WO2011128518A1 - Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step - Google Patents

Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step Download PDF

Info

Publication number
WO2011128518A1
WO2011128518A1 PCT/FR2011/000160 FR2011000160W WO2011128518A1 WO 2011128518 A1 WO2011128518 A1 WO 2011128518A1 FR 2011000160 W FR2011000160 W FR 2011000160W WO 2011128518 A1 WO2011128518 A1 WO 2011128518A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroconversion
metals
fraction
catalyst
mpa
Prior art date
Application number
PCT/FR2011/000160
Other languages
French (fr)
Inventor
Jean-Philippe Heraud
Frédéric Morel
Alain Quignard
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN2011800187597A priority Critical patent/CN102821853A/en
Priority to CA2793655A priority patent/CA2793655A1/en
Priority to US13/640,839 priority patent/US20130075303A1/en
Priority to RU2012148117/04A priority patent/RU2570200C2/en
Publication of WO2011128518A1 publication Critical patent/WO2011128518A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/02Multi-step carbonising or coking processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/10Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles
    • C10G49/12Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/005Coking (in order to produce liquid products mainly)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/701Use of spent catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/708Coking aspect, coke content and composition of deposits

Definitions

  • the invention relates to a process for the hydroconversion of heavy petroleum feedstocks into lighter products, recoverable as fuels and / or raw materials for petrochemicals. More particularly, the invention relates to a process for hydroconversion of heavy petroleum feeds comprising a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst and allowing the recovery of the metals in the unconverted residual fraction, in particular those used as catalysts, in order to efficientlyze them in catalytic solutions and to recycle them upstream of the slurry conversion process.
  • the method comprises a hydroconversion step, a gas / liquid separation step, a coking step, a combustion step, a metal extraction step, and a catalyst solution (s) preparation step which is / are recycled (s) in the hydroconversion stage.
  • the conversion of heavy oil loads into liquid products can be done by heat treatments or by hydrogenation treatments, also called hydroconversion.
  • Current research is mainly focused on hydroconversion because heat treatments generally produce poor quality products and a significant amount of coke.
  • the hydroconversion of heavy feeds involves the conversion of the feedstock in the presence of hydrogen and a catalyst.
  • the commercial processes use depending on the load, fixed bed technology, bubbling bed technology or slurry technology.
  • the hydroconversion of heavy charges in fixed bed or bubbling bed is by supported catalysts comprising one or more transition metals (Mo, W, Ni, Co, Ru) on supports of silica / alumina or equivalent type.
  • transition metals Mo, W, Ni, Co, Ru
  • the fixed bed technology is generally limited because the contaminants cause a rapid deactivation of the catalyst thus requiring a frequency of renewal of the catalytic bed too high and therefore too expensive .
  • ebullated bed processes have been developed.
  • the conversion level ebullated bed technologies are generally limited to levels below 80% due to the catalytic system employed and the design of the unit.
  • Hydroconversion technologies operating with slurry technology provide an attractive solution to the disadvantages encountered in the use of the fixed bed or bubbling bed. Indeed, the slurry technology makes it possible to treat heavy loads heavily contaminated with metals, asphaltenes and heteroatoms, while having conversion rates generally greater than 85%.
  • Slurry residue hydroconversion technologies use a dispersed catalyst in the form of very small particles, the size of which is less than 1 mm and preferably of a few tens of microns or less (generally 0.001 to 100 ⁇ m). Due to this small size of the catalysts, the hydrogenation reactions are facilitated by a uniform distribution throughout the reaction zone and the coke formation is greatly reduced.
  • the catalysts, or their precursors are injected with the feed to be converted at the inlet of the reactors.
  • the catalysts pass through the reactors with the feedstocks and the products being converted, and then are driven with the reaction products out of the reactors. They are found after separation into the heavy residual fraction, such as, for example, the unconverted vacuum residue.
  • the catalysts used in slurry are generally sulfurized catalysts preferably containing at least one member selected from the group consisting of Mo, Fe, Ni, W, Co, V and / or Ru.
  • Mo molybdenum and tungsten show much more satisfactory performance than nickel, cobalt or ruthenium and even more than vanadium and iron (N. Panariti et al., Applied Catalysis A: General 204 (2000), 203). -213).
  • hydroconversion technologies of commercialized heavy slurries are known. Examples include EST technology licensed by ENI, Chevron-Lummus-Global licensed VRSH technology, Intevep-licensed HDH and HDHPLUS technologies, UOP-licensed SRC-Uniflex technology, Headwaters licensed technology (HC) 3, etc. ..
  • the small size of the slurry catalysts makes it possible to obtain very high conversion rates, this size is problematic with regard to the separation and the recovery of the catalyst (s) after the reaction. hydroconversion.
  • the catalysts are found after separation in the heavy residual fraction, such as unconverted vacuum residue.
  • a portion of the vacuum residue containing the unconverted fraction and the catalysts is recycled directly to the hydroconversion reactor to increase conversion efficiency.
  • these recycled catalysts generally have no activity or much reduced activity compared to fresh catalyst.
  • the vacuum residue is traditionally used as fuel for the production of heat, electricity and ash. These ashes contain metals and are generally dumped. In this case, the metals are not recovered.
  • the deactivation of the catalysts requires regular replacement thus creating a demand for fresh catalysts.
  • the heavy loads treated contain a high concentration of metals, mainly vanadium and nickel. These metals are largely removed from the charge by settling on the catalysts during the reaction. They are washed away by the catalyst particles leaving the reactor. Similarly, the deactivation of the catalysts is accentuated by the formation of coke, in particular from the high concentration of asphaltenes contained in these feeds.
  • the continuous renewal of the catalytic phase finely dispersed in the reaction zone allows the contact of the hydrogen dissolved in the liquid phase to hydrogenate and hydrotrate the injected heavy load.
  • the amount of catalytic solution to be injected is quite high which represents relatively high industrial operating costs.
  • slurry hydroconversion processes are generally consuming a large amount of catalysts, in particular molybdenum, which has the most active catalyst, but also the most expensive.
  • the costs of fresh catalysts, catalyst separation and metal recovery have a major impact on the profitability of such processes.
  • the selective recovery of molybdenum and its recycling as a catalyst are two essential elements for the industrial valorization of slurry processes.
  • This recovery is also accompanied by those of other metals such as nickel (the one injected and the one recovered in the charge) and the vanadium recovered in the a load whose contents are comparable to that of molybdenum and which can be resold for metallurgical applications.
  • patent application US2008 / 0156700 describes a process for separating catalysts in the form of ultrafine particles resulting from a slurry hydroconversion process comprising a step of precipitation or flocculation of a heavy fraction including metal parts by solvents. of heptane type, a step of separating the heavy fraction of the light fraction by centrifugation and a coking step between 350 ° and 550 ° C under an inert atmosphere to obtain coke containing the catalyst. This coke can be subjected to a metal extraction step.
  • US Pat. No. 6,155,555 describes a process for recovering metals, in particular molybdenum, from catalysts used in heavy-lift hydroconversion processes.
  • This process comprises a coking step between 300 and 1000 ° C, at atmospheric pressure and under an inert atmosphere.
  • the coked product is then divided and subjected to one or two stages of combustion in air at temperatures of between 800 and 1900 ° C. in order to sublimate the molybdenum, which then condenses by cooling on the ashes.
  • the molybdenum is subsequently recovered by an extraction step using a mixture of ammonia and (NH 4 ) 2 CO 3 .
  • 6,511,937 describes a heavy-duty slurry hydroconversion process comprising, after the hydroconversion reaction, a separation step in a high-pressure, low-temperature separator making it possible to separate a very light fraction, a deasphalting step of the entire residual fraction using paraffin C3 to C5 solvents at room temperature, a coking step (427-649 ° C, without air) and / or a combustion step below 649 ° C to produce ash containing the catalyst .
  • This catalyst may subsequently be subjected to metal extraction steps and recycled to the process.
  • the present invention aims to improve the methods of hydroconversion of heavy loads by slurry technology known by allowing the valuation of a residual unconverted fraction resulting from the conversion to slurry fraction highly concentrated in metals and heteroelements and ultimately including the recovery of said metals in said unconverted fraction and the production of catalytic precursors for recycling upstream of the conversion process in slurry mode.
  • the method comprises a hydroconversion step, a gas / liquid separation step, a coking step, a combustion step, a metal extraction step, and a catalyst solution (s) preparation step which is / are recycled (s) in the hydroconversion stage.
  • this process comprises a separation making it possible to maximize the light fraction resulting from the hydroconversion reactor and to minimize the residual fraction.
  • a moderate combustion step avoiding sublimation metals, made it possible to prepare the extraction of the metals contained in the ashes in such a way that very good recovery rates of recyclable metals in the process are possible.
  • the critical stages of this recovery are firstly the concentration of metals on the carbon matrix (via coking) and then the formation of a mineral phase (via the moderate combustion) containing the metallic elements from the catalyst (Mo and Ni). but also the charge (Ni, V and Fe) devoid of carbon.
  • An advantage of the method according to the invention is the recovery of an unconverted residual fraction highly concentrated in metals and heteroelements for the recovery of said metals and the production of catalytic precursors for recycling upstream of the conversion process in slurry mode.
  • Another advantage is the optimization of the conversion of hydroconversion by a gas / liquid separation after hyd conversion operating under operating conditions close to those of the reactor and allowing the effective separation in a single step of a light fraction comprising the future fuel bases (gases, naphtha, light gas oil or even heavy diesel) of the unconverted residual fraction containing solids such as metals.
  • the yield of the light fraction is thus maximized at the same time that the unconverted residual fraction is minimized thereby facilitating the reduced concentration of the metals thereafter.
  • Maintaining the operating conditions during the separation also allows the economical integration of a subsequent treatment of hydrotreating and / or hydrocracking of the light fraction without the need for additional compressors.
  • Another interest is the coking of the unconverted fraction containing the metals allowing an effective metal concentration.
  • Another advantage of the process is the combustion at moderate temperature to separate the organic phase of the inorganic phase containing the metals to facilitate the subsequent extraction of metals from the inorganic phase while avoiding vaporization and / or sublimation (and therefore loss) of metals during combustion.
  • Another advantage of the process is that this process does not require a deasphalting step and the disadvantages associated with (handling of solvents, often toxic, need for a recycling of the solvent after extraction ).
  • the invention relates to a process for the hydroconversion of heavy petroleum slurry feeds enabling the recovery and recycling of metals in the unconverted residual fraction, in particular those used as catalysts.
  • the invention relates to a process for hydroconversion of heavy petroleum feedstocks containing metals comprising:
  • step b optionally a fractionation step comprising a vacuum separation of said residual fraction as obtained in step b), and there is obtained a vacuum residue concentrated in metals,
  • step b) a step of coking said residual fraction as obtained in step b) and / or said vacuum residue as obtained in step b ') making it possible to obtain a solid effluent containing coke
  • the process according to the invention comprises a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst and optionally a solid additive.
  • Hydroconversion is understood to mean hydrogenation, hydrotreatment, hydrodesulfurization, hydrodenitrogenation, hydrodemetallization and hydrocracking reactions.
  • the heavy loads concerned are petroleum hydrocarbon feedstocks such as petroleum residues, crude oils, crude head oils, deasphalted oils, asphalts or desulfaspeating pitches, derivatives of petroleum conversion processes (for example: HCO, FCC slurry, GO heavy / VGO coking, visbreaking residue or similar thermal process, etc.), oil sands or their derivatives, oil shales or their derivatives, or mixtures of such fillers. More generally, herein will be grouped under the term "heavy load” hydrocarbon feeds containing at least 50 wt% of product distilling above 250 ° C and at least 25 wt% distilling above 350 ° C.
  • the heavy charges concerned according to the invention contain metals, essentially V and / or Ni, at a rate of generally at least 50 ppm by weight and most often 100-2000 ppm by weight, at least 0.5% by weight of sulfur, and at least 1% by weight of asphaltenes (heptane asphaltenes), often more than 2% by weight or 5% by weight, of 25% by weight or more of asphaltenes attainable; they also contain condensed aromatic structures which may contain heteroelements refractory to conversion.
  • the heavy feedstocks concerned are unconventional oils of the heavy crude type (API ° between 18 and 25 and a viscosity of between 10 and 100 cP), the extra heavy mills (API ° between 7 and 20 and viscosity between 100 and 10,000 cP) and oil sands (API ° 7 to 12 ° API and a viscosity of less than 10,000 cP) present in large quantities in the Athabasca region of Canada and the Orinoco Venezuela where reserves are estimated at 1700 Gb and 1300 Gb respectively.
  • These unconventional oils are also characterized by high levels of residues under vacuum, asphaltenes and heteroelements (sulfur, nitrogen, oxygen, vanadium, nickel, etc.) which require conversion steps to commercial gasoline type products. specific diesel or heavy fuel oil.
  • the heavy charge is mixed with a hydrogen stream and a catalyst as dispersed as possible to obtain a hydrogenating activity as uniformly distributed as possible in the hydroconversion reaction zone.
  • a solid additive promoting the hydrodynamics of the reactor is also added.
  • This mixture feeds the catalytic hydroconversion section into slurry.
  • This section consists of a preheating furnace for the charge and hydrogen and a reaction section consisting of one or more reactors arranged in series and / or in parallel, according to the required capacity. In the case of series reactors, one or more separators may be present on the effluent at the head of each of the reactors.
  • hydrogen can feed one, several or all of the reactors in equal or different proportions.
  • the catalyst can feed one, several or all the reactors in equal or different proportions.
  • the catalyst is kept in suspension in the reactor, flows from the bottom to the top of the reactor with the gas and the feedstock, and is evacuated with the effluent.
  • at least one (and preferably all) of the reactors is provided with an internal recirculation pump.
  • the operating conditions of the slurry catalytic hydroconversion section are in general a pressure of 2 to 35 Pa, preferably 10 to 25 Pa, a hydrogen partial pressure ranging from 2 to 35 MPa and preferably from 10 to 25 MPa. a temperature of between 300 ° C and 500 ° C, preferably 420 ° C to 480 ° C, a contact time of 0.1 h to 10 h with a preferred duration of 0.5h to 5 h.
  • the conversion rate mentioned above is defined as the mass fraction of organic compounds having a boiling point greater than 500 ° C at the inlet of the reaction section minus the mass fraction of organic compounds having a boiling point. greater than 500 ° C at the outlet of the reaction section, all divided by the mass fraction of organic compounds having a boiling point greater than 500 ° C at the inlet of the reaction section.
  • the slurry catalyst is in dispersed form in the reaction medium. It can be formed in situ but it is preferable to prepare it outside the reactor and inject it, usually continuously, with the charge.
  • the catalyst promotes the hydrogenation of radicals from thermal cracking and reduces coke formation. When coke is formed, it is removed by the catalyst.
  • the slurry catalyst is a sulfurized catalyst preferably containing at least one member selected from the group consisting of Mo, Fe, Ni, W, Co, V, Ru. These catalysts are generally monometallic or bimetallic (by combining, for example, a non-noble group VIIIB element (Co, Ni, Fe) and a group VIB element (Mo, W)). NiMo, Ni or Fe catalysts are preferably used.
  • the catalysts used may be heterogeneous solid powders (such as natural ores, iron sulphate, etc.), dispersed catalysts derived from water-soluble precursors.
  • water soluble dispersed catalyst such as phosphomolybdic acid, ammonium molybdate, or a mixture of Mo or Ni oxide with aqueous ammonia.
  • the catalysts used are derived from soluble precursors in an organic phase ("oil soluble dispersed catalyst”).
  • the precursors are organometallic compounds such as the naphthenates of Mo, Co, Fe, or Ni or such as multi-carbonyl compounds of these metals, for example 2-ethyl hexanoates of Mo or Ni, acetylacetonates of Mo or Ni , C7-C12 fatty acid salts of Mo or W, etc.
  • the catalysts can be used in the presence of a surfactant to improve the dispersion of metals, when the catalyst is bimetallic.
  • the catalysts are in the form of dispersed particles, colloidal or otherwise depending on the nature of the catalyst. Such precursors and catalysts that can be used in the process according to the invention are widely described in the literature.
  • the catalysts are prepared before being injected into the feed.
  • the preparation process is adapted according to the state in which the precursor is and of its nature.
  • the precursor is sulfided (ex-situ or in-situ) to form the catalyst dispersed in the feedstock.
  • the precursor is mixed with a petroleum feedstock (which may be a part of the feedstock to be treated, an external feedstock, a recycled feedstock, etc.), the mixture is optionally dried at least in part, and then or simultaneously sulphurized by the addition of a sulfur compound (H 2 S preferred) and heated.
  • H 2 S sulfur compound
  • the preferred solid additives are inorganic oxides such as alumina, silica, mixed Al / Si oxides, supported spent catalysts (for example, on alumina and / or silica) containing at least one group VIII element (such as Ni, Co) and / or at least one group VI B element (such as Mo, W).
  • group VIII element such as Ni, Co
  • group VI B element such as Mo, W
  • the catalysts described in the application US2008 / 177124 Carbonaceous solids with a low hydrogen content (for example 4% hydrogen), possibly pretreated, can also be used. Mixtures of such additives can also be used. Their particle sizes are preferably less than 1 mm.
  • the content of any solid additive present at the inlet of the reaction zone of the slurry hydroconversion process is between 0 and 10% by weight and preferably between 1 and 3% by weight, and the content of the catalytic solutions is between 0 and 10% by weight.
  • % wt preferably between 0 and 1 wt%.
  • the known slurry technology heavy charge hydroconversion processes are EST of ENI operating at temperatures of the order of 400-420 ° C, under pressures of 10-16 MPa with a particular catalyst (molybdenite); (HC) 3 of Headwaters operating at temperatures of the order of 400-450 ° C, at pressures of 10-15 MPa with Fe pentacarbonyl or Mo 2-ethyl hexanoate, the catalyst being dispersed in the form of colloidal particles; HDH and HDHPLUS licensed by Intevep / PDVSA operating at temperatures of the order of 420-480 ° C, at pressures of 7-20 MPa, using a dispersed metal catalyst; Chevron CASH using a Mo or W sulfide catalyst prepared by aqueous means; SRC-Uniflex UOP operating at temperatures of the order of 430-480 ° C, under pressures of 10-15 MPa; VCC developed by Veba and belonging to BP operating at temperatures of the order of 400-480 ° C, at pressures
  • HPHT high pressure and high temperature separator
  • This separation section is preferably carried out under operating conditions close to those of the reactor, which are in general a pressure of 2 to 35 MPa with a preferred pressure of 10 to 25 MPa, a hydrogen partial pressure ranging from 2 to 35 MPa. and preferably from 10 to 25 MPa and a temperature of between 300 ° C and 500 ° C, preferably 380 ° C to 460 ° C.
  • the residence time of the effluent in this separation section is 0.5 to 60 minutes and preferably 1 to 5 minutes.
  • the light fraction contains, for the most part, the compounds boiling at at most 300 ° C., or even at most 400 ° C. or 500 ° C .; they correspond to the compounds present in gases, naphtha, light diesel or even heavy diesel.
  • the cut contains very predominantly these compounds, because the separation is not made according to a precise cutting point, it is more like a flash. If we had to speak in terms of cutting point, we could say that it is between 200 ° and 400 ° or 450 ° C.
  • the valorization of the light fraction is not the subject of the present invention and these methods are well known to those skilled in the art.
  • the light fraction obtained after the separation can undergo at least one hydrotreatment and / or hydrocracking step, the objective being to bring the different cuts to the specifications (sulfur content, smoke point, cetane, aromatic content, etc.).
  • the light fraction may also be mixed with another feed before being directed to a hydrotreatment and / or hydrocracking section.
  • an external cut generally coming from another process existing in the refinery or possibly outside the refinery can be brought before the hydrotreatment and / or the hydrocracking, advantageously the external cut is for example the VGO resulting from the fractionation crude oil (VGO straight-run), conversion-derived VGO, FCC light cycle oil (LCO) or HCO (heavy cycle oil).
  • hydration and / or hydrocracking after hydration conversion can be done conventionally via a conventional intermediate separation section (with decompression) using, for example, after the high-pressure high-temperature separator, a low temperature high pressure separator and / or atmospheric distillation and / or vacuum distillation.
  • the hydrotreatment and / or hydrocracking section is directly integrated into the hydroconversion section without intermediate decompression.
  • the light fraction is sent directly, without additional separation and decompression steps to the hydrotreatment and / or hydrocracking section.
  • This last embodiment makes it possible to optimize pressure and temperature conditions, avoids additional compressors and thus minimizes the costs of additional equipment.
  • the residual fraction resulting from the separation for example by the separator
  • HPHT HPHT
  • containing the metals and a fraction of solid particles used as a possible additive and / or formed during the reaction can be directed to a fractionation step.
  • This fractionation is optional and comprises a vacuum separation, for example one or more flash flasks and / or, preferably, a vacuum distillation, making it possible to concentrate a metal-rich vacuum residue at the bottom of the flask or column. recover at the head of the column one or more effluents.
  • the residual fraction resulting from the decompression-free separation step is fractionated by vacuum distillation into at least one vacuum distillate fraction and a vacuum residue fraction, at least a portion and preferably all of said fraction residue under vacuum being sent to the coking step, at least a portion and preferably all of said vacuum distillate fraction being preferably subjected to at least one hydrotreatment and / or hydrocracking step.
  • the liquid effluent (s) of the vacuum distillate fraction thus produced will (are) usually be directed to a small extent to the slurry hydroconversion unit where they can be directly recycled. in the zone reaction or it (s) can (wind) be used for the preparation of catalytic precursors before injection into the load.
  • Another part of the effluent (s) is directed towards the hydrotreating and / or hydrocracking section, optionally mixed with other fillers, for example the light fraction derived from the HPHT separator or a vacuum distillate originating from of another unit, in equal or different proportions depending on the quality of the products obtained.
  • the objective of the vacuum distillation is to increase the efficiency of the liquid effluents for a subsequent treatment of hydrotreatment and / or hydrocracking and thus to increase the yield of fuel bases. At the same time, the amount of the residual fraction containing the metals is reduced, thus facilitating the concentration of the metals.
  • the residual fraction resulting from the no-decompression separation (for example via the HPHT separator) and / or the vacuum residue fraction of the vacuum separation (for example withdrawn at the bottom of the vacuum distillation column) are then directed to a thermal conversion step. coking type. This step has the objective of concentrating the metals in the effluent to be subsequently treated by combustion, by reducing its quantity, and to maximize the liquid effluent yield for the hydrotreatment and / or hydrocracking treatment.
  • the coking step may be by delayed coking or by fluid bed coking ("fluid-coking” or "flexi-coking”).
  • fluid bed coking the reactor temperature is above 490 ° C, preferably between 500-550 ° C, at atmospheric pressure.
  • coking takes place by delayed coking in at least two maturation flasks.
  • the load Before being sent to the maturation flask, the load is heated by heating ovens.
  • the operating conditions are a temperature at the outlet of the charging furnaces of between 460 and 530 ° C., preferably 480 and 510 ° C.
  • the recycle rate of the unconverted fraction of the maturation flask is less than 20% wt. cool, preferably less than 10% by weight.
  • Coking takes place under an inert atmosphere. Coking of the fresh load is ensured continuously through regular switching between two maturation balls, one being in the cocking phase while the other is in the decocking phase.
  • the delayed coking step produces a solid effluent containing coke (and metals) and a liquid effluent.
  • the liquid effluent is generally separated by distillation.
  • At least a portion, and preferably all, of the liquid effluent produced during coking and having a boiling point below a temperature of 300 to 400 ° C can be sent to the hydrotreatment and / or hydrocracking section mixed with the light fraction of the HPHT separator and / or with an external cut.
  • the liquid effluent produced during coking having a boiling point greater than a temperature of between 300 and 400 ° C. is preferably mixed with the heavy hydrocarbon feedstock upstream of the hydroconversion section. in slurry. It can also be sent to the hydrotreatment and / or hydrocracking section mixed with the light fraction of the HPHT separator and / or with an external cut. It can also be sent to the vacuum distillation stage mixed with the residual fraction of the HPHT separator.
  • At least a portion, and preferably all, of the solid effluent containing coke with a high concentration of metals is directed to a moderate combustion step.
  • a portion of the solid effluent containing coke may be recycled as an additive in the hydroconversion stage.
  • the solid effluent containing coke is directed to a combustion stage at moderate temperature and in the presence of oxygen.
  • a preliminary step is required to separate the organic phase (coke) from the inorganic phase containing the metals.
  • the objective of the combustion step is to obtain ash containing the easily recoverable metals in the subsequent metal recovery units, by burning the organic phase or carbon phase of the solid effluent at a temperature and pressure that limit the vaporization and / or sublimation of metals, especially that of molybdenum (sublimation temperature of about 700 ° C for Mo0 3 ).
  • the step of reducing the organic phase consists of a combustion at moderate temperature in order to concentrate the metals, without significant loss by vaporization and / or sublimation towards the fumes, in a mineral phase which may contain a proportion of organic phase ranging from 0 to 100 wt%, preferably 0 wt% to 40 wt%.
  • the operating conditions of this combustion are in general a pressure of from 0.1 to 1 MPa, preferably from 0.1 to 0.5 MPa, a temperature of 200 to 700 ° C., preferably of 400 to 550 ° C.
  • the combustion is done in the presence of air.
  • the gaseous effluent resulting from the combustion requires purification steps in order to reduce the emission of sulfur and nitrogen compounds into the atmosphere.
  • the processes conventionally used by those skilled in the field of air treatment are carried out under the operating conditions necessary to meet the standards in force in the country of operation of such a hydrocarbon feedstock treatment. .
  • the solid resulting from the combustion is a mineral phase containing all, or almost all, the metal elements contained in the extract, in the form of ash.
  • Ashes from combustion are sent to a metal extraction step in which the metals are separated from one another in one or more substeps. This recovery of the metals is necessary because the simple recycling of the ashes in the hydroconversion stage shows a very weak catalytic activity.
  • the metal extraction step makes it possible to obtain several effluents, each effluent containing a specific metal, for example Mo, Ni or V, generally in salt or oxide form.
  • Each effluent containing a catalyst metal is directed to a step of preparation of an aqueous or organic solution based on the metal identical to the catalyst or its precursor used in the hydroconversion stage.
  • the effluent containing a metal from the feed being non-recoverable as a catalyst (such as vanadium for example) can be recovered outside the process.
  • the operating conditions, fluids and / or extraction methods used for the various metals are considered to be known to those skilled in the art and already used industrially, as for example described in Marafi et al., Resources, Conservation and Recycling. 53 (2008) 1-26, US4432949, US4514369, US4544533, US4670229 or US2007 / 0025899.
  • the various known metal extraction routes generally include leaching by acidic and / or basic solutions, ammonia or ammonia salts, bioleaching by microorganisms, low temperature heat treatment ( roasting) by sodium or potassium salts, chlorination or the recovery of metals electrolytically.
  • the acid leaching may be by inorganic acids (HCl, H 2 SO 4, HNO 3) or organic acids (oxalic acid, lactic acid, citric acid, glycolic acid, phthalic acid, malonic acid, succinic acid, salicylic acid, tartaric acid. ..).
  • HCl inorganic acids
  • HNO 3 organic acids
  • oxalic acid lactic acid, citric acid, glycolic acid, phthalic acid, malonic acid, succinic acid, salicylic acid, tartaric acid. ..
  • ammonia, salts of ammonia, sodium hydroxide or Na 2 CO 3 are generally used.
  • oxidizing agents H2O2, Fe (N0 3 ) 3 , Al (N0 3 ) 3 ...) may be present to facilitate the extraction.
  • the metals in solution they can be isolated by selective precipitation (at different pH and / or with different agents) and / or by extraction agents (oximes, beta-diketone ).
  • the metal extraction step according to the invention comprises leaching with at least one acidic and / or basic solution.
  • the metals recovered after the extraction step are generally in the form of salt or oxide.
  • the preparation of the catalytic solutions for producing the organic or aqueous solutions is known to those skilled in the art and has been described in the hydroconversion part.
  • the preparation of catalytic solutions concerns especially molybdenum and nickel metals, vanadium being generally valorized as vanadium pentoxide, or in combination with iron, for the production of ferrovanadium, outside the process.
  • the recovered metal recovery rate as a catalyst for the slurry or vanadium hydroconversion process is at least 50 wt%, preferably at least 65 wt% and more generally 70 wt%.
  • Figure 1 shows a process of hydroconversion of heavy oil loads incorporating a slurry technology without recovery of metals.
  • FIG. 2 describes a process for hydroconversion of heavy petroleum feedstocks according to the invention.
  • the installation and the method according to the invention are essentially described. We will not repeat the operating conditions described above.
  • charge 1 feeds the catalytic hydroconversion section in slurry A.
  • This slurry catalytic hydroconversion section consists of a preheating furnace for charge 1 and hydrogen 2 and a reaction section. consisting of one or more reactors arranged in series and / or in parallel, according to the required capacity.
  • the catalyst 4 or its precursor is also injected, as well as the optional additive 3.
  • the catalyst 4 is kept in suspension in the reactor, flows from the bottom to the top of the reactor with the feedstock, and is evacuated with the effluent.
  • the effluent 5 resulting from the hydroconversion is directed to a high-pressure and high-temperature separation section B which makes it possible to separate a fraction converted into the gaseous state 6, called the light fraction, and a residual unconverted liquid / solid fraction.
  • the light fraction 6 can be directed to a hydrotreatment and / or hydrocracking section C.
  • An external cut 7 generally coming from another process existing in the refinery or possibly outside the refinery can be brought before the hydrotreatment and / or hydrocracking.
  • the unconverted residual fraction 8 containing the catalyst and a solid particle fraction optionally used as an additive and / or formed during the reaction is directed to a fractionation step D.
  • Fractionation step D is preferably vacuum distillation.
  • the metal-rich vacuum residue is recovered as a very high viscosity fuel or as a solid fuel after pelleting, by example to produce heat and electricity on site or outside or as fuel in cement works. Metals are, a priori, not recovered.
  • the effluent (s) 9 thus produced will (are) usually be directed via line 24 to a small extent to the A slurry hydroconversion unit where they can be directly recycled to the reaction zone or it (s) can (wind) be used for the preparation of catalytic precursors before injection in the feedstock 1 and for the other part to the hydrotreating and / or hydrocracking unit C via the line 25 mixed with the effluents 6 and or 7 in equal or different proportions depending on the quality of the products obtained.
  • the steps (and reference marks) for hydroconversion, HPHT separation, hydrotreatment and / or hydrocracking and vacuum distillation are identical to FIG. vacuum distillation D is directed to a thermal conversion step of coking type E to concentrate the effluent 10.
  • the liquid effluent produced during coking and having a boiling point below a temperature of between 300 and 400 ° C. C (LCGO) 11 may be sent to the hydrotreatment / hydrocracking section C in mixture via line 22 with effluent 6 and / or 7.
  • the liquid product having a boiling point greater than a temperature of between 300 and 400 ° C (HCGO) 12 is preferably sent to the slurry conversion section A via line 23 in admixture with feedstock 1. It can also be sent to the hydrotreatment / hydrocracking section C in mixture via line 28 ave c the effluent 6 and / or 7, and / or to the vacuum distillation stage D via the line 29 mixed with the effluent 8.
  • the solid effluent containing coke 13 highly concentrated in metals is partially directed and preferably all, to a step of reducing the organic phase by combustion at moderate temperature F to very strongly concentrate the metals, without significant loss by vaporization and / or sublimation to the fumes.
  • a smaller portion of the solid effluent 13 can be sent as additive 3 via line 50 in hydroconversion step A.
  • the gaseous effluent from combustion 14 requires purification steps (not shown) to reduce the emission of sulfur and nitrogen compounds into the atmosphere.
  • the product 15 resulting from the combustion F is a mineral phase containing all, or almost all, the metal elements contained in the solid 13 in the form of ash.
  • the product is sent to a metal extraction step G in which the metals are separated from one another in one or more sub-steps.
  • the effluent 16 from the extraction G is composed of a molybdenum type metal in the form of salt or oxide.
  • This effluent 16 is then directed to a preparation step H of an organic or aqueous solution based on molybdenum 18 identical to the catalyst 4 or its precursor recycled partially or wholly in the hydroconversion step in slurry A via the line 40.
  • the effluent 17 from the extraction G is composed of a nickel-type metal in the form of salt or oxide.
  • This effluent 17 is then directed to a preparation step I of an organic or aqueous nickel-based solution 19 identical to the catalyst 4 or its precursor recycled partially or wholly in the hydroconversion step in slurry A via the line 41.
  • the effluent 20 from the extraction G is composed of a vanadium type metal in salt or oxide form. This effluent can be recovered for example as vanadium pentoxide, or in combination with iron, for the production of ferrovanadium.
  • the hydroconversion uses a finely dispersed catalyst of nickel and molybdenum type with a concentration of 160 ppm by weight and 600 ppm by weight respectively. 'hydrogen.
  • the industrial unit has a capacity of 50,000 barrels per day and a utilization rate of 90% per year, the quantity of nickel and molybdenum consumed per year is therefore 0.4 and 1.6 kt / year respectively.
  • the operating cost is $ 100 million per year.
  • the process according to the invention makes it possible to recover a large part of the metals, nickel and molybdenum, present in the unconverted fraction of the effluent resulting from hydroconversion into slurry.
  • the recovered metal recovery rate as a catalyst for the slurry hydroconversion process is at least 50 wt%, preferably at least 65 wt%, and more generally 70 wt%.
  • This recycling of metals can therefore reduce the operating cost from $ 100 million a year to $ 30 million a year.
  • the saving thus achieved is 70 million dollars makes it possible initially to pay the additional investments necessary for the recovery of these metals.
  • the vanadium present in the heavy load at 400 ppm wt can be valorized as ferrovanadium.
  • the sale of vanadium is estimated, considering an observed average cost of 40 k $ / t on the metal market over the past 5 years, at $ 12 million a year. This sale will also make it possible in the first time to pay the additional investments necessary for the recovery of these metals.
  • the recovery of these metals in the unconverted residual fraction reduces the overall quantity of nickel and molybdenum used and thus reduces the environmental impact of the slurry hydroconversion process.
  • the amount of additional catalyst is reduced to 0.1 t / year for nickel and 0.5 t / year for molybdenum compared to 0.4 t / year and 1.6 t / year without recycle.

Abstract

The invention relates to a method for the hydroconversion of heavy petroleum feedstocks, comprising a step of hydroconversion of the feedstock in at least one reactor which contains a catalyst in slurry and enables the recovery of metals in the unconverted residual fraction, in particular those that are not used as catalysts. The method includes a hydroconversion step, a gas/liquid separation step, a coking step, a combustion step, a metal extraction step, and a step of preparing catalytic solutions which are recycled in the hydroconversion step.

Description

PROCEDE D'HYDROCONVERSION DE CHARGES PETROLIERES VIA UNE TECHNOLOGIE EN SLURRY PERMETTANT LA RECUPERATION DES METAUX DU CATALYSEUR ET DE LA CHARGE METTANT EN OEUVRE UNE ETAPE DE COKEFACTION  PROCESS FOR HYDROCONVERSION OF PETROLEUM LOADS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A COKEFACTION STEP
L'invention concerne un procédé d'hydroconversion de charges lourdes pétrolières en produits plus légers, valorisables comme carburants et/ou matières premières pour la pétrochimie. Plus particulièrement, l'invention concerne un procédé d'hydroconversion de charges lourdes pétrolières comportant une étape d'hydroconversion de la charge dans au moins un réacteur contenant un catalyseur en slurry et permettant la récupération des métaux dans la fraction résiduelle non convertie, notamment ceux utilisés comme catalyseurs, afin de les valoriser en solutions catalytiques et de les recycler en amont du procédé de conversion en slurry. Le procédé comprend une étape d'hydroconversion, une étape de séparation gaz/liquide, une étape de cokéfaction, une étape de combustion, une étape d'extraction de métaux et une étape de préparation de solution(s) catalytique(s) qui est/sont recyclée(s) dans l'étape d'hydroconversion. The invention relates to a process for the hydroconversion of heavy petroleum feedstocks into lighter products, recoverable as fuels and / or raw materials for petrochemicals. More particularly, the invention relates to a process for hydroconversion of heavy petroleum feeds comprising a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst and allowing the recovery of the metals in the unconverted residual fraction, in particular those used as catalysts, in order to valorize them in catalytic solutions and to recycle them upstream of the slurry conversion process. The method comprises a hydroconversion step, a gas / liquid separation step, a coking step, a combustion step, a metal extraction step, and a catalyst solution (s) preparation step which is / are recycled (s) in the hydroconversion stage.
La conversion de charges lourdes pétrolières en produits liquides peut se faire par des traitements thermiques ou par des traitements d'hydrogénation, aussi appelé hydroconversion. Les recherches actuelles sont principalement orientées sur l'hydroconversion, car les traitements thermiques produisent généralement des produits de qualité médiocre et une quantité non négligeable de coke. The conversion of heavy oil loads into liquid products can be done by heat treatments or by hydrogenation treatments, also called hydroconversion. Current research is mainly focused on hydroconversion because heat treatments generally produce poor quality products and a significant amount of coke.
L'hydroconversion de charges lourdes comprend la conversion de la charge en présence d'hydrogène et d'un catalyseur. Les procédés commercialisés utilisent selon la charge, une technologie en lit fixe, une technologie en lit bouillonnant ou une technologie slurry.  The hydroconversion of heavy feeds involves the conversion of the feedstock in the presence of hydrogen and a catalyst. The commercial processes use depending on the load, fixed bed technology, bubbling bed technology or slurry technology.
L'hydroconversion de charges lourdes en lit fixe ou en lit bouillonnant se fait par des catalyseurs supportés, comprenant un ou plusieurs métaux de transition (Mo, W, Ni, Co, Ru) sur des supports de types silice/alumine ou équivalent.  The hydroconversion of heavy charges in fixed bed or bubbling bed is by supported catalysts comprising one or more transition metals (Mo, W, Ni, Co, Ru) on supports of silica / alumina or equivalent type.
Pour la conversion de charges lourdes particulièrement chargées en hétéroatomes, en métaux et en asphaltènes, la technologie en lit fixe est généralement limitée, car les contaminants provoquent une désactivation rapide du catalyseur nécessitant ainsi une fréquence de renouvellement du lit catalytique trop élevée et donc trop coûteuse. Afin de pouvoir traiter ce type de charges, des procédés en lit bouillonnant ont été développés. Toutefois, le niveau de conversion des technologies en lit bouillonnant est généralement limité à des niveaux inférieurs à 80 % du fait du système catalytique employé et de la conception de l'unité. For the conversion of heavy charges particularly charged to heteroatoms, metals and asphaltenes, the fixed bed technology is generally limited because the contaminants cause a rapid deactivation of the catalyst thus requiring a frequency of renewal of the catalytic bed too high and therefore too expensive . In order to be able to treat this type of charges, ebullated bed processes have been developed. However, the conversion level ebullated bed technologies are generally limited to levels below 80% due to the catalytic system employed and the design of the unit.
Les technologies d'hydroconversion fonctionnant avec une technologie slurry fournissent une solution attractive aux inconvénients rencontrés dans l'utilisation du lit fixe ou du lit bouillonnant. En effet, la technologie slurry permet de traiter des charges lourdes fortement contaminées en métaux, asphaltènes et hétéroatomes, tout en présentant des taux de conversion généralement supérieure à 85 %.  Hydroconversion technologies operating with slurry technology provide an attractive solution to the disadvantages encountered in the use of the fixed bed or bubbling bed. Indeed, the slurry technology makes it possible to treat heavy loads heavily contaminated with metals, asphaltenes and heteroatoms, while having conversion rates generally greater than 85%.
Les technologies d'hydroconversion de résidus en slurry utilisent un catalyseur dispersé sous forme de très petites particules, dont la taille est inférieure à 1 mm et de préférence de quelques dizaines de microns ou moins (généralement de 0.001 à 100 pm). Grâce à cette petite taille des catalyseurs, les réactions d'hydrogénation sont facilitées par une répartition uniforme dans toute la zone réactionnelle et la formation de coke est fortement réduite. Les catalyseurs, ou leurs précurseurs, sont injectés avec la charge à convertir à l'entrée des réacteurs. Les catalyseurs traversent les réacteurs avec les charges et les produits en cours de conversion, puis ils sont entraînés avec les produits de réaction hors des réacteurs. On les retrouve après séparation dans la fraction résiduelle lourde, comme par exemple le résidu sous vide non converti. Les catalyseurs utilisés en slurry sont généralement des catalyseurs sulfurés contenant de préférence au moins un élément choisi dans le groupe formé par Mo, Fe, Ni, W, Co, V et/ou Ru. Généralement, le molybdène et le tungstène montrent des performances beaucoup plus satisfaisantes que le nickel, le cobalt ou le ruthénium et encore plus que le vanadium et le fer (N. Panariti et al., Applied Catalysis A : General 204 (2000), 203-213). Slurry residue hydroconversion technologies use a dispersed catalyst in the form of very small particles, the size of which is less than 1 mm and preferably of a few tens of microns or less (generally 0.001 to 100 μm). Due to this small size of the catalysts, the hydrogenation reactions are facilitated by a uniform distribution throughout the reaction zone and the coke formation is greatly reduced. The catalysts, or their precursors, are injected with the feed to be converted at the inlet of the reactors. The catalysts pass through the reactors with the feedstocks and the products being converted, and then are driven with the reaction products out of the reactors. They are found after separation into the heavy residual fraction, such as, for example, the unconverted vacuum residue. The catalysts used in slurry are generally sulfurized catalysts preferably containing at least one member selected from the group consisting of Mo, Fe, Ni, W, Co, V and / or Ru. Generally, molybdenum and tungsten show much more satisfactory performance than nickel, cobalt or ruthenium and even more than vanadium and iron (N. Panariti et al., Applied Catalysis A: General 204 (2000), 203). -213).
Les technologies d'hydroconversion de charges lourdes en slurry commercialisées sont connues. Citons par exemple la technologie EST licenciée par ENI, la technologie VRSH licenciée par Chevron-Lummus-Global, les technologies HDH et HDHPLUS licenciée par Intevep, la technologie SRC-Uniflex licenciée par UOP, la technologie (HC)3 licenciée par Headwaters, etc..  The hydroconversion technologies of commercialized heavy slurries are known. Examples include EST technology licensed by ENI, Chevron-Lummus-Global licensed VRSH technology, Intevep-licensed HDH and HDHPLUS technologies, UOP-licensed SRC-Uniflex technology, Headwaters licensed technology (HC) 3, etc. ..
Bien que la petite taille des catalyseurs en slurry permet d'obtenir des taux de conversion très élevés, cette taille s'avère problématique en ce qui concerne la séparation et la récupération du ou des catalyseurs après la réaction d'hydroconversion. Les catalyseurs se retrouvent après séparation dans la fraction résiduelle lourde, comme par exemple le résidu sous vide non converti. Dans certains procédés, une partie du résidu sous vide contenant la fraction non convertie et les catalyseurs, est recyclée directement dans le réacteur d'hydroconversion pour augmenter le rendement de la conversion. Cependant, ces catalyseurs recyclés ont généralement aucune activité ou une activité très réduite comparée à celle d'un catalyseur frais. En plus, le résidu sous vide est traditionnellement utilisé comme combustible pour la production de chaleur, d'électricité et de cendres. Ces cendres contiennent les métaux et sont généralement mis en déchetterie. Dans ce cas, les métaux ne sont donc pas récupérés. Although the small size of the slurry catalysts makes it possible to obtain very high conversion rates, this size is problematic with regard to the separation and the recovery of the catalyst (s) after the reaction. hydroconversion. The catalysts are found after separation in the heavy residual fraction, such as unconverted vacuum residue. In some processes, a portion of the vacuum residue containing the unconverted fraction and the catalysts is recycled directly to the hydroconversion reactor to increase conversion efficiency. However, these recycled catalysts generally have no activity or much reduced activity compared to fresh catalyst. In addition, the vacuum residue is traditionally used as fuel for the production of heat, electricity and ash. These ashes contain metals and are generally dumped. In this case, the metals are not recovered.
De plus, la désactivation des catalyseurs nécessite un remplacement régulier créant ainsi une demande de catalyseurs frais. Les charges lourdes traitées contiennent une forte concentration de métaux, essentiellement du vanadium et du nickel. Ces métaux sont en grande partie éliminés de la charge en se déposant sur les catalyseurs pendant la réaction. Ils sont emportés par les particules de catalyseurs sortant du réacteur. De même, la désactivation des catalyseurs est accentuée par la formation de coke provenant notamment de la forte concentration d'asphaltènes contenue dans ces charges.  In addition, the deactivation of the catalysts requires regular replacement thus creating a demand for fresh catalysts. The heavy loads treated contain a high concentration of metals, mainly vanadium and nickel. These metals are largely removed from the charge by settling on the catalysts during the reaction. They are washed away by the catalyst particles leaving the reactor. Similarly, the deactivation of the catalysts is accentuated by the formation of coke, in particular from the high concentration of asphaltenes contained in these feeds.
Le renouvellement continu de la phase catalytique finement dispersée dans la zone réactionnelle permet au contact de l'hydrogène dissout dans la phase liquide d'hydrogéner et d'hydrotraiter la charge lourde injectée. Afin d'assurer un niveau de conversion élevé et un hydrotraitement maximal de la charge, la quantité de solution catalytique à injecter est assez importante ce qui représente des coûts opératoires à l'échelle industrielle relativement élevés. Ainsi, les procédés d'hydroconversion en slurry sont généralement consommateur de grande quantité de catalyseurs, notamment en molybdène qui présente le catalyseur le plus actif, mais aussi le plus onéreux. Les coûts de catalyseurs frais, de séparation des catalyseurs et de récupération des métaux ont un impact majeur sur la rentabilité de tels procédés. La récupération sélective du molybdène et son recyclage comme catalyseur sont deux éléments indispensables pour la valorisation industrielle des procédés en slurry. Cette récupération s'accompagne aussi de celles des autres métaux comme le nickel (celui injecté et celui récupéré dans la charge) et le vanadium récupéré dans la charge dont les teneurs sont comparables à celle du molybdène et qui peut être revendu pour des applications métallurgiques. The continuous renewal of the catalytic phase finely dispersed in the reaction zone allows the contact of the hydrogen dissolved in the liquid phase to hydrogenate and hydrotrate the injected heavy load. In order to ensure a high level of conversion and a maximum hydrotreatment of the feedstock, the amount of catalytic solution to be injected is quite high which represents relatively high industrial operating costs. Thus, slurry hydroconversion processes are generally consuming a large amount of catalysts, in particular molybdenum, which has the most active catalyst, but also the most expensive. The costs of fresh catalysts, catalyst separation and metal recovery have a major impact on the profitability of such processes. The selective recovery of molybdenum and its recycling as a catalyst are two essential elements for the industrial valorization of slurry processes. This recovery is also accompanied by those of other metals such as nickel (the one injected and the one recovered in the charge) and the vanadium recovered in the a load whose contents are comparable to that of molybdenum and which can be resold for metallurgical applications.
Hormis ces aspects économiques, la récupération des métaux s'impose également pour des raisons environnementales. En effet, les cendres issues de la combustion de la fraction résiduelle ont été classées dans de nombreux pays comme déchets dangereux, car les métaux contenus dans les cendres mises en déchetterie présentent un danger pour la nappe phréatique.  Apart from these economic aspects, the recovery of metals is also necessary for environmental reasons. In fact, ashes from the combustion of the residual fraction have been classified in many countries as hazardous waste because the metals contained in the ashes disposed of in dump sites present a danger for the water table.
Il existe donc un réel besoin de récupération et de recyclage des métaux issus des catalyseurs et de la charge lourde de procédé d'hydroconversion en slurry.  There is therefore a real need for recovery and recycling of metals from catalysts and the heavy load of slurry hydroconversion process.
Art antérieur Prior art
Les procédés de récupération de métaux des procédés slurry sont connus dans l'état de la technique.  Metal recovery processes of slurry processes are known in the state of the art.
Ainsi, la demande de brevet US2008/0156700 décrit un procédé de séparation de catalyseurs sous forme de particules ultrafines issu d'un procédé d'hydroconversion en slurry comprenant une étape de précipitation ou floculation d'une fraction lourde incluant les parties métalliques par des solvants de type heptane, une étape de séparation de la fraction lourde de la fraction légère par centrifugation et une étape de cokéfaction entre 350° et 550°C sous atmosphère inerte afin d'obtenir du coke contenant le catalyseur. Ce coke peut être soumis à une étape d'extraction de métaux.  Thus, patent application US2008 / 0156700 describes a process for separating catalysts in the form of ultrafine particles resulting from a slurry hydroconversion process comprising a step of precipitation or flocculation of a heavy fraction including metal parts by solvents. of heptane type, a step of separating the heavy fraction of the light fraction by centrifugation and a coking step between 350 ° and 550 ° C under an inert atmosphere to obtain coke containing the catalyst. This coke can be subjected to a metal extraction step.
Le brevet US6153555 décrit un procédé de récupération de métaux, notamment de molybdène, de catalyseurs utilisés dans des procédés d'hydroconversion de charges lourdes. Ce procédé comprend une étape de cokéfaction entre 300 et 1000°C, à pression atmosphérique et sous atmosphère inerte. Le produit coké est ensuite divisé et soumis à une ou deux étapes de combustion sous air à des températures comprises entre 800 et 1900°C afin de sublimer le molybdène qui se condense ensuite par refroidissement sur les cendres. Le molybdène est par la suite récupéré par une étape d'extraction à l'aide d'un mélange d'ammoniaque et de (NH4)2C03. Le brevet US6511937 décrit un procédé d'hydroconversion en slurry pour charges lourdes comprenant, après la réaction d'hydroconversion, une étape de séparation dans un séparateur haute pression, basse température permettant de séparer une fraction très légère, une étape de désasphaltage de toute la fraction résiduelle à l'aide de solvants C3 à C5 paraffiniques à température ambiante, une étape de cokéfaction (427-649°C, sans air) et/ou une étape de combustion en dessous de 649°C pour produire des cendres contenant le catalyseur. Ce catalyseur peut être par la suite soumis à des étapes d'extraction de métaux et recyclé dans le procédé. US Pat. No. 6,155,555 describes a process for recovering metals, in particular molybdenum, from catalysts used in heavy-lift hydroconversion processes. This process comprises a coking step between 300 and 1000 ° C, at atmospheric pressure and under an inert atmosphere. The coked product is then divided and subjected to one or two stages of combustion in air at temperatures of between 800 and 1900 ° C. in order to sublimate the molybdenum, which then condenses by cooling on the ashes. The molybdenum is subsequently recovered by an extraction step using a mixture of ammonia and (NH 4 ) 2 CO 3 . US Pat. No. 6,511,937 describes a heavy-duty slurry hydroconversion process comprising, after the hydroconversion reaction, a separation step in a high-pressure, low-temperature separator making it possible to separate a very light fraction, a deasphalting step of the entire residual fraction using paraffin C3 to C5 solvents at room temperature, a coking step (427-649 ° C, without air) and / or a combustion step below 649 ° C to produce ash containing the catalyst . This catalyst may subsequently be subjected to metal extraction steps and recycled to the process.
Objet de l'invention  Object of the invention
La spécificité des procédés en slurry étant d'avoir un catalyseur finement dispersé et non supporté sur une phase minérale rend la récupération des métaux bien plus complexe que celles des catalyseurs supportés de raffinage utilisés traditionnellement. L'enjeu pour le développement industriel des procédés d'hydroconversion par technologie slurry est la nécessité de récupérer et de recycler les métaux issus des catalyseurs.  The specificity of the slurry processes being to have a finely dispersed and unsupported catalyst on a mineral phase makes the recovery of metals much more complex than those of traditionally supported supported refining catalysts. The challenge for industrial development of hydroconversion processes using slurry technology is the need to recover and recycle metals from catalysts.
La présente invention vise à améliorer les procédés d'hydroconversion de charges lourdes par technologie slurry connus en permettant la valorisation d'une fraction résiduelle non convertie issue de la conversion en slurry, fraction fortement concentrée en métaux et hétéroéléments et incluant in fine la récupération desdits métaux dans la dite fraction non convertie et la production de précurseurs catalytiques afin de les recycler en amont du procédé de conversion en mode slurry. Le procédé comprend une étape d'hydroconversion, une étape de séparation gaz/liquide, une étape de cokéfaction, une étape de combustion, une étape d'extraction de métaux et une étape de préparation de solution(s) catalytique(s) qui est/sont recyclée(s) dans l'étape d'hydroconversion.  The present invention aims to improve the methods of hydroconversion of heavy loads by slurry technology known by allowing the valuation of a residual unconverted fraction resulting from the conversion to slurry fraction highly concentrated in metals and heteroelements and ultimately including the recovery of said metals in said unconverted fraction and the production of catalytic precursors for recycling upstream of the conversion process in slurry mode. The method comprises a hydroconversion step, a gas / liquid separation step, a coking step, a combustion step, a metal extraction step, and a catalyst solution (s) preparation step which is / are recycled (s) in the hydroconversion stage.
Les travaux de recherche effectués par le demandeur sur l'hydroconversion de charges lourdes l'ont conduit à découvrir que, de façon surprenante, ce procédé comprenant une séparation permettant de maximiser la fraction légère issue du réacteur d'hydroconversion et de minimiser la fraction résiduelle, couplé avec une étape de cokéfaction, puis une étape de combustion modérée évitant la sublimation des métaux, permettait de préparer l'extraction des métaux contenus dans les cendres d'une telle manière que des très bons taux de récupération des métaux recyclables dans le procédé sont possibles. En effet, les étapes critiques de cette récupération sont premièrement la concentration des métaux sur la matrice carbonée (via la cokéfaction) puis la formation d'une phase minérale (via la combustion modérée) contenant les éléments métalliques issus du catalyseur (Mo et Ni) mais également de la charge (Ni, V et Fe) dépourvue en carbone. The research work carried out by the applicant on the hydroconversion of heavy loads led him to discover that, surprisingly, this process comprises a separation making it possible to maximize the light fraction resulting from the hydroconversion reactor and to minimize the residual fraction. , coupled with a coking step, then a moderate combustion step avoiding sublimation metals, made it possible to prepare the extraction of the metals contained in the ashes in such a way that very good recovery rates of recyclable metals in the process are possible. Indeed, the critical stages of this recovery are firstly the concentration of metals on the carbon matrix (via coking) and then the formation of a mineral phase (via the moderate combustion) containing the metallic elements from the catalyst (Mo and Ni). but also the charge (Ni, V and Fe) devoid of carbon.
Un intérêt du procédé selon l'invention est la valorisation d'une fraction résiduelle non convertie fortement concentrée en métaux et hétéroéléments permettant la récupération desdits métaux et la production de précurseurs catalytiques afin de les recycler en amont du procédé de conversion en mode slurry.  An advantage of the method according to the invention is the recovery of an unconverted residual fraction highly concentrated in metals and heteroelements for the recovery of said metals and the production of catalytic precursors for recycling upstream of the conversion process in slurry mode.
Un autre intérêt est l'optimisation de la conversion d'hydroconversion par une séparation gaz/liquide après l'hyd reconversion opérant dans des conditions opératoires proches de celles du réacteur et permettant la séparation efficace en une seule étape d'une fraction légère comprenant les futures bases carburants (les gaz, le naphta, le gazole léger, voire le gazole lourd) de la fraction résiduelle non convertie contenant des solides tels que les métaux. Le rendement de la fraction légère est ainsi maximisé en même temps que la fraction résiduelle non convertie est minimisé facilitant ainsi par sa quantité réduite la concentration des métaux par la suite. Le maintien des conditions opératoires pendant la séparation permet également l'intégration économique d'un traitement ultérieur d'hydrotraitement et/ou d'hydrocraquage de la fraction légère sans la nécessité de compresseurs supplémentaires.  Another advantage is the optimization of the conversion of hydroconversion by a gas / liquid separation after hyd conversion operating under operating conditions close to those of the reactor and allowing the effective separation in a single step of a light fraction comprising the future fuel bases (gases, naphtha, light gas oil or even heavy diesel) of the unconverted residual fraction containing solids such as metals. The yield of the light fraction is thus maximized at the same time that the unconverted residual fraction is minimized thereby facilitating the reduced concentration of the metals thereafter. Maintaining the operating conditions during the separation also allows the economical integration of a subsequent treatment of hydrotreating and / or hydrocracking of the light fraction without the need for additional compressors.
Un autre intérêt est la cokéfaction de la fraction non convertie et contenant les métaux permettant une concentration des métaux efficace.  Another interest is the coking of the unconverted fraction containing the metals allowing an effective metal concentration.
Un autre intérêt du procédé est la combustion à température modérée permettant de séparer la phase organique de la phase inorganique contenant les métaux afin de faciliter l'extraction ultérieure des métaux de la phase inorganique tout en évitant la vaporisation et/ou la sublimation (et donc la perte) de métaux pendant la combustion. Un autre intérêt du procédé est que ce procédé ne nécessite pas d'étape de désasphaltage et les inconvénients associés avec (manipulation de solvants, souvent toxiques; nécessité d'un recyclage du solvant après l'extraction...). Description détaillée Another advantage of the process is the combustion at moderate temperature to separate the organic phase of the inorganic phase containing the metals to facilitate the subsequent extraction of metals from the inorganic phase while avoiding vaporization and / or sublimation (and therefore loss) of metals during combustion. Another advantage of the process is that this process does not require a deasphalting step and the disadvantages associated with (handling of solvents, often toxic, need for a recycling of the solvent after extraction ...). detailed description
L'invention concerne un procédé d'hydroconversion de charges lourdes pétrolières en slurry permettant la récupération et le recyclage des métaux dans la fraction résiduelle non convertie, notamment ceux utilisés comme catalyseurs.  The invention relates to a process for the hydroconversion of heavy petroleum slurry feeds enabling the recovery and recycling of metals in the unconverted residual fraction, in particular those used as catalysts.
Plus particulièrement, l'invention concerne un procédé d'hydroconversion de charges lourdes pétrolières contenant des métaux comprenant :  More particularly, the invention relates to a process for hydroconversion of heavy petroleum feedstocks containing metals comprising:
a) une étape d'hydroconversion de la charge dans au moins un réacteur contenant un catalyseur en slurry contenant au moins un métal, et éventuellement un additif solide,  a) a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst containing at least one metal, and optionally a solid additive,
b) une étape de séparation de l'effluent d'hydroconversion sans décompression en une fraction dite légère contenant les composés bouillant à au plus 500 °C et en une fraction résiduelle,  b) a step of separating the hydroconversion effluent without decompression into a so-called light fraction containing the compounds boiling at at most 500 ° C and in a residual fraction,
b') éventuellement une étape de fractionnement comprenant une séparation sous vide de ladite fraction résiduelle telle qu'obtenue à l'étape b), et il est obtenu un résidu sous vide concentré en métaux,  b ') optionally a fractionation step comprising a vacuum separation of said residual fraction as obtained in step b), and there is obtained a vacuum residue concentrated in metals,
c) une étape de cokéfaction de ladite fraction résiduelle telle qu'obtenue à l'étape b) et/ou dudit résidu sous vide tel qu'obtenu à l'étape b') permettant d'obtenir un effluent solide contenant du coke,  c) a step of coking said residual fraction as obtained in step b) and / or said vacuum residue as obtained in step b ') making it possible to obtain a solid effluent containing coke,
d) une étape de combustion dudit effluent solide contenant du coke à une température comprise entre 200 et 700°C permettant d'obtenir des cendres concentrées en métaux,  d) a step of burning said solid effluent containing coke at a temperature between 200 and 700 ° C to obtain concentrated ash metal,
e) une étape d'extraction des métaux des cendres obtenues à l'étape de combustion,  e) a step of extracting the metals from the ashes obtained at the combustion stage,
f) une étape de préparation de(s) solution(s) métallique(s) contenant au moins le métal du catalyseur qui est/sont recyclée(s) comme catalyseur dans l'étape d'hydroconversion. Hydroconversion f) a step of preparing (s) metallic solution (s) containing at least the metal of the catalyst which is / are recycled (s) as a catalyst in the hydroconversion stage. hydroconversion
Le procédé selon l'invention comprend une étape d'hydroconversion de la charge dans au moins un réacteur contenant un catalyseur en slurry et éventuellement un additif solide.  The process according to the invention comprises a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst and optionally a solid additive.
Par hydroconversion on entend des réactions d'hydrogénation, d'hydrotraitement, d'hydrodésulfuration, d'hydrodésazotation, d'hydrodémetallisation et d'hydrocraquage.  Hydroconversion is understood to mean hydrogenation, hydrotreatment, hydrodesulfurization, hydrodenitrogenation, hydrodemetallization and hydrocracking reactions.
Les charges lourdes concernées sont des charges hydrocarbonées pétrolières telles que des résidus pétroliers, des pétroles bruts, des pétroles bruts étêtés, des huiles désasphaltées, des asphaltes ou brais de désâsphaltage, des dérivés de procédés de conversion du pétrole (comme par exemple : HCO, slurry de FCC, GO lourd/VGO de coking, résidu de viscoréduction ou procédé thermique similaire, etc. ...), des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, ou des mélanges de telles charges. Plus généralement, on regroupera ici sous le terme "charge lourde" des charges hydrocarbonées contenant au moins 50% pds de produit distillant au-dessus de 250°C et au moins 25% pds distillant au-dessus de 350°C.  The heavy loads concerned are petroleum hydrocarbon feedstocks such as petroleum residues, crude oils, crude head oils, deasphalted oils, asphalts or desulfaspeating pitches, derivatives of petroleum conversion processes (for example: HCO, FCC slurry, GO heavy / VGO coking, visbreaking residue or similar thermal process, etc.), oil sands or their derivatives, oil shales or their derivatives, or mixtures of such fillers. More generally, herein will be grouped under the term "heavy load" hydrocarbon feeds containing at least 50 wt% of product distilling above 250 ° C and at least 25 wt% distilling above 350 ° C.
Les charges lourdes concernées selon l'invention contiennent des métaux, essentiellement du V et/ou Ni, à raison de généralement au moins 50 ppm pds et le plus souvent 100-2000 ppm pds, au moins 0,5% pds de soufre, et au moins 1% pds d'asphaltènes (asphaltènes à l'heptane), souvent plus de 2% pds ou encore de 5% pds, des teneurs de 25% pds ou plus d'asphaltènes pouvant être atteintes ; elles contiennent également des structures aromatiques condensées pouvant contenir des hétéroéléments réfractaires à la conversion.  The heavy charges concerned according to the invention contain metals, essentially V and / or Ni, at a rate of generally at least 50 ppm by weight and most often 100-2000 ppm by weight, at least 0.5% by weight of sulfur, and at least 1% by weight of asphaltenes (heptane asphaltenes), often more than 2% by weight or 5% by weight, of 25% by weight or more of asphaltenes attainable; they also contain condensed aromatic structures which may contain heteroelements refractory to conversion.
De préférence, les charges lourdes concernées sont des pétroles non conventionnels de type bruts lourds (°API compris entre 18 et 25 et une viscosité comprise entre 10 et 100 cP), les bruts extra-lourds (°API compris entre 7 et 20 et une viscosité comprise entre 100 et 10000 cP) et les sables bitumineux (°API compris entre 7 et 12 °API et une viscosité comprise inférieure à 10000 cP) présents en large quantité dans la région de l'Athabasca au Canada et de l'Orénoque au Venezuela où les réserves sont estimées respectivement à 1700 Gb et 1300 Gb. Ces pétroles non conventionnels sont également caractérisés par des teneurs en résidu sous vide, en asphaltènes et en hétéroéléments (soufre, azote, oxygène, vanadium, nickel, ...) élevées ce qui nécessitent des étapes de transformation en produits commerciaux de type essence, gasoil ou fioul lourd spécifiques. Preferably, the heavy feedstocks concerned are unconventional oils of the heavy crude type (API ° between 18 and 25 and a viscosity of between 10 and 100 cP), the extra heavy mills (API ° between 7 and 20 and viscosity between 100 and 10,000 cP) and oil sands (API ° 7 to 12 ° API and a viscosity of less than 10,000 cP) present in large quantities in the Athabasca region of Canada and the Orinoco Venezuela where reserves are estimated at 1700 Gb and 1300 Gb respectively. These unconventional oils are also characterized by high levels of residues under vacuum, asphaltenes and heteroelements (sulfur, nitrogen, oxygen, vanadium, nickel, etc.) which require conversion steps to commercial gasoline type products. specific diesel or heavy fuel oil.
La charge lourde est mélangée à un flux d'hydrogène et un catalyseur aussi dispersé que possible pour obtenir une activité hydrogénante aussi uniformément répartie que possible dans la zone réactionnelle d'hydroconversion. De préférence, un additif solide favorisant l'hydrodynamique du réacteur est également ajouté. Ce mélange alimente la section d'hydroconversion catalytique en slurry. Cette section est constituée d'un four de préchauffe pour la charge et l'hydrogène et d'une section réactionnelle constituée d'un ou plusieurs réacteurs disposés en série et/ou en parallèle, selon la capacité requise. Dans le cas de réacteurs en série, un ou plusieurs séparateurs pourront être présents sur l'effluent en tête de chacun des réacteurs. Dans la section réactionnelle, l'hydrogène peut alimenter un seul, plusieurs ou tous les réacteurs et cela dans des proportions égales ou différentes. Dans la section réactionnelle, le catalyseur peut alimenter un seul, plusieurs ou tous les réacteurs et cela dans des proportions égales ou différentes. Le catalyseur est maintenu en suspension dans le réacteur, circule du bas vers le haut du réacteur avec le gaz et la charge, et est évacué avec l'effluent. De préférence, l'un au moins (et de préférence tous) des réacteurs est muni d'une pompe de recirculation interne. The heavy charge is mixed with a hydrogen stream and a catalyst as dispersed as possible to obtain a hydrogenating activity as uniformly distributed as possible in the hydroconversion reaction zone. Preferably, a solid additive promoting the hydrodynamics of the reactor is also added. This mixture feeds the catalytic hydroconversion section into slurry. This section consists of a preheating furnace for the charge and hydrogen and a reaction section consisting of one or more reactors arranged in series and / or in parallel, according to the required capacity. In the case of series reactors, one or more separators may be present on the effluent at the head of each of the reactors. In the reaction section, hydrogen can feed one, several or all of the reactors in equal or different proportions. In the reaction section, the catalyst can feed one, several or all the reactors in equal or different proportions. The catalyst is kept in suspension in the reactor, flows from the bottom to the top of the reactor with the gas and the feedstock, and is evacuated with the effluent. Preferably, at least one (and preferably all) of the reactors is provided with an internal recirculation pump.
Les conditions opératoires de la section d'hydroconversion catalytique en slurry sont en général une pression de 2 à 35 Pa, de préférence de 10 à 25 Pa, une pression partielle d'hydrogène variant de 2 à 35 MPa et préférentiellement de 10 à 25 MPa, une température comprise entre 300°C et 500°C, de préférence de 420°C à 480°C, un temps de contact de 0.1 h à 10 h avec une durée préférée de 0.5h à 5 h.  The operating conditions of the slurry catalytic hydroconversion section are in general a pressure of 2 to 35 Pa, preferably 10 to 25 Pa, a hydrogen partial pressure ranging from 2 to 35 MPa and preferably from 10 to 25 MPa. a temperature of between 300 ° C and 500 ° C, preferably 420 ° C to 480 ° C, a contact time of 0.1 h to 10 h with a preferred duration of 0.5h to 5 h.
Ces conditions opératoires couplées à l'activité catalytique permettent d'obtenir des taux de conversion par passe du résidu sous vide 500°C+ pouvant aller de 20 à 95 %, préférentiellement de 70 à 95 %. Le taux de conversion ci-dessus mentionné est défini comme étant la fraction massique de composés organiques ayant un point d'ébullition supérieur à 500°C à l'entrée de la section réactionnelle moins la fraction massique de composés organiques ayant un point d'ébullition supérieur à 500 °C à la sortie de la section réactionnelle, le tout divisé par la fraction massique de composés organiques ayant un point d'ébullition supérieur à 500°C à l'entrée de la section réactionnelle. These operating conditions coupled to the catalytic activity make it possible to obtain conversion rates per pass of the vacuum residue 500 ° C. + which can range from 20 to 95%, preferably from 70 to 95%. The conversion rate mentioned above is defined as the mass fraction of organic compounds having a boiling point greater than 500 ° C at the inlet of the reaction section minus the mass fraction of organic compounds having a boiling point. greater than 500 ° C at the outlet of the reaction section, all divided by the mass fraction of organic compounds having a boiling point greater than 500 ° C at the inlet of the reaction section.
Le catalyseur en slurry est sous forme dispersée dans le milieu réactionnel. Il peut être formé in situ mais il est préférable de le préparer en-dehors du réacteur et de l'injecter, en général en continu, avec la charge. Le catalyseur favorise l'hydrogénation des radicaux issus du craquage thermique et réduit la formation de coke. Lorsque du coke est formé, il est évacué par le catalyseur.  The slurry catalyst is in dispersed form in the reaction medium. It can be formed in situ but it is preferable to prepare it outside the reactor and inject it, usually continuously, with the charge. The catalyst promotes the hydrogenation of radicals from thermal cracking and reduces coke formation. When coke is formed, it is removed by the catalyst.
Le catalyseur en slurry est un catalyseur sulfuré contenant de préférence au moins un élément choisi dans le groupe formé par Mo, Fe, Ni, W, Co, V, Ru. Ces catalyseurs sont généralement monométalliques ou bimétalliques (en combinant par exemple un élément du groupe VIIIB non-noble (Co, Ni, Fe) et un élément du groupe VIB (Mo, W)). De préférence, on utilise des catalyseurs NiMo, Ni ou Fe. Les catalyseurs utilisés peuvent être des poudres de solides hétérogènes (tels que des minerais naturels, du sulfate de fer, etc.), des catalyseurs dispersés issus de précurseurs solubles dans l'eau ("water soluble dispersed catalyst") tels que l'acide phosphomolybdique, le molybdate d'ammonium, ou un mélange d'oxyde Mo ou Ni avec de l'ammoniaque aqueux. De préférence, les catalyseurs utilisés sont issus de précurseurs solubles dans une phase organique ("oil soluble dispersed catalyst"). Les précurseurs sont des composés organométalliques tels que les naphténates de Mo, de Co, de Fe, ou de Ni ou tels que des composés multi-carbonyl de ces métaux, par exemple 2-ethyl hexanoates de Mo ou Ni, acétylacétonates de Mo ou Ni, sels d'acides gras C7-C12 de Mo ou W, etc.. Ils peuvent être utilisés en présence d'un agent tensio-actif pour améliorer la dispersion des métaux, lorsque le catalyseur est bimétallique. Les catalyseurs se trouvent sous forme de particules dispersées, colloïdales ou non selon la nature du catalyseur. De tels précurseurs et catalyseurs utilisables dans le procédé selon l'invention sont largement décrits dans la littérature.  The slurry catalyst is a sulfurized catalyst preferably containing at least one member selected from the group consisting of Mo, Fe, Ni, W, Co, V, Ru. These catalysts are generally monometallic or bimetallic (by combining, for example, a non-noble group VIIIB element (Co, Ni, Fe) and a group VIB element (Mo, W)). NiMo, Ni or Fe catalysts are preferably used. The catalysts used may be heterogeneous solid powders (such as natural ores, iron sulphate, etc.), dispersed catalysts derived from water-soluble precursors. ("water soluble dispersed catalyst") such as phosphomolybdic acid, ammonium molybdate, or a mixture of Mo or Ni oxide with aqueous ammonia. Preferably, the catalysts used are derived from soluble precursors in an organic phase ("oil soluble dispersed catalyst"). The precursors are organometallic compounds such as the naphthenates of Mo, Co, Fe, or Ni or such as multi-carbonyl compounds of these metals, for example 2-ethyl hexanoates of Mo or Ni, acetylacetonates of Mo or Ni , C7-C12 fatty acid salts of Mo or W, etc. They can be used in the presence of a surfactant to improve the dispersion of metals, when the catalyst is bimetallic. The catalysts are in the form of dispersed particles, colloidal or otherwise depending on the nature of the catalyst. Such precursors and catalysts that can be used in the process according to the invention are widely described in the literature.
En général, les catalyseurs sont préparés avant d'être injectés dans la charge. Le procédé de préparation est adapté en fonction de l'état dans lequel se trouve le précurseur et de sa nature. Dans tous les cas, le précurseur est sulfuré (ex-situ ou in-situ) pour former le catalyseur dispersé dans la charge. Pour le cas préféré des catalyseurs dits solubles dans l'huile, dans un procédé typique, le précurseur est mélangé à une charge pétrolière (qui peut être une partie de la charge à traiter, une charge externe, une charge recyclée...), le mélange est éventuellement séché au moins en partie, puis ou simultanément sulfuré par addition d'un composé soufré (H2S préféré) et chauffé. Les préparations de ces catalyseurs sont décrites dans l'art antérieur. In general, the catalysts are prepared before being injected into the feed. The preparation process is adapted according to the state in which the precursor is and of its nature. In all cases, the precursor is sulfided (ex-situ or in-situ) to form the catalyst dispersed in the feedstock. For the preferred case of so-called oil-soluble catalysts, in a typical process, the precursor is mixed with a petroleum feedstock (which may be a part of the feedstock to be treated, an external feedstock, a recycled feedstock, etc.), the mixture is optionally dried at least in part, and then or simultaneously sulphurized by the addition of a sulfur compound (H 2 S preferred) and heated. The preparations of these catalysts are described in the prior art.
Les additifs solides préférés sont des oxydes minéraux tels que l'alumine, la silice, des oxydes mixtes Al/Si, des catalyseurs usagés supportés (par exemple, sur alumine et/ou silice) contenant au moins un élément du groupe VIII (tel que Ni, Co) et/ou au moins un élément du groupe VI B (tel que Mo, W). On citera par exemple les catalyseurs décrits dans la demande US2008/177124. Des solides carbonés à faible teneur d'hydrogène (par exemple 4% d'hydrogène), éventuellement prétraités, peuvent être également utilisés. On peut également utiliser des mélanges de tels additifs. Leurs tailles de particules sont de préférence inférieures à 1 mm. La teneur en éventuel additif solide présent à l'entrée de la zone réactionnelle du procédé d'hydroconversion en slurry est comprise entre 0 et 10% pds préférentiellement entre 1 et 3% pds, et la teneur des solutions catalytiques est comprise entre 0 et 10% pds, de préférence entre 0 et 1 % pds.  The preferred solid additives are inorganic oxides such as alumina, silica, mixed Al / Si oxides, supported spent catalysts (for example, on alumina and / or silica) containing at least one group VIII element (such as Ni, Co) and / or at least one group VI B element (such as Mo, W). For example, the catalysts described in the application US2008 / 177124. Carbonaceous solids with a low hydrogen content (for example 4% hydrogen), possibly pretreated, can also be used. Mixtures of such additives can also be used. Their particle sizes are preferably less than 1 mm. The content of any solid additive present at the inlet of the reaction zone of the slurry hydroconversion process is between 0 and 10% by weight and preferably between 1 and 3% by weight, and the content of the catalytic solutions is between 0 and 10% by weight. % wt, preferably between 0 and 1 wt%.
Les procédés d'hydroconversion de charges lourdes par technologie slurry connus sont EST de ENI opérant à des températures de l'ordre de 400-420°C, sous des pressions de 10-16 MPa avec un catalyseur particulier (molybdenite) ; (HC)3 de Headwaters opérant à des températures de l'ordre de 400-450°C, sous des pressions de 10-15 MPa avec du pentacarbonyl de Fe ou du 2-ethyl hexanoate de Mo, le catalyseur étant dispersé sous forme de particules colloïdales ; HDH et HDHPLUS licencié par Intevep/PDVSA opérant à des températures de l'ordre de 420-480°C, sous des pressions de 7-20 MPa, utilisant un catalyseur métallique dispersé ; CASH de Chevron utilisant un catalyseur sulfuré de Mo ou W préparé par voie aqueuse; SRC-Uniflex de UOP opérant à des températures de l'ordre de 430-480°C, sous des pressions de 10-15 MPa ; VCC développé par Veba et appartenant à BP opérant à des températures de l'ordre de 400-480°C, sous de pressions de 15-30 MPa, utilisant un catalyseur à base de fer ; Microcat d'Exxonmobil ; etc.. Tous ces procédés slurry sont utilisables dans le procédé selon l'invention. Séparation The known slurry technology heavy charge hydroconversion processes are EST of ENI operating at temperatures of the order of 400-420 ° C, under pressures of 10-16 MPa with a particular catalyst (molybdenite); (HC) 3 of Headwaters operating at temperatures of the order of 400-450 ° C, at pressures of 10-15 MPa with Fe pentacarbonyl or Mo 2-ethyl hexanoate, the catalyst being dispersed in the form of colloidal particles; HDH and HDHPLUS licensed by Intevep / PDVSA operating at temperatures of the order of 420-480 ° C, at pressures of 7-20 MPa, using a dispersed metal catalyst; Chevron CASH using a Mo or W sulfide catalyst prepared by aqueous means; SRC-Uniflex UOP operating at temperatures of the order of 430-480 ° C, under pressures of 10-15 MPa; VCC developed by Veba and belonging to BP operating at temperatures of the order of 400-480 ° C, at pressures of 15-30 MPa, using an iron-based catalyst; Microcat of Exxonmobil; etc .. All these slurry processes can be used in the process according to the invention. Separation
La totalité de l'effluent issu de l'hydroconversion est dirigée vers une section de séparation, généralement dans un séparateur haute pression et haute température (HPHT), qui permet de séparer une fraction convertie à l'état gazeuse, dite fraction légère, et une fraction non convertie liquide contenant des solides, dite fraction résiduelle.  The totality of the effluent resulting from the hydroconversion is directed towards a separation section, generally in a high pressure and high temperature separator (HPHT), which makes it possible to separate a fraction converted into a gaseous state, called a light fraction, and a liquid unconverted fraction containing solids, said residual fraction.
Cette section de séparation est de préférence opérée dans des conditions opératoires proches de celles du réacteur qui sont en général une pression de 2 à 35 MPa avec une pression préférée de 10 à 25 MPa, une pression partielle d'hydrogène variant de 2 à 35 MPa et préférentiellement de 10 à 25 MPa et une température comprise entre 300°C et 500°C, de préférence de 380°C à 460°C. Le temps de séjour de l'effluent dans cette section de séparation est de 0.5 à 60 minutes et de préférence de 1 à 5 minutes. La fraction légère contient très majoritairement les composés bouillant à au plus 300°C, voire à au plus 400°C ou 500°C; ils correspondent aux composés présents dans les gaz, le naphta, le gazole léger, voire le gazole lourd. On indique que la coupe contient très majoritairement ces composés, car la séparation n'est pas faite selon un point de coupe précis, elle s'apparente plutôt à un flash. S'il fallait parler en termes de point de coupe, on pourrait dire qu'il se situe entre 200° et 400° voire 450°C.  This separation section is preferably carried out under operating conditions close to those of the reactor, which are in general a pressure of 2 to 35 MPa with a preferred pressure of 10 to 25 MPa, a hydrogen partial pressure ranging from 2 to 35 MPa. and preferably from 10 to 25 MPa and a temperature of between 300 ° C and 500 ° C, preferably 380 ° C to 460 ° C. The residence time of the effluent in this separation section is 0.5 to 60 minutes and preferably 1 to 5 minutes. The light fraction contains, for the most part, the compounds boiling at at most 300 ° C., or even at most 400 ° C. or 500 ° C .; they correspond to the compounds present in gases, naphtha, light diesel or even heavy diesel. It is indicated that the cut contains very predominantly these compounds, because the separation is not made according to a precise cutting point, it is more like a flash. If we had to speak in terms of cutting point, we could say that it is between 200 ° and 400 ° or 450 ° C.
La valorisation de la fraction légère n'est pas l'objet de la présente invention et ces méthodes sont bien connues de l'homme du métier. La fraction légère obtenue après la séparation peut subir au moins une étape d'hydrotraitement et/ou d'hydrocraquage, l'objectif étant d'amener les différentes coupes aux spécifications (teneur en soufre, point de fumée, cétane, teneur en aromatiques, etc.). La fraction légère peut aussi être mélangée avec une autre charge avant d'être dirigée vers une section d'hydrotraitement et/ou d'hydrocraquage. Une coupe externe provenant généralement d'un autre procédé existant dans la raffinerie ou éventuellement hors de la raffinerie peut être amenée avant l'hydrotraitement et/ou l'hydrocraquage, avantageusement la coupe externe est par exemple le VGO issu du fractionnement du pétrole brut (VGO straight-run), le VGO issu d'une conversion, un LCO (light cycle oil) ou un HCO (heavy cycle oil) de FCC. The valorization of the light fraction is not the subject of the present invention and these methods are well known to those skilled in the art. The light fraction obtained after the separation can undergo at least one hydrotreatment and / or hydrocracking step, the objective being to bring the different cuts to the specifications (sulfur content, smoke point, cetane, aromatic content, etc.). The light fraction may also be mixed with another feed before being directed to a hydrotreatment and / or hydrocracking section. An external cut generally coming from another process existing in the refinery or possibly outside the refinery can be brought before the hydrotreatment and / or the hydrocracking, advantageously the external cut is for example the VGO resulting from the fractionation crude oil (VGO straight-run), conversion-derived VGO, FCC light cycle oil (LCO) or HCO (heavy cycle oil).
D'une manière générale, l'hyd retraitement et/ou l'hydrocraquage après l'hyd reconversion peut se faire de façon conventionnelle via une section de séparation classique intermédiaire (avec décompression) utilisant après le séparateur haute pression haute température par exemple, un séparateur haute pression basse température et/ou une distillation atmosphérique et/ou une distillation sous vide. De préférence, la section d'hydrotraitement et/ou d'hydrocraquage est directement intégrée à la section hydroconversion sans décompression intermédiaire. Dans ce cas, la fraction légère est envoyée directement, sans étapes supplémentaires de séparation et sans décompression à la section d'hydrotraitement et/ou d'hydrocraquage. Ce dernier mode de réalisation permet d'optimiser les conditions de pression et de températures, évite des compresseurs additionnels et minimise donc les coûts d'équipements supplémentaires. La fraction résiduelle issue de la séparation (par exemple par le séparateur In general, hydration and / or hydrocracking after hydration conversion can be done conventionally via a conventional intermediate separation section (with decompression) using, for example, after the high-pressure high-temperature separator, a low temperature high pressure separator and / or atmospheric distillation and / or vacuum distillation. Preferably, the hydrotreatment and / or hydrocracking section is directly integrated into the hydroconversion section without intermediate decompression. In this case, the light fraction is sent directly, without additional separation and decompression steps to the hydrotreatment and / or hydrocracking section. This last embodiment makes it possible to optimize pressure and temperature conditions, avoids additional compressors and thus minimizes the costs of additional equipment. The residual fraction resulting from the separation (for example by the separator
HPHT) et contenant les métaux et une fraction de particules solides utilisée comme éventuel additif et/ou formée au cours de la réaction peut être dirigée vers une étape de fractionnement. Ce fractionnement est facultatif et comprend une séparation sous vide, par exemple un ou plusieurs ballons de flash et/ou, de préférence, une distillation sous vide, permettant de concentrer en pied de ballons ou de colonne un résidu sous vide riche en métaux et de récupérer en tête de colonne un ou plusieurs effluents. De préférence, la fraction résiduelle issue de l'étape de séparation sans décompression est fractionnée par distillation sous vide en au moins une fraction distillât sous vide et une fraction résidu sous vide, au moins une partie et de préférence la totalité de ladite fraction résidu sous vide étant envoyée à l'étape de cokéfaction, au moins une partie et de préférence la totalité de ladite fraction distillât sous vide étant soumise de préférence à au moins une étape d'hydrotraitement et/ou d'hydrocraquage. HPHT) and containing the metals and a fraction of solid particles used as a possible additive and / or formed during the reaction can be directed to a fractionation step. This fractionation is optional and comprises a vacuum separation, for example one or more flash flasks and / or, preferably, a vacuum distillation, making it possible to concentrate a metal-rich vacuum residue at the bottom of the flask or column. recover at the head of the column one or more effluents. Preferably, the residual fraction resulting from the decompression-free separation step is fractionated by vacuum distillation into at least one vacuum distillate fraction and a vacuum residue fraction, at least a portion and preferably all of said fraction residue under vacuum being sent to the coking step, at least a portion and preferably all of said vacuum distillate fraction being preferably subjected to at least one hydrotreatment and / or hydrocracking step.
Le ou les effluent(s) liquide(s) de la fraction distillât sous vide ainsi produit(s) est (seront) habituellement dirigé(s) pour une faible part vers l'unité d'hydroconversion en slurry où ils peuvent être directement recyclés dans la zone réactionnelle ou alors il(s) peut(vent) servir à la préparation des précurseurs catalytiques avant injection dans la charge. Une autre part du ou des effluent(s) est dirigée vers la section d'hydrotraitement et/ou d'hydrocraquage, optionnellement en mélange avec d'autres charges, comme par exemple la fraction légère issu du séparateur HPHT ou un distillât sous vide provenant d'une autre unité, dans des proportions égales ou différentes en fonction de la qualité des produits obtenus. L'objectif de la distillation sous vide est d'augmenter le rendement des effluents liquides pour un traitement ultérieur d'hydrotraitement et/ou d'hydrocraquage et donc d'augmenter le rendement en bases carburants. En même temps, la quantité de la fraction résiduelle contenant les métaux est réduite, facilitant ainsi la concentration des métaux. The liquid effluent (s) of the vacuum distillate fraction thus produced will (are) usually be directed to a small extent to the slurry hydroconversion unit where they can be directly recycled. in the zone reaction or it (s) can (wind) be used for the preparation of catalytic precursors before injection into the load. Another part of the effluent (s) is directed towards the hydrotreating and / or hydrocracking section, optionally mixed with other fillers, for example the light fraction derived from the HPHT separator or a vacuum distillate originating from of another unit, in equal or different proportions depending on the quality of the products obtained. The objective of the vacuum distillation is to increase the efficiency of the liquid effluents for a subsequent treatment of hydrotreatment and / or hydrocracking and thus to increase the yield of fuel bases. At the same time, the amount of the residual fraction containing the metals is reduced, thus facilitating the concentration of the metals.
Cokéfaction coking
La fraction résiduelle issue de la séparation sans décompression (par exemple via le séparateur HPHT) et/ou la fraction résidu sous vide de la séparation sous vide (par exemple soutirée en pied de distillation sous vide) sont ensuite dirigées vers une étape de conversion thermique de type cokéfaction. Cette étape a comme objectif de concentrer les métaux dans l'effluent à traiter ultérieurement par combustion, en réduisant sa quantité, et de maximiser le rendement en effluent liquides pour le traitement par hydrotraitement et/ou hydrocraquage.  The residual fraction resulting from the no-decompression separation (for example via the HPHT separator) and / or the vacuum residue fraction of the vacuum separation (for example withdrawn at the bottom of the vacuum distillation column) are then directed to a thermal conversion step. coking type. This step has the objective of concentrating the metals in the effluent to be subsequently treated by combustion, by reducing its quantity, and to maximize the liquid effluent yield for the hydrotreatment and / or hydrocracking treatment.
L'étape de cokéfaction peut se faire par cokéfaction retardée ou par cokéfaction en lit fluide ("fluid-coking" ou "flexi-coking"). Dans le cas d'une cokéfaction en lit fluide la température du réacteur est supérieure à 490 °C, de préférence entre 500-550°C, à pression atmosphérique. De préférence, la cokéfaction se fait par cokéfaction retardée, dans au moins deux ballons de maturation. Avant d'être envoyée dans le ballon de maturation, la charge est chauffée par des fours de chauffe. Les conditions opératoires sont une température à la sortie des fours de chauffe de la charge comprise entre 460 et 530°C, de préférence 480 et 510°C et une température à la sortie des ballons de maturation supérieure à 420°C, de préférence comprises entre 430 et 490°C, et une pression inférieure à 0.5 MPa, préférentiellement de 0.1 à 0.3 MPa. Le taux recycle de la fraction non convertie du ballon de maturation est inférieure à 20% pds de la charge fraîche, de préférence inférieure à 10% pds. La cokéfaction se fait sous une atmosphère inerte. La cokéfaction de la charge fraîche est assurée en continu grâce à la permutation régulière entre deux ballons de maturation, un étant en phase de cockage pendant que l'autre est en phase de décockage. L'étape de cokéfaction retardée produit un effluent solide contenant du coke (et les métaux) et un effluent liquide. L'effluent liquide est généralement séparé par distillation. The coking step may be by delayed coking or by fluid bed coking ("fluid-coking" or "flexi-coking"). In the case of fluid bed coking the reactor temperature is above 490 ° C, preferably between 500-550 ° C, at atmospheric pressure. Preferably, coking takes place by delayed coking in at least two maturation flasks. Before being sent to the maturation flask, the load is heated by heating ovens. The operating conditions are a temperature at the outlet of the charging furnaces of between 460 and 530 ° C., preferably 480 and 510 ° C. and a temperature at the outlet of the aging flasks of greater than 420 ° C., preferably included between 430 and 490 ° C, and a pressure below 0.5 MPa, preferably from 0.1 to 0.3 MPa. The recycle rate of the unconverted fraction of the maturation flask is less than 20% wt. cool, preferably less than 10% by weight. Coking takes place under an inert atmosphere. Coking of the fresh load is ensured continuously through regular switching between two maturation balls, one being in the cocking phase while the other is in the decocking phase. The delayed coking step produces a solid effluent containing coke (and metals) and a liquid effluent. The liquid effluent is generally separated by distillation.
Au moins une partie, et de préférence la totalité de l'effluent liquide produit lors de la cokéfaction et ayant un point d'ébullition inférieur à une température comprise entre 300 et 400°C (Liquid Cycle Gas Oil, LCGO) peut être envoyée vers la section d'hydrotraitement et/ou d'hydrocraquage en mélange avec la fraction légère du séparateur HPHT et/ou avec une coupe externe.  At least a portion, and preferably all, of the liquid effluent produced during coking and having a boiling point below a temperature of 300 to 400 ° C (Liquid Cycle Gas Oil, LCGO) can be sent to the hydrotreatment and / or hydrocracking section mixed with the light fraction of the HPHT separator and / or with an external cut.
L'effluent liquide produit lors de cokéfaction ayant un point d'ébullition supérieure à une température comprise entre 300 et 400°C (Heavy Cycle Gas Oil, HCGO) est de préférence mélangé avec la charge lourde hydrocarbure en amont de la section d'hydroconversion en slurry. Il peut également être envoyé vers la section d'hydrotraitement et/ou d'hydrocraquage en mélange avec la fraction légère du séparateur HPHT et/ou avec une coupe externe. Il peut également être envoyé vers l'étape de distillation sous vide en mélange avec la fraction résiduelle du séparateur HPHT.  The liquid effluent produced during coking having a boiling point greater than a temperature of between 300 and 400 ° C. (Heavy Cycle Gas Oil, HCGO) is preferably mixed with the heavy hydrocarbon feedstock upstream of the hydroconversion section. in slurry. It can also be sent to the hydrotreatment and / or hydrocracking section mixed with the light fraction of the HPHT separator and / or with an external cut. It can also be sent to the vacuum distillation stage mixed with the residual fraction of the HPHT separator.
Au moins une partie, et de préférence la totalité de l'effluent solide contenant du coke fortement concentré en métaux est dirigée vers une étape de combustion modérée. Optionnellement, une partie de l'effluent solide contenant du coke peut être recyclée en tant qu'additif dans l'étape d'hydroconversion. Combustion  At least a portion, and preferably all, of the solid effluent containing coke with a high concentration of metals is directed to a moderate combustion step. Optionally, a portion of the solid effluent containing coke may be recycled as an additive in the hydroconversion stage. Combustion
L'effluent solide contenant du coke est dirigé vers une étape de combustion à température modérée et en présence d'oxygène. Avant de pouvoir récupérer les métaux par des méthodes d'extraction de métaux classiques décrit ci-dessous, une étape préliminaire est nécessaire afin de séparer la phase organique (le coke) de la phase inorganique contenant les métaux. Ainsi, l'objectif de l'étape de combustion est d'obtenir des cendres contenant les métaux facilement récupérables dans les unités de récupération des métaux ultérieures, en brûlant la phase organique ou phase carbone de l'effluent solide à une température et une pression qui limitent la vaporisation et/ou sublimation des métaux, notamment celle du molybdène (température de sublimation d'environ 700°C pour Mo03). Ainsi, l'étape de réduction de la phase organique consiste en une combustion à température modérée afin de concentrer les métaux, sans perte notable par vaporisation et/ou sublimation vers les fumées, dans une phase minérale pouvant contenir une proportion de phase organique allant de 0 à 100% pds, de préférence de 0% pds à 40% pds. Les conditions opératoires de cette combustion sont en général une pression de - 0.1 à 1 MPa, préférentiellement de - 0.1 à 0.5 MPa, une température de 200 à 700°C, de préférence de 400 à 550°C. La combustion se fait en présence d'air. The solid effluent containing coke is directed to a combustion stage at moderate temperature and in the presence of oxygen. Before metals can be recovered by conventional metal mining methods described below, a preliminary step is required to separate the organic phase (coke) from the inorganic phase containing the metals. Thus, the objective of the combustion step is to obtain ash containing the easily recoverable metals in the subsequent metal recovery units, by burning the organic phase or carbon phase of the solid effluent at a temperature and pressure that limit the vaporization and / or sublimation of metals, especially that of molybdenum (sublimation temperature of about 700 ° C for Mo0 3 ). Thus, the step of reducing the organic phase consists of a combustion at moderate temperature in order to concentrate the metals, without significant loss by vaporization and / or sublimation towards the fumes, in a mineral phase which may contain a proportion of organic phase ranging from 0 to 100 wt%, preferably 0 wt% to 40 wt%. The operating conditions of this combustion are in general a pressure of from 0.1 to 1 MPa, preferably from 0.1 to 0.5 MPa, a temperature of 200 to 700 ° C., preferably of 400 to 550 ° C. The combustion is done in the presence of air.
L'effluent gazeux issu de la combustion nécessite des étapes de purification afin de réduire l'émission de composés soufrés et azotés dans l'atmosphère. Les procédés classiquement utilisés par l'homme du métier dans le domaine du traitement de l'air sont mis en œuvre dans les conditions opératoires nécessaires pour répondre aux normes en vigueur dans le pays d'exploitation d'un tel traitement d'une charge hydrocarbure.  The gaseous effluent resulting from the combustion requires purification steps in order to reduce the emission of sulfur and nitrogen compounds into the atmosphere. The processes conventionally used by those skilled in the field of air treatment are carried out under the operating conditions necessary to meet the standards in force in the country of operation of such a hydrocarbon feedstock treatment. .
Le solide issu de la combustion est une phase minérale contenant en totalité, ou en quasi-totalité, les éléments métalliques contenus dans l'extrait, sous forme de cendres.  The solid resulting from the combustion is a mineral phase containing all, or almost all, the metal elements contained in the extract, in the form of ash.
Le traitement direct de l'effluent solide sortant de la cokéfaction par une méthode d'extraction de métaux tel que décrit ci-dessous sans combustion montre un taux de récupération des métaux insuffisant.  Direct treatment of the solid effluent exiting the coking by a metal extraction method as described below without combustion shows an insufficient metal recovery rate.
Récupération des métaux Metal recovery
Les cendres issues de la combustion sont envoyées vers une étape d'extraction des métaux dans laquelle les métaux sont séparés les uns des autres en une ou plusieurs sous-étape(s). Cette récupération des métaux est nécessaire, car le simple recyclage des cendres dans l'étape d'hydroconversion montre une activité catalytique très faible. D'une manière générale, l'étape d'extraction des métaux permet d'obtenir plusieurs effluents, chaque effluent contenant un métal spécifique, par exemple le Mo, le Ni ou le V, généralement sous forme de sel ou d'oxyde. Chaque effluent contenant un métal de catalyseur est dirigé vers une étape de préparation d'une solution aqueuse ou organique à base du métal identique au catalyseur ou à son précurseur utilisé dans l'étape d'hydroconversion. L'effluent contenant un métal issu de la charge étant non valorisable en tant que catalyseur (comme le vanadium par exemple) peut être valorisé en dehors du procédé. Ashes from combustion are sent to a metal extraction step in which the metals are separated from one another in one or more substeps. This recovery of the metals is necessary because the simple recycling of the ashes in the hydroconversion stage shows a very weak catalytic activity. In general, the metal extraction step makes it possible to obtain several effluents, each effluent containing a specific metal, for example Mo, Ni or V, generally in salt or oxide form. Each effluent containing a catalyst metal is directed to a step of preparation of an aqueous or organic solution based on the metal identical to the catalyst or its precursor used in the hydroconversion stage. The effluent containing a metal from the feed being non-recoverable as a catalyst (such as vanadium for example) can be recovered outside the process.
Les conditions opératoires, les fluides et/ou méthodes d'extraction utilisés pour les différents métaux sont considérés comme connus de l'homme de l'art et déjà utilisés industriellement, comme par exemple décrit dans Marafi et al., Resources, Conservation and Recycling 53 (2008)1-26, US4432949, US4514369, US4544533, US4670229 ou US2007/0025899. Les différentes voies d'extraction de métaux connues incluent d'une manière générale la lixiviation par des solutions acides et/ou basiques, par l'ammoniaque ou des sels d'ammoniaque, la biolixiviation par des microorganismes, le traitement thermique à faible température (roasting) par des sels de sodium ou de potassium, la chlorination ou encore la récupération de métaux par voie électrolytique. La lixiviation par acides peut se faire par des acides inorganiques (HCI, H2SO4, HNO3) ou des acides organiques (acide oxalique, acide lactique, acide citrique, acide glycolique, acide phtalique, acide malonique, acide succinique, acide salicylique, acide tartrique...). Pour la lixiviation basique on utilise en générale l'ammoniaque, des sels d'ammoniaque, de la soude ou le Na2C03. Dans les deux cas, des agents oxydants (H2O2, Fe(N03)3, AI(N03)3...) peuvent être présents pour faciliter l'extraction. Une fois les métaux en solution, ils peuvent être isolés par précipitation sélective (à différents pH et/ou avec des agents différents) et/ou par des agents d'extraction (oximes, beta-diketone...). The operating conditions, fluids and / or extraction methods used for the various metals are considered to be known to those skilled in the art and already used industrially, as for example described in Marafi et al., Resources, Conservation and Recycling. 53 (2008) 1-26, US4432949, US4514369, US4544533, US4670229 or US2007 / 0025899. The various known metal extraction routes generally include leaching by acidic and / or basic solutions, ammonia or ammonia salts, bioleaching by microorganisms, low temperature heat treatment ( roasting) by sodium or potassium salts, chlorination or the recovery of metals electrolytically. The acid leaching may be by inorganic acids (HCl, H 2 SO 4, HNO 3) or organic acids (oxalic acid, lactic acid, citric acid, glycolic acid, phthalic acid, malonic acid, succinic acid, salicylic acid, tartaric acid. ..). For basic leaching, ammonia, salts of ammonia, sodium hydroxide or Na 2 CO 3 are generally used. In both cases, oxidizing agents (H2O2, Fe (N0 3 ) 3 , Al (N0 3 ) 3 ...) may be present to facilitate the extraction. Once the metals in solution, they can be isolated by selective precipitation (at different pH and / or with different agents) and / or by extraction agents (oximes, beta-diketone ...).
De préférence, l'étape d'extraction des métaux selon l'invention comprend une lixiviation par au moins une solution acide et/ou basique.  Preferably, the metal extraction step according to the invention comprises leaching with at least one acidic and / or basic solution.
Préparation de solution(s) catalytique(s) Preparation of catalytic solution (s)
Les métaux récupérés après l'étape d'extraction sont généralement sous forme de sel ou d'oxyde. La préparation des solutions catalytiques pour produire les solutions organiques ou aqueuses est connue par l'homme du métier et a été décrite dans la partie hydroconversion. La préparation des solutions catalytiques concerne notamment les métaux molybdène et nickel, le vanadium étant généralement valorisé comme pentoxyde de vanadium, ou en combinaison avec le fer, pour l'élaboration de ferrovanadium, en dehors du procédé. The metals recovered after the extraction step are generally in the form of salt or oxide. The preparation of the catalytic solutions for producing the organic or aqueous solutions is known to those skilled in the art and has been described in the hydroconversion part. The preparation of catalytic solutions concerns especially molybdenum and nickel metals, vanadium being generally valorized as vanadium pentoxide, or in combination with iron, for the production of ferrovanadium, outside the process.
Le taux de récupération en métaux valorisé comme catalyseur pour le procédé d'hydroconversion en slurry ou pour le vanadium est au moins 50 % pds, de préférence au moins 65 % pds et plus généralement 70 %pds.  The recovered metal recovery rate as a catalyst for the slurry or vanadium hydroconversion process is at least 50 wt%, preferably at least 65 wt% and more generally 70 wt%.
Description des figures Description of figures
La figure 1 montre un procédé d'hydroconversion de charges lourdes pétrolières intégrant une technologie slurry sans récupération des métaux.  Figure 1 shows a process of hydroconversion of heavy oil loads incorporating a slurry technology without recovery of metals.
La figure 2 décrit un procédé d'hydroconversion de charges lourdes pétrolières selon l'invention. On décrit essentiellement l'installation et le procédé selon l'invention. On ne reprendra pas les conditions opératoires décrites précédemment.  FIG. 2 describes a process for hydroconversion of heavy petroleum feedstocks according to the invention. The installation and the method according to the invention are essentially described. We will not repeat the operating conditions described above.
Dans la figure 1 , la charge 1 alimente la section d'hydroconversion catalytique en slurry A. Cette section d'hydroconversion catalytique en slurry est constituée d'un four de préchauffe pour la charge 1 et l'hydrogène 2 et d'une section réactionnelle constituée d'un ou plusieurs réacteurs disposés en série et/ou en parallèle, selon la capacité requise. On injecte également le catalyseur 4 ou son précurseur, ainsi que l'additif 3 optionnel. Le catalyseur 4 est maintenu en suspension dans le réacteur, circule du bas vers le haut du réacteur avec la charge, et est évacué avec l'effluent. L'effluent 5 issu de l'hydroconversion est dirigé vers une section de séparation à haute pression et haute température B qui permet de séparer une fraction convertie à l'état gazeuse 6, dite fraction légère, et une fraction résiduelle non convertie liquide/solide 8. La fraction légère 6 peut être dirigée vers une section d'hydrotraitement et/ou d'hydrocraquage C. Une coupe externe 7 provenant généralement d'un autre procédé existant dans la raffinerie ou éventuellement hors de la raffinerie peut être amenée avant l'hydrotraitement et/ou l'hydrocraquage. La fraction résiduelle non convertie 8 contenant le catalyseur et une fraction de particules solides utilisée comme éventuel additif et/ou formée au cours de la réaction est dirigée vers une étape de fractionnement D. L'étape de fractionnement D est de préférence une distillation sous vide permettant de concentrer en pied de colonne le résidu sous vide 10 riche en métaux et de récupérer en tête de colonne un ou plusieurs effluents 9. Dans ce schéma de valorisation d'une charge lourde par un procédé de hydroconversion en slurry utilisé traditionnellement, le résidu sous vide 10 riche en métaux est valorisé comme combustible à très forte viscosité ou comme combustible solide après pelletisation, par exemple pour produire de la chaleur et de l'électricité sur site ou à l'extérieur ou encore comme combustible en cimenterie. Les métaux ne sont, a priori, pas récupérés. Le ou les effluents 9 ainsi produit(s) est(seront) habituellement dirigé(s) via la ligne 24 pour une faible part vers l'unité d'hydroconversion en slurry A où ils peuvent être directement recyclés dans la zone réactionnelle ou alors il(s) peut(vent) servir à la préparation des précurseurs catalytiques avant injection dans la charge 1 et pour une autre part vers l'unité d'hydrotraitement et/ou d'hydrocraquage C via la ligne 25 en mélange avec les effluents 6 et/ou 7 dans des proportions égales ou différentes en fonction de la qualité des produits obtenus. Dans la figure 2, les étapes (et signes de références) d'hydroconversion, de séparation HPHT, d'hydrotraitement et/ou d'hydrocraquage et de distillation sous vide sont identiques à la figure 1. Le résidu sous vide 10 soutiré en pied de distillation sous vide D est dirigé vers une étape de conversion thermique de type cokéfaction E pour concentrer l'effluent 10. L'effluent liquide produit lors de la cokéfaction et ayant un point d'ébullition inférieur à une température comprise entre 300 et 400°C (LCGO) 11 peut être envoyé vers la section d'hydrotraitement/hydrocraquage C en mélange via la ligne 22 avec l'effluent 6 et/ou 7. Le produit liquide ayant un point d'ébullition supérieure à une température comprise entre 300 et 400°C (HCGO) 12 est de préférence envoyé vers la section de conversion en slurry A via la ligne 23 en mélange avec la charge 1. Il peut également être envoyé vers la section d'hydrotraitement/hydrocraquage C en mélange via la ligne 28 avec l'effluent 6 et/ou 7, et/ou vers l'étape de distillation sous vide D via la ligne 29 en mélange avec l'effluent 8. L'effluent solide contant du coke 13 fortement concentré en métaux est dirigé en partie, et de préférence en totalité, vers une étape de réduction de la phase organique par une combustion à température modérée F afin de très fortement concentrer les métaux, sans perte notable par vaporisation et/ou sublimation vers les fumées. Une partie moins importante de l'effluent solide 13 peut être envoyée comme additif 3 via la ligne 50 dans l'étape d'hydroconversion A. L'effluent gazeux issu de la combustion 14 nécessite des étapes de purification (non représenté) afin de réduire l'émission de composés soufrés et azotés dans l'atmosphère. Le produit 15 issu de la combustion F est une phase minérale contenant en totalité, ou en quasi-totalité, les éléments métalliques contenus dans le solide 13, sous forme de cendres. Le produit 15 est envoyé vers une étape d'extraction des métaux G dans laquelle les métaux sont séparés les uns des autres en une ou plusieurs sous étape(s). L'effluent 16 issu de l'extraction G est composé d'un métal de type molybdène sous forme de sel ou d'oxyde. Cet effluent 16 est dirigé ensuite vers une étape de préparation H d'une solution organique ou aqueuse à base de molybdène 18 identique au catalyseur 4 ou à son précurseur recyclée en partie ou en totalité dans l'étape d'hydroconversion en slurry A via la ligne 40. L'effluent 17 issu de l'extraction G est composé d'un métal de type nickel sous forme de sel ou d'oxyde. Cet effluent 17 est ensuite dirigé vers une étape de préparation I d'une solution organique ou aqueuse à base de nickel 19 identique au catalyseur 4 ou à son précurseur recyclée en partie ou en totalité dans l'étape d'hydroconversion en slurry A via la ligne 41. L'effluent 20 issu de l'extraction G est composé d'un métal de type vanadium sous forme de sel ou d'oxyde. Cet effluent 20 peut être valorisé par exemple comme pentoxyde de vanadium, ou en combinaison avec le fer, pour l'élaboration de ferrovanadium. In FIG. 1, charge 1 feeds the catalytic hydroconversion section in slurry A. This slurry catalytic hydroconversion section consists of a preheating furnace for charge 1 and hydrogen 2 and a reaction section. consisting of one or more reactors arranged in series and / or in parallel, according to the required capacity. The catalyst 4 or its precursor is also injected, as well as the optional additive 3. The catalyst 4 is kept in suspension in the reactor, flows from the bottom to the top of the reactor with the feedstock, and is evacuated with the effluent. The effluent 5 resulting from the hydroconversion is directed to a high-pressure and high-temperature separation section B which makes it possible to separate a fraction converted into the gaseous state 6, called the light fraction, and a residual unconverted liquid / solid fraction. 8. The light fraction 6 can be directed to a hydrotreatment and / or hydrocracking section C. An external cut 7 generally coming from another process existing in the refinery or possibly outside the refinery can be brought before the hydrotreatment and / or hydrocracking. The unconverted residual fraction 8 containing the catalyst and a solid particle fraction optionally used as an additive and / or formed during the reaction is directed to a fractionation step D. Fractionation step D is preferably vacuum distillation. making it possible to concentrate at the bottom of the column the metal-rich vacuum residue and to recover at the top of the column one or more effluents 9. In this scheme for upgrading a heavy load by a traditionally used slurry hydroconversion process, the metal-rich vacuum residue is recovered as a very high viscosity fuel or as a solid fuel after pelleting, by example to produce heat and electricity on site or outside or as fuel in cement works. Metals are, a priori, not recovered. The effluent (s) 9 thus produced will (are) usually be directed via line 24 to a small extent to the A slurry hydroconversion unit where they can be directly recycled to the reaction zone or it (s) can (wind) be used for the preparation of catalytic precursors before injection in the feedstock 1 and for the other part to the hydrotreating and / or hydrocracking unit C via the line 25 mixed with the effluents 6 and or 7 in equal or different proportions depending on the quality of the products obtained. In FIG. 2, the steps (and reference marks) for hydroconversion, HPHT separation, hydrotreatment and / or hydrocracking and vacuum distillation are identical to FIG. vacuum distillation D is directed to a thermal conversion step of coking type E to concentrate the effluent 10. The liquid effluent produced during coking and having a boiling point below a temperature of between 300 and 400 ° C. C (LCGO) 11 may be sent to the hydrotreatment / hydrocracking section C in mixture via line 22 with effluent 6 and / or 7. The liquid product having a boiling point greater than a temperature of between 300 and 400 ° C (HCGO) 12 is preferably sent to the slurry conversion section A via line 23 in admixture with feedstock 1. It can also be sent to the hydrotreatment / hydrocracking section C in mixture via line 28 ave c the effluent 6 and / or 7, and / or to the vacuum distillation stage D via the line 29 mixed with the effluent 8. The solid effluent containing coke 13 highly concentrated in metals is partially directed and preferably all, to a step of reducing the organic phase by combustion at moderate temperature F to very strongly concentrate the metals, without significant loss by vaporization and / or sublimation to the fumes. A smaller portion of the solid effluent 13 can be sent as additive 3 via line 50 in hydroconversion step A. The gaseous effluent from combustion 14 requires purification steps (not shown) to reduce the emission of sulfur and nitrogen compounds into the atmosphere. The product 15 resulting from the combustion F is a mineral phase containing all, or almost all, the metal elements contained in the solid 13 in the form of ash. The product is sent to a metal extraction step G in which the metals are separated from one another in one or more sub-steps. The effluent 16 from the extraction G is composed of a molybdenum type metal in the form of salt or oxide. This effluent 16 is then directed to a preparation step H of an organic or aqueous solution based on molybdenum 18 identical to the catalyst 4 or its precursor recycled partially or wholly in the hydroconversion step in slurry A via the line 40. The effluent 17 from the extraction G is composed of a nickel-type metal in the form of salt or oxide. This effluent 17 is then directed to a preparation step I of an organic or aqueous nickel-based solution 19 identical to the catalyst 4 or its precursor recycled partially or wholly in the hydroconversion step in slurry A via the line 41. The effluent 20 from the extraction G is composed of a vanadium type metal in salt or oxide form. This effluent can be recovered for example as vanadium pentoxide, or in combination with iron, for the production of ferrovanadium.
Dans le cas préféré d'une hydroconversion en slurry utilisant du catalyseur à base de molybdène et nickel, l'hydroconversion met en œuvre un catalyseur finement dispersé de type nickel et molybdène de concentration respective de 160 ppm pds et de 600 ppm pds sous pression d'hydrogène. En considérant que l'unité industrielle a une capacité de 50 000 barils par jour et un taux d'utilisation de 90 % par an, la quantité de nickel et de molybdène consommée par an est donc de 0.4 et 1.6 kt/an respectivement. En considérant un coût du nickel de 25 k$/t et du molybdène de 60 k$/t, représentatifs des coûts moyens observés sur le marché des métaux sur les 5 dernières années, le coût opératoire est de 100 millions de dollar par an. Le procédé selon l'invention permet une valorisation d'une grande partie des métaux, nickel et molybdène, présents dans la fraction non convertie de l'effluent issu de l'hydroconversion en slurry. Le taux de récupération en métaux valorisé comme catalyseur pour le procédé d'hydroconversion en slurry est au moins 50 % pds, de préférence au moins 65 % pds, et plus généralement 70 %pds. Ce recyclage de métaux permet donc de réduire le coût opératoire de 100 millions de dollar par an à 30 millions de dollar par an. L'économie ainsi réalisée est de 70 millions de dollar permet dans un premier temps de payer les investissements supplémentaires nécessaires à la récupération de ces métaux. D'autre part, le vanadium présent dans la charge lourde à 400 ppm pds peut être valorisé comme ferrovanadium. En considérant un taux de récupération d'au moins 50% pds, de préférence au moins 65 % pds, et plus généralement 70% pds, la vente du vanadium est estimée, en considérant un coût moyen observé de 40 k$/t sur le marché des métaux sur les 5 dernières années, à 12 millions de dollar par an. Cette vente permettra également dans un premier de temps de payer les investissements supplémentaires nécessaires à la récupération de ces métaux. In the preferred case of a slurry hydroconversion using molybdenum and nickel-based catalyst, the hydroconversion uses a finely dispersed catalyst of nickel and molybdenum type with a concentration of 160 ppm by weight and 600 ppm by weight respectively. 'hydrogen. Considering that the industrial unit has a capacity of 50,000 barrels per day and a utilization rate of 90% per year, the quantity of nickel and molybdenum consumed per year is therefore 0.4 and 1.6 kt / year respectively. Considering a cost of nickel of $ 25k / t and molybdenum of $ 60k / t, representative of average costs observed on the metal market over the last 5 years, the operating cost is $ 100 million per year. The process according to the invention makes it possible to recover a large part of the metals, nickel and molybdenum, present in the unconverted fraction of the effluent resulting from hydroconversion into slurry. The recovered metal recovery rate as a catalyst for the slurry hydroconversion process is at least 50 wt%, preferably at least 65 wt%, and more generally 70 wt%. This recycling of metals can therefore reduce the operating cost from $ 100 million a year to $ 30 million a year. The saving thus achieved is 70 million dollars makes it possible initially to pay the additional investments necessary for the recovery of these metals. On the other hand, the vanadium present in the heavy load at 400 ppm wt can be valorized as ferrovanadium. Considering a recovery rate of at least 50% by weight, preferably at least 65% by weight, and more generally 70% by weight, the sale of vanadium is estimated, considering an observed average cost of 40 k $ / t on the metal market over the past 5 years, at $ 12 million a year. This sale will also make it possible in the first time to pay the additional investments necessary for the recovery of these metals.
La récupération de ces métaux dans la fraction résiduelle non convertie permet de réduire la quantité globale de nickel et molybdène utilisée et de réduire ainsi l'impact environnemental du procédé d'hydroconversion en slurry. En considérant une récupération de 70% pds des métaux présents à l'entrée de la zone réactionnelle, la quantité de catalyseur en appoint est réduite à 0.1 t/an pour le nickel et 0.5 t/an pour le molybdène contre 0.4 t/an et 1.6 t/an sans recycle.  The recovery of these metals in the unconverted residual fraction reduces the overall quantity of nickel and molybdenum used and thus reduces the environmental impact of the slurry hydroconversion process. Considering a recovery of 70% by weight of the metals present at the inlet of the reaction zone, the amount of additional catalyst is reduced to 0.1 t / year for nickel and 0.5 t / year for molybdenum compared to 0.4 t / year and 1.6 t / year without recycle.

Claims

REVENDICATIONS
1. Procédé d'hydroconversion de charges lourdes pétrolières contenant des métaux comprenant :  A method of hydroconversion of heavy petroleum feedstocks containing metals comprising:
a) une étape d'hydroconversion de la charge dans au moins un réacteur contenant un catalyseur en slurry contenant au moins un métal, et éventuellement un additif solide,  a) a step of hydroconversion of the feedstock in at least one reactor containing a slurry catalyst containing at least one metal, and optionally a solid additive,
b) une étape de séparation de l'effluent d'hydroconversion sans décompression en une fraction dite légère contenant les composés bouillant à au plus 500°C et en une fraction résiduelle,  b) a step of separating the hydroconversion effluent without decompression into a so-called light fraction containing the compounds boiling at at most 500 ° C and in a residual fraction,
b') éventuellement une étape de fractionnement comprenant une séparation sous vide de ladite fraction résiduelle telle qu'obtenue à l'étape b), et il est obtenu un résidu sous vide concentré en métaux, c) une étape de cokéfaction de ladite fraction résiduelle telle qu'obtenue à l'étape b) et/ou dudit résidu sous vide tel qu'obtenu à l'étape b') permettant d'obtenir un effluent solide contenant du coke, d) une étape de combustion dudit effluent solide contenant du coke à une température comprise entre 200 et 700°C permettant d'obtenir des cendres concentrées en métaux,  b ') optionally a fractionation step comprising a vacuum separation of said residual fraction as obtained in step b), and there is obtained a vacuum residue concentrated in metals, c) a coking step of said residual fraction as obtained in step b) and / or said vacuum residue as obtained in step b ') making it possible to obtain a solid effluent containing coke, d) a step of combustion of said solid effluent containing coke at a temperature between 200 and 700 ° C to obtain concentrated ash metal,
e) une étape d'extraction des métaux des cendres obtenues à l'étape de combustion,  e) a step of extracting the metals from the ashes obtained at the combustion stage,
f) une étape de préparation de(s) solution(s) métallique(s) contenant au moins le métal du catalyseur qui est/sont recyclée(s) comme catalyseur dans l'étape d'hydroconversion.  f) a step of preparing (s) metallic solution (s) containing at least the metal of the catalyst which is / are recycled (s) as a catalyst in the hydroconversion stage.
2. Procédé selon la revendication 1 dans lequel ladite fraction dite légère issue de l'étape de séparation sans décompression est soumise à au moins une étape d'hydrotraitement et/ou d'hydrocraquage. 2. Method according to claim 1 wherein said so-called light fraction from the step of separation without decompression is subjected to at least one hydrotreatment step and / or hydrocracking.
3. Procédé selon l'une des revendications précédentes dans lequel l'étape de cokéfaction est une cokéfaction retardée et opère à une température à la sortie des fours de chauffe de la charge comprise entre 460 et 530°C, de préférence 480 et 510°C, et une température à la sortie des ballons de maturation supérieure à 420°C, de préférence comprises entre 430 et 490°C, et une pression inférieure à 0.5 MPa, préférentiellement de 0.1 à 0.3 MPa, sous atmosphère inerte. 3. Method according to one of the preceding claims wherein the coking step is a delayed coking and operates at a temperature at the outlet of the charging furnaces of between 460 and 530 ° C, preferably 480 and 510 ° C, and a temperature at the outlet of the balloons maturing greater than 420 ° C, preferably between 430 and 490 ° C, and a pressure of less than 0.5 MPa, preferably 0.1 to 0.3 MPa, under an inert atmosphere.
4. Procédé selon l'une des revendications précédentes dans lequel l'étape de combustion opère à une température de 400 à 550°C, en présence d'oxygène. 5. Procédé selon l'une des revendications précédentes dans lequel l'étape de combustion opère à une pression de - 0.1 à 1 MPa, préférentiellement de - 0.1 à 0.4. Method according to one of the preceding claims wherein the combustion step operates at a temperature of 400 to 550 ° C in the presence of oxygen. 5. Method according to one of the preceding claims wherein the combustion step operates at a pressure of - 0.1 to 1 MPa, preferably from - 0.1 to 0.
5 MPa et à une température de 400 à 550°C, en présence d'oxygène. 5 MPa and at a temperature of 400-550 ° C, in the presence of oxygen.
6. Procédé selon l'une des revendications précédentes dans lequel l'étape d'extraction des métaux comprend une lixiviation par au moins une solution acide et/ou basique. 6. Method according to one of the preceding claims wherein the metal extraction step comprises leaching with at least one acidic solution and / or basic.
7. Procédé selon l'une des revendications précédentes dans lequel ladite fraction résiduélle issue de l'étape de séparation sans décompression est fractionnée par distillation sous vide en au moins une fraction distillât sous vide et une fraction résidu sous vide, au moins une partie et de préférence la totalité de ladite fraction résidu sous vide étant envoyée à l'étape de cokéfaction, au moins une partie et de préférence la totalité de ladite fraction distillât sous vide étant soumise à au moins une étape d'hyd retraitement et/ou d'hydrocraquage. 7. Method according to one of the preceding claims wherein said residueelle fraction from the step of separation without decompression is fractionated by vacuum distillation into at least a vacuum distillate fraction and a vacuum residue fraction, at least a portion and preferably all of said vacuum residue fraction being sent to the coking step, at least a portion and preferably all of said vacuum distillate fraction being subjected to at least one hydration reprocessing step and / or hydrocracking.
8. Procédé selon l'une des revendications précédentes dans lequel une partie de l'effluent solide contant du coke de l'étape de cokéfaction est recyclée comme additif dans l'étape d'hydroconversion. The process according to one of the preceding claims wherein a portion of the coke-containing solid effluent of the coking step is recycled as an additive in the hydroconversion stage.
9. Procédé selon l'une des revendications précédentes dans lequel la charge lourde pétrolière est une charge hydrocarbonée contenant au moins 50% pds de produit distillant au-dessus de 250°C et au moins 25% pds distillant au-dessus de 350°C, et contient au moins 50 ppm pds de métaux, au moins 0,5% pds de soufre et au moins 1% pds d'asphaltènes (asphaltènes à l'heptane). 9. Method according to one of the preceding claims wherein the heavy oil load is a hydrocarbon feed containing at least 50% by weight of product distilling above 250 ° C and at least 25% by weight distilling above 350 ° C and contains at least 50 ppmw of metals, at least 0.5 wt% of sulfur and at least 1 wt% of asphaltenes (asphaltenes to heptane).
10. Procédé selon l'une des revendications précédentes dans lequel la charge lourde pétrolière est choisie parmi des résidus pétroliers, des pétroles bruts, des pétroles bruts étêtés, des huiles désasphaltées, des asphaltes ou brais de désasphaltage, de dérivés de procédés de conversion du pétrole, des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, ou des mélanges de telles charges. 10. Method according to one of the preceding claims wherein the heavy oil load is selected from petroleum residues, crude oils, crude oils topped, deasphalted oils, asphalts or deasphalting pitches, derivatives of processes for converting oil, oil sands or derivatives thereof, oil shales or derivatives thereof, or mixtures of such fillers.
11. Procédé selon l'une des revendications précédentes dans lequel l'étape d'hydroconversion opère à une pression de 2 à 35 MPa, de préférence de 10 à 25 MPa, une pression partielle d'hydrogène de 2 à 35 MPa, de préférence de 10 à 25 MPa, une température comprise entre 300°C et 500°C, de préférence de 420°C à 480°C et un temps de contact de 0.1 h à 10 h, de préférence de 0.5h à 5 h. 11. Method according to one of the preceding claims wherein the hydroconversion step operates at a pressure of 2 to 35 MPa, preferably 10 to 25 MPa, a hydrogen partial pressure of 2 to 35 MPa, preferably from 10 to 25 MPa, a temperature between 300 ° C and 500 ° C, preferably 420 ° C to 480 ° C and a contact time of 0.1 h to 10 h, preferably from 0.5h to 5 h.
12. Procédé selon l'une des revendications précédentes dans lequel le catalyseur en slurry est un catalyseur sulfuré contenant au moins un élément choisi dans le groupe formé par Mo, Fe, Ni, W, Co, V, Ru. 12. Method according to one of the preceding claims wherein the slurry catalyst is a sulfurized catalyst containing at least one element selected from the group consisting of Mo, Fe, Ni, W, Co, V, Ru.
13. Procédé selon l'une des revendications précédentes dans lequel l'additif est choisi dans le groupe formé par les oxydes minéraux, les catalyseurs usagés supportés contenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB, les solides carbonés à faible teneur d'hydrogène ou des mélanges de tels additifs, ledit additif présentant une taille de particule inférieure à 1 mm. 13. Method according to one of the preceding claims wherein the additive is selected from the group consisting of inorganic oxides, the supported catalysts supported containing at least one element of group VIII and / or at least one element of group VIB, the carbonaceous solids of low hydrogen content or mixtures of such additives, said additive having a particle size of less than 1 mm.
PCT/FR2011/000160 2010-04-13 2011-03-22 Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step WO2011128518A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800187597A CN102821853A (en) 2010-04-13 2011-03-22 Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step
CA2793655A CA2793655A1 (en) 2010-04-13 2011-03-22 Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step
US13/640,839 US20130075303A1 (en) 2010-04-13 2011-03-22 Process for hydroconversion of petroleum feedstocks via a slurry technology allowing the recovery of metals from the catalyst and from the feedstock using a coking step
RU2012148117/04A RU2570200C2 (en) 2010-04-13 2011-03-22 Method for oil fractions hydroconversion as per slurry-technology that ensures extraction of metals, catalyst and raw stock including stage of coking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001561A FR2958657B1 (en) 2010-04-13 2010-04-13 METHOD OF HYDROCONVERSIONING PETROLEUM LOADS THROUGH SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A COKEFACTION STEP.
FR1001561 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011128518A1 true WO2011128518A1 (en) 2011-10-20

Family

ID=42988309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000160 WO2011128518A1 (en) 2010-04-13 2011-03-22 Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step

Country Status (6)

Country Link
US (1) US20130075303A1 (en)
CN (1) CN102821853A (en)
CA (1) CA2793655A1 (en)
FR (1) FR2958657B1 (en)
RU (1) RU2570200C2 (en)
WO (1) WO2011128518A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135749A1 (en) * 2015-08-26 2017-03-01 INDIAN OIL CORPORATION Ltd. Catalyst and process for conversion of vacuum resid to middle distillates
RU2623541C1 (en) * 2016-03-23 2017-06-27 Публичное акционерное общество "Газпром" Method of separation of molybdene compounds from heavy oil residues

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868915B2 (en) 2013-06-20 2018-01-16 Exxonmobil Research And Engineering Company Slurry hydroconversion and coking of heavy oils
US10035959B2 (en) * 2013-06-20 2018-07-31 Exxonmobil Research And Engineering Company Slurry hydroconversion using enhanced slurry catalysts
WO2014205169A1 (en) 2013-06-20 2014-12-24 Exxonmobil Research And Engineering Company Sequential slurry hydroconversion of heavy oils
WO2014205171A1 (en) 2013-06-20 2014-12-24 Exxonmobil Research And Engineering Company Staged solvent assisted hydroprocessing and resid hydroconversion
WO2014205172A1 (en) 2013-06-20 2014-12-24 Exxonmobil Research And Engineering Company Slurry hydroconversion with high activity catalyst
US9605218B2 (en) 2013-06-20 2017-03-28 Exxonmobil Research And Engineering Company Integrated hydrocracking and slurry hydroconversion of heavy oils
US9163124B2 (en) 2013-06-20 2015-10-20 Exxonmobil Research And Engineering Company System and methods for slurry hydroconversion pitch disposition as solid pellets and composition of the same
US10711207B2 (en) * 2014-10-22 2020-07-14 Uop Llc Integrated hydrotreating and slurry hydrocracking process
FR3029286B1 (en) * 2014-11-27 2017-11-24 Total Raffinage Chimie METHOD OF FOLLOWING A METHOD OF REFINING A HYDROCARBON FILLER
EP3356497B1 (en) * 2015-09-30 2020-05-20 Uop Llc Process for using molybdenum and particulate carbon catalyst for slurry hydrocracking
WO2017058783A1 (en) 2015-09-30 2017-04-06 Uop Llc Process for using and composition of iron, molybdenum and particulate carbon catalyst for slurry hydrocracking
WO2017058766A1 (en) 2015-09-30 2017-04-06 Uop Llc Process for using iron and molybdenum catalyst for slurry hydrocracking
CN107709525B (en) 2015-09-30 2021-09-07 环球油品公司 Slurry hydrocracking process using iron and particulate carbon catalyst
ITUB20160372A1 (en) * 2016-01-27 2017-07-27 Eni Spa BITUMEN VALORISATION SYSTEM AND ITS PROCEDURE
EP3342842A1 (en) * 2017-01-03 2018-07-04 Total Marketing Services Dewaxing and dearomating process of hydrocarbon in a slurry reactor
US20190078029A1 (en) 2017-09-08 2019-03-14 Exxonmobil Research And Engineering Company Reactor staging for slurry hydroconversion of polycyclic aromatic hydrocarbon feeds

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178227A (en) * 1978-03-24 1979-12-11 Exxon Research & Engineering Co. Combination hydroconversion, fluid coking and gasification
US4432949A (en) 1982-09-24 1984-02-21 Chevron Research Company Recovery of cobalt, molybdenum, nickel and vanadium from an aqueous ammonia and ammonium salt solution by precipitating vanadium and subsequent serial ion exchange
US4514369A (en) 1982-09-24 1985-04-30 Chevron Research Company Recovery of cobalt, molybdenum, nickel, tungsten and vanadium from an aqueous ammonia and ammonium salt solution by coextracting molybdenum, tungsten and vanadium and sequential extraction of nickel and cobalt
US4544533A (en) 1984-11-26 1985-10-01 Chevron Research Company Recovering vanadium values from ammonium bicarbonate solution using heat, sulfuric acid, and ammonium sulfate
US4670229A (en) 1986-05-09 1987-06-02 Amax Inc. Cyclic process for recovering metal values and alumina from spent catalysts
US4710486A (en) * 1983-08-29 1987-12-01 Chevron Research Company Process for preparing heavy oil hydroprocessing slurry catalyst
US6153555A (en) 1998-11-02 2000-11-28 Ford Global Technologies, Inc. Single phase metal-alumina materials including alkali metals made from heteromatallic alkoxides
US6511937B1 (en) 1999-10-12 2003-01-28 Exxonmobil Research And Engineering Company Combination slurry hydroconversion plus solvent deasphalting process for heavy oil upgrading wherein slurry catalyst is derived from solvent deasphalted rock
US20070025899A1 (en) 2005-07-29 2007-02-01 Chevron U.S.A. Inc. Process for metals recovery from spent catalyst
FR2910352A1 (en) * 2006-12-21 2008-06-27 Inst Francais Du Petrole PROCESS FOR HYDROCONVERSION IN THE SLURRY PHASE OF HEAVY HYDROCARBON LOADS AND / OR CHARCOAL USING A SUPPORTED CATALYST
US20080156700A1 (en) 2006-12-29 2008-07-03 Chevron U.S.A. Inc. Process for recovering ultrafine solids from a hydrocarbon liquid
US20080177124A1 (en) 2006-12-21 2008-07-24 Magalie Roy-Auberger Process for the hydroconversion in a slurry of heavy hydrocarbonaceous feedstocks in the presence of a dispersed phase and an alumina-based oxide
WO2009070778A2 (en) * 2007-11-28 2009-06-04 Chevron U.S.A. Inc. Process for recovering base metals from used hydroprocessing catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387690C (en) * 2000-11-30 2008-05-14 日挥株式会社 Method of refining petroleum
US20030102250A1 (en) * 2001-12-04 2003-06-05 Michael Siskin Delayed coking process for producing anisotropic free-flowing shot coke
US8435400B2 (en) * 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
US7737068B2 (en) * 2007-12-20 2010-06-15 Chevron U.S.A. Inc. Conversion of fine catalyst into coke-like material
MX2011002971A (en) * 2008-09-18 2011-04-11 Chevron Usa Inc Systems and methods for producing a crude product.
RU2412022C1 (en) * 2009-11-05 2011-02-20 Юрий Михайлович Ермаков Adjustable holder

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178227A (en) * 1978-03-24 1979-12-11 Exxon Research & Engineering Co. Combination hydroconversion, fluid coking and gasification
US4432949A (en) 1982-09-24 1984-02-21 Chevron Research Company Recovery of cobalt, molybdenum, nickel and vanadium from an aqueous ammonia and ammonium salt solution by precipitating vanadium and subsequent serial ion exchange
US4514369A (en) 1982-09-24 1985-04-30 Chevron Research Company Recovery of cobalt, molybdenum, nickel, tungsten and vanadium from an aqueous ammonia and ammonium salt solution by coextracting molybdenum, tungsten and vanadium and sequential extraction of nickel and cobalt
US4710486A (en) * 1983-08-29 1987-12-01 Chevron Research Company Process for preparing heavy oil hydroprocessing slurry catalyst
US4544533A (en) 1984-11-26 1985-10-01 Chevron Research Company Recovering vanadium values from ammonium bicarbonate solution using heat, sulfuric acid, and ammonium sulfate
US4670229A (en) 1986-05-09 1987-06-02 Amax Inc. Cyclic process for recovering metal values and alumina from spent catalysts
US6153555A (en) 1998-11-02 2000-11-28 Ford Global Technologies, Inc. Single phase metal-alumina materials including alkali metals made from heteromatallic alkoxides
US6511937B1 (en) 1999-10-12 2003-01-28 Exxonmobil Research And Engineering Company Combination slurry hydroconversion plus solvent deasphalting process for heavy oil upgrading wherein slurry catalyst is derived from solvent deasphalted rock
US20070025899A1 (en) 2005-07-29 2007-02-01 Chevron U.S.A. Inc. Process for metals recovery from spent catalyst
FR2910352A1 (en) * 2006-12-21 2008-06-27 Inst Francais Du Petrole PROCESS FOR HYDROCONVERSION IN THE SLURRY PHASE OF HEAVY HYDROCARBON LOADS AND / OR CHARCOAL USING A SUPPORTED CATALYST
US20080177124A1 (en) 2006-12-21 2008-07-24 Magalie Roy-Auberger Process for the hydroconversion in a slurry of heavy hydrocarbonaceous feedstocks in the presence of a dispersed phase and an alumina-based oxide
US20080156700A1 (en) 2006-12-29 2008-07-03 Chevron U.S.A. Inc. Process for recovering ultrafine solids from a hydrocarbon liquid
WO2009070778A2 (en) * 2007-11-28 2009-06-04 Chevron U.S.A. Inc. Process for recovering base metals from used hydroprocessing catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARAFI ET AL., RESOURCES, CONSERVATION AND RECYCLING, vol. 53, 2008, pages 1 - 26
N. PANARITI ET AL., APPLIED CATALYSIS A : GENERAL, vol. 204, 2000, pages 203 - 213

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135749A1 (en) * 2015-08-26 2017-03-01 INDIAN OIL CORPORATION Ltd. Catalyst and process for conversion of vacuum resid to middle distillates
RU2623541C1 (en) * 2016-03-23 2017-06-27 Публичное акционерное общество "Газпром" Method of separation of molybdene compounds from heavy oil residues

Also Published As

Publication number Publication date
CA2793655A1 (en) 2011-10-20
FR2958657A1 (en) 2011-10-14
RU2012148117A (en) 2014-05-20
CN102821853A (en) 2012-12-12
US20130075303A1 (en) 2013-03-28
RU2570200C2 (en) 2015-12-10
FR2958657B1 (en) 2012-05-11

Similar Documents

Publication Publication Date Title
WO2011128518A1 (en) Method for the hydroconversion of petroleum feedstocks via a slurry technology enabling the recovery of metals from the catalyst and from the feedstock using a coking step
WO2011128519A2 (en) Process for the hydroconversion of petroleum feedstocks via slurry technology allowing the recovery of metals from the catalyst and feedstock using a leaching step
WO2011128517A2 (en) Method for the hydroconversion of oil feedstocks using slurry technology, allowing the recovery of metals from the catalyst and the feedstock, comprising an extraction step
CA2772170C (en) Method for hydroconverting heavy carbonaceous loads, including a bubbling bed technology and slurry technology
EP3026097B1 (en) Method for producing fuels such as heavy fuel oil from a heavy hydrocarbon feedstock using a separation between the hydrotreating step and the hydrocracking step
EP3018187B1 (en) Process for converting petroleum feedstocks comprising an ebullating-bed hydrocracking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content
EP1637576B1 (en) Hydroconversion of a heavy feedstock using a dispersed catalyst
EP2325285A2 (en) Hydroconversion process for heavy and extra heavy oils and residuals
RU2541324C2 (en) Additive for hydraulic processing and method of its production and application
EP3303522A1 (en) Method for converting feedstocks comprising a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
CN108531215A (en) The fluidized bed reactor of upgrading with less scale deposit
WO2012085407A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking
FR3027909A1 (en) INTEGRATED PROCESS FOR THE PRODUCTION OF HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBONNE LOAD WITHOUT INTERMEDIATE SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP
Nguyen et al. Hydrodemetallization of heavy oil: Recent progress, challenge, and future prospects
WO2012085406A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction
FR2974110A1 (en) Hydroconversion of heavy hydrocarbon feedstock e.g. asphalts containing metals by hydroconverting feedstock into slurry based of metal and separating hydroconversion effluent into fraction containing boiling compounds and residual fraction
WO2012085408A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed, and fractionation by atmospheric distillation
FR2951191A1 (en) Hydroconverting heavy carbonaceous loads e.g. petroleum residues, comprises hydroconverting load in reactor containing bubbling bed catalyst, and hydroconverting resulting effluent in reactor containing slurry catalyst and solid additive
KR100917078B1 (en) Process for hydroconverting of a heavy hydrocarbonaceous feedstock
FR3104606A1 (en) Integrated fixed bed hydrocracking and bubbling bed hydroconversion process with optimized hydrogen recycling
EA041150B1 (en) METHOD OF MODERNIZATION OF BOILING-BED REACTOR FOR MINOR SLUDGE POLLUTION
FR2556000A1 (en) Process for converting a heavy hydrocarbon into a product of higher value or a lighter one

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018759.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11720126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2793655

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012148117

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13640839

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11720126

Country of ref document: EP

Kind code of ref document: A1