WO2011158540A1 - Color sensor - Google Patents

Color sensor Download PDF

Info

Publication number
WO2011158540A1
WO2011158540A1 PCT/JP2011/056735 JP2011056735W WO2011158540A1 WO 2011158540 A1 WO2011158540 A1 WO 2011158540A1 JP 2011056735 W JP2011056735 W JP 2011056735W WO 2011158540 A1 WO2011158540 A1 WO 2011158540A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color sensor
reflecting mirror
optical path
mirror
Prior art date
Application number
PCT/JP2011/056735
Other languages
French (fr)
Japanese (ja)
Inventor
明弘 細谷
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2011158540A1 publication Critical patent/WO2011158540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors

Definitions

  • the present invention relates to a color sensor. Specifically, the present invention relates to a color sensor used as an illumination optical system of a colorimeter, for example.
  • Colorimeters are used to inspect the color of printed matter printed on printing presses and the painted surface of industrial products.
  • the colorimeter includes a multi-angle illumination multi-directional colorimeter that illuminates from multiple directions and receives light in one direction, and a unidirectional illumination multi-directional light reception that illuminates from one direction and receives light in multiple directions.
  • the multi-directional illumination unidirectional light-receiving colorimeter irradiates the surface to be measured from multiple directions and receives the reflected light, so that the illumination light from each direction can be averaged and received. Since it becomes difficult to be influenced by the material of the target surface, measurement of the measurement target surface having various reflectance characteristics is possible, and the reproducibility of the measurement result is improved.
  • Patent Document 1 There is one disclosed in Patent Document 1 as a multi-directional illumination unidirectional light-receiving colorimeter.
  • a plurality of light sources are arranged along a focus circumference (focus group) located on the inner surface side of the toroidal mirror.
  • Each light source is arranged so as to emit light toward the toroidal mirror, and the light emitted from each light source is collimated by being reflected by the toroidal mirror, and reflected by the toroidal mirror and returned to the parallel light.
  • a light beam is irradiated onto the surface to be measured.
  • the parallel light flux emitted from each light source is irradiated onto the measurement target surface at different angles.
  • the light reflected by the measurement target surface is received by the light receiving unit, and a colorimetric inspection is performed.
  • the present invention has been made in view of the technical problems as described above.
  • the purpose of the present invention is to provide the number of light sources to be used as long as the number of light directions irradiated to the measurement target surface is the same. It is an object of the present invention to provide a color sensor that can reduce the amount of color.
  • the color sensor according to the present invention includes one or a plurality of light sources, a curved reflector that converts light emitted from the light sources into non-diffused light, and an optical path that separates the optical path of the non-diffused light into different optical paths.
  • a separation unit and an irradiating reflecting mirror that reflects the light of a part of the plurality of optical paths separated by the optical path separating unit, the non-diffused light reflected by the irradiating reflecting mirror being measured surface
  • a non-diffused light of a light path other than the part of the plurality of light paths separated by the light path separating means from a direction different from that of the non-diffused light reflected by the irradiation reflecting mirror It is characterized by irradiating the surface.
  • the light emitted from the light source is divided into light of a plurality of optical paths by the optical path separation means, and the light divided into the plurality of optical paths is irradiated to the measurement target surface from different directions, so one light source The surface to be measured can be irradiated from a plurality of directions. Therefore, the number of necessary light sources can be reduced as compared with the number of light beam directions irradiated to the measurement target surface, and the manufacturing cost of the color sensor can be reduced.
  • the measurement target surface is irradiated with non-diffused light (that is, parallel light or focused light)
  • the vicinity of the measurement target surface is compared with the case where the measurement target surface is irradiated with diffused light. It becomes difficult to irradiate the member (for example, the casing of the colorimeter). For this reason, it is difficult for the light receiving unit to receive light reflected from a surface other than the measurement target surface, noise is reduced, and the sensitivity of the colorimeter is improved.
  • the curved reflecting mirror is a parabolic mirror whose mirror surface forms a part of a rotating paraboloid, and the focal point of the rotating paraboloid is a light emitting point of the light source. It is characterized by being arranged so as to match. According to this embodiment, the light emitted from the light source can be converted into parallel light by being reflected by the curved reflecting mirror, which is a parabolic mirror.
  • the curved reflector does not include a region near the apex of the paraboloid of revolution, a light source shadow does not occur in the parallel light converted by the curved reflector, so the light use efficiency of the light source is good. become.
  • various forms of optical path separation means can be considered.
  • the non-diffused light converted by the curved reflecting mirror is reflected in a plurality of directions to separate the optical path of the non-diffused light into a plurality of different optical paths.
  • the light separating means is arranged so as to block and reflect a part of the non-diffused light converted by the curved reflecting mirror using, for example, a plane mirror, the optical path of the non-diffused light is separated into a plurality of different optical paths. be able to.
  • a half mirror is used as the light separating means, a part of the non-diffused light converted by the curved reflector is transmitted, and the remaining non-diffused light is reflected by reflecting the remaining non-diffused light. Can be separated into a plurality of different optical paths.
  • the measurement object surface is irradiated with non-diffused light from different directions at the same angle with respect to the direction perpendicular to the measurement object surface. According to this embodiment, the direction dependency of the colorimeter can be reduced, and the same measurement result can be obtained regardless of the orientation.
  • Still another embodiment of the color sensor according to the present invention is characterized in that the curved reflecting mirror and the irradiation reflecting mirror are integrally formed. According to this embodiment, since the number of parts is reduced, the cost of the color sensor is reduced, and the position adjustment during assembly is facilitated.
  • Still another embodiment of the color sensor according to the present invention includes a plurality of light sources and a set of curved reflectors, optical path separating means, and irradiation reflectors corresponding to each of the plurality of light sources. It is characterized by. According to this embodiment, it is possible to irradiate non-diffused light onto the measurement target surface from more directions.
  • non-diffused light reflected and emitted by the curved reflecting mirror is not limited to parallel light, and may be converged light that is gently focused.
  • the means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
  • FIG. 1 is a schematic cross-sectional view of a color sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of a parabolic mirror (off-axis parabolic mirror).
  • FIG. 3 is an explanatory diagram of the color sensor according to the first embodiment.
  • FIG. 4 is an explanatory diagram of the color sensor according to the first embodiment.
  • FIG. 5 is a plan view of a color sensor according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic perspective view illustrating light emitted from the color sensor according to the second embodiment to a measurement object.
  • FIG. 7 is a schematic cross-sectional view of a color sensor according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a modification of the color sensor of the third embodiment.
  • FIG. 9 is a schematic cross-sectional view of a color sensor according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing another example of the fourth embodiment.
  • FIG. 11 is a schematic cross-sectional view of a color sensor according to Embodiment 5 of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a color sensor 11 according to the first embodiment.
  • the color sensor 11 shown in FIG. 1 includes an illumination optical system and a light receiving unit 14, and the illumination optical system includes a light source 13, a curved reflecting mirror 15, an optical path separating unit 16, and an irradiation reflecting mirror 17.
  • the light source 13 and the light receiving unit 14 are mounted on the lower surface of the circuit board 12.
  • the circuit board 12 is disposed so as to be parallel to the surface (measurement target surface) of the measurement target 20. In the following description, it is assumed that the surface of the measurement object 20 is in a horizontal plane.
  • the light source 13 is a white light source with a built-in LED chip, and is installed such that its optical axis A is perpendicular to the circuit board 12 (that is, the principal ray emitted from the light source 13 is directed vertically downward). ing.
  • a curved reflecting mirror 15 is disposed vertically below the light source 13.
  • the curved reflecting mirror 15 is a reflecting mirror whose surface (mirror surface) is constituted by a part of a rotating paraboloid P obtained by rotating a parabola around its symmetry axis C.
  • the focal point E of the original paraboloid P is coincident with the light emitting point of the light source 13
  • the symmetry axis C is parallel to the lower surface of the circuit board 12
  • the symmetry axis C is the light receiving unit 14.
  • the position is determined so as to intersect the optical axis B of
  • the curved reflecting mirror 15 (off-axis parabolic mirror) is formed with a curved surface in a region located in a direction orthogonal to the symmetry axis C from the focal point E of the rotating paraboloid P. It is composed.
  • the curved reflector 15 may have any structure.
  • the curved reflecting mirror 15 is a metal film formed on the surface of a parabolic mirror support plate 18a of a plastic molded product.
  • the metal film is formed on a part of the surface of the parabolic mirror support plate 18a by plating or vacuum deposition.
  • the parabolic mirror support plate 18a is preferably made of a resin filled with a black resin or a light-absorbing material so as not to reflect light on a surface other than the region where the curved reflector 15 is provided.
  • the curved reflecting mirror 15 may be one in which the surface of a metal plate is polished and mirror-finished into a paraboloid.
  • the X axis is determined in parallel with the optical axis A with the light emitting point of the light source 13 as the origin, and the circuit board 12. If the Y axis is defined in parallel with the lower surface of the paraboloid, the symmetry axis C of the paraboloid P coincides with the Y axis, and the focal point of the paraboloid P is located at the light emitting point of the light source 13.
  • the light La emitted from the light source 13 and incident on the curved reflecting mirror 15 and reflected by the curved reflecting mirror 15 is converted into parallel light Lb and parallel to the symmetry axis C (or Y axis direction). move on.
  • the beam width ⁇ X in the X-axis direction of the parallel light Lb converted by the curved reflector 15 is 6 mm (3 (mm) ⁇ X if the range of the beam is expressed by coordinates in the X-axis direction) ⁇ 9 (mm)).
  • the numerical value described here is an example, and the color sensor 11 of the present invention is not limited to these numerical values.
  • the cross-sectional area of the parallel light flux depends not only on the area of the curved reflecting mirror 15 but also on the value of the focal length f of the paraboloid P.
  • the focal length of the rotating paraboloid P is changed, even when the area of the curved reflecting mirror 15 is the same, the cross-sectional area and light intensity of the parallel light Lb change.
  • An optical path separating means 16 is arranged on the opposite side of the curved reflecting mirror 15 with the optical axis B of the light receiving unit 14 in between. In other words, the optical path separating means 16 is disposed at the destination where the parallel light Lb reflected by the curved reflecting mirror 15 travels horizontally.
  • the optical path separating means 16 is constituted by two plane mirrors 16a and 16b, and is bent in a substantially square shape. The normal lines of the plane mirrors 16a and 16b are oriented in a direction parallel to the vertical plane including the optical axes A and B.
  • the optical path separating means 16 (plane mirrors 16a and 16b) is also formed by forming a metal film on the surface of the support plate 19 which is a plastic molded product by a method such as plating or vapor deposition. Alternatively, the surface of the metal plate may be polished and mirror-finished.
  • the irradiation reflecting mirror 17 is a flat mirror in which a metal film is formed on the surface of the reflecting mirror support plate 18b made of a plastic molded product by a method such as plating or vacuum deposition. Alternatively, the surface of the metal plate may be polished and mirror-finished.
  • the irradiation reflecting mirror 17 is tilted so that the normal direction thereof is parallel to the vertical plane including the optical axes A and B.
  • the paraboloid mirror support plate 18a and the reflector support plate 18b are integrally formed to be an integral support plate 18, but they may be separated. However, if the parabolic mirror support plate 18a and the reflector support plate 18b are integrated, the number of components is reduced, and the position adjustment during component assembly is facilitated. Is preferred.
  • the light receiving unit 14 is arranged immediately above the measurement target surface so that the optical axis B is perpendicular to the measurement target surface.
  • the light receiving unit 14 includes a condensing lens, a diffraction grating, a sensor array, and the like.
  • the measurement window 22 is located below the measurement window 22 of the housing 21 in which the colorimeter is housed. However, this depends on the use of the colorimeter.
  • the measurement object 22 may flow on the conveyor in the production line, and in that case, the measurement meter is arranged above the line away from the measurement window 22.
  • the measurement object 20 may be positioned above and the color sensor 11 may irradiate light from below to the lower surface of the measurement object 20.
  • the light La emitted from the light source 13 is reflected by the curved reflecting mirror 15 to become parallel light Lb and enters the optical path separating means 16.
  • Half of the parallel light Lb incident on the optical path separating means 16 is reflected by the flat mirror 16a, and the parallel light Lc reflected by the flat mirror 16a is irradiated on the upper surface of the measuring object 20 from a certain direction.
  • the remaining half of the parallel light Lb incident on the optical path separating means 16 is reflected by the plane mirror 16 b, and the parallel light Ld reflected by the plane mirror 16 b is incident on the irradiation reflecting mirror 17.
  • the parallel light Ld incident on the irradiation reflecting mirror 17 is reflected by the irradiation reflecting mirror 17, and the parallel light Le reflected by the irradiation reflecting mirror 17 is irradiated on the upper surface of the measuring object 20 from different directions.
  • an angle ⁇ 2 (hereinafter referred to as an irradiation angle) formed by the parallel light Lc that irradiates the measurement target surface and a normal N standing on the measurement target surface, and a parallel light Le that also irradiates the measurement target surface. Is equal to the irradiation angle ⁇ 5.
  • the color sensor 11 light can be applied to the measurement target surface from two directions with a single light source, and the number of light sources can be halved compared to the number of directions in which parallel light is irradiated.
  • the cost of the color sensor can be reduced.
  • battery consumption can be reduced.
  • this color sensor 11 since the light irradiated onto the measurement target surface is made parallel light, the parallel light is less likely to hit members around the measurement target surface (for example, the casing 21 around the measurement window 22). . As a result, it is possible to prevent the light reflected by the surrounding members from entering the light receiving section and causing noise, improving the sensitivity of the colorimeter, and measuring the measurement target surface with low reflectance. It becomes easy.
  • the color sensor 11 uses the curved reflecting mirror 15 (off-axis parabolic mirror) that does not include the region near the apex of the rotating paraboloid P, the light reflected by the curved reflecting mirror 15 is reflected by the light source 13. There is no shadow, and the reliability of the color sensor 11 is improved.
  • a dihedral mirror is used as the optical path separating means 16, but if three or more plane mirrors are used, the optical path of parallel light can be separated into three or more, and the measurement target plane has three directions. It is also possible to irradiate parallel light from the above directions.
  • FIG. 5 is a plan view of the color sensor 31 according to the second embodiment of the present invention.
  • the color sensor 31 includes a plurality of sets of the illumination optical systems described in the first embodiment so as to be substantially rotationally symmetric about the optical axis B of the light receiving unit 14.
  • two sets of illumination optical systems are provided around the optical axis B so as to form an angle of 90 °, and the FF section and the GG section in FIG. 5 are the same as those in FIG. It has a structure.
  • FIG. 7 is a schematic sectional view showing a color sensor 41 according to Embodiment 3 of the present invention.
  • the light source 13 and the curved reflecting mirror 15 that is, the symmetry axis C of the rotating paraboloid P
  • the light source 13 and the curved reflecting mirror 15 are tilted so that the measurement target surface exists on the extension of the collimated light Lb.
  • the optical path separation means 16 is formed by a flat mirror 16c and is arranged so as to block half of the parallel light Lb emitted from the curved reflecting mirror 15. Accordingly, the other half of the parallel light Lb emitted from the curved reflecting mirror 15 is irradiated onto the surface of the measurement object 20 at a certain irradiation angle.
  • the irradiation reflecting mirror 17 is disposed on the opposite side of the curved reflecting mirror 15 and the optical path separating means 16 with the optical axis B interposed therebetween.
  • the parallel light Lb emitted from the curved reflecting mirror 15 half of the parallel light Ld reflected by the flat plate mirror 16 c (optical path separating means 16) is incident on the irradiation reflecting mirror 17 and reflected by the irradiation reflecting mirror 17.
  • the parallel light Le is irradiated on the surface of the measurement target 20.
  • the parallel light Le is irradiated to the measuring object 20 from the opposite side to the parallel light Lc, it is preferable that the irradiation angle of the parallel light Lc and the irradiation angle of the parallel light Le are also equal in this embodiment.
  • the parabolic mirror support plate 18a that supports the curved reflecting mirror 15 and the support plate 19 that supports the optical path separating means 16 may be separated, but if they are integrated as shown in FIG. Costs can be reduced, and position adjustment during assembly is facilitated.
  • the parallel light Lb is separated or divided into two optical paths using a flat mirror 16 c as the optical path separating unit 16.
  • a mirror 16d may be used.
  • the half mirror 16d is arranged on the optical path of the parallel light Lb emitted from the curved reflecting mirror 15, and half the parallel light Lc out of the parallel light Lb incident on the half mirror 16d is half mirror.
  • the measurement object 20 is irradiated through 16d.
  • the other half of the parallel light Lb incident on the half mirror 16d is incident on the irradiation reflecting mirror 17, and the parallel light Le reflected by the irradiation reflecting mirror 17 is irradiated on the measurement object 20.
  • the illumination optical system as shown in FIG. 1 is combined in a plurality of upper and lower stages (two stages in the illustrated example).
  • the illumination optical system as shown in FIG. 7 is arranged symmetrically.
  • the colorimeter becomes resistant to fluctuations in the detection distance.
  • the light applied to the detection target is not limited to the parallel light, and may be converged light that is gently focused.
  • FIG. 11 is a schematic sectional view showing an example of this.
  • a spherical reflecting mirror (concave race) is used as the curved reflecting mirror 62, and the light emitting point of the light source 13 is arranged at a position slightly away from the spherical reflecting mirror from the focal position of the spherical reflecting mirror. is doing.
  • the light La emitted from the light source 13 is reflected by the curved reflecting mirror 62 to be gradually converged light Lg and travels toward the optical path separating means 16.
  • Part of the focused light Lg reflected by the flat mirror 16a is irradiated onto the measurement object 20 from the direction that is the focused light Lh.
  • a part of the focused light Lg reflected by the plane mirror 16b becomes the focused light Li, is further reflected by the irradiation reflecting mirror 17, and becomes the focused light Lj and is irradiated onto the measurement object 20 from another direction.
  • the focused lights Lh and Lj are not condensed before being incident on the measurement object 20, and are irradiated onto the measurement object surface with an appropriate beam cross section.

Abstract

Provided is a color sensor which can be used, with a reduced number of light sources, for a multi-directional illumination and unidirectional light-receiving colorimeter. To this end, a curved reflection mirror (15) is disposed to be focused on the emission point of a light source (13), and an optical path separating means (16) having two plane mirrors (16a, 16b) is disposed in the direction of a beam of light emitted from the light source (13), the beam having been collimated by the curved reflection mirror (15). The collimated beam reflected on the plane mirror (16a) illuminates directly a surface to be measured, while the collimated beam reflected on the plane mirror (16b) is reflected on an illuminating reflection mirror (17) to then illuminate in a different direction the surface to be measured.

Description

カラーセンサColor sensor
 本発明はカラーセンサに関する。具体的には、本発明は、たとえば測色計の照明光学系として用いられるカラーセンサに関するものである。 The present invention relates to a color sensor. Specifically, the present invention relates to a color sensor used as an illumination optical system of a colorimeter, for example.
 印刷機で印刷された印刷物や工業製品の塗装面の色彩などを検査するために測色計が用いられる。測色計には、複数方向から照明して一方向で受光する多方向照明一方向受光式のマルチアングル測色計と、一方向から照明して複数の方向で受光する一方向照明多方向受光式のマルチアングル測色計とがある。このうち多方向照明一方向受光方式の測色計では、複数方向から測定対象面に光を照射してその反射光を受光するので、各方向からの照明光を平均化して受光でき、また測定対象面の材質の影響を受けにくくなるので、種々の反射率特性を有する測定対象面の測定が可能になり、測定結果の再現性も向上する。 Colorimeters are used to inspect the color of printed matter printed on printing presses and the painted surface of industrial products. The colorimeter includes a multi-angle illumination multi-directional colorimeter that illuminates from multiple directions and receives light in one direction, and a unidirectional illumination multi-directional light reception that illuminates from one direction and receives light in multiple directions. There is a multi-angle colorimeter of the type. Of these, the multi-directional illumination unidirectional light-receiving colorimeter irradiates the surface to be measured from multiple directions and receives the reflected light, so that the illumination light from each direction can be averaged and received. Since it becomes difficult to be influenced by the material of the target surface, measurement of the measurement target surface having various reflectance characteristics is possible, and the reproducibility of the measurement result is improved.
 多方向照明一方向受光式の測色計としては、特許文献1に開示されたものがある。特許文献1に開示された測色計では、トロイダル鏡の内面側に位置する焦点円周(焦点群)に沿って複数個の光源を配置している。各光源はトロイダル鏡側に向けて光を出射するように配置されており、各光源から出射された光はトロイダル鏡で反射することによって平行光化され、トロイダル鏡で反射して戻ってきた平行光線束が測定対象面に照射される。この結果、測定対象面には、各光源から発した平行光線束が異なる角度で照射することになる。そして、測定対象面で反射された光が受光部で受光され、測色検査が行われる。 There is one disclosed in Patent Document 1 as a multi-directional illumination unidirectional light-receiving colorimeter. In the colorimeter disclosed in Patent Document 1, a plurality of light sources are arranged along a focus circumference (focus group) located on the inner surface side of the toroidal mirror. Each light source is arranged so as to emit light toward the toroidal mirror, and the light emitted from each light source is collimated by being reflected by the toroidal mirror, and reflected by the toroidal mirror and returned to the parallel light. A light beam is irradiated onto the surface to be measured. As a result, the parallel light flux emitted from each light source is irradiated onto the measurement target surface at different angles. Then, the light reflected by the measurement target surface is received by the light receiving unit, and a colorimetric inspection is performed.
特開2006-145373号公報JP 2006-145373 A
 しかしながら、特許文献1に開示されたような測色計では、測定対象面に照射される光線方向と同じ個数だけの光源が必要となる。そのため、全体としては多数の光源が必要となり、測色計の製造コストが高くつく問題があった。 However, in the colorimeter as disclosed in Patent Document 1, the same number of light sources as the direction of the light rays irradiated on the measurement target surface are required. Therefore, a large number of light sources are required as a whole, and there is a problem that the manufacturing cost of the colorimeter is high.
 また、特許文献1の測色計では、光源から発した光がトロイダル鏡で反射して戻るので、測定対象面に照射される光に光源の影が生じる。この影を小さくするためには光源をできるだけ小さくする必要があり、より小型の光源を用いるようにすれば、測色計の製造コストが高くつくという困難があった。 Further, in the colorimeter of Patent Document 1, light emitted from the light source is reflected by the toroidal mirror and returned, so that a light source shadow is generated on the light irradiated on the measurement target surface. In order to reduce the shadow, it is necessary to make the light source as small as possible. If a smaller light source is used, the manufacturing cost of the colorimeter is increased.
 本発明は、上記のような技術的課題に鑑みてなされたものであって、その目的とするところは、測定対象面に照射される光線方向の数が同じであれば、使用する光源の数を少なくすることができるカラーセンサを提供することにある。 The present invention has been made in view of the technical problems as described above. The purpose of the present invention is to provide the number of light sources to be used as long as the number of light directions irradiated to the measurement target surface is the same. It is an object of the present invention to provide a color sensor that can reduce the amount of color.
 本発明にかかるカラーセンサは、1個又は複数個の光源と、前記光源から発した光を非拡散光に変換する曲面反射鏡と、前記非拡散光の光路を異なる複数の光路に分離する光路分離手段と、前記光路分離手段によって分離された複数の光路のうち一部の光路の光を反射させる照射用反射鏡とを備え、前記照射用反射鏡で反射された非拡散光を測定対象面に照射させるとともに、前記光路分離手段によって分離された複数の光路のうち前記一部の光路以外の光路の非拡散光を、前記照射用反射鏡で反射された非拡散光と異なる方向から測定対象面に照射させるようにしたことを特徴としている。 The color sensor according to the present invention includes one or a plurality of light sources, a curved reflector that converts light emitted from the light sources into non-diffused light, and an optical path that separates the optical path of the non-diffused light into different optical paths. A separation unit; and an irradiating reflecting mirror that reflects the light of a part of the plurality of optical paths separated by the optical path separating unit, the non-diffused light reflected by the irradiating reflecting mirror being measured surface A non-diffused light of a light path other than the part of the plurality of light paths separated by the light path separating means from a direction different from that of the non-diffused light reflected by the irradiation reflecting mirror It is characterized by irradiating the surface.
 本発明のカラーセンサにおいては、光源から発した光を光路分離手段によって複数の光路の光に分け、複数の光路に分けた光を異なる方向から測定対象面に照射させているので、1つの光源から発した光を複数の方向から測定対象面に照射させることができる。よって、測定対象面に照射する光線方向の数に比べて必要な光源の数を少なくでき、カラーセンサの製造コストを安価にすることができる。 In the color sensor of the present invention, the light emitted from the light source is divided into light of a plurality of optical paths by the optical path separation means, and the light divided into the plurality of optical paths is irradiated to the measurement target surface from different directions, so one light source The surface to be measured can be irradiated from a plurality of directions. Therefore, the number of necessary light sources can be reduced as compared with the number of light beam directions irradiated to the measurement target surface, and the manufacturing cost of the color sensor can be reduced.
 また、このカラーセンサにおいては、非拡散光(すなわち、平行光又は集束光)を測定対象面に照射しているので、拡散光を測定対象面に照射する場合と比較して測定対象面の近傍の部材(たとえば、測色計の筐体など)に照射されにくくなる。そのため、測定対象面以外で反射した光を受光部で受光しにくくなり、ノイズが低減して測色計の感度が向上する。 Further, in this color sensor, since the measurement target surface is irradiated with non-diffused light (that is, parallel light or focused light), the vicinity of the measurement target surface is compared with the case where the measurement target surface is irradiated with diffused light. It becomes difficult to irradiate the member (for example, the casing of the colorimeter). For this reason, it is difficult for the light receiving unit to receive light reflected from a surface other than the measurement target surface, noise is reduced, and the sensitivity of the colorimeter is improved.
 本発明に係るカラーセンサのある実施態様は、前記曲面反射鏡が、鏡面が回転放物面の一部をなす放物面鏡であって、前記回転放物面の焦点が前記光源の発光点と一致するように配置されていることを特徴としている。かかる実施態様によれば、光源から発した光を放物面鏡である曲面反射鏡で反射させることによって平行光に変換することができる。 In an embodiment of the color sensor according to the present invention, the curved reflecting mirror is a parabolic mirror whose mirror surface forms a part of a rotating paraboloid, and the focal point of the rotating paraboloid is a light emitting point of the light source. It is characterized by being arranged so as to match. According to this embodiment, the light emitted from the light source can be converted into parallel light by being reflected by the curved reflecting mirror, which is a parabolic mirror.
 しかも、前記曲面反射鏡が、前記回転放物面の頂点近傍領域を含まない場合には、曲面反射鏡で変換された平行光に光源の影が生じないので、光源の光の利用効率が良好になる。 In addition, when the curved reflector does not include a region near the apex of the paraboloid of revolution, a light source shadow does not occur in the parallel light converted by the curved reflector, so the light use efficiency of the light source is good. become.
 また、本発明に係るカラーセンサの別な実施形態においては、種々の形態の光路分離手段を考えることができる。前記光路分離手段として、たとえば複数面の平面鏡を用いれば、前記曲面反射鏡で変換された非拡散光を複数の方向へ反射させることによって当該非拡散光の光路を異なる複数の光路に分離することができる。また、光分離手段として、たとえば平面鏡を用いて前記曲面反射鏡で変換された非拡散光の一部を遮って反射させるように配置すれば、非拡散光の光路を異なる複数の光路に分離することができる。また、光分離手段として、ハーフミラーを用いれば、前記曲面反射鏡で変換された非拡散光のうち一部の非拡散光を透過させ、残りの非拡散光を反射させることによって当該非拡散光の光路を異なる複数の光路に分離することができる。 Also, in another embodiment of the color sensor according to the present invention, various forms of optical path separation means can be considered. For example, if a plurality of plane mirrors are used as the optical path separating means, the non-diffused light converted by the curved reflecting mirror is reflected in a plurality of directions to separate the optical path of the non-diffused light into a plurality of different optical paths. Can do. Further, if the light separating means is arranged so as to block and reflect a part of the non-diffused light converted by the curved reflecting mirror using, for example, a plane mirror, the optical path of the non-diffused light is separated into a plurality of different optical paths. be able to. Further, if a half mirror is used as the light separating means, a part of the non-diffused light converted by the curved reflector is transmitted, and the remaining non-diffused light is reflected by reflecting the remaining non-diffused light. Can be separated into a plurality of different optical paths.
 本発明に係るカラーセンサのさらに別な実施形態にあっては、測定対象面に垂直な方向に対して等しい角度で、異なる方向から測定対象面に非拡散光を照射することを特徴としている。かかる実施形態によれば、測色計の方向依存性を小さくでき、いずれの向きに配置しても同様な測定結果を得ることができる。 In still another embodiment of the color sensor according to the present invention, the measurement object surface is irradiated with non-diffused light from different directions at the same angle with respect to the direction perpendicular to the measurement object surface. According to this embodiment, the direction dependency of the colorimeter can be reduced, and the same measurement result can be obtained regardless of the orientation.
 本発明に係るカラーセンサのさらに別な実施形態は、前記曲面反射鏡と前記照射用反射鏡が一体に形成されていることを特徴としている。かかる実施形態によれば、部品点数が少なくなるので、カラーセンサのコストが低下し、また組立て時の位置調整が容易になる。 Still another embodiment of the color sensor according to the present invention is characterized in that the curved reflecting mirror and the irradiation reflecting mirror are integrally formed. According to this embodiment, since the number of parts is reduced, the cost of the color sensor is reduced, and the position adjustment during assembly is facilitated.
 本発明に係るカラーセンサのさらに別な実施形態は、複数個の光源と、前記複数個の光源のそれぞれに対応して一組の曲面反射鏡、光路分離手段および照射用反射鏡を備えたことを特徴としている。かかる実施態様によれば、より多くの方向から測定対象面に非拡散光を照射することができる。 Still another embodiment of the color sensor according to the present invention includes a plurality of light sources and a set of curved reflectors, optical path separating means, and irradiation reflectors corresponding to each of the plurality of light sources. It is characterized by. According to this embodiment, it is possible to irradiate non-diffused light onto the measurement target surface from more directions.
 また、光源、曲面反射鏡、光分離手段及び照射用反射鏡からなる一組の照明光学系を複数組備え、測定対象面に垂直な中心軸の回りに前記照明光学系を配置した場合には、測色計の方向依存性をさらに小さくでき、いずれの方向に配置しても同様な測定結果を得ることができる。 In addition, when a plurality of sets of illumination optical systems including a light source, a curved reflector, a light separating means, and an illumination reflector are provided, and the illumination optical system is arranged around a central axis perpendicular to the measurement target surface The direction dependency of the colorimeter can be further reduced, and the same measurement result can be obtained regardless of the direction.
 また、前記曲面反射鏡で反射して出射される非拡散光は平行光に限るものではなく、緩やかに集束する集束光であってもよい。 Further, the non-diffused light reflected and emitted by the curved reflecting mirror is not limited to parallel light, and may be converged light that is gently focused.
 なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。 The means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
図1は、本発明の実施形態1に係るカラーセンサの概略断面図である。FIG. 1 is a schematic cross-sectional view of a color sensor according to Embodiment 1 of the present invention. 図2は、放物面鏡(軸外し放物面鏡)の斜視図である。FIG. 2 is a perspective view of a parabolic mirror (off-axis parabolic mirror). 図3は、実施形態1のカラーセンサの説明図である。FIG. 3 is an explanatory diagram of the color sensor according to the first embodiment. 図4は、実施形態1のカラーセンサの説明図である。FIG. 4 is an explanatory diagram of the color sensor according to the first embodiment. 図5は、本発明の実施形態2に係るカラーセンサの平面図である。FIG. 5 is a plan view of a color sensor according to Embodiment 2 of the present invention. 図6は、実施形態2のカラーセンサから測定対象物に照射される光を示す概略斜視図である。FIG. 6 is a schematic perspective view illustrating light emitted from the color sensor according to the second embodiment to a measurement object. 図7は、本発明の実施形態3に係るカラーセンサの概略断面図である。FIG. 7 is a schematic cross-sectional view of a color sensor according to Embodiment 3 of the present invention. 図8は、実施形態3のカラーセンサの変形例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a modification of the color sensor of the third embodiment. 図9は、本発明の実施形態4に係るカラーセンサの概略断面図である。FIG. 9 is a schematic cross-sectional view of a color sensor according to Embodiment 4 of the present invention. 図10は、実施形態4の別な例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing another example of the fourth embodiment. 図11は、本発明の実施形態5に係るカラーセンサの概略断面図である。FIG. 11 is a schematic cross-sectional view of a color sensor according to Embodiment 5 of the present invention.
 以下、添付図面を参照しながら本発明の好適な実施形態を説明する。ただし、本発明は以下の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において種々設計変更することができる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments, and various design changes can be made without departing from the gist of the present invention.
(第1の実施形態)
 以下、図1-図4を参照して本発明の実施形態1を説明する。図1は、実施形態1のカラーセンサ11の概略断面図である。図1に示すカラーセンサ11は、照明光学系と受光部14とからなり、その照明光学系は、光源13、曲面反射鏡15、光路分離手段16及び照射用反射鏡17によって構成されている。
(First embodiment)
The first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a color sensor 11 according to the first embodiment. The color sensor 11 shown in FIG. 1 includes an illumination optical system and a light receiving unit 14, and the illumination optical system includes a light source 13, a curved reflecting mirror 15, an optical path separating unit 16, and an irradiation reflecting mirror 17.
 光源13及び受光部14は回路基板12の下面に実装されている。回路基板12は測定対象物20の表面(測定対象面)に平行となるように配置されている。なお、以下の説明においては、測定対象物20の表面は水平面内にあるものとして説明する。 The light source 13 and the light receiving unit 14 are mounted on the lower surface of the circuit board 12. The circuit board 12 is disposed so as to be parallel to the surface (measurement target surface) of the measurement target 20. In the following description, it is assumed that the surface of the measurement object 20 is in a horizontal plane.
 光源13はLEDチップを内蔵した白色光光源であって、その光軸Aが回路基板12に垂直となるように(すなわち、光源13から出射される主光線が垂直下方を向くように)設置されている。 The light source 13 is a white light source with a built-in LED chip, and is installed such that its optical axis A is perpendicular to the circuit board 12 (that is, the principal ray emitted from the light source 13 is directed vertically downward). ing.
 光源13の垂直下方には、曲面反射鏡15が配設されている。曲面反射鏡15とは、その表面(鏡面)が、放物線をその対称軸Cの回りに回転させた回転放物面Pの一部によって構成された反射鏡である。曲面反射鏡15は、元になった回転放物面Pの焦点Eが光源13の発光点に一致し、対称軸Cが回路基板12の下面と平行となり、かつ、対称軸Cが受光部14の光軸Bと交わるように位置を定められている。また、この実施形態では、図2に示すように、回転放物面Pの焦点Eから対称軸Cに直交する方向に位置する領域の曲面で曲面反射鏡15(軸外し放物面鏡)を構成している。 A curved reflecting mirror 15 is disposed vertically below the light source 13. The curved reflecting mirror 15 is a reflecting mirror whose surface (mirror surface) is constituted by a part of a rotating paraboloid P obtained by rotating a parabola around its symmetry axis C. In the curved reflector 15, the focal point E of the original paraboloid P is coincident with the light emitting point of the light source 13, the symmetry axis C is parallel to the lower surface of the circuit board 12, and the symmetry axis C is the light receiving unit 14. The position is determined so as to intersect the optical axis B of Further, in this embodiment, as shown in FIG. 2, the curved reflecting mirror 15 (off-axis parabolic mirror) is formed with a curved surface in a region located in a direction orthogonal to the symmetry axis C from the focal point E of the rotating paraboloid P. It is composed.
 曲面反射鏡15はどのような構造となっていても差し支えない。図示例では、曲面反射鏡15は、プラスチック成形品の放物面鏡支持板18aの表面に形成された金属膜である。金属膜は、メッキや真空蒸着などによって放物面鏡支持板18aの表面の一部に成膜される。放物面鏡支持板18aは、曲面反射鏡15を設けた領域以外の面で光を反射しないよう、黒色樹脂や光吸収性材料を充填した樹脂などを用いるのが好ましい。また、曲面反射鏡15は、金属板の表面を研磨して回転放物面状に鏡面加工を施したものでもよい。 The curved reflector 15 may have any structure. In the illustrated example, the curved reflecting mirror 15 is a metal film formed on the surface of a parabolic mirror support plate 18a of a plastic molded product. The metal film is formed on a part of the surface of the parabolic mirror support plate 18a by plating or vacuum deposition. The parabolic mirror support plate 18a is preferably made of a resin filled with a black resin or a light-absorbing material so as not to reflect light on a surface other than the region where the curved reflector 15 is provided. Further, the curved reflecting mirror 15 may be one in which the surface of a metal plate is polished and mirror-finished into a paraboloid.
 図3に示すように、光源13の光軸Aと受光部14の光軸Bを含む垂直平面内において、光源13の発光点を原点として光軸Aと平行にX軸を定め、回路基板12の下面と平行にY軸を定めると、回転放物面Pの対称軸CはY軸に一致し、回転放物面Pの焦点は光源13の発光点に位置するので、回転放物面Pの断面形状(放物線)は、
   4f(Y+f)=X   …(数式1)
で表される。ここで、fはPの焦点Eと頂点との間の距離(以下、焦点距離という)である。
As shown in FIG. 3, in the vertical plane including the optical axis A of the light source 13 and the optical axis B of the light receiving unit 14, the X axis is determined in parallel with the optical axis A with the light emitting point of the light source 13 as the origin, and the circuit board 12. If the Y axis is defined in parallel with the lower surface of the paraboloid, the symmetry axis C of the paraboloid P coincides with the Y axis, and the focal point of the paraboloid P is located at the light emitting point of the light source 13. The cross-sectional shape (parabola) of
4f (Y + f) = X 2 (Formula 1)
It is represented by Here, f is the distance between the focal point E and the apex of P (hereinafter referred to as the focal length).
 しかして、光源13から放射した光Laのうち曲面反射鏡15に入射して曲面反射鏡15で反射された光は、平行光Lbに変換されて対称軸C(またはY軸方向)と平行に進む。 Thus, the light La emitted from the light source 13 and incident on the curved reflecting mirror 15 and reflected by the curved reflecting mirror 15 is converted into parallel light Lb and parallel to the symmetry axis C (or Y axis direction). move on.
 具体的にいうと、光源13の発光点からX軸方向へ6mmの位置に曲面反射鏡15が配置されているとすれば、回転放物面Pの断面形状は、上記数式1から、
   Y=(1/12)X-3
となる(つまり、f=3)。また、曲面反射鏡15のY軸と平行な方向の長さがY軸方向の座標で表して、-9/4(mm)≦Y≦15/4(mm)であるとすれば(Y軸方向の長さΔY=6mm)、曲面反射鏡15で変換された平行光LbのX軸方向の光束幅ΔXは6mm(光束の範囲をX軸方向の座標で表せば、3(mm)≦X≦9(mm))となる。なお、ここで述べた数値は一例であって、本発明のカラーセンサ11は、これらの数値に限定されるものではない。
Specifically, if the curved reflecting mirror 15 is disposed at a position 6 mm from the light emitting point of the light source 13 in the X-axis direction, the cross-sectional shape of the rotating paraboloid P is given by
Y = (1/12) X 2 -3
(That is, f = 3). Further, if the length of the curved reflecting mirror 15 in the direction parallel to the Y axis is expressed by coordinates in the Y axis direction and −9/4 (mm) ≦ Y ≦ 15/4 (mm) (Y axis) Direction length ΔY = 6 mm), and the beam width ΔX in the X-axis direction of the parallel light Lb converted by the curved reflector 15 is 6 mm (3 (mm) ≦ X if the range of the beam is expressed by coordinates in the X-axis direction) ≦ 9 (mm)). In addition, the numerical value described here is an example, and the color sensor 11 of the present invention is not limited to these numerical values.
 平行光束の断面積は、曲面反射鏡15の面積によって決まる以外に、回転放物面Pの焦点距離fの値によっても変わる。回転放物面Pの焦点距離を変化させると、曲面反射鏡15の面積が同じであっても、平行光Lbの光束断面積や光強度が変化する。 The cross-sectional area of the parallel light flux depends not only on the area of the curved reflecting mirror 15 but also on the value of the focal length f of the paraboloid P. When the focal length of the rotating paraboloid P is changed, even when the area of the curved reflecting mirror 15 is the same, the cross-sectional area and light intensity of the parallel light Lb change.
 受光部14の光軸Bを挟んで曲面反射鏡15の反対側には、光路分離手段16が配置されている。すなわち、曲面反射鏡15で反射された平行光Lbが水平に進む先には光路分離手段16が配置されている。光路分離手段16は、2面の平面ミラー16a,16bによって構成されており、略くの字状に屈曲している。平面ミラー16a,16bのそれぞれの法線は、光軸A及びBを含む垂直平面と平行な方向を向いている。この光路分離手段16(平面ミラー16a,16b)も、プラスチック成形品である支持板19の表面にメッキや蒸着などの方法によって金属膜を成膜することにより形成されている。あるいは、金属板の表面を研磨して鏡面加工したものでもよい。 An optical path separating means 16 is arranged on the opposite side of the curved reflecting mirror 15 with the optical axis B of the light receiving unit 14 in between. In other words, the optical path separating means 16 is disposed at the destination where the parallel light Lb reflected by the curved reflecting mirror 15 travels horizontally. The optical path separating means 16 is constituted by two plane mirrors 16a and 16b, and is bent in a substantially square shape. The normal lines of the plane mirrors 16a and 16b are oriented in a direction parallel to the vertical plane including the optical axes A and B. The optical path separating means 16 (plane mirrors 16a and 16b) is also formed by forming a metal film on the surface of the support plate 19 which is a plastic molded product by a method such as plating or vapor deposition. Alternatively, the surface of the metal plate may be polished and mirror-finished.
 曲面反射鏡15の下方には、平板状の照射用反射鏡17が設けられている。照射用反射鏡17は、プラスチック成形品からなる反射鏡支持板18bの表面にメッキや真空蒸着などの方法で金属膜を成膜した平面鏡である。あるいは、金属板の表面を研磨して鏡面加工したものでもよい。照射用反射鏡17は、その法線方向が光軸A及びBを含む垂直平面と平行な向きのとなるように傾いている。 Below the curved reflecting mirror 15, a flat-shaped irradiation reflecting mirror 17 is provided. The irradiation reflecting mirror 17 is a flat mirror in which a metal film is formed on the surface of the reflecting mirror support plate 18b made of a plastic molded product by a method such as plating or vacuum deposition. Alternatively, the surface of the metal plate may be polished and mirror-finished. The irradiation reflecting mirror 17 is tilted so that the normal direction thereof is parallel to the vertical plane including the optical axes A and B.
 また、図示例では、放物面鏡支持板18aと反射鏡支持板18bは一体に形成されていて一体物の支持板18となっているが、これらは別体となっていても差し支えない。もっとも、放物面鏡支持板18aと反射鏡支持板18bが一体になっていれば、部品点数が減り、また部品組立時の位置調整も容易になるので、これらを一体に形成しておくことが好ましい。 In the illustrated example, the paraboloid mirror support plate 18a and the reflector support plate 18b are integrally formed to be an integral support plate 18, but they may be separated. However, if the parabolic mirror support plate 18a and the reflector support plate 18b are integrated, the number of components is reduced, and the position adjustment during component assembly is facilitated. Is preferred.
 受光部14は、その光軸Bが測定対象面と垂直になるようにして、測定対象面の直上に配置されている。詳細は省略するが、この受光部14は、集光用のレンズや回折格子、センサアレイなどによって構成されている。 The light receiving unit 14 is arranged immediately above the measurement target surface so that the optical axis B is perpendicular to the measurement target surface. Although not described in detail, the light receiving unit 14 includes a condensing lens, a diffraction grating, a sensor array, and the like.
 図1では、測定窓22は測色計を納めた筐体21の測定窓22の下に位置している。ただし、これは測色計の用途によって異なる。場合によっては、測定対象物22が生産ラインにおいてコンベアの上を流れている場合もあり、その場合には測定計は測定窓22から離れたライン上方に配置されている。また、測定対象物20が上方に位置し、カラーセンサ11により下方から測定対象物20の下面に光を照射するようになっていてもよい。 In FIG. 1, the measurement window 22 is located below the measurement window 22 of the housing 21 in which the colorimeter is housed. However, this depends on the use of the colorimeter. In some cases, the measurement object 22 may flow on the conveyor in the production line, and in that case, the measurement meter is arranged above the line away from the measurement window 22. Alternatively, the measurement object 20 may be positioned above and the color sensor 11 may irradiate light from below to the lower surface of the measurement object 20.
 しかして、この光源13にあっては、図1に示すように、光源13から放射された光Laは、曲面反射鏡15で反射されて平行光Lbとなって、光路分離手段16に入射する。光路分離手段16に入射した平行光Lbのうち半分は平面ミラー16aで反射され、平面ミラー16aで反射した平行光Lcはある方向から測定対象物20の上面に照射される。また、光路分離手段16に入射した平行光Lbのうち残る半分は平面ミラー16bで反射し、平面ミラー16bで反射した平行光Ldは照射用反射鏡17に入射する。照射用反射鏡17に入射した平行光Ldは照射用反射鏡17で反射され、照射用反射鏡17で反射された平行光Leは異なる方向から測定対象物20の上面に照射される。 In the light source 13, as shown in FIG. 1, the light La emitted from the light source 13 is reflected by the curved reflecting mirror 15 to become parallel light Lb and enters the optical path separating means 16. . Half of the parallel light Lb incident on the optical path separating means 16 is reflected by the flat mirror 16a, and the parallel light Lc reflected by the flat mirror 16a is irradiated on the upper surface of the measuring object 20 from a certain direction. The remaining half of the parallel light Lb incident on the optical path separating means 16 is reflected by the plane mirror 16 b, and the parallel light Ld reflected by the plane mirror 16 b is incident on the irradiation reflecting mirror 17. The parallel light Ld incident on the irradiation reflecting mirror 17 is reflected by the irradiation reflecting mirror 17, and the parallel light Le reflected by the irradiation reflecting mirror 17 is irradiated on the upper surface of the measuring object 20 from different directions.
 また、このカラーセンサ11では、測定対象面を照射する平行光Lcが測定対象面に立てた法線Nとなす角度(以下、照射角という)θ2と、同じく測定対象面を照射する平行光Leの照射角θ5とは等しい角度となっている。平面ミラー16aがY軸方向となす角度(あるいは、測定対象面と平行な面となす角度)をθ1とすれば、平行光Lcの照射角θ2は、
   θ2=2θ1-90°   …(数式2)
で表される。また、平面ミラー16bがY軸となす角度をθ3、照射用反射鏡17がY軸となす角度をθ4とすれば、平行光Leの照射角θ5は、
   θ5=2(θ3+θ4)-270°   …(数式3)
で表される。したがって、測定対象面を照射する平行光Lc,Leの照射角θ2、θ5を等しくするためには、
   θ1=θ3+θ4-90°   …(数式4)
を満たせばよい。
Further, in this color sensor 11, an angle θ2 (hereinafter referred to as an irradiation angle) formed by the parallel light Lc that irradiates the measurement target surface and a normal N standing on the measurement target surface, and a parallel light Le that also irradiates the measurement target surface. Is equal to the irradiation angle θ5. If the angle formed by the plane mirror 16a with the Y-axis direction (or the angle formed with the plane parallel to the measurement target surface) is θ1, the irradiation angle θ2 of the parallel light Lc is
θ2 = 2θ1-90 ° (Formula 2)
It is represented by Further, if the angle formed by the plane mirror 16b with the Y axis is θ3 and the angle formed by the irradiation reflecting mirror 17 with the Y axis is θ4, the irradiation angle θ5 of the parallel light Le is
θ5 = 2 (θ3 + θ4) −270 ° (Equation 3)
It is represented by Therefore, in order to make the irradiation angles θ2 and θ5 of the parallel lights Lc and Le that irradiate the measurement target surface equal,
θ1 = θ3 + θ4-90 ° (Formula 4)
Should be satisfied.
 たとえば、平行光Lcの照射角をθ2=20°とするためには、数式2より、θ1=55°とすればよい。また、平行光Leの照射角θ5をθ2と同じく20°とするためには、数式3より、θ3+θ4=145°であればよいから、θ3=60°、θ4=85°などとすればよい。 For example, in order to set the irradiation angle of the parallel light Lc to θ2 = 20 °, from Equation 2, θ1 = 55 ° may be set. Further, in order to set the irradiation angle θ5 of the parallel light Le to 20 °, which is the same as θ2, it is sufficient that θ3 + θ4 = 145 ° from Equation 3, so that θ3 = 60 °, θ4 = 85 °, and the like.
 このように両平行光Lc,Leの照射角θ2とθ5を等しくしておけば、カラーセンサ11が測定対象面の法線Nの回りに180°回した状態でセットされた場合でも同じ光が測定対象面に照射されることになり、測定結果の再現性と信頼性が向上する。 In this way, if the irradiation angles θ2 and θ5 of the parallel lights Lc and Le are made equal, the same light is emitted even when the color sensor 11 is set 180 degrees around the normal line N of the measurement target surface. The surface to be measured is irradiated, and the reproducibility and reliability of the measurement results are improved.
 また、このカラーセンサ11によれば、1個の光源で測定対象面に2方向から光を照射させることができ、平行光を照射する方向の数に比べて光源の数を半減させることができ、カラーセンサのコストダウンを図ることができる。また、携帯用又は可搬型の測色計に用いる場合にはバッテリーの消耗を少なくできる。 Further, according to the color sensor 11, light can be applied to the measurement target surface from two directions with a single light source, and the number of light sources can be halved compared to the number of directions in which parallel light is irradiated. The cost of the color sensor can be reduced. In addition, when used in a portable or portable colorimeter, battery consumption can be reduced.
 さらに、このカラーセンサ11では、測定対象面に照射する光を平行光にしているので、平行光が測定対象面の周囲の部材(たとえば、測定窓22の周りの筐体21など)に当たりにくくなる。その結果、周囲の部材で反射した光が受光部に入射してノイズとなるのを防ぐことができ、測色計の感度を向上させることができて、低反射率の測定対象面の計測も容易になる。 Further, in this color sensor 11, since the light irradiated onto the measurement target surface is made parallel light, the parallel light is less likely to hit members around the measurement target surface (for example, the casing 21 around the measurement window 22). . As a result, it is possible to prevent the light reflected by the surrounding members from entering the light receiving section and causing noise, improving the sensitivity of the colorimeter, and measuring the measurement target surface with low reflectance. It becomes easy.
 また、このカラーセンサ11では、回転放物面Pの頂点近傍領域を含まない曲面反射鏡15(軸外し放物面鏡)を用いているので、曲面反射鏡15で反射した光に光源13の影が生じることがなく、カラーセンサ11の信頼性が向上する。 In addition, since the color sensor 11 uses the curved reflecting mirror 15 (off-axis parabolic mirror) that does not include the region near the apex of the rotating paraboloid P, the light reflected by the curved reflecting mirror 15 is reflected by the light source 13. There is no shadow, and the reliability of the color sensor 11 is improved.
 なお、上記実施形態では光路分離手段16として2面鏡を用いたが、3面以上の平面ミラーを用いれば、平行光の光路を3つ以上に分離させることができ、測定対象面に3方向以上の方向から平行光を照射させることも可能になる。 In the above embodiment, a dihedral mirror is used as the optical path separating means 16, but if three or more plane mirrors are used, the optical path of parallel light can be separated into three or more, and the measurement target plane has three directions. It is also possible to irradiate parallel light from the above directions.
(第2の実施形態)
 図5は本発明の実施形態2によるカラーセンサ31の平面図である。このカラーセンサ31は、実施形態1で説明した照明光学系を受光部14の光軸Bの回りに略回転対称となるように複数組配置している。特に、図示例では、90°の角度をなすように2組の照明光学系を光軸Bの回りに設けてあり、図5におけるF-F断面とG-G断面は、図1と同様な構造を有している。
(Second Embodiment)
FIG. 5 is a plan view of the color sensor 31 according to the second embodiment of the present invention. The color sensor 31 includes a plurality of sets of the illumination optical systems described in the first embodiment so as to be substantially rotationally symmetric about the optical axis B of the light receiving unit 14. In particular, in the illustrated example, two sets of illumination optical systems are provided around the optical axis B so as to form an angle of 90 °, and the FF section and the GG section in FIG. 5 are the same as those in FIG. It has a structure.
 このようなカラーセンサ31を用いれば、図6に示すように、等しい照射角で複数の方向(図6では四方)から平行光Lc,Leを照射することができ、多様な表面材質の測定対象面を再現性よく測定することができる。 If such a color sensor 31 is used, as shown in FIG. 6, it is possible to irradiate parallel lights Lc and Le from a plurality of directions (four directions in FIG. 6) with the same irradiation angle, and to measure various surface materials. The surface can be measured with good reproducibility.
(第3の実施形態)
 図7は本発明の実施形態3によるカラーセンサ41を示す概略断面図である。このカラーセンサ41では、光源13及び曲面反射鏡15(すなわち、回転放物面Pの対称軸C)を紙面に垂直な軸の回りに回転させ、光源13から放射されて曲面反射鏡15で平行光化された平行光Lbの延長上に測定対象面が存在するように光源13及び曲面反射鏡15を傾けている。また、光路分離手段16は平板状ミラー16cによって形成されており、曲面反射鏡15から出た平行光Lbの半分を遮るように配置されている。したがって、曲面反射鏡15から出た平行光Lbの残り半分の平行光Lcはある照射角で測定対象物20の表面に照射される。
(Third embodiment)
FIG. 7 is a schematic sectional view showing a color sensor 41 according to Embodiment 3 of the present invention. In this color sensor 41, the light source 13 and the curved reflecting mirror 15 (that is, the symmetry axis C of the rotating paraboloid P) are rotated around an axis perpendicular to the paper surface, and the light is emitted from the light source 13 and paralleled by the curved reflecting mirror 15. The light source 13 and the curved reflecting mirror 15 are tilted so that the measurement target surface exists on the extension of the collimated light Lb. The optical path separation means 16 is formed by a flat mirror 16c and is arranged so as to block half of the parallel light Lb emitted from the curved reflecting mirror 15. Accordingly, the other half of the parallel light Lb emitted from the curved reflecting mirror 15 is irradiated onto the surface of the measurement object 20 at a certain irradiation angle.
 また、照射用反射鏡17は、光軸Bを挟んで曲面反射鏡15及び光路分離手段16と反対側に配置されている。曲面反射鏡15から出た平行光Lbのうち平板状ミラー16c(光路分離手段16)によって反射された半分の平行光Ldは照射用反射鏡17に入射し、照射用反射鏡17で反射することによって平行光Leが測定対象物20の表面に照射される。平行光Leは平行光Lcと反対側から測定対象物20に照射されるが、平行光Lcの照射角と平行光Leの照射角とは、この実施形態でも等しいことが好ましい。 The irradiation reflecting mirror 17 is disposed on the opposite side of the curved reflecting mirror 15 and the optical path separating means 16 with the optical axis B interposed therebetween. Of the parallel light Lb emitted from the curved reflecting mirror 15, half of the parallel light Ld reflected by the flat plate mirror 16 c (optical path separating means 16) is incident on the irradiation reflecting mirror 17 and reflected by the irradiation reflecting mirror 17. Thus, the parallel light Le is irradiated on the surface of the measurement target 20. Although the parallel light Le is irradiated to the measuring object 20 from the opposite side to the parallel light Lc, it is preferable that the irradiation angle of the parallel light Lc and the irradiation angle of the parallel light Le are also equal in this embodiment.
 曲面反射鏡15を支持する放物面鏡支持板18aと光路分離手段16を支持する支持板19とは別体となっていてもよいが、図7に示すように一体物としておけば、部品コストを減らすことができ、また組立時の位置調整も容易になる。 The parabolic mirror support plate 18a that supports the curved reflecting mirror 15 and the support plate 19 that supports the optical path separating means 16 may be separated, but if they are integrated as shown in FIG. Costs can be reduced, and position adjustment during assembly is facilitated.
 なお、図7の実施形態では、光路分離手段16として平板状ミラー16cを用いて平行光Lbを2つの光路に分離又は分割していたが、図8に示すように、光路分離手段16としてハーフミラー16dを用いてもよい。図8に示す変形例では、曲面反射鏡15から出た平行光Lbの光路上にハーフミラー16dを配置してあり、ハーフミラー16dに入射した平行光Lbのうち半分の平行光Lcがハーフミラー16dを透過して測定対象物20に照射される。また、ハーフミラー16dに入射した平行光Lbのうち残り半分の平行光Ldは、照射用反射鏡17に入射し、照射用反射鏡17で反射された平行光Leが測定対象物20に照射される。 In the embodiment of FIG. 7, the parallel light Lb is separated or divided into two optical paths using a flat mirror 16 c as the optical path separating unit 16. However, as shown in FIG. A mirror 16d may be used. In the modification shown in FIG. 8, the half mirror 16d is arranged on the optical path of the parallel light Lb emitted from the curved reflecting mirror 15, and half the parallel light Lc out of the parallel light Lb incident on the half mirror 16d is half mirror. The measurement object 20 is irradiated through 16d. The other half of the parallel light Lb incident on the half mirror 16d is incident on the irradiation reflecting mirror 17, and the parallel light Le reflected by the irradiation reflecting mirror 17 is irradiated on the measurement object 20. The
(第4の実施形態)
 また、1個の受光部に対して複数組の照明光学系を組み合わせることによって測定対象面に照射する平行光を増やすようにしてもよい。たとえば、図9に示すカラーセンサ51では、図1に示したような照明光学系を上下複数段(図示例では、2段)に組み合わせている。また、図10に示すカラーセンサ52では、図7に示したような照明光学系を左右対称に配置している。
(Fourth embodiment)
Moreover, you may make it increase the parallel light irradiated to a measuring object surface by combining several sets of illumination optical systems with respect to one light-receiving part. For example, in the color sensor 51 shown in FIG. 9, the illumination optical system as shown in FIG. 1 is combined in a plurality of upper and lower stages (two stages in the illustrated example). Further, in the color sensor 52 shown in FIG. 10, the illumination optical system as shown in FIG. 7 is arranged symmetrically.
(第5の実施形態)
 測定対象物に照射する光として平行光を用いれば、測色計が検知距離変動に強くなる。しかし、検知対象物に照射する光は、平行光に限るものでなく、緩やかに集束した集束光を用いてもよい。図11は、この一例を示す概略断面図である。
(Fifth embodiment)
If parallel light is used as light to irradiate the measurement object, the colorimeter becomes resistant to fluctuations in the detection distance. However, the light applied to the detection target is not limited to the parallel light, and may be converged light that is gently focused. FIG. 11 is a schematic sectional view showing an example of this.
 図11に示す面光源装置61では、曲面反射鏡62としてたとえば球面反射鏡(凹面競)を用い、球面反射鏡の焦点位置よりも少し球面反射鏡から離れた位置に光源13の発光点を配置している。光源13から放射された光Laは、曲面反射鏡62で反射することによって緩やかに集束した集束光Lgとなって光路分離手段16へ向かう。平面ミラー16aで反射された集束光Lgの一部は集束光Lhとなってある方向から測定対象物20に照射される。また、平面ミラー16bで反射された集束光Lgの一部は集束光Liとなって照射用反射鏡17でさらに反射され、集束光Ljとなって別な方向から測定対象物20に照射される。なお、集束光Lh,Ljは、測定対象物20に入射する以前には集光せず、適当な光束断面をもって測定対象面に照射される。 In the surface light source device 61 shown in FIG. 11, for example, a spherical reflecting mirror (concave race) is used as the curved reflecting mirror 62, and the light emitting point of the light source 13 is arranged at a position slightly away from the spherical reflecting mirror from the focal position of the spherical reflecting mirror. is doing. The light La emitted from the light source 13 is reflected by the curved reflecting mirror 62 to be gradually converged light Lg and travels toward the optical path separating means 16. Part of the focused light Lg reflected by the flat mirror 16a is irradiated onto the measurement object 20 from the direction that is the focused light Lh. Further, a part of the focused light Lg reflected by the plane mirror 16b becomes the focused light Li, is further reflected by the irradiation reflecting mirror 17, and becomes the focused light Lj and is irradiated onto the measurement object 20 from another direction. . The focused lights Lh and Lj are not condensed before being incident on the measurement object 20, and are irradiated onto the measurement object surface with an appropriate beam cross section.
  11,31,41,42,51,52,61…カラーセンサ
  13…光源
  14…受光部
  15,62…曲面反射鏡
  16…光路分離手段
  16a…平面ミラー
  16b…平面ミラー
  16c…平板状ミラー
  16d…ハーフミラー
  17…照射用反射鏡
  20…測定対象物
  A…光源の光軸
  B…受光部の光軸
  P…回転放物面
  C…回転放物面の対称軸
  E…回転放物面の焦点
11, 31, 41, 42, 51, 52, 61 ... color sensor 13 ... light source 14 ... light receiving unit 15, 62 ... curved reflector 16 ... optical path separating means 16a ... plane mirror 16b ... plane mirror 16c ... flat mirror 16d ... Half mirror 17 ... Reflecting mirror 20 ... Object to be measured A ... Optical axis of light source B ... Optical axis of light receiving part P ... Rotating paraboloid C ... Axis of symmetry of rotating paraboloid E ... Focal point of rotating paraboloid

Claims (11)

  1.  1個又は複数個の光源と、
     前記光源から発した光を非拡散光に変換する曲面反射鏡と、
     前記非拡散光の光路を異なる複数の光路に分離する光路分離手段と、
     前記光路分離手段によって分離された複数の光路のうち一部の光路の光を反射させる照射用反射鏡とを備え、
     前記照射用反射鏡で反射された非拡散光を測定対象面に照射させるとともに、前記光路分離手段によって分離された複数の光路のうち前記一部の光路以外の光路の非拡散光を、前記照射用反射鏡で反射された非拡散光と異なる方向から測定対象面に照射させるようにしたことを特徴とするカラーセンサ。
    One or more light sources;
    A curved reflector that converts light emitted from the light source into non-diffused light;
    An optical path separating means for separating the optical path of the non-diffused light into different optical paths;
    An irradiating reflecting mirror that reflects the light of some of the plurality of optical paths separated by the optical path separating means;
    Irradiate the surface to be measured with non-diffused light reflected by the irradiating reflector, and irradiate non-diffused light in light paths other than the part of the plurality of optical paths separated by the optical path separating means. A color sensor characterized in that the surface to be measured is irradiated from a different direction from the non-diffused light reflected by the reflector.
  2.  前記曲面反射鏡は、鏡面が回転放物面の一部をなす放物面鏡であって、前記回転放物面の焦点が前記光源の発光点と一致するように配置されていることを特徴とする、請求項1に記載のカラーセンサ。 The curved reflecting mirror is a parabolic mirror whose mirror surface forms a part of a rotating paraboloid, and is arranged so that a focal point of the rotating paraboloid coincides with a light emitting point of the light source. The color sensor according to claim 1.
  3.  前記曲面反射鏡は、前記回転放物面の頂点近傍領域を含まないことを特徴とする、請求項2に記載のカラーセンサ。 The color sensor according to claim 2, wherein the curved reflecting mirror does not include a region near the apex of the rotating paraboloid.
  4.  前記光路分離手段は、前記曲面反射鏡で変換された非拡散光を複数の方向へ反射させることによって当該非拡散光の光路を異なる複数の光路に分離することを特徴とする、請求項1に記載のカラーセンサ。 The optical path separation means separates the optical path of the non-diffused light into a plurality of different optical paths by reflecting the non-diffused light converted by the curved reflecting mirror in a plurality of directions. The described color sensor.
  5.  前記光路分離手段は、前記曲面反射鏡で変換された非拡散光の一部を遮って反射させることによって当該非拡散光の光路を異なる複数の光路に分離することを特徴とする、請求項1に記載のカラーセンサ。 2. The optical path separating unit separates the optical path of the non-diffused light into a plurality of different optical paths by blocking and reflecting a part of the non-diffused light converted by the curved reflecting mirror. The color sensor described in 1.
  6.  前記光路分離手段は、前記曲面反射鏡で変換された非拡散光のうち一部の非拡散光を透過させ、残りの非拡散光を反射させることによって当該非拡散光の光路を異なる複数の光路に分離することを特徴とする、請求項1に記載のカラーセンサ。 The optical path separating means transmits a part of the non-diffused light converted by the curved reflector and reflects the remaining non-diffused light, thereby changing the optical path of the non-diffused light to a plurality of different optical paths. The color sensor according to claim 1, wherein the color sensor is separated.
  7.  測定対象面に垂直な方向に対して等しい角度で、異なる方向から測定対象面に非拡散光を照射することを特徴とする、請求項1に記載のカラーセンサ。 The color sensor according to claim 1, wherein non-diffused light is irradiated to the measurement target surface from different directions at an equal angle with respect to a direction perpendicular to the measurement target surface.
  8.  前記曲面反射鏡と前記照射用反射鏡が一体に形成されていることを特徴とする、請求項1に記載のカラーセンサ。 The color sensor according to claim 1, wherein the curved reflecting mirror and the irradiating reflecting mirror are integrally formed.
  9.  複数個の光源と、前記複数個の光源のそれぞれに対応して一組の曲面反射鏡、光路分離手段および照射用反射鏡を備えたことを特徴とする、請求項1に記載のカラーセンサ。 2. The color sensor according to claim 1, further comprising a plurality of light sources and a pair of curved reflectors, optical path separating means, and irradiation reflectors corresponding to each of the plurality of light sources.
  10.  光源、曲面反射鏡、光分離手段及び照射用反射鏡からなる一組の照明光学系を複数組備え、測定対象面に垂直な中心軸の回りに前記照明光学系を配置したことを特徴とする、請求項9に記載のカラーセンサ。 A plurality of sets of illumination optical systems including a light source, a curved reflecting mirror, a light separating means, and an irradiation reflecting mirror are provided, and the illumination optical system is arranged around a central axis perpendicular to the measurement target surface. The color sensor according to claim 9.
  11.  前記光源から放射された光を前記曲面反射鏡で反射させることにより、緩やかな集束光に変換させることを特徴とする、請求項1に記載のカラーセンサ。 The color sensor according to claim 1, wherein light emitted from the light source is reflected by the curved reflecting mirror to be converted into gently focused light.
PCT/JP2011/056735 2010-06-18 2011-03-22 Color sensor WO2011158540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-139980 2010-06-18
JP2010139980A JP2012002762A (en) 2010-06-18 2010-06-18 Color sensor

Publications (1)

Publication Number Publication Date
WO2011158540A1 true WO2011158540A1 (en) 2011-12-22

Family

ID=45347952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056735 WO2011158540A1 (en) 2010-06-18 2011-03-22 Color sensor

Country Status (2)

Country Link
JP (1) JP2012002762A (en)
WO (1) WO2011158540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742213A (en) * 2018-02-26 2020-10-02 株式会社佐竹 Lighting device for sorting or inspecting machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037973A1 (en) * 2016-08-26 2018-03-01 コニカミノルタ株式会社 Optical unit for multi-angle optical characteristic measuring device, and multi-angle optical characteristic measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262404A (en) * 1988-04-12 1989-10-19 Sumitomo Metal Ind Ltd Measuring instrument for spectral interference fringe
JPH0643700Y2 (en) * 1988-06-23 1994-11-14 大和製衡株式会社 Circular illumination photometric probe with built-in light source lamp
US5486701A (en) * 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
JP2001099711A (en) * 1999-09-30 2001-04-13 Minolta Co Ltd Test chart colorimetry system and color output instrument calibration system
JP2002310626A (en) * 2001-04-18 2002-10-23 Omron Corp Lighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262404A (en) * 1988-04-12 1989-10-19 Sumitomo Metal Ind Ltd Measuring instrument for spectral interference fringe
JPH0643700Y2 (en) * 1988-06-23 1994-11-14 大和製衡株式会社 Circular illumination photometric probe with built-in light source lamp
US5486701A (en) * 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
JP2001099711A (en) * 1999-09-30 2001-04-13 Minolta Co Ltd Test chart colorimetry system and color output instrument calibration system
JP2002310626A (en) * 2001-04-18 2002-10-23 Omron Corp Lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742213A (en) * 2018-02-26 2020-10-02 株式会社佐竹 Lighting device for sorting or inspecting machine

Also Published As

Publication number Publication date
JP2012002762A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US8193502B2 (en) Optical absorption gas sensor
US10386298B2 (en) Nondispersive infrared gas detection sensor
JP5906407B2 (en) Gas component detector
US7507967B2 (en) Infrared gas detector
WO2012121323A1 (en) Optical characteristic measurement device
CN109564153B (en) Measuring device for absorption measurement of gases
JP2013002966A (en) Non-dispersion type infrared gas sensor
CN105739104A (en) Multi-beam coupling device and detection air chamber
JP2008116930A (en) Linear light concentrator
US20200182801A1 (en) Lighting device and inspection apparatus
JP7191801B2 (en) optical inspection equipment
KR101490347B1 (en) Lighting lens module
CN107795960B (en) Measuring light source and measuring system for detecting reflection spectrum
WO2011158540A1 (en) Color sensor
US9429472B2 (en) Illumination device and reflection characteristic measuring device
KR20110057651A (en) Ndir gas sensor
US7477395B2 (en) Measuring device
CN112763067A (en) Illumination reflector arrangement for illuminating a sample, optical analysis device and method for producing an illumination reflector arrangement
JP2011014389A (en) Lighting device for sorting machine
JP2012220353A (en) Gas component detection apparatus
US9568422B2 (en) Light beam incident device and reflected light measurement device
KR102265045B1 (en) Optical gas sensor
US8437004B2 (en) Detection apparatus
KR20200103482A (en) Multi gas sensing apparatus
JP4232648B2 (en) Reflected light measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795448

Country of ref document: EP

Kind code of ref document: A1