WO2012006930A1 - 结冰探测器探头及包括该探头的结冰探测器 - Google Patents

结冰探测器探头及包括该探头的结冰探测器 Download PDF

Info

Publication number
WO2012006930A1
WO2012006930A1 PCT/CN2011/076610 CN2011076610W WO2012006930A1 WO 2012006930 A1 WO2012006930 A1 WO 2012006930A1 CN 2011076610 W CN2011076610 W CN 2011076610W WO 2012006930 A1 WO2012006930 A1 WO 2012006930A1
Authority
WO
WIPO (PCT)
Prior art keywords
icing
probe
water droplets
segment
probe according
Prior art date
Application number
PCT/CN2011/076610
Other languages
English (en)
French (fr)
Inventor
陈迎春
叶林
张淼
葛俊锋
冯丽娟
刘铁军
周峰
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院, 华中科技大学 filed Critical 中国商用飞机有限责任公司
Priority to ES11806272.8T priority Critical patent/ES2649900T3/es
Priority to US13/809,934 priority patent/US9079669B2/en
Priority to NO11806272A priority patent/NO2594486T3/no
Priority to EP11806272.8A priority patent/EP2594486B1/en
Publication of WO2012006930A1 publication Critical patent/WO2012006930A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing

Definitions

  • Icing probe probe and icing detector including the same
  • the present invention relates to a probe for an ice blasting device and an icing detector comprising the same, which is particularly suitable for detecting icing conditions on the surface of an aircraft. Background technique
  • icing occurs in the non-icing protection of the aircraft, such as the upper and lower airfoil behind the wing and the leading edge of the tail, forming a so-called "backflow ice”. This icing is more harmful to aircraft flight safety than normal icing.
  • ice as used in this application shall include various types of ice, frost, and mixtures thereof. Summary of the invention
  • An object of the present invention is to solve the above technical problems and to provide a probe for an icing detector.
  • the icing probe by making the probe have a certain size along the airflow direction, water droplets having different median volume diameters in the airflow form icing at different positions along the airflow direction, thereby realizing normal water droplets. Distinguish between large water droplets and water droplets in the range of median volume in normal water droplets. In this way, accurate detection of large water droplets can be achieved.
  • an icing probe probe comprising three segments arranged in sequence along a direction of a gas flow, wherein an outer surface of the first segment is shaped to collect water droplets in the gas stream;
  • the outer surface shape is set such that the large water droplets are sufficiently decelerated during the movement and the latent heat is released; the outer surface of the third section is used for the large water droplets to freeze thereon.
  • the normal water droplets can substantially complete the deceleration and heat release process and form icing before reaching the outer surface of the third section, so that the icing at the outer surface of the third section is almost completely frozen by large water droplets. In this way, the normal water droplets will not affect the detection of large water droplets, effectively improving the accuracy of detecting ice droplets.
  • the second section may have a length to ensure that the normal water droplets complete the icing and the large water droplets substantially achieve deceleration and latent heat release.
  • the outer surface of the second section is shaped such that the large water droplets substantially continue to be subjected to the action of the boundary layer during the movement. This ensures that large water droplets move along the outer surface of the probe during motion without being blown away by the airflow.
  • the second section may comprise a normal icing zone for the normal water droplets to freeze thereon.
  • the shape of the normal icing zone generally presents a wedge shape when viewed from the side. The wedge-shaped outer surface can effectively achieve the deceleration and heat release of the water droplets without being blown away by the air flow, and the wedge-shaped outer surface can further enhance the capture of the water droplets in the airflow by the entire probe.
  • the normal icing zone comprises a substantially planar portion.
  • the normal icing zone includes a plurality of icing detecting means disposed along the direction of the airflow below its outer surface.
  • the first segment may also include an icing detecting device.
  • the structure of the third stage can be completely omitted.
  • this simplified structure cannot identify the large water droplets, it is still possible to distinguish the normal ice type.
  • the second segment further includes a transition zone for smoothly streamlined connection to the third segment.
  • the third segment may comprise a stagnation zone that generally assumes a shape that is recessed inwardly. The stagnation zone functions to form a negative pressure vortex zone on the outer surface of the third section so that large water droplets flowing therethrough are trapped therein and are difficult to escape therefrom. In this way, large water droplets have more time to form icing, thereby obtaining accurate detection results for large water droplets.
  • the third segment may further include a tail region at the rear thereof for forming a substantially smooth aerodynamic profile of the entire icing probe to reduce damage to the ambient flow field.
  • the first segment comprises a head at the front end having a small equivalent radius of curvature to facilitate the capture of water droplets.
  • the equivalent radius of curvature may be approximately 3-6 mm.
  • the icing probe includes a refrigeration device located below its outer surface to accelerate the exothermic process of the water droplets.
  • the outer surface of the icing probe includes a plurality of independent detecting surfaces along its circumferential direction so that a suitable surface can be selected for detection according to environmental parameters.
  • the icing probe can be conformally disposed on the outer surface of the aircraft or attached to the outer surface of the aircraft by a mounting bracket.
  • an icing detector comprising an icing probe in accordance with the present invention.
  • FIG. 1 is a side schematic view of an icing probe according to a preferred embodiment of the present invention.
  • FIG. 2 is a side elevational view of an icing probe in accordance with another preferred embodiment of the present invention.
  • Figure 3 is an end elevational view of the icing probe in the direction of air flow in accordance with yet another preferred embodiment of the present invention.
  • FIG. 4 is a schematic illustration of one embodiment of an icy probe probe in accordance with the present invention in which the probe is mounted to fit the outer surface of the aircraft. detailed description
  • Figure 1 shows an icing probe probe in accordance with a preferred embodiment of the present invention. As shown in the figure, it basically consists of three sections I, II and III connected in sequence along the airflow direction i, each of which has a specific role in icing detection.
  • the first section I is used for capturing and collecting water droplets (including normal water droplets and large water droplets) in the airflow for subsequent measurement, and the outer surface includes a head having a circular arc shape (for example, 6 mm) having a very small radius. s , thus having a higher trapping characteristic for supercooled water droplets, including normal water droplets and large water droplets.
  • the second segment II is used to enable the large water droplets to decelerate sufficiently and release latent heat, thereby creating conditions for the formation of icing in the third segment at a later time.
  • This requires large water droplets to be able to be in the second paragraph II Continue to move on the outer surface for a longer period of time. Therefore, the outer surface of the second segment II may have a sufficient length to meet the needs of deceleration and latent heat release, and the outer surface thereof may be designed such that the large water droplets are subjected to the action of the boundary layer during the movement without being blown away by the air flow. .
  • the second segment II can also be subdivided along the airflow direction i to include a relatively normal icing zone a and a relatively backward transition zone b.
  • the normal normal icing area a can make the normal water droplets sufficiently freeze on the outer surface thereof, thereby distinguishing the normal icing and the large water droplets from icing, thereby avoiding the influence of the detection of the large water droplets, so that the normal icy water can also have a certain length, so that Ensure that normal water droplets with a median diameter of less than 50 microns can differentially decelerate, release latent heat and eventually freeze.
  • the rear transition zone b is used to achieve a smooth streamlined connection to the third section III to ensure that large water droplets that have completed deceleration and heat release can continue to flow in the airflow direction i to the subsequent third section III.
  • the outer surface of the normal icing area a generally presents a wedge shape symmetric about the line mm from the side, and the two outer surfaces p, q are substantially planar and extend obliquely rearward along the airflow direction i to form A certain angle.
  • the front end of the normal icing zone a is also connected to the back end streamline of the first section I to allow as much water droplets as possible to flow into the second section II.
  • the two outer surfaces p, q of the wedge shape need not be completely planar, or may have some curvature to present a certain curved surface, and the object of the present invention can be equally achieved.
  • the wedge-shaped normal icing zone a can also serve to further capture water droplets in the collected gas stream.
  • a plurality of ice sensing means may be provided substantially in the airflow direction inside the outer surfaces p, q of the normal icing zone a and the inner side of the outer surface of the first section I.
  • the purpose of this setting is to make an accurate judgment of the type of icing, which is further used as a basis for accurately detecting the thickness of icing.
  • normal water droplets corresponding to the ice have the smallest median diameter and the smallest mass, so the speed of deceleration and temperature drop is also the fastest, and the ice is most likely to occur.
  • the normal volume of water droplets corresponding to the ice is larger in diameter and larger in mass, so it slows down and falls. The speed of the temperature is also slower, and it is more difficult to freeze.
  • the normal volume of the normal water droplets corresponding to the mixed ice is between the two, and the degree of icing is also between the two.
  • the above three normal water droplets behave differently when they are icing on the first stage I and the normal icing area a.
  • the normal water droplet corresponding to the ice skating can completely release its latent heat while contacting the head s of the first segment I, so if the icing type is ice icing, the icing is only distributed in the head of the first segment I. And its vicinity.
  • the normal water droplet corresponding to the mixed ice does not completely release the latent heat immediately when it contacts the head s of the first segment I, and a part of the larger diameter water droplet will flow backwards under the action of the airflow before starting to freeze.
  • the icing type is mixed ice
  • the icing will extend a distance on the outer surface of the normal icing area a.
  • the normal water droplet corresponding to the bright ice hardly freezes immediately upon contact with the head s of the first segment I, and the captured water droplet will flow backwards for a longer distance to form ice.
  • the distribution range of icing along the airflow direction can be known, thereby further determining the type of icing according to a predetermined rule, As a basis for accurately detecting the thickness of icing.
  • the predetermined judgment rules can be obtained by experimental methods. By simulating various icing conditions, a series of environmental conditions and the relationship between the distribution range of icing and the type of icing can be obtained.
  • the third paragraph III is used to make the large water droplets flowing through as much as possible to freeze on it without being blown away by the air flow, thereby determining whether or not large water droplets freeze and further icing. Quantitative analysis of thickness provides accurate probing data.
  • the outer surface shape of the third segment III can be specially designed to better perform the above functions.
  • the third segment III may include a stagnation zone t whose outer surface shape substantially presents a concave region that is curved inwardly. Therefore, the airflow is formed by the influence of the surface shape when flowing through the stagnation zone t. Negative pressure vortex zone. After the large water droplets are caught in the vortex area, it is difficult to get out of it. This will stay there for a long time. In this way, the large water droplets will have sufficient time to completely release the latent heat therein and form ice, and the large water droplets will freeze more concentrated in the stagnation zone t.
  • the third segment III may also include a tail region u at its rear portion, the shape of which may be designed according to the principle of fluid mechanics using the prior art, so that the entire icing detector probe forms a substantially smooth aerodynamic shape, thereby Reduce the impact of the probe on the ambient flow field.
  • the water droplets in the airflow can be sufficiently captured by the head s of the first segment I, and wherein the water droplets corresponding to the ice can immediately release all the latent heat and are in the head s and Ice formation is formed in the vicinity. The remaining water droplets will then flow backwards under the influence of the airflow.
  • the water droplets corresponding to the mixed ice and the bright ice will successively complete the process of deceleration and latent heat release, and respectively form the distribution along the airflow direction outside the normal icing zone a. Mixed ice and clear ice on the surface.
  • the large water droplets due to the large size and mass, the large water droplets have not yet completed the deceleration and latent heat release, will still maintain the shape of the water droplets and continue to flow backward, and flow through the transition zone b to the third section III. And since the outer surface of the second section II is designed such that the large water droplets are subjected to the action of the boundary layer during the movement without being blown away by the air flow, the large water droplets can always be continuously decelerated and radiated on the surface of the probe.
  • FIG. 2 there is shown an icing probe in accordance with another preferred embodiment of the present invention.
  • the structure of the probe is substantially similar to that of the first embodiment, but differs in some specific configurations.
  • the head of the first paragraph I is substantially similar to that of the first embodiment, but differs in some specific configurations.
  • the head of the first paragraph I is substantially similar to that of the first embodiment, but differs in some specific configurations.
  • a refrigerating device can be buried inside the outer surface of the probe. Thereby, the water droplets flowing on the outer surface thereof are continuously cooled, so that the probe is more likely to form water in the direction of the airflow than the surface to be detected, so that an early warning signal indicating the risk of icing can be given before the surface to be detected is frozen. As shown in FIG.
  • the probe may include a plurality of detecting surfaces (for example, three, x, y, and z) different from each other, each of the detecting surfaces extending in the airflow direction and having the structure of the present invention, and They are joined to each other sideways and form a closed structure.
  • the most suitable detection surface can be selected according to different environmental parameters (such as air flow speed, temperature and humidity, etc.), so that the outer surface shape of the probe can better ensure that the large water droplets always flow on the boundary layer when flowing thereon. The effect will not be blown away by the airflow.
  • FIG 4 One of the mounting arrangements is shown in Figure 4, and the shaded portion represents a probe according to the present invention which is arranged to have a detection surface only in a portion of the circumference so as to conformally conform to the outer surface of the aircraft by other circumferential portions. Location.
  • the icing probe can also be placed with a complete perimeter as shown in Figure 3 to attach to the outer surface of the aircraft by mounting the bracket.

Abstract

一种结冰探测器探头包括沿气流方向(i)依次设置的三段,即第一段(I),第二段(II)和第三段(III)。其中,第一段(I)的外表面形状设置为适于收集气流中的水滴;第二段(II)的外表面形状设置为使得大水滴在运动过程中能够充分减速并且释放潜热;第三段(III)的外表面用于大水滴结冰。该探头可以对大水滴结冰进行区分和识别,从而对大水滴结冰进行有效探测。还可以对常态结冰的种类做出有效探测,从而有助于精确探测结冰厚度。还提供了一种包括上述结冰探测器探头的结冰探测器。

Description

结冰探测器探头及包括该探头的结冰探测器 技术领域
本发明涉及一种用于结冰探 'J器的探头以及包括该探头的结冰 探测器, 其尤其适用于对飞行器表面的结冰状况进行探测。 背景技术
在飞行器结冰安全防护领域, 人们习惯将中位容积直径(Median Volumetric Diameter, MVD )在 50微米以内的水滴称为常态水滴, 而 将中位容积直径超过 50微米的水滴称为大水滴。
其中, 过冷大水滴 ( Supercooled Large Droplet, SLD ) 所引起的 非常态结冰一直都是飞行器结冰安全防护及结冰探测的难点。这是因 为大水滴具有较常态水滴更大的质量,从而具有更大的惯性和更大的 内含潜热, 因此在结冰过程中更容易在飞行器表面上流动并且需要消 耗更长的时间。 这样, 当过冷大水滴接触到物体表面时, 并不像常态 水滴那样会在接触部分或其附近迅速变成冰, 而是会在物体表面上移 动一段距离之后再发生冻结。 这样, 结冰就会发生在飞行器的非结冰 防护部位,如机翼、尾翼前缘之后的上下翼面上,从而形成所谓的 "后 流冰" 。 这种结冰对飞行器飞行安全的危害比常态结冰更为严重。
目前人们已经研制出了几种针对过冷大水滴进行探测的探测器, 例如, 公开号为 US2002/0158768A1和 WO03/002410A1的两个专利, 其基本技术方案是:针对常态水滴和大水滴设计不同的流道或水滴捕 获流场, 并应用两个独立的结冰探测器, 使常态水滴的结冰和大水滴 的结冰分别冻结在这两个结冰探测器上,从而对大水滴的非常态结冰 进行识别和探测。 这样的装置虽然能够实现对大水滴的识别和探测, 但是其缺陷在于: 探测器结构复杂、 体积较大并且加工较为困难。
除此以外, 对于中位容积直径在 50微米以内的常态水滴, 现有 的各种结冰探测器在结冰探测上仍然存在难以克服的缺陷。这就是无 法对常态水滴引起的结冰种类 (例如, 明冰、 淞冰和混合冰)进行准 确的判断, 从而在对冰层厚度进行探测时, 会因此形成对冰层厚度的 测量值的误差。 这是因为对于厚度相同但是类型不同的结冰, 它们的 探测电信号是不相同的, 因此对应于同一个电信号, 其可能表示类型 不同且厚度不同的多种结冰状况。 这样, 在收到探测信号后就难以对 结冰的厚度进行准确判定。
另外, 需要注意的是, 本申请中所涉及的词语 "冰" 应当包括各 种冰、 霜及其混合物。 发明内容
本发明的目的在于解决上述技术问题,从而提出一种结冰探测器 的探头。 在该结冰探测器探头中, 通过使探头沿着气流方向具有一定 的尺寸,使得气流中具有不同中位容积直径的水滴在沿着气流方向的 不同位置处形成结冰, 从而实现对常态水滴和大水滴, 以及常态水滴 中各中位容积直径范围内的水滴的区分。 这样, 能够实现对大水滴结 冰的准确探测。
根据本发明的一个方面, 提出一种结冰探测器探头, 其包括沿气 流方向依次设置的三段, 其中, 第一段的外表面形状设置为适于收集 气流中的水滴; 第二段的外表面形状设置为使得大水滴在运动过程中 能够充分减速并且释放潜热; 第三段的外表面用于大水滴在其上结 冰。
通过这一设置,使得常态水滴能够在到达第三段的外表面之前即 基本完成减速和放热过程并形成结冰,从而在第三段外表面处的结冰 几乎完全是大水滴结冰,这样常态水滴就不会对大水滴的探测造成影 响, 有效地提高了对大水滴结冰探测的准确性。
优选地, 第二段可以具有一定的长度, 从而确保常态水滴完成结 冰以及大水滴基本实现减速和潜热释放。
优选地, 第二段的外表面形状设置为使得大水滴在运动过程中基 本持续受到附面层的作用。这样可以确保大水滴在运动过程中沿着探 头的外表面运动, 而不会被气流吹走。 优选地,第二段可以包括常态结冰区,用于常态水滴在其上结冰。 优选地, 常态结冰区的形状从侧面看大致呈现楔形。 楔形的外表 面可以有效地实现在水滴减速和放热的同时, 不会被气流吹走, 并且 楔形的外表面可以进一步地提高整个探头对气流中水滴的捕获性。
优选地, 常态结冰区包括大致平面部分。
当然,上述楔形和平面的含义也应当包括外表面具有一定弧形的 情况。
优选地, 常态结冰区在其外表面下包括沿气流方向设置的多个结 冰探测装置。 并且, 第一段也可以包括结冰探测装置。 通过沿着气流 方向设置的一系列结冰探测装置,可以准确地探测出结冰在探头外表 面上的分布状况。 并且, 根据事先实验模拟而获得的结果, 可以对常 态结冰的类型做出准确的判断,这是实现结冰厚度准确探测的重要依 据。
此外, 在上述方案中, 还完全可以省去第三段的结构, 这种简化 的结构虽然不能对大水滴结冰做出识别,但是仍然可以实现对常态结 冰种类的区分。
优选地,第二段还包括过渡区,用于和第三段平滑流线型地相连。 优选地, 第三段可以包括滞止区, 其大致呈现向内凹陷的形状。 滞止区的作用在于在第三段的外表面上形成负压涡区,从而使得流经 的大水滴被困在其中, 难以从中脱出。 这样, 大水滴就有更加充足的 时间形成结冰, 从而获得针对大水滴结冰的准确探测结果。
优选地, 第三段还可以包括位于其后部的尾区, 该尾区用于使得 整个结冰探测器探头形成基本平滑的气动外形, 以减小对环境流场的 破坏。
优选地,第一段包括位于前端的头部,其具有小的等效曲率半径, 从而更有利于实现对水滴的捕获。 优选地, 等效曲率半径大致可以为 3-6毫米。
优选地, 结冰探测器探头包括位于其外表面下的制冷装置, 以加 快水滴的放热过程。 优选地, 结冰探测器探头的外表面沿其周向方向包括多个独立的 探测表面, 从而可以根据环境参数选用合适的表面进行探测。
优选地, 结冰探测器探头可以保形地设置在飞行器的外表面, 也 可以通过安装支架连接在飞行器的外表面。
此外, 根据本发明的另一个方面, 提出一种结冰探测器, 其包括 根据本发明的结冰探测器探头。 附图说明
下面将参照下列附图对本发明的优选实施方式进行详细描述,其 中:
图 1是根据本发明优选实施方式的结冰探测器探头的侧面示意 图;
图 2是根据本发明另一个优选实施方式的结冰探测器探头的侧 面示意图;
图 3是根据本发明又一个优选实施方式的结冰探测器探头沿着 气流方向的端视图;
图 4是根据本发明的结冰探测器探头的一种安装方式的示意图, 其中探头被贴合安装在飞行器的外表面上。 具体实施方式
图 1显示了根据本发明一个优选实施方式的结冰探测器探头。如 图所示, 其基本包括沿气流方向 i依次相连的三段 I、 II和 III, 每一 段在结冰探测中都具有特定的作用。
第一段 I用于对气流中的水滴 (包括常态水滴和大水滴)进行捕 获收集, 以供后续的测量, 其外表面包括截面形状为半径非常小的圆 弧 (例如 6毫米) 的头部 s , 从而具有了对过冷水滴 (包括常态水滴 和大水滴) 的较高的捕获特性。
第二段 II用于使得大水滴能够充分减速并且释放潜热,从而为稍 后大水滴在第三段形成结冰创造条件。 这要求大水滴能够在第二段 II 的外表面上持续运动较长的时间。 因此, 第二段 II的外表面可以具有 足够的长度以满足减速和潜热释放的需要,并且其外表面可以设计为 使得大水滴在运动过程中受到附面层的作用而不会被气流吹走。
进一步地, 第二段 II还可以沿气流方向 i被细分, 从而包括位于 相对靠前的常态结冰区 a和相对靠后的过渡区 b。 靠前的常态结冰区 a能够使得常态水滴在其外表面上充分冻结, 从而区分常态结冰和大 水滴结冰, 避免对大水滴的探测造成影响, 因此其也可以具有一定的 长度, 以确保中位容积直径在 50微米以内的常态水滴能够差分减速、 释放潜热并最终冻结。 靠后的过渡区 b用于实现与第三段 III的平滑 流线型连接, 以确保已经完成减速和放热的大水滴能够继续沿气流方 向 i流动到后面的第三段 III上。
具体来说, 常态结冰区 a的外表面从侧面看去大致呈现关于其中 线 m-m对称的楔形, 其两外表面 p、 q大致呈现平面并沿着气流方向 i斜向后地延伸, 从而形成一定的夹角。 并且常态结冰区 a的前端也 与第一段 I的后端流线型相连, 从而尽可能地让更多的水滴流到第二 段 II中。
此外, 本领域技术人员可以想到, 所述楔形的两外表面 p、 q并 不需要是完全的平面, 也可以具有一些弯曲从而呈现一定的曲面, 也 能同样地实现本发明的目的。 并且, 楔形的常态结冰区 a还可以起到 进一步捕获收集气流中的水滴的作用。
进一步地, 还可以在常态结冰区 a的外表面 p、 q的内侧和第一 段 I的外表面内侧大致沿气流方向设置多个结冰传感装置。 该设置的 作用在于, 可以对结冰的种类做出准确判断, 从而进一步作为精确探 测结冰厚度的依据。
具体说来, 和常态水滴与大水滴的区别相类似, 即使在常态水滴 中,与不同常态结冰相对应的不同中位容积直径的常态水滴之间也存 在区别。与淞冰相对应的常态水滴的中位容积直径最小,质量也最小 , 因而其减速和降温的速度也最快, 相应地最容易发生结冰。 与明冰相 对应的常态水滴的中位容积直径较大, 质量也较大, 因而其减速和降 温的速度也较慢, 相应地比较难发生结冰。 而与混合冰相对应的常态 水滴的中位容积直径介于两者之间,其结冰的难易程度也同样介于两 者之间。
因此, 上述三种常态水滴在第一段 I和常态结冰区 a上发生结冰 时, 其表现是不同的。 与淞冰对应的常态水滴在接触到第一段 I的头 部 s的同时即可以完全释放其潜热, 因此如果结冰类型为淞冰, 那么 结冰只分布在第一段 I的头部 s及其附近。 与混合冰对应的常态水滴 在接触到第一段 I的头部 s时不会立刻完全释放潜热, 其中直径较大 的一部分水滴会在气流的作用下向后流动一段距离后再开始结冰, 因 此如果结冰类型为混合冰, 那么结冰将在常态结冰区 a的外表面上延 伸一段距离。 与明冰对应的常态水滴在接触到第一段 I的头部 s的同 时几乎不会立刻结冰,被捕获的水滴将向后流动更长的距离后才会形 成冰。
因此, 通过设置沿气流方向分布的多个结冰探测装置(例如光纤 式结冰传感器) , 可以知道结冰沿气流方向的分布范围, 从而进一步 根据预先确定的规则判断出结冰的类型, 以作为精确探测结冰厚度的 依据。 其中, 预先确定的判断规则可以通过实验的方法获得, 通过对 各种结冰条件进行模拟,可以得出一系列的环境条件和结冰分布范围 与结冰种类的关系。
第三段 III用于使得流经的大水滴尽可能多地集中在其上冻结, 而不会在气流的作用下被吹走,从而为是否发生大水滴结冰的定性判 断和进一步的结冰厚度的定量分析提供准确的探测数据。
由于大水滴在之前第一段 I和第二段 II的外表面上的流动中已经 充分减速并释放潜热, 因此此时在第三段 III上能够较为容易地变成 冰。 此外, 还可以对第三段 III的外表面形状进行特别设计, 使其能 够更好地实现上述功能。
具体来说, 在第三段 III上可以包括滞止区 t, 其外表面形状大致 呈现向内弯曲的凹陷区, 因此, 气流在流经此滞止区 t时会受表面形 状的影响而形成负压涡区。 大水滴在被卷入涡区后 4艮难从中脱出, 因 此会在其中停留相当长的一段时间。 .这样, 大水滴将有充分的时间完 全释放出其中的潜热并形成冰,并且大水滴结冰将会更加集中地出现 在滞止区 t中。
此外, 第三段 III还可以在其后部包括尾区 u, 其形状可以根据 流体力学的原理运用现有技术而设计,用于使得整个结冰探测器探头 形成基本平滑的气动外形, 从而可以减小探头对环境流场的影响。
下面将就本实施例中探头的使用过程进行简单描述,从而能够更 好地理解本发明的内容和优势。
当该探头被置于流场中时, 气流中的水滴能够被第一段 I的头部 s充分地捕获, 并且其中与淞冰相对应的水滴能够立刻释放出全部潜 热并在头部 s及其附近形成淞冰。 接下来剩余的水滴将在气流的影响 下向后流动。 在流经第二段 II的常态结冰区 a时, 与混合冰和明冰相 对应的水滴将先后完成减速和潜热释放的过程,并分别形成沿气流方 向分布在常态结冰区 a的外表面上的混合冰和明冰。 而大水滴在上述 过程中由于具有较大的尺寸和质量, 因此尚未完成减速和潜热释放, 将仍然保持水滴形态并继续向后流动,并经过过渡区 b而流至第三段 III上。 并且由于第二段 II的外表面设计为使得大水滴在运动过程中 受到附面层的作用而不会被气流吹走, 因此大水滴能够始终在探头表 面上持续减速并放热。 当大水滴流至第三段 III时, 由于减速和放热 已经基本完成, 因此会最终形成大水滴结冰以供探测, 尤其是在滞止 区 t处, 大水滴的结冰将集中发生, 这对大水滴结冰的定性和定量探 测都是非常有利的。
下面参照图 2, 其显示了根据本发明的另一个优选实施方式的结 冰探测器探头。 该探头的结构大致与第一个实施方式相似, 但是在一 些具体结构上存在不同。 例如, 在第二个实施例中, 第一段 I的头部
S,不再是圆弧的一部分, 而是呈现尖顶状, 从而具有更小的等效曲率 半径 (例如 3毫米) , 从而获得更高的水滴捕获能力。
此外, 还可以对根据本发明的结冰探测器探头做出其它改进, 以 进一步改善其性能。 例如, 可以在探头外表面的内侧埋设制冷装置, 从而对在其外表面流动的水滴持续制冷, 以缩短探头沿着气流方向的 比待探测表面更容易结水,从而可以在待探测表面发生结冰之前即给 出存在结冰危险的预警信号。 还可以如图 3所示, 使得探头包括互不 相同的多个探测表面 (例如三个, x、 y和 z ) , 每个探测表面均沿着 气流方向延伸并具有 居本发明的结构,并且它们互相之间以侧面连 接并形成封闭的结构。 这样可以根据不同环境参数 (例如气流速度、 温度和湿度等)而选用最适合的探测表面进行探测, 从而使得探头的 外表面形状能够更好地确保大水滴在其上流动时始终受到附面层的 作用不会被气流吹走。
下面将描述根据本发明的结冰探测器探头的两种安装方式。其中 一种安装方式如图 4所示, 阴影部分代表根据本发明的探头, 其设置 为仅在部分周向上具有探测表面,从而通过其它周向部分保形地紧密 贴合在飞行器外表面的合适位置上。 而在更加简单的安装方式中, 结 冰探测器探头也可以设置为如图 3所示具有完整的周缘,从而通过安 装支架而连接在飞行器外表面上。
以上描述的是本发明的优选实施方式。 但是应当理解的是, 本领 域技术人员在阅读了上述说明后, 能够很容易想到其它实现本发明的 具体方式, 而这些具体方式是显而易见的。 发明人预期本领域技术人 员可以实施合适的改变,并且这些变化都应当被包括在由权利要求书 所限定的保护范围中。

Claims

权 利 要 求 书
1. 一种结冰探测器探头, 其特征在于, 包括沿气流方向 (i) 依 次设置的三段, 其中, 第一段 (I) 的外表面形状设置为适于收集气 流中的水滴; 第二段 (II) 的外表面形状设置为使得大水滴在运动过 程中能够充分减速并且释放潜热; 第三段的外表面 (III)用于大水滴 在其上结冰。
2. 如权利要求 1 所述的结冰探测器探头, 其特征在于, 所述第 二段 (II) 具有一定的长度。
3. 如权利要求 1 或 2所述的结冰探测器探头, 其特征在于, 所 述第二段 (II) 的外表面形状设置为使得大水滴在运动过程中基本持 续受到附面层的作用。
4. 如上述任一项权利要求所述的结冰探测器探头, 其特征在于, 所述第二段 (Π) 包括常态结冰区 (a) , 用于常态水滴在其上结冰。
5. 如上述任一项权利要求所述的结冰探测器探头, 其特征在于, 所述常态结冰区 (a) 的形状从侧面看大致呈现楔形。
6. 如上述任一项权利要求所述的结冰探测器探头, 其特征在于, 所述常态结冰区 (a) 包括大致平面部分。
7. 如上述任一项权利要求所述的结冰探测器探头, 其特征在于, 所述常态结冰区 (a) 在其外表面下包括沿气流方向 (i)设置的多个 结冰探测装置。
8. 如权利要求 7 所述的结冰探测器探头, 其特征在于, 所述第 一段 (I) 也包括结冰探测装置。
9. 如上述任一项权利要求所述的结冰探测器探头, 其特征在于, 所述第二段(II)还包括过渡区 (b) , 用于和所述第三段(III)平滑 流线型地相连。
10. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于, 所述第三段 (III) 包括滞止区 (t) , 其大致呈现向内凹陷的形 状。
11. 如上述任一项权利要求所述的结水探测器探头, 其特征在 于, 所述第三段(III ) 包括位于其后部的尾区 (u ) , 该尾区 (u )使 得所述结冰探测器探头形成基本平滑的气动夕卜形。
12. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于, 所述第一段 (I ) 包括位于前端的头部 (s ) , 其具有小的等效曲 率半径。
13. 如权利要求 12 所述的结冰探测器探头, 其特征在于, 所述 等效曲率半径大致为 3-6毫米。
14. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于, 包括位于其外表面下的制冷装置。
15. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于,所述结冰探测器探头的外表面沿其周向方向包括多个独立的探测 表面。
16. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于, 所述结冰探测器探头保形地设置在飞行器的外表面。
17. 如上述任一项权利要求所述的结冰探测器探头, 其特征在 于, 所述结冰探测器探头通过安装支架连接在飞行器的外表面。
18. 一种结冰探测器, 其特征在于, 包括前述任一权利要求所述 的结冰探测器探头。
PCT/CN2011/076610 2010-07-16 2011-06-30 结冰探测器探头及包括该探头的结冰探测器 WO2012006930A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES11806272.8T ES2649900T3 (es) 2010-07-16 2011-06-30 Sonda para detectar la formación de hielo y detector de la formación de hielo con la misma
US13/809,934 US9079669B2 (en) 2010-07-16 2011-06-30 Icing detector probe and icing detector with the same
NO11806272A NO2594486T3 (zh) 2010-07-16 2011-06-30
EP11806272.8A EP2594486B1 (en) 2010-07-16 2011-06-30 Icing detector probe and icing detector with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010229387.XA CN102336272B (zh) 2010-07-16 2010-07-16 结冰探测器探头及包括该探头的结冰探测器
CN201010229387.X 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012006930A1 true WO2012006930A1 (zh) 2012-01-19

Family

ID=45468925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076610 WO2012006930A1 (zh) 2010-07-16 2011-06-30 结冰探测器探头及包括该探头的结冰探测器

Country Status (6)

Country Link
US (1) US9079669B2 (zh)
EP (1) EP2594486B1 (zh)
CN (1) CN102336272B (zh)
ES (1) ES2649900T3 (zh)
NO (1) NO2594486T3 (zh)
WO (1) WO2012006930A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8650944B2 (en) * 2012-03-13 2014-02-18 The Boeing Company Supercooled large drop icing condition simulation system
CN103101626B (zh) * 2012-12-04 2015-09-02 中国商用飞机有限责任公司 结冰探测器
CN103043216B (zh) * 2012-12-04 2016-04-20 中国商用飞机有限责任公司 结冰探测器
CA2945735C (en) 2014-04-14 2023-02-28 National Research Council Of Canada Rear-facing airstream sensor
US9242735B1 (en) * 2014-08-28 2016-01-26 The Boeing Company Detecting inflight icing conditions on aircraft
CN106018199A (zh) * 2014-09-26 2016-10-12 空气动力学国家重点实验室 一种过冷大水滴结冰探测器
CN106081123B (zh) * 2016-06-20 2017-05-10 华中科技大学 一种冰晶探测器探头及包括该探头的复杂结冰条件探测器
US10625869B2 (en) 2016-06-28 2020-04-21 Rosemount Aerospace Inc. Automated super-cooled water-droplet size differentiation using aircraft accretion patterns
CN107132278B (zh) * 2017-06-07 2023-04-07 中国空气动力研究与发展中心低速空气动力研究所 一种多圆柱阵列结冰探测方法
WO2019048037A1 (de) * 2017-09-06 2019-03-14 Boschung Mecatronic Ag Verfahren und vorrichtung zur erzeugung eines vor glätte auf einer fahrbahn warnenden signals
US10435161B1 (en) * 2018-05-02 2019-10-08 Rosemount Aerospace Inc. Surface sensing for droplet size differentiation
CN109767518B (zh) * 2018-12-14 2021-04-06 南京航空航天大学 基于机翼结冰厚度确定气象参数mvd的反推方法
CN112550723B (zh) * 2020-12-25 2022-04-12 华中科技大学 一种过冷大水滴结冰探头及探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003295A (en) * 1987-06-10 1991-03-26 Rosemount Inc. Ice detector probe
WO1999016034A1 (en) * 1997-09-19 1999-04-01 Icg Technologies, Llc Substance detection system and method
US6347767B1 (en) * 1997-11-05 2002-02-19 Futuris As. Method of and apparatus for detection of ice accretion
US6759962B2 (en) * 2001-04-25 2004-07-06 Rosemount Aerospace Inc. Inflight ice detector to distinguish supercooled large droplet (SLD) icing
US20040231410A1 (en) * 2003-03-10 2004-11-25 Marc Bernard Large spectrum icing conditions detector for optimization of aircraft safety
CN1673035A (zh) * 2003-11-18 2005-09-28 奥谢陶尔公司 装在飞行器上的结冰探测装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557311A (en) * 1943-08-11 1951-06-19 Bendix Aviat Corp Ice detector means
US2766619A (en) * 1953-06-26 1956-10-16 Tribus Myron Ice detecting apparatus
US3116395A (en) * 1960-04-26 1963-12-31 United Control Corp Ice detector system
IL86581A (en) * 1987-06-10 1993-07-08 Rosemount Inc Ice detector probe
US5398547A (en) * 1989-01-10 1995-03-21 Innovative Dynamics, Inc. Apparatus for measuring ice distribution profiles
US5313202A (en) * 1991-01-04 1994-05-17 Massachusetts Institute Of Technology Method of and apparatus for detection of ice accretion
FR2712981B1 (fr) * 1993-11-25 1996-01-12 Sextant Avionique Procédé et dispositifs de détermination de la sévérité des conditions givrantes pour un aéronef.
US6076963A (en) * 1998-10-20 2000-06-20 Avionics Specialties, Inc. Aircraft probe with integral air temperature sensor
US6269320B1 (en) * 1998-11-19 2001-07-31 Rosemount Aerospace, Inc. Supercooled large droplet ice detector
US6430996B1 (en) * 1999-11-09 2002-08-13 Mark Anderson Probe and integrated ice detection and air data system
US6320511B1 (en) * 2000-11-28 2001-11-20 Rosemount Aerospace Inc. Ice detector configuration for improved ice detection at near freezing conditions
JP3749135B2 (ja) * 2001-03-13 2006-02-22 横河電子機器株式会社 温度測定装置
EP1401707A1 (en) 2001-06-29 2004-03-31 Rosemount Aerospace Inc. Supercooled large droplet ice detector
US20050230553A1 (en) * 2004-03-31 2005-10-20 Rosemount Aerospace Inc. Ice detector for improved ice detection at near freezing condition
US7104502B2 (en) * 2004-03-31 2006-09-12 Rosemount Aerospace Inc. Ice detector for improved ice detection at near freezing condition
US7191643B2 (en) * 2004-06-03 2007-03-20 University Corporation For Atmospheric Research Sensor system to distinguish frozen and non-frozen liquid particulates
CN201354150Y (zh) * 2008-12-30 2009-12-02 武汉航空仪表有限责任公司 一种结冰速率探测器探测头
PL2325083T3 (pl) * 2009-11-24 2012-08-31 Agustawestland Spa Samolot z urządzeniem do wykrywania lodu
US9227733B2 (en) * 2013-01-02 2016-01-05 The Boeing Company Automated water drop measurement and ice detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003295A (en) * 1987-06-10 1991-03-26 Rosemount Inc. Ice detector probe
WO1999016034A1 (en) * 1997-09-19 1999-04-01 Icg Technologies, Llc Substance detection system and method
US6347767B1 (en) * 1997-11-05 2002-02-19 Futuris As. Method of and apparatus for detection of ice accretion
US6759962B2 (en) * 2001-04-25 2004-07-06 Rosemount Aerospace Inc. Inflight ice detector to distinguish supercooled large droplet (SLD) icing
US20040231410A1 (en) * 2003-03-10 2004-11-25 Marc Bernard Large spectrum icing conditions detector for optimization of aircraft safety
CN1673035A (zh) * 2003-11-18 2005-09-28 奥谢陶尔公司 装在飞行器上的结冰探测装置

Also Published As

Publication number Publication date
EP2594486A4 (en) 2014-11-05
ES2649900T3 (es) 2018-01-16
EP2594486B1 (en) 2017-09-20
CN102336272A (zh) 2012-02-01
CN102336272B (zh) 2015-01-14
NO2594486T3 (zh) 2018-02-17
EP2594486A1 (en) 2013-05-22
US9079669B2 (en) 2015-07-14
US20130105631A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2012006930A1 (zh) 结冰探测器探头及包括该探头的结冰探测器
US6759962B2 (en) Inflight ice detector to distinguish supercooled large droplet (SLD) icing
JP3749135B2 (ja) 温度測定装置
Mingione et al. Ice accretion prediction on multielement airfoils
CA2654351C (en) Method and system for detecting the risk of icing on aerodynamic surfaces
CN205256681U (zh) 结冰条件探测系统及具有该系统的飞行器
CN107132278B (zh) 一种多圆柱阵列结冰探测方法
CN103048109B (zh) 用于飞机机翼防冰系统冰风洞试验的翼型试验件
US8704181B2 (en) Device and method for detecting ice deposited on an aircraft structure
JP6218585B2 (ja) 乗り物用の大気温度センサ配設および大気温度を測定する方法
RU2011129689A (ru) Система и способ применения датчика обледенения
CN112678189B (zh) 一种改进的结冰传感器安装位置确定方法
US9110197B2 (en) Method and device for the anticipated detection of icing on a runway
CN206876374U (zh) 一种过冷水滴结冰探测装置
JP2004534948A (ja) 過冷却された大きな滴氷検出器
WO2020228281A1 (zh) 冰晶探测器和探测方法
CN107200138A (zh) 结冰信号探测装置
CN110466779B (zh) 一种冰晶探测器
RU2341414C1 (ru) Способ обнаружения обледенения несущего винта вертолета
CN110077601A (zh) 过冷水滴结冰探测器和混合态结冰探测器
CN110525664B (zh) 冰晶探测器和探测方法
CN210102004U (zh) 结冰探测器用探测杆
CN110466778B (zh) 一种结冰探测器
US20130112008A1 (en) System and Method for Determining Fluid Speed
Kimura et al. Evaluation of ice detecting sensors by icing wind tunnel test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806272

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011806272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011806272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE