产生了预料不到的技术效茱。 这些技术产品的性质是无法事先推测、 无 法预测的,本发明克服了多种技术偏见,产生了上述平板玻璃及显示器产业、 新能源产业中,人们渴望解决而又一直没有解决的技术难题解决之预料不到 的效果的 "质" 和 "量" 的变化, 说明本发明方案是非显而易见的, 具有突 出的实质性特点和显著的技术进步, 具有创造性
以上所述, 仅是为了说明本发明的较佳优选实¾例而已, 然而其并非是- 对本发明的限制,任何熟悉本项技术的人员可能利用上述揭示的技术内容加 以变更或修饰为等同变化的等效实施例,都可以按不同要求和性能实施有高 退火点及环保和节能减排的高强度高平整度低粘度特征的平板玻璃及制 4 方法显示屏、 光伏太阳能装置。 可见, 凡是未脱离本发明技术方案的内容, 尤其是权利要求之内容,依据本发明的技术实质对以上实施例所作的任何简 单修改, 等同变化与修饰, 均仍属本发明技术方案的范围内。

Claims

1、 一种有高退火点及环保和节能减排的高强度高平整度低粘度特征的 平板玻璃, 其特征在于:
该玻璃包含氧化硅、 氧化钙、 氧化镁、 氧化铝、 氧化铁、 氧化钠的成份, 按重量百分率计, 在该玻璃中氧化硼的含量为 0-3. 9%, 氧化钠的含量为 0. 01-14%, 氧化铁含量为 0. 01-5%, 氧化氟的含量为 0-2. 8%, 氧化镁含量为 8. 1-22. 2%, 氧化铝含量为 0. 01-39%, 其氧化硅的含量是氧化钙含量的 1. 9 倍- 4. 1倍, 氧化钙的含量是氧化镁的含量的 1. 2倍- 1. 6倍;
该玻璃的退火温度下限(即吸热峰起点温度)为 55(TC- 710 °C ;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0, 3%的范围内;
其抗折强度达 50-180Mp5
2、 根据权利要求 1 所述的有高退火点及环、保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其特征在于: 按重百分率计, 氧化铝的含量是
0. 01-30%, 氧化硅: 氧化钙为 2. 0-3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧化钠为 0. 01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 610°C-710°C;该玻璃在粘度为 l( 5 (帕 .秒) 时的温度为 1500°C- 1640°C ; 粘度为 101 (帕 ·秒)时的温度为 1450°C-1580 。C ; 粘度为 102 (帕 ·秒)时的温度为 1210°C-1350°C ; 粘度为 103 (帕 ·秒) 时的温度为 107(TC- 1230°C ; 该玻璃的抗折强度为 50-180MPa。
3、 根据权利要求 1 所述的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其特征在于: 按重百分率计, 氧化铝的舍量是 0. 01-19%, 氧化硅: 氧化钙为 2. 0-3. 6倍, 氧化钙: 氧化镁为 1. 3-1. 49倍, 氧化钠为 0. 01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 610°C- 680°C ;该玻璃在粘度为 10β·5 (帕 '秒) 时的温度为 15Q(TC- 1 8(TC ; 粘度为 1 Q1 (帕 ·秒)时的温度为 i45CTC-】520 °C ; 粘度为 102 (帕 ·秒)时的温度为 1210°C- 1310。C; 粘虎为 103 (≠ .杪) 时的溢度为 107(TC- 116(TC ; 该玻璃的抗折強度为 50-145MPa。
4、 根据权利要求 i 所述的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其特征在于: 按重百分率计, 氧化铝的含量是
19-30%, 氧化硅: 氧化钙为 2.0-3.6倍, 氧化钙: 氧化镁为 1.3-1.49倍, 氧化钠为 0.01-2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该玻璃的退火温 度下限(即吸热峰起点温度)为 610 - 680 ;该玻璃在粘度为 10β·5(帕 '秒) 时的温度为 1550°C- 1640°C; 粘度为 101 (帕 ·秒)时的温度为 1450°C-1580 °C; 粘度为 102 (帕 ·秒)时的温度为 1210°C- 1350Ό; 粘度为 103 (帕 ·秒) 时的温度为 108{rC-1230°C; 该玻璃的抗折强度为 130- 180MPa。
5、 根据权利要求 1 所述的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其特征在于: 按重百分率计, 氧化铝的含量是 8-30%, 氧化硅: 氧化钙为 2.0-3.6倍, 氧化钙: 氧化镁为 1.3- 1.49倍, 氧 化钠为 0.01- 2%,氧化硼为 0-1%, 氧化氟的含量是 0-1%; 该破璃的退火温庹 下限(即吸热峰起点温度)为 61fTC-6g0 :; 该玻璃在粘度为 10°·5 (帕 '秒) 时的温度为 1520°C- 1640°C; 粘度为 101 (帕 *秒)时的温度为 1450°C-1580 °C; 粘度为 102 (帕 .秒)时的温度为 1210°C- 1350°C; 粘度为 103 (帕 .秒) 时的温度为 1070°C- 1230°C; 该玻璃的抗折强度为 75- 180MPa。
6、 根据权利^^求 1 所述的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃, 其特征在于: 按重量百分率计, 氧化铝的含量 是 19-30°/。, 氧化硼的含量是 0-1%, 氧化钠的含量是 0.01- 2%, 氧化氟的含量 是 0-1%; 该玻璃的退火温度下限(即吸热峰起点温度)为 610°C-71{TC; 该 玻璃在粘度为 10 5(帕,秒)时的温度为 1510°01680 ;粘度为 1(^(帕 ·秒) 时的温度为 1420°C- 1600°C; 粘度为 102 (帕,秒)时的温度为 1270°C- 1360 °C; 粘度为 103 (帕 ·秒)时的温度为 1160°C- 1280°C; 该玻璃的抗折强度为 120- 1漏 pa。
7、 一种液晶显示屏, 包括:
阵列基板, 该阵列基板包括基底及在该基底上的像素结构, 该基底为根 据杈利要求 1-5任一项的有高退 点及环保和节能减排的高强虎高平整度低 粘度特征的平板玻璃制造的玻璃板;
滤色器基板, 该滤色器基板包括基底以及在该基底上的滤色器层, 该基 底为根据权利要求 1-5任一项的有高退火点及环保和节能减排的高强度高平 整度低粘度特征的平板玻璃制造的玻璃板; 液晶层, 夹设在该阵列基板和该滤色器基板之间; 以及
背光源系统。
8、 一种光伏太阳能装置, 该光伏太阳能装置包含太阳能电池以及利用 根椐上述权利要求 1-6任一项的玻璃制造的玻璃基板或外罩板。
9、 根据权利要求 1-6的任一项所迷的有高退火点及环保和节能减排的 高强度高平整度低粘度特征的平板玻璃的制备方法, 其特征在于:
步骤 1, 根据权利要求 1-5任一项所述的玻璃配方配置所需的各种有预 定的必不可少的特别范围内的氧化钠、 氧化铁、 氧化铝、 氧化硅、 氧化钙、 氧化镁、 或还有氧化钛、 氧化钡的成份以及预定的氧化硅、 氧化钙、 氧化镁 之间的特殊比例关系的成份的原料,经混合搅拌之后在对应于各玻璃配方的 熔化温度熔化, 形成预定的粘度的破璃液, 再均化, 澄清, 排出气^, 形成 可流动的熔融体;
步骤 2, 采用浮法工艺、 平拉 艺、格法工艺、压延工艺、 溢流法工艺、 中任一种工艺对玻璃进行成型。
10、 根据权利要求 9所述的方法, 其特征在于:
所述步骤 1包括:
将所备之各类原料, 放置于各自的原料容器之中, 使各种原料通过原料 输送线, 经过计量后, 按所需比例送入原料混合搅拌装置中, 搅拌混合后进 入装载配料的大料管或料仓中;
使配合好的原料进入熔池中, 在对应于各玻璃配方的熔化温度熔化, 形 成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成可流动的熔融体; 步骤 2中使用浮法工艺: 在本工艺中还须预先备好锡窑, 在步骤 1的工 序后, 使熔池的尾部的可流动的熔融体流入锡窑中进行淌平、 抛光、 拉薄的 工艺过程,并经拉边机在工艺规定的方向的导拉和牵引机的牵引,拉出揚槽, 并经逐步降温, 退火, 待冷却后, 经切割, 即可制得所迷玻璃。
11、 根据权利要求 9所述的方法, 其特征在于:
按重量苜分率计, 该玻璃中氧化铝的含量小子等子 30%, 该玻璃在粘度 为 10" (帕 ·秒)时的温度为 1480°C- 1640°C ; 粘度为 101 (帕 .秒)时的温 度为 141 {TC-160{TC ; 粘度为 102 (帕 '秒)时的温度为 1180 °C- 1340 °C ; 粘 度为 103 (帕 '秒)时的温度为 1040 -1220 ; 该玻璃的厚薄差小于 0. 3腿;
SO 该玻璃的可见光透射比在 40%- 95%的范围内; 该玻璃的吸水率在 0-0. 3%的范 围内; 该玻璃的退火温度下限(即吸热峰起点温度)为 550 °C-710O ; 该玻 璃的抗折强度为 50-180MPa; 该玻璃的热膨胀系数在 150 -300Γ的两端数 值的差别为百万分之 1. 0-百万分之 3. 0; 在 55(TC-600°C的两端数值的差别 为百万分之 1. 0-百万分之 2. 8。
4·/
PCT/CN2011/000409 2010-03-18 2011-03-15 平板玻璃及其制备方法 WO2011113302A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/985,116 US9108878B2 (en) 2010-03-18 2011-03-15 Plate glass and manufacturing process thereof
JP2013553757A JP5770314B2 (ja) 2010-03-18 2011-03-15 板ガラス及び調合方法
KR1020137021452A KR101584417B1 (ko) 2010-03-18 2011-03-15 평판유리 및 그 제조방법
EP11755619.1A EP2687491A4 (en) 2010-03-18 2011-03-15 FLAT GLASS AND MANUFACTURING METHOD THEREFOR
RU2013138253/03A RU2583393C2 (ru) 2011-03-15 2011-03-15 Плоское стекло и его способ изготовления, а также жидкокристаллические дисплеи и солнечные фотоэлектрические устройства
ZA2013/06244A ZA201306244B (en) 2010-03-18 2013-08-20 Plate glass and manufacturing process thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010126584.9 2010-03-18
CN201010126584 2010-03-18
CN201010160301 2010-04-30
CN201010160301.2 2010-04-30
CN201010507872.9 2010-10-15
CN201010507872 2010-10-15

Publications (1)

Publication Number Publication Date
WO2011113302A1 true WO2011113302A1 (zh) 2011-09-22

Family

ID=44648439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000409 WO2011113302A1 (zh) 2010-03-18 2011-03-15 平板玻璃及其制备方法

Country Status (6)

Country Link
US (1) US9108878B2 (zh)
EP (1) EP2687491A4 (zh)
JP (1) JP5770314B2 (zh)
KR (1) KR101584417B1 (zh)
WO (1) WO2011113302A1 (zh)
ZA (1) ZA201306244B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107905474A (zh) * 2017-12-04 2018-04-13 佛山市积家装饰材料有限公司 雪花玻璃马赛克及其制备方法和装饰材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299027A1 (en) * 2010-03-18 2015-10-22 Dening Yang Energy-saving and environment protective method for preparing glass with high intensity
CN111233319A (zh) * 2019-12-26 2020-06-05 杨德宁 一种铝硼硅的玻璃组合物的应用
CN111123565B (zh) * 2019-12-31 2022-08-23 江苏奥斯汀光电科技股份有限公司 一种曲面透明液晶屏生产的智能感知方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929497A (en) * 1973-01-31 1975-12-30 Fiberglas Canada Ltd Crystallizable glass suitable for fiber production
SU581097A1 (ru) 1975-12-03 1977-11-25 Государсвенный Научно-Исследовательский Институт Стекла Глушеное стекло
CN1053047A (zh) 1990-01-05 1991-07-17 日本电气硝子株式会社 具有天然大理石状表面花纹的结晶玻璃及其生产方法
US20020011080A1 (en) 1996-08-21 2002-01-31 Nippon Electric Glass Co., Ltd. Method of producing an alkali-free glass
CN1722347A (zh) * 2004-07-15 2006-01-18 日本电气硝子株式会社 平面显示装置用玻璃基板
JP2009091244A (ja) * 2009-01-06 2009-04-30 Asahi Glass Co Ltd 無アルカリガラスの清澄方法
JP2009167089A (ja) * 2007-12-19 2009-07-30 Nippon Electric Glass Co Ltd ガラス基板
CN101784494A (zh) 2007-08-31 2010-07-21 旭硝子株式会社 玻璃板及其制造方法以及tft面板的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1321704A1 (ru) * 1986-01-22 1987-07-07 Государственный научно-исследовательский институт стекла Стекло
JP4635297B2 (ja) * 1999-06-08 2011-02-23 旭硝子株式会社 基板用ガラスおよびガラス基板
WO2001034531A1 (fr) * 1999-11-11 2001-05-17 Nippon Sheet Glass Co., Ltd. Verre plat a tremper
US6949485B2 (en) * 2000-06-01 2005-09-27 Asabi Glass Company, Limited Glass for substrate and glass substrate
JP2001348246A (ja) * 2000-06-01 2001-12-18 Asahi Glass Co Ltd 基板用ガラスおよびガラス基板
US6753280B2 (en) * 2001-06-21 2004-06-22 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent green glass
US7144837B2 (en) * 2002-01-28 2006-12-05 Guardian Industries Corp. Clear glass composition with high visible transmittance
FR2856055B1 (fr) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
JP5131190B2 (ja) * 2006-05-10 2013-01-30 旭硝子株式会社 ディスプレイ基板用フロートガラス及びその製造方法
CN101848873A (zh) 2007-12-19 2010-09-29 日本电气硝子株式会社 玻璃基板
JP5115545B2 (ja) * 2009-09-18 2013-01-09 旭硝子株式会社 ガラスおよび化学強化ガラス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929497A (en) * 1973-01-31 1975-12-30 Fiberglas Canada Ltd Crystallizable glass suitable for fiber production
SU581097A1 (ru) 1975-12-03 1977-11-25 Государсвенный Научно-Исследовательский Институт Стекла Глушеное стекло
CN1053047A (zh) 1990-01-05 1991-07-17 日本电气硝子株式会社 具有天然大理石状表面花纹的结晶玻璃及其生产方法
US20020011080A1 (en) 1996-08-21 2002-01-31 Nippon Electric Glass Co., Ltd. Method of producing an alkali-free glass
CN1722347A (zh) * 2004-07-15 2006-01-18 日本电气硝子株式会社 平面显示装置用玻璃基板
CN101784494A (zh) 2007-08-31 2010-07-21 旭硝子株式会社 玻璃板及其制造方法以及tft面板的制造方法
JP2009167089A (ja) * 2007-12-19 2009-07-30 Nippon Electric Glass Co Ltd ガラス基板
JP2009091244A (ja) * 2009-01-06 2009-04-30 Asahi Glass Co Ltd 無アルカリガラスの清澄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2687491A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107905474A (zh) * 2017-12-04 2018-04-13 佛山市积家装饰材料有限公司 雪花玻璃马赛克及其制备方法和装饰材料

Also Published As

Publication number Publication date
US9108878B2 (en) 2015-08-18
EP2687491A4 (en) 2015-03-18
US20130321751A1 (en) 2013-12-05
EP2687491A1 (en) 2014-01-22
ZA201306244B (en) 2014-04-30
JP2014508703A (ja) 2014-04-10
KR101584417B1 (ko) 2016-01-11
KR20130126687A (ko) 2013-11-20
JP5770314B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
CN102285759B (zh) 有高退火点及环保节能减排的高强度高平整度低粘度特征的平板玻璃的应用及相关部件
JP4984002B1 (ja) 太陽電池用カバーガラス及びその製造方法
TWI491571B (zh) 用於顯示器裝置的玻璃板,用於顯示器裝置的平板玻璃及其製造方法
CN103086586B (zh) 玻璃基板的制造方法
CN104193165B (zh) 一种组合物在有环保和节能减排的高强度、低粘度特征的平板玻璃中的应用
WO2011113305A1 (zh) 彩釉平板玻璃及其制备方法
WO2019153845A1 (zh) 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用
WO2017084194A1 (zh) 一种热膨胀率的低差值、超高强度、高软化点、高应变点的平板玻璃的应用
WO2011113302A1 (zh) 平板玻璃及其制备方法
CN104496184A (zh) 一种高炉热态熔渣微晶玻璃及其制备方法
CN109678341A (zh) 无碱玻璃组合物和无碱玻璃及应用
TW201627244A (zh) 化學強化用玻璃及化學強化用玻璃之製造方法、與化學強化玻璃及具備其之圖像顯示裝置
CN117430333A (zh) 一种强化微晶玻璃和玻璃器件以及电子设备
WO2016159362A1 (ja) ガラス物品
EP2687492A1 (en) Plate glass with colorful glaze layer and manufacuring process thereof
CN209685571U (zh) 一种生产微晶玻璃的专用设备
CN105837038A (zh) 超白浮法玻璃生产方法
US20200180998A1 (en) Chemically temperable glass sheet
CN109650718B (zh) 浮法玻璃及其制备方法和应用
RU2583393C2 (ru) Плоское стекло и его способ изготовления, а также жидкокристаллические дисплеи и солнечные фотоэлектрические устройства
CN112299708A (zh) 一种防眩光玻璃及其制备方法
CN103833221A (zh) 一种具有低热膨胀系数的高铝平板玻璃及其制造工艺
CN117534453A (zh) 一种透光马赛克瓷砖的制备方法
WO2018112995A1 (zh) 一种耐热微晶玻璃器皿配方及其制造工艺
WO2020173425A1 (zh) 一种微晶玻璃及其生产方法与专用设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755619

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201010126584.9

Country of ref document: CN

Date of ref document: 20120321

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201010507872.9

Country of ref document: CN

Date of ref document: 20120321

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201010160301.2

Country of ref document: CN

Date of ref document: 20120321

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13985116

Country of ref document: US

Ref document number: 2011755619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137021452

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013553757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013138253

Country of ref document: RU

Kind code of ref document: A