WO2012007600A1 - Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor - Google Patents

Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor Download PDF

Info

Publication number
WO2012007600A1
WO2012007600A1 PCT/ES2010/070494 ES2010070494W WO2012007600A1 WO 2012007600 A1 WO2012007600 A1 WO 2012007600A1 ES 2010070494 W ES2010070494 W ES 2010070494W WO 2012007600 A1 WO2012007600 A1 WO 2012007600A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
floor system
occupancy
sensors
electrodes
Prior art date
Application number
PCT/ES2010/070494
Other languages
Spanish (es)
French (fr)
Inventor
Antoni BREY RODRÍGUEZ
Jordi Romeu Robert
Original Assignee
Urbiotica S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urbiotica S.L. filed Critical Urbiotica S.L.
Priority to PCT/ES2010/070494 priority Critical patent/WO2012007600A1/en
Publication of WO2012007600A1 publication Critical patent/WO2012007600A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the invention relates to the field of control and management of the level of occupation of a space for collective use.
  • the invention relates to a floor system for detecting the occupation of a collective use surface comprising a coating and a plurality of occupancy sensors provided under said coated surface, each sensor comprising: an occupancy detector, means of transmission and control means capable of receiving a first occupancy signal of said detector and transmitting said first signal through said transmission means.
  • the invention relates to a sensitive tile that has a visible face suitable for being stepped on and a hidden face opposite said face, which comprises at least one occupancy sensor provided below said face, each sensor comprising a detector of occupation, transmission means and control means suitable for receiving a first occupancy signal of said detector and transmitting said first signal through said transmission means.
  • the invention relates to a method of managing the occupancy density of the soil system according to the invention. State of the art
  • the detection of the passage of people or objects on a floor element is known in the state of the art.
  • a modular device for the passage of people comprising a piezoelectric cable whose emitted signals are processed by a control device is known.
  • the floor element is isolated from the floor on which it is mounted by means of an anti-vibration material that covers its lower face, as well as all its sides.
  • the floor element is fed by an electric line. This floor element is complicated to install and on the other hand it is not flexible to extensions of the floor covered by these floor elements.
  • the main objective of the invention is to propose a floor system that allows detecting the occupation of a collective use surface, which can be applied simply and with a reduced service, maintenance and expansion cost.
  • This purpose is achieved by means of a floor system of the type indicated at the beginning, characterized in that the floor system also comprises at least one external power source by means of electromagnetic energy, and because said sensor comprises energy collection means capable of capturing electromagnetic energy. of said external source and electrically supply said sensor.
  • each sensor is autonomous and can be mounted on any surface without any previous electrical installation, or wiring for connection to a power supply.
  • being able to dispense with an independent power supply for each sensor greatly facilitates the extension or reduction of the surface whose occupation is intended to be monitored and managed.
  • the floor can be of various types, such as a tarred surface, covered with tiles or parquet.
  • Another important advantage is that the Replacing defective sensors is quite simple since it does not require complicated splices that, if they are poorly executed, can affect the behavior of the entire system.
  • the invention encompasses a series of preferred features that are the subject of the dependent claims and whose utility will be highlighted later in the detailed description of embodiments of the invention.
  • said sensor comprises an energy accumulator from said external source that stores the energy captured by said collection means. Thanks to this, it is not essential to feed at high energy levels constantly to ensure the continuous operation of the sensor. The energy accumulates gradually in the accumulator and the sensor is fed only when it is necessary to capture the occupation of the soil and transmit the corresponding information to a data processing system. Therefore, preferably the accumulator comprises a capacitor with leakage currents less than 5 ⁇ (microamps), said sensor being intermittently fed by said accumulator each time said capacitor is charged. Intermittent power reduces overall system consumption. On the other hand, with the accumulator the system is able to operate autonomously for a certain time despite the fact that there are cuts in the remote power supply.
  • said external source is a radio frequency antenna and said electromagnetic energy capture means comprise a radio frequency wave capture antenna between 600 and 1500 MHz to obtain an efficient and omnidirectional antenna suitable for this type of application and which in addition guarantee the safety of people during your service.
  • the external source is a main current-powered loop that surrounds said plurality of sensors and the means of Electromagnetic energy collection of each sensor comprises a coil capable of receiving a current induced by the main loop.
  • said current induced by said loop has a frequency of between 100 and 300 kHz, which allows an efficient energy transmission to be achieved.
  • the current induced by the loop has a frequency of less than 125 kHz to increase the safety of use of the system.
  • control means modify the state of the sensor between a receiving mode in which said sensor accumulates said electromagnetic energy in said accumulator and an emitting mode in which said accumulator electrically feeds said sensor and said sensor emits said first occupancy signal through of said transmission means. This reduces the overall consumption of the sensor, since during the charging phase in receiver mode it is not consuming energy.
  • the occupancy detector is capacitive, which allows the presence of a human body to be detected in a simple and reliable manner, with the detected person or object behaving as a conductive element between the electrodes.
  • the occupancy detector is formed by a first and second flat laminar electrodes arranged with their flat face oriented substantially parallel to the ground and fed by an alternating current of excitation frequency of 1 to 100 MHz and preferably 10 to 40 MHz which generates an electric field between said first and second electrodes, detecting the state of occupation of the floor system as the equivalent capacity variation between the first and second electrodes of the detector.
  • the electrode arrangement achieves reliable detection regardless of the coating material.
  • the fact that thanks to the two electrodes the intensity can be greatly reduced is also an important advantage, thereby improving the safety of use of the system.
  • the occupancy detector comprises ground planes that cover said first and second electrodes and that are provided inferiorly to said first and second electrodes.
  • the material that covers the electrodes inferiorly is a conductive material and is at the same electrical potential as the ground itself.
  • a single mass plane covers said first and second electrodes, so that losses from the lower part of the sensor are further reduced.
  • said occupancy detector comprises a plane of mass provided between said first and second electrodes.
  • the first and second electrodes are arranged concentrically, thereby increasing the monitored area and therefore the sensitivity of the system.
  • the system also comprises receiving means suitable for receiving said first transmission signal from said transmission means and a second identification signal of each of said sensors and processing means connected with said receiving means suitable for determining a occupation density of said soil system a from said first and second signals.
  • the system comprises representation means associated with said processing means, capable of representing the density of land occupation.
  • the information obtained can be communicated to users affected by the occupation of the monitored land. This allows, for example, to manage queues at shows, museums or supermarkets, informing users about the estimated time to be served.
  • the system also seeks to optimize the number of sensors needed to obtain reliable information.
  • the system comprises between 2 and 8 sensors per square meter of monitored soil.
  • the invention also raises the problem of proposing a sensitive and prefabricated tile that is suitable for covering the floor system according to the invention.
  • a tile is understood as a modular element. Multiple modular elements of this type, arranged adjacent to each other serve to cover the floor system according to the invention.
  • the sensitive tile according to the invention can have various types of materials and very different shapes.
  • the sensor comprises energy collection means capable of capturing the electromagnetic energy from an external source and electrically feeding said sensor. This tile facilitates the assembly of the floor system since it is based on modular elements that, in turn, due to its geometry allow the detection sensors to be optimally distributed.
  • the tile sensor comprises an energy accumulator from said external source that stores the energy captured by said collection means.
  • the accumulator comprises a capacitor with leakage currents less than 5 ⁇ (microamps), the sensor being intermittently fed by said accumulator each time said capacitor is charged.
  • the tile is of a paramagnetic material. The near permeability to the vacuum of the paramagnetic material of the tile improves the energy transmission between the power supply and the sensor and consequently the sensitivity of the sensor once arranged under the surface of the tile.
  • the paramagnetic material is concrete which improves the durability of the coated floor.
  • said tile comprises a cavity in said hidden face and because said sensor is embedded in said cavity by means of a protective filling resin.
  • a protective filling resin protects the sensor circuit and improves its durability.
  • the senor is arranged below said tile adjacent to said hidden face, the sensor being coated with a protective resin, which facilitates the manufacture of the tile, since the sensor must only be adhered to its hidden lower face.
  • the senor also includes identification means as an RFID (Radio Frequency Idendification) device, an English acronym for a radio frequency identification device.
  • RFID Radio Frequency Idendification
  • the device allows to identify and position in a unique way each of the sensors of the system, which facilitates the determination of the distribution of objects or people on the floor system.
  • the sensor electronics were deprogrammed, for example, due to lack of power, it would be necessary to reprogram each floor element individually, while with the RFID device, this is not necessary.
  • This RFID device allows you to position the system sensors in a simple way.
  • the invention also proposes a method of managing the occupancy density of a collective use surface.
  • said occupancy density is on a floor system that comprises at least one external power source by electromagnetic energy, and a plurality of sensors comprising means for capturing energy capable of capturing the electromagnetic energy of said source. externally and electrically supplying said sensor, each of said sensors being capable of transmitting a first occupancy signal and a second identification signal and processing means of said first and second signals.
  • the method comprises the steps of capturing said first and said second signals from each of said sensors, in a first temporary instant, determining in real time a first occupation density of said floor system at said first instant, capturing said first and said second signals from each of said sensors, in a second time instant, determining in real time a second occupation density of said floor system at said second instant, comparing said first and second occupancy densities, executing a management action as a function of such comparison.
  • said occupancy density is obtained as a percentage of sensors occupied of said floor system.
  • the occupation density is obtained as an instantaneous area of occupation of said soil system.
  • the sensors of the soil system are positioned, which allows to obtain a realistic view of the distribution of occupancy on the soil system.
  • the action consists in determining the waiting time in a queue.
  • the invention also encompasses other detail features illustrated in the detailed description of an embodiment of the invention and in the accompanying figures.
  • Fig. 1 a schematic view of a first embodiment of a floor system according to the invention.
  • Fig. 2 a schematic view of a second embodiment of a floor system according to the invention.
  • Fig. 3 an embodiment of the floor system sensor circuit according to the invention.
  • Fig. 4 a schematic sectional view of a first sensor arrangement in the floor system according to the invention.
  • Fig. 5 a schematic sectional view of a second sensor arrangement in the floor system according to the invention.
  • Fig. 6 a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes.
  • Fig. 7 a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a lower mass plane.
  • Fig. 8 a schematic cut-away view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a lower ground plane for each electrode.
  • Fig. 9 a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a mass plane between electrodes.
  • Figs. 10, 1 1 schematic views on the upper floor possible embodiments of the sensor electrodes according to the invention.
  • Fig. 12 a schematic view of the structure of a floor system for determining waiting times in a queue according to the invention.
  • Fig. 13 a schematic view of a plurality of interconnected floor systems.
  • Fig. 14 a schematic diagram of the process according to the invention. Detailed description of an embodiment of the invention
  • the floor system according to the invention is intended to detect and manage the occupation of a covered surface for collective use.
  • a collective use surface for example, a section of public road, the tail of a supermarket, a train or subway platform or access to an enclosure, such as a museum whose occupancy density is desired monitor.
  • One of the preferred objects of the invention is the management of the occupation a collective use floor occupied by a group of people, in order to use this information for purposes such as managing queues or crowds of people or others.
  • the floor system comprises a plurality of occupancy sensors 1 intended to monitor and inform the system of the surface occupation status.
  • the sensors 1 are provided under the surface coating, such as below a tile floor or integrated into the coating itself.
  • Each sensor 1 comprises an occupancy detector 2, transmission means 4 and control means 6, such as a microprocessor, which receive a first signal from the detector 2 informing about their occupancy status. This first signal, whether occupancy or not, can be transmitted to the system through the transmission means 4 which are, for example, a transmitting antenna.
  • the detector 2 is preferably a capacitive detector formed by two electrodes 40a, 40b or flat plates separated from each other and arranged with their flat face parallel to the coated surface, so that the occupancy is measured as the variation of the equivalent capacity measured between the electrodes 40a, 40b.
  • the system also comprises an external power source 14 through low power electromagnetic energy, and compatible with human use. Normally, these power ranges are determined by regulations. This energy is captured by the capture means 8 to feed the sensor 1. This offers a remarkable advantage over other prior art systems since it eliminates any type of electrical wiring between sensors 1.
  • the source 14 is a radio frequency antenna. This antenna emits low-power radio frequency waves in an ICM band ("Industrial, Scientific and Medical") reserved for non-commercial use of radio frequencies in the industrial, scientific and medical areas. Preferably, the source 14 antenna emits at a frequency between 600 and 1500 MHz.
  • an efficient and omnidirectional power antenna that feeds the sensors from about 4 m distance, it was split from a sensor 1 formed for a printed circuit of about 15x15 cm. Thus, it was observed that to achieve an efficient and omnidirectional antenna, it was appropriate to emit from the source 14 with a wavelength between 0.2m and 0.5m. Once an optimum frequency band was detected to power the ground system, a frequency of about 868 MHz was used, since this is a free frequency within the ICM band. However, other frequencies within the cited range could also be used in the application. On the other hand, the transmitting power antenna has about 2W of power, which guarantees the safety of use of the system in a public environment.
  • the sensor 1 shown in Figure 1 also comprises an accumulator 12 of the energy captured by the collection means 8 and is responsible for storing it up to achieve an appropriate supply voltage, so that the sensor 1 can inform the system of its occupancy status through the antenna of the transmission means 4.
  • the accumulator 12 is made from a low loss capacitor.
  • the pick-up means 8 of the sensor of Figure 1 is a receiving antenna. This receiving antenna is an 868 MHz tuned dipole.
  • FIG 2 an alternative embodiment of the system is seen.
  • the sensors 1 of the system which are substantially the same as those explained above, are surrounded by a power source 14 consisting of a current source 30 that feeds a main coil 32.
  • the coil 32 is arranged so that it surrounds the sensors 1.
  • the sensors 1 have the collection means 8 which in this case are a coil wound around the perimeter of the sensor.
  • the current induced by said coil 32 has a frequency between 100 and 300 kHz.
  • FIG. 3 A possible embodiment of the sensor circuit 1 according to the invention can be seen in detail in Figure 3.
  • the collection means 8 consisting of a coil L1 mounted in parallel with a capacitor C1 designed to tune the signal received from the source 14 are shown.
  • the rectifier circuit can be any of those commonly used in the state of the art, such as a diode bridge.
  • the following module corresponds to accumulator 12.
  • the accumulator 12 consists of two capacitors C2, C3 of low losses, that is to say with leakage currents less than 5 ⁇ (microamps), and which are designed to be charged up to a maximum of 4V. So far, the elements responsible for acquiring the energy from the source 14 and subsequently storing it to power the sensor 1 have been described.
  • a regulating element 34 is provided at the outlet of the accumulator 12 consisting of a transformer known to the person skilled in the art and responsible for transforming the voltage from 4 V to 2.5 V.
  • the regulator 34 feeds, on the one hand, the means of control 6, which can be a microprocessor, the antenna of the transmission means 4 and the detector 2.
  • the detector 2 receives a 2.5 V direct current which is again converted by the exciter 36 to alternating current to supply the flat electrodes 40a, 40b.
  • the measuring device 38 detects a variation in capacity between the electrodes 40a, 40b and this variation is communicated to the control means 6.
  • the sensor 1 explained has two modes of operation: a power receiver mode and a data transmitter mode.
  • the control means 6 are in charge of alternating both states in the following way: for one minute, the charge of the accumulator 12 is produced, while the rest of the circuit from this point is inactive, that is to say that sensor 1 does not send data to the system, but is limited to accumulate energy.
  • the accumulator instantly discharges the accumulated energy in 5 ms (milliseconds).
  • the exciter 36 transforms the direct current into alternating current and excites the electrodes 40a, 40b. In this period of time the measurement of capacity variation between the electrodes 40a, 40b is performed.
  • the microprocessor then processes a first occupancy signal and sends it, through the antenna, together with a second identification signal of the corresponding sensor 1.
  • the pickup coil L1 and the antenna of the transmission means 4 in a preferred form, can be the same element.
  • a sensitive tile 42a is shown to cover the floor system.
  • the tile 42a has a visible face 50 suitable for being stepped on and a hidden face and comprises an occupancy sensor 1 provided below said face 50 as described in Figures 1 to 3.
  • the sensitive tiles 42a are made of concrete.
  • the floor system be coated only with sensitive tiles 42a, but that some of the system tiles can be conventional tiles 42b.
  • the sensors 1 are preferably distributed at a rate of between 2 and 8 sensors per square meter of soil.
  • three adjacent tiles 42a, 42b are visible, of which only the central tile 42a comprises a sensor 1 below with the characteristics explained in Figures 1 to 3.
  • the sensitive tile 42a has a cavity 48 below the face 50 which allows the introduction of the sensor 1. This cavity 48 can be made in different ways, for example, directly from the mold or subsequently machined.
  • the sensor 1 is in solidarity with the concrete tile 42a by a protective filling resin 44.
  • resin 44 has two effects: first, it protects the sensor 1 against the aggressive soil environment 46, and secondly it allows to create a modular element easily mountable on the surface to be monitored.
  • the system can be realized according to the example of Figure 5.
  • the sensor 1 is not embedded in the sensitive tile 42a, but is disposed below said adjacent tile 42a and adhered to the hidden face.
  • the sensor 1 is also protected by a coating resin 44.
  • Figure 6 shows a possible embodiment of the capacitive detector 2 of the sensor 1.
  • the sensor 1 is arranged as in Figure 5 below a sensitive tile 42a covered by the resin 44.
  • the sensor 1 in the form of a 15x15 cm printed circuit board comprises the two flat laminar electrodes 40a, 40b arranged with their face of greater surface parallel to the outer face of the tile 42.
  • the senor 1 in addition to presenting the same configuration explained in Figure 6, also has a ground plane 52 that covers the entire surface of the sensor 1 below. Thanks to the ground plane 52 , the field is difficult or virtually eliminated electrical between the lower faces 56a, 56b of the electrodes 40a, 40b. As a consequence, the electric field that passes between the upper faces 54a, 54b is increased, and thus also the sensitivity of the sensor 1. Thus, when an object is interposed in the electric field between electrodes 40a, 40b, the measured equivalent capacity variation is even older and more easily detectable.
  • each electrode 40a, 40b has its own mass plane 52.
  • the mass plane 52 is between the first and second electrodes 40a, 40b.
  • FIG. 10 a top plan view of the sensor 1 is shown very schematically.
  • the sensors 1 comprise the other parts of the circuit already described, but which for simplicity have not been represented in these two figures.
  • electrodes 40a, 40b are two concentric squares, while in Figure 1 1 they are two concentric circles. Both embodiments allow to improve the detection of people close to the sensor 1 since the electric field lines between electrodes 40a, 40b are omnidirectional.
  • any of the embodiments of the described sensors 1 is capable of incorporating identification means 10 as an RFID device.
  • the advantage in this case is obtained from the fact that it is a passive element that does not consume energy during the charging phase nor does it deprogram, thereby reducing the consumption of the sensor 1, but also allows the sensors 1 to be positioned in a very simple way.
  • a schematic embodiment of a floor system according to the invention can be seen from which a procedure for managing the density of occupancy of a collective use surface can be carried out and more particularly the management of A waiting queue
  • the floor system comprises a plurality of adjacent sensitive tiles 42a covering a surface and incorporating sensors 1 as described above.
  • the floor system comprises processing means 24 provided with receiver means 18 as an antenna that receive the information of the transmission means 4, that is the first and second signals 20, 22.
  • Representation means 26, such as a screen are connected to the processing means 24 to provide information to the people waiting in the queue.
  • the representation means 26 may also be communicated with the processing means 24 by radio frequency waves or wireless data transmission systems known to the person skilled in the art.
  • the occupation of a sensor 1 is detected by the occupancy detectors 2, which in figure 12 is schematically represented by shaded tiles.
  • the control means 6 passes to each sensor 1 from receiver mode to transmitter mode, that is to say that the energy accumulated in the accumulator 12 is supplied to the rest of the circuit.
  • the control means 6 send the first and second signals 20, 22 (occupation and sensor identity) to the receiving means 18.
  • the system determines in real time a first occupancy density in of this first instant Ti through a statistical approximation. Then the sensors S1, S2, etc.
  • the processing means 24 compares the occupation densities measured in Ti and Ti + 1 and a management action is executed. As can be seen in figure 14, the process is repeated continuously, so that in the next stage the initial state corresponds to the data obtained at the time Ti + 1, while the system proceeds to a new occupation and determination acquisition Identity of each sensor S1, S2, etc. in the instant Ti + 2.
  • the instantaneous occupancy density can be obtained as a percentage of occupation of the soil system.
  • the system can directly compare graphically by comparing occupied surfaces between the first and second instants.
  • the processing means 24 transfers this information to the representation means 26 so that the people who are queuing get real-time information of the approximate wait in the queue.
  • the invention also provides that a plurality of floor systems mounted in different locations can be intercommunicated with each other through the central processing means 24.
  • each of the places equipped with access floor systems to the enclosure is provided with means of representation 26.
  • each of the places equipped with access floor systems to the enclosure is provided with means of representation 26.

Abstract

The invention relates to a floor system for detecting the occupancy of a surface (46) for collective use, which includes a covering and a plurality of occupancy sensors (1) provided under said covered surface (46). Each sensor (1) includes an occupancy detector (2), transmission means (4) and control means (6) for receiving a first occupancy signal from the detector (2) and transmitting said first signal (20) via the transmission means (4). The floor system (16) also includes an external power source (14) using electromagnetic energy. In addition, the sensor (1) includes energy collection means (8) for collecting electromagnetic energy from the source (14) and electrically powering the sensor (1). The invention also relates to a sensitive tile, as well as to a method for managing the occupancy of the floor to which the system is applied.

Description

SISTEMA DE SUELO PARA DETECTAR LA OCUPACION DE  SOIL SYSTEM TO DETECT THE OCCUPATION OF
UNA SUPERFICIE DE USO COLECTIVO, BALDOSA SENSITIVA Y  A COLLECTIVE, SENSITIVE TILE AND SURFACE AREA AND
PROCEDIMIENTO DE GESTIÓN DE DICHO SUELO  SOIL SOIL MANAGEMENT PROCEDURE
DESCRIPCION DESCRIPTION
Campo de la invención Field of the Invention
La invención se refiere al campo del control y gestión del nivel de ocupación de un espacio de uso colectivo. The invention relates to the field of control and management of the level of occupation of a space for collective use.
Más particularmente la invención se refiere a un sistema de suelo para detectar la ocupación de una superficie de uso colectivo que comprende un recubrimiento y una pluralidad de sensores de ocupación previstos bajo dicha superficie recubierta, comprendiendo cada sensor: un detector de ocupación, unos medios de transmisión y unos medios de control aptos para recibir una primera señal de ocupación de dicho detector y transmitir dicha primera señal a través de dichos medios de transmisión. More particularly the invention relates to a floor system for detecting the occupation of a collective use surface comprising a coating and a plurality of occupancy sensors provided under said coated surface, each sensor comprising: an occupancy detector, means of transmission and control means capable of receiving a first occupancy signal of said detector and transmitting said first signal through said transmission means.
Asimismo la invención se refiere a una baldosa sensitiva que tiene una cara vista apta para ser pisada y una cara oculta opuesta a dicha cara vista, que comprende por lo menos un sensor de ocupación previsto por debajo de dicha cara vista, comprendiendo cada sensor un detector de ocupación, unos medios de transmisión y unos medios de control aptos para recibir una primera señal de ocupación de dicho detector y transmitir dicha primera señal a través de dichos medios de transmisión. Finalmente la invención se refiere a un procedimiento de gestión de la densidad de ocupación del sistema de suelo según la invención. Estado de la técnica Likewise, the invention relates to a sensitive tile that has a visible face suitable for being stepped on and a hidden face opposite said face, which comprises at least one occupancy sensor provided below said face, each sensor comprising a detector of occupation, transmission means and control means suitable for receiving a first occupancy signal of said detector and transmitting said first signal through said transmission means. Finally, the invention relates to a method of managing the occupancy density of the soil system according to the invention. State of the art
La detección del paso de personas u objetos sobre un elemento de suelo es conocida en el estado de la técnica. En particular, a partir del documento FR 2534697 A1 es conocido dispositivo modular para la detección de paso de personas que comprende un cable piezoeléctrico cuyas señales emitidas son procesadas por un dispositivo de control. Para evitar vibraciones que pudiesen falsear la detección de paso, el elemento de suelo está aislado del suelo sobre el que se monta mediante un material antivibratorio que recubre su cara inferior, así como todos sus lados. El elemento de suelo es alimentado mediante una línea eléctrica. Este elemento de suelo es complicado de instalar y por otra parte no es flexible a ampliaciones del suelo recubierto por estos elementos de suelo. The detection of the passage of people or objects on a floor element is known in the state of the art. In particular, from document FR 2534697 A1, a modular device for the passage of people comprising a piezoelectric cable whose emitted signals are processed by a control device is known. To avoid vibrations that could distort the passage detection, the floor element is isolated from the floor on which it is mounted by means of an anti-vibration material that covers its lower face, as well as all its sides. The floor element is fed by an electric line. This floor element is complicated to install and on the other hand it is not flexible to extensions of the floor covered by these floor elements.
Sumario de la invención Summary of the invention
La invención tiene por objeto principal proponer sistema de suelo que permita detectar la ocupación de una superficie de uso colectivo, que pueda ser aplicado de forma simple y con un coste de servicio, mantenimiento y ampliación reducidos. Esta finalidad se consigue mediante sistema de suelo del tipo indicado al principio, caracterizado porque sistema de suelo además comprende por lo menos una fuente externa de alimentación mediante energía electromagnética, y porque dicho sensor comprende unos medios de captación de energía aptos para captar la energía electromagnética de dicha fuente externa y alimentar eléctricamente dicho sensor. The main objective of the invention is to propose a floor system that allows detecting the occupation of a collective use surface, which can be applied simply and with a reduced service, maintenance and expansion cost. This purpose is achieved by means of a floor system of the type indicated at the beginning, characterized in that the floor system also comprises at least one external power source by means of electromagnetic energy, and because said sensor comprises energy collection means capable of capturing electromagnetic energy. of said external source and electrically supply said sensor.
A través de los medios de captación de energía electromagnética, cada sensor es autónomo y puede ser montado sobre cualquier superficie sin ningún tipo de instalación eléctrica previa, ni cableado de unión a una fuente de alimentación. Por otra parte, el poder prescindir de una fuente de alimentación independiente para cada sensor facilita enormemente la ampliación o reducción de la superficie cuya ocupación se pretende monitorizar y gestionar. En su concepto más amplio, el suelo puede ser de varios tipos, como por ejemplo una superficie alquitranada, recubierta con baldosas o parqué. Otra ventaja importante consiste en que el reemplazo de sensores defectuosos es bastante simple ya que no precisa de empalmes complicados que en caso de estar mal ejecutados pueden afectar al comportamiento de todo el sistema. Además, la invención abarca una serie de características preferentes que son objeto de las reivindicaciones dependientes y cuya utilidad se pondrá de relieve más adelante en la descripción detallada de unas formas de realización de la invención. Preferentemente dicho sensor comprende un acumulador de la energía proveniente de dicha fuente externa que almacena la energía captada por dichos medios de captación. Gracias a ello, no es imprescindible alimentar a niveles altos de energía de forma constante para garantizar el funcionamiento continuo del sensor. La energía se acumula paulatinamente en el acumulador y el sensor se alimenta únicamente cuando sea necesario captar la ocupación del suelo y transmitir la información correspondiente hacia un sistema de procesado de datos. Por ello, preferentemente el acumulador comprende un condensador con corrientes de fuga menores que 5 μΑ (microamperios), siendo dicho sensor alimentado de forma intermitente por parte de dicho acumulador cada vez que dicho condensador está cargado. La alimentación intermitente reduce el consumo global del sistema. Por otra parte, con el acumulador el sistema es capaz de funcionar de forma autónoma durante un cierto tiempo a pesar de que se produzcan cortes en la alimentación remota. Preferentemente dicha fuente externa es una antena de radiofrecuencia y dichos medios de captación de energía electromagnética comprenden una antena de captación de ondas de radiofrecuencia de frecuencia comprendida entre 600 y 1500 MHz para obtener una antena eficiente y omnidireccional apta para este tipo de aplicación y que además garantice la seguridad de las personas durante su servicio. Through the means of collecting electromagnetic energy, each sensor is autonomous and can be mounted on any surface without any previous electrical installation, or wiring for connection to a power supply. On the other hand, being able to dispense with an independent power supply for each sensor greatly facilitates the extension or reduction of the surface whose occupation is intended to be monitored and managed. In its broadest concept, the floor can be of various types, such as a tarred surface, covered with tiles or parquet. Another important advantage is that the Replacing defective sensors is quite simple since it does not require complicated splices that, if they are poorly executed, can affect the behavior of the entire system. In addition, the invention encompasses a series of preferred features that are the subject of the dependent claims and whose utility will be highlighted later in the detailed description of embodiments of the invention. Preferably said sensor comprises an energy accumulator from said external source that stores the energy captured by said collection means. Thanks to this, it is not essential to feed at high energy levels constantly to ensure the continuous operation of the sensor. The energy accumulates gradually in the accumulator and the sensor is fed only when it is necessary to capture the occupation of the soil and transmit the corresponding information to a data processing system. Therefore, preferably the accumulator comprises a capacitor with leakage currents less than 5 μΑ (microamps), said sensor being intermittently fed by said accumulator each time said capacitor is charged. Intermittent power reduces overall system consumption. On the other hand, with the accumulator the system is able to operate autonomously for a certain time despite the fact that there are cuts in the remote power supply. Preferably said external source is a radio frequency antenna and said electromagnetic energy capture means comprise a radio frequency wave capture antenna between 600 and 1500 MHz to obtain an efficient and omnidirectional antenna suitable for this type of application and which in addition guarantee the safety of people during your service.
Alternativamente en el sistema de suelo la fuente externa es una espira principal alimentada por corriente que rodea dicha pluralidad de sensores y los medios de captación de energía electromagnética de cada sensor comprenden una bobina apta para recibir una corriente inducida por la espira principal. De esta forma se simplifica la instalación del sistema en aquellos casos en que no se dispone de elementos preinstalados que puedan realizar la función de antena o que no estén lo suficientemente próximos al sistema para garantizar su correcta alimentación. Con una única espira que rodee de forma adecuada los sensores del sistema se logra inducir la corriente necesaria de baja intensidad en todos los sensores. Otra ventaja importante es la robustez del sistema, ya que ningún componente importante está expuesto hacia el exterior, lo cual reduce la posibilidad de que el sistema sea dañado, por ejemplo, por actos vandálicos. Alternatively, in the floor system the external source is a main current-powered loop that surrounds said plurality of sensors and the means of Electromagnetic energy collection of each sensor comprises a coil capable of receiving a current induced by the main loop. This simplifies the installation of the system in those cases where there are no pre-installed elements that can perform the antenna function or that are not close enough to the system to guarantee its correct power. With a single loop that adequately surrounds the sensors of the system, it is possible to induce the necessary current of low intensity in all the sensors. Another important advantage is the robustness of the system, since no important component is exposed to the outside, which reduces the possibility of the system being damaged, for example, by vandalism.
Preferentemente, cuando el sistema se alimenta por espira dicha corriente inducida por dicha espira tiene una frecuencia de entre 100 y 300 kHz, lo cual permite lograr una transmisión energética eficiente. De forma especialmente preferente la corriente inducida por la espira tiene una frecuencia menor de 125 kHz para incrementar la seguridad de uso del sistema. Preferably, when the system is powered by a loop, said current induced by said loop has a frequency of between 100 and 300 kHz, which allows an efficient energy transmission to be achieved. Especially preferably, the current induced by the loop has a frequency of less than 125 kHz to increase the safety of use of the system.
Preferentemente los medios de control modifican el estado del sensor entre un modo receptor en el que dicho sensor acumula dicha energía electromagnética en dicho acumulador y un modo emisor en el que dicho acumulador alimenta eléctricamente dicho sensor y dicho sensor emite dicha primera señal de ocupación a través de dichos medios de transmisión. Esto reduce el consumo global del sensor, ya que durante la fase de carga en modo receptor no está consumiendo energía. Preferably the control means modify the state of the sensor between a receiving mode in which said sensor accumulates said electromagnetic energy in said accumulator and an emitting mode in which said accumulator electrically feeds said sensor and said sensor emits said first occupancy signal through of said transmission means. This reduces the overall consumption of the sensor, since during the charging phase in receiver mode it is not consuming energy.
Preferentemente el detector de ocupación es capacitivo lo cual permite detectar la presencia de un cuerpo humano de forma sencilla y fiable comportándose la persona u objeto detectados como un elemento conductor entre los electrodos. De forma preferente el detector de ocupación está formado por un primer y un segundo electrodos laminares planos dispuestos con su cara plana orientada sustancialmente paralela al suelo y alimentados por una corriente alterna de frecuencia de excitación de 1 a 100 MHz y preferentemente de 10 a 40 MHz que genera un campo eléctrico entre dichos primer y segundo electrodos, detectándose el estado de ocupación del sistema de suelo como la variación de capacidad equivalente entre el primer y segundo electrodos del detector. La disposición de electrodos logra una detección fiable independientemente del material de recubrimiento. También es una ventaja importante el hecho de que gracias a los dos electrodos la intensidad puede ser muy reducida, con lo cual se mejora la seguridad de uso del sistema. Preferably, the occupancy detector is capacitive, which allows the presence of a human body to be detected in a simple and reliable manner, with the detected person or object behaving as a conductive element between the electrodes. Preferably, the occupancy detector is formed by a first and second flat laminar electrodes arranged with their flat face oriented substantially parallel to the ground and fed by an alternating current of excitation frequency of 1 to 100 MHz and preferably 10 to 40 MHz which generates an electric field between said first and second electrodes, detecting the state of occupation of the floor system as the equivalent capacity variation between the first and second electrodes of the detector. The electrode arrangement achieves reliable detection regardless of the coating material. The fact that thanks to the two electrodes the intensity can be greatly reduced is also an important advantage, thereby improving the safety of use of the system.
En una forma de realización el detector de ocupación comprende unos planos de masa que recubren dichos primer y segundo electrodos y que están previstos inferiormente a dicho primer y segundo electrodos. Bajo plano de masa se entiende que el material que recubre inferiormente los electrodos, es un material conductor y está al mismo potencial eléctrico que el propio suelo. Así, se reducen las pérdidas de campo eléctrico por la parte inferior del sensor, orientada hacia tierra, incrementando de esta forma la sensibilidad por la parte superior del sensor, orientada hacia el objeto que se desea detectar, ya que se aprecia un mayor incremento de la capacidad detectada. In one embodiment, the occupancy detector comprises ground planes that cover said first and second electrodes and that are provided inferiorly to said first and second electrodes. Under the ground plane it is understood that the material that covers the electrodes inferiorly is a conductive material and is at the same electrical potential as the ground itself. Thus, the losses of the electric field are reduced by the lower part of the sensor, oriented towards the ground, thus increasing the sensitivity by the upper part of the sensor, oriented towards the object to be detected, since a greater increase of The capacity detected.
Preferentemente en el sistema un único plano de masa recubre dichos primer y segundo electrodos, de forma que se reducen todavía más las pérdidas por la parte inferior del sensor. Preferably in the system a single mass plane covers said first and second electrodes, so that losses from the lower part of the sensor are further reduced.
Alternativamente dicho detector de ocupación comprende un plano de masa previsto entre dichos primer y segundo electrodos. En una forma de realización preferente el primer y segundo electrodos están dispuestos de forma concéntrica, para con ello incrementar el área monitorizada y por lo tanto la sensibilidad del sistema. Alternatively said occupancy detector comprises a plane of mass provided between said first and second electrodes. In a preferred embodiment, the first and second electrodes are arranged concentrically, thereby increasing the monitored area and therefore the sensitivity of the system.
De forma especialmente preferente el sistema también comprende unos medios receptores aptos para recibir de dichos medios de transmisión dicha primera señal de ocupación y una segunda señal de identificación de cada uno de dichos sensores y unos medios de procesado conectados con dichos medios receptores aptos para determinar una densidad de ocupación de dicho sistema de suelo a partir de dichas primera y segunda señales. Con ello, no sólo se puede conocer la densidad de ocupación, sino que también se puede trabajar sobre una base de datos que facilite la toma de decisiones por comparación con densidades de ocupación de otros instantes temporales. Particularly preferably, the system also comprises receiving means suitable for receiving said first transmission signal from said transmission means and a second identification signal of each of said sensors and processing means connected with said receiving means suitable for determining a occupation density of said soil system a from said first and second signals. With this, you can not only know the density of occupation, but you can also work on a database that facilitates decision-making by comparison with densities of occupation of other temporary moments.
Preferentemente el sistema comprende unos medios de representación asociados a dichos medios de procesado, aptos para representar la densidad de ocupación del suelo. Con ello, la información obtenida puede ser comunicada a usuarios afectados por la ocupación del suelo monitorizado. Esto permite, por ejemplo, gestionar colas de espera en espectáculos, museos o supermercados, informando a los usuarios sobre el tiempo estimado para ser atendidos. Preferably, the system comprises representation means associated with said processing means, capable of representing the density of land occupation. With this, the information obtained can be communicated to users affected by the occupation of the monitored land. This allows, for example, to manage queues at shows, museums or supermarkets, informing users about the estimated time to be served.
El sistema persigue también optimizar el número de sensores necesarios para obtener información fiable. Así preferentemente el sistema comprende entre 2 y 8 sensores por metro cuadrado de suelo monitorizado. The system also seeks to optimize the number of sensors needed to obtain reliable information. Thus preferably the system comprises between 2 and 8 sensors per square meter of monitored soil.
La invención se plantea también el problema de proponer una baldosa sensitiva y prefabricada que sea apta para recubrir el sistema de suelo según la invención. En la invención una baldosa se entiende como un elemento modular. Múltiples elementos modulares de este tipo, dispuestos adyacentes entre sí sirven para recubrir el sistema de suelo según la invención. Cabe destacar que dentro del alcance de la invención la baldosa sensitiva según la invención puede presentar diversos tipos de materiales y formas muy diversas. Preferentemente en la baldosa sensitiva según la invención el sensor comprende unos medios de captación de energía aptos para captar la energía electromagnética de una fuente externa y alimentar eléctricamente dicho sensor. Esta baldosa facilita el montaje del sistema de suelo ya que se parte de elementos modulares que a su vez, debido a su geometría permiten distribuir de forma óptima los sensores de detección. Preferentemente el sensor de la baldosa comprende un acumulador de la energía proveniente de dicha fuente externa que almacena la energía captada por dichos medios de captación. Preferentemente el acumulador comprende un condensador con corrientes de fuga menores que 5 μΑ (microamperios), siendo el sensor alimentado de forma intermitente por parte de dicho acumulador cada vez que dicho condensador está cargado. Preferentemente la baldosa es de un material paramagnético. La permeabilidad cercana a la del vacío del material paramagnético de la baldosa mejora la transmisión energética entre la fuente de alimentación y el sensor y por consiguiente la sensibilidad del sensor una vez dispuesto bajo la superficie de la baldosa. De forma especialmente preferente, el material paramagnético es hormigón lo cual mejora la durabilidad del suelo revestido. The invention also raises the problem of proposing a sensitive and prefabricated tile that is suitable for covering the floor system according to the invention. In the invention a tile is understood as a modular element. Multiple modular elements of this type, arranged adjacent to each other serve to cover the floor system according to the invention. It should be noted that within the scope of the invention the sensitive tile according to the invention can have various types of materials and very different shapes. Preferably, in the sensitive tile according to the invention, the sensor comprises energy collection means capable of capturing the electromagnetic energy from an external source and electrically feeding said sensor. This tile facilitates the assembly of the floor system since it is based on modular elements that, in turn, due to its geometry allow the detection sensors to be optimally distributed. Preferably, the tile sensor comprises an energy accumulator from said external source that stores the energy captured by said collection means. Preferably the accumulator comprises a capacitor with leakage currents less than 5 μΑ (microamps), the sensor being intermittently fed by said accumulator each time said capacitor is charged. Preferably the tile is of a paramagnetic material. The near permeability to the vacuum of the paramagnetic material of the tile improves the energy transmission between the power supply and the sensor and consequently the sensitivity of the sensor once arranged under the surface of the tile. Especially preferably, the paramagnetic material is concrete which improves the durability of the coated floor.
Preferentemente dicha baldosa comprende una cavidad en dicha cara oculta y porque dicho sensor está empotrado en dicha cavidad mediante una resina protectora de relleno. Una baldosa de este tipo facilita la instalación del sistema de suelo, ya que la propia geometría de las baldosas dispone los sensores a distancias regulares. Por otra parte, la resina protectora protege el circuito del sensor y mejora su durabilidad. Preferably said tile comprises a cavity in said hidden face and because said sensor is embedded in said cavity by means of a protective filling resin. Such a tile facilitates the installation of the floor system, since the tile's own geometry provides the sensors at regular distances. On the other hand, the protective resin protects the sensor circuit and improves its durability.
Alternativamente el sensor está dispuesto por debajo de dicha baldosa adyacente a dicha cara oculta, estando el sensor revestido de una resina protectora, lo cual facilita la fabricación de la baldosa, ya que el sensor únicamente debe ser adherido a su cara inferior oculta. Alternatively, the sensor is arranged below said tile adjacent to said hidden face, the sensor being coated with a protective resin, which facilitates the manufacture of the tile, since the sensor must only be adhered to its hidden lower face.
Opcionalmente el sensor comprende además unos medios de identificación a modo de dispositivo RFID (Radio Frequency Idendification), acrónimo inglés de un dispositivo de identificación por radiofrecuencia. El dispositivo permite identificar y posicionar de forma unívoca cada uno de los sensores del sistema, lo cual facilita la determinación de la distribución de objetos o personas sobre el sistema de suelo. Además, en caso de que la electrónica de los sensores se desprogramase, por ejemplo, por falta de alimentación eléctrica, se necesitaría reprogramar cada elemento de suelo individualmente, mientras que con el dispositivo RFID, esto no es necesario. Este dispositivo RFID permite geoposicionar los sensores del sistema de una forma sencilla. Optionally, the sensor also includes identification means as an RFID (Radio Frequency Idendification) device, an English acronym for a radio frequency identification device. The device allows to identify and position in a unique way each of the sensors of the system, which facilitates the determination of the distribution of objects or people on the floor system. In addition, in case the sensor electronics were deprogrammed, for example, due to lack of power, it would be necessary to reprogram each floor element individually, while with the RFID device, this is not necessary. This RFID device allows you to position the system sensors in a simple way.
La invención también propone un procedimiento de gestión de la densidad de ocupación de una superficie de uso colectivo. En el procedimiento dicha densidad de ocupación se encuentra sobre un sistema de suelo que comprende por lo menos una fuente externa de alimentación mediante energía electromagnética, y una pluralidad de sensores que comprenden unos medios de captación de energía aptos para captar la energía electromagnética de dicha fuente externa y alimentar eléctricamente dicho sensor, siendo cada uno de dichos sensores apto para transmitir una primera señal de ocupación y una segunda señal de identificación y unos medios de procesado de dichas primeras y segundas señales. El procedimiento comprende las etapas de captar dichas primera y dicha segunda señales de cada uno de dichos sensores, en un primer instante temporal, determinando en tiempo real una primera densidad de ocupación de dicho sistema de suelo en dicho primer instante, captar dichas primera y dicha segunda señales de cada uno de dichos sensores, en un segundo instante temporal, determinando en tiempo real una segunda densidad de ocupación de dicho sistema de suelo en dicho segundo instante, comparar dichas primera y segunda densidades de ocupación, ejecutar una acción de gestión en función de dicha comparación. En una forma de realización del procedimiento dicha densidad de ocupación se obtiene como un porcentaje de sensores ocupados de dicho sistema de suelo. Alternativamente la densidad de ocupación se obtiene como un área instantánea de ocupación de dicho sistema de suelo. Preferentemente los sensores del sistema de suelo están geoposicionados, lo cual permite obtener una visión realista de la distribución de ocupación sobre el sistema de suelo. The invention also proposes a method of managing the occupancy density of a collective use surface. In the process said occupancy density is on a floor system that comprises at least one external power source by electromagnetic energy, and a plurality of sensors comprising means for capturing energy capable of capturing the electromagnetic energy of said source. externally and electrically supplying said sensor, each of said sensors being capable of transmitting a first occupancy signal and a second identification signal and processing means of said first and second signals. The method comprises the steps of capturing said first and said second signals from each of said sensors, in a first temporary instant, determining in real time a first occupation density of said floor system at said first instant, capturing said first and said second signals from each of said sensors, in a second time instant, determining in real time a second occupation density of said floor system at said second instant, comparing said first and second occupancy densities, executing a management action as a function of such comparison. In an embodiment of the process said occupancy density is obtained as a percentage of sensors occupied of said floor system. Alternatively, the occupation density is obtained as an instantaneous area of occupation of said soil system. Preferably, the sensors of the soil system are positioned, which allows to obtain a realistic view of the distribution of occupancy on the soil system.
De forma especialmente preferente la acción consiste en determinar el tiempo de espera en una cola. Asimismo, la invención también abarca otras características de detalle ilustradas en la descripción detallada de una forma de realización de la invención y en las figuras que la acompañan. Especially preferably, the action consists in determining the waiting time in a queue. Likewise, the invention also encompasses other detail features illustrated in the detailed description of an embodiment of the invention and in the accompanying figures.
Breve descripción de los dibujos Brief description of the drawings
Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relata una forma preferente de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran: Other advantages and features of the invention can be seen from the following description, in which, without any limitation, a preferred embodiment of the invention is mentioned, mentioning the accompanying drawings. The figures show:
Fig. 1 , una vista esquemática de una primera forma de realización de un sistema de suelo según la invención. Fig. 1, a schematic view of a first embodiment of a floor system according to the invention.
Fig. 2, una vista esquemática de una segunda forma de realización de un sistema de suelo según la invención. Fig. 2, a schematic view of a second embodiment of a floor system according to the invention.
Fig. 3, una realización del circuito del sensor del sistema de suelo según la invención.  Fig. 3, an embodiment of the floor system sensor circuit according to the invention.
Fig. 4, una vista cortada esquemática de una primera disposición de sensores en el sistema de suelo según la invención.  Fig. 4, a schematic sectional view of a first sensor arrangement in the floor system according to the invention.
Fig. 5, una vista cortada esquemática de una segunda disposición de sensores en el sistema de suelo según la invención.  Fig. 5, a schematic sectional view of a second sensor arrangement in the floor system according to the invention.
Fig. 6, una vista cortada esquemática de la parte de un sensor según la invención correspondiente a los electrodos de detección de ocupación.  Fig. 6, a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes.
Fig. 7, una vista cortada esquemática de la parte de un sensor según la invención correspondiente a los electrodos de detección de ocupación, aplicando un plano de masa inferior. Fig. 7, a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a lower mass plane.
Fig. 8, una vista cortada esquemática de la parte de un sensor según la invención correspondiente a los electrodos de detección de ocupación, aplicando un plano de masa inferior para cada electrodo.  Fig. 8, a schematic cut-away view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a lower ground plane for each electrode.
Fig. 9 una vista cortada esquemática de la parte de un sensor según la invención correspondiente a los electrodos de detección de ocupación, aplicando un plano de masa entre electrodos. Figs. 10, 1 1 vistas esquemáticas en planta superior posibles realizaciones de los electrodos del sensor según la invención. Fig. 9 a schematic sectional view of the part of a sensor according to the invention corresponding to the occupancy detection electrodes, applying a mass plane between electrodes. Figs. 10, 1 1 schematic views on the upper floor possible embodiments of the sensor electrodes according to the invention.
Fig. 12, una vista esquemática de la estructura de un sistema de suelo para determinar tiempos de espera en una cola según la invención.  Fig. 12, a schematic view of the structure of a floor system for determining waiting times in a queue according to the invention.
Fig. 13, una vista esquemática de una pluralidad de sistemas de suelo interconectados entre sí. Fig. 13, a schematic view of a plurality of interconnected floor systems.
Fig. 14, un diagrama esquemático del procedimiento según la invención. Descripción detallada de una forma de realización de la invención  Fig. 14, a schematic diagram of the process according to the invention. Detailed description of an embodiment of the invention
El sistema de suelo según la invención está destinado a detectar y gestionar la ocupación de una superficie recubierta de uso colectivo. En la invención se entiende como superficie de uso colectivo, por ejemplo, un tramo de vía pública, la cola de un supermercado, un andén de tren o metro o bien el acceso a un recinto, tal como un museo cuya densidad de ocupación se desea monitorizar. Uno de los objetos preferentes de la invención es la gestión de la ocupación un suelo de uso colectivo ocupado por un grupo de personas, al objeto de utilizar esta información para fines tales como gestionar colas de espera o aglomeraciones de gente u otros. The floor system according to the invention is intended to detect and manage the occupation of a covered surface for collective use. In the invention it is understood as a collective use surface, for example, a section of public road, the tail of a supermarket, a train or subway platform or access to an enclosure, such as a museum whose occupancy density is desired monitor. One of the preferred objects of the invention is the management of the occupation a collective use floor occupied by a group of people, in order to use this information for purposes such as managing queues or crowds of people or others.
El sistema de suelo comprende una pluralidad de sensores 1 de ocupación destinados a monitorizar e informar al sistema del estado de ocupación de la superficie. Los sensores 1 están previstos bajo el recubrimiento de la superficie, como por ejemplo, por debajo de un pavimento de baldosas o bien integrados en el propio recubrimiento. The floor system comprises a plurality of occupancy sensors 1 intended to monitor and inform the system of the surface occupation status. The sensors 1 are provided under the surface coating, such as below a tile floor or integrated into the coating itself.
Cada sensor 1 comprende un detector 2 de ocupación, unos medios de transmisión 4 y unos medios de control 6, tales como un microprocesador, que reciben una primera señal del detector 2 informando sobre su estado de ocupación. Esta primera señal, ya sea de ocupación o no, puede ser transmitida al sistema a través de los medios de transmisión 4 que son, por ejemplo, una antena emisora. El detector 2 es preferentemente un detector capacitivo formado por dos electrodos 40a, 40b o placas planas separadas entre sí y dispuestas con su cara plana paralela a la superficie revestida, de modo que la ocupación se mide como la variación de la capacidad equivalente medida entre los electrodos 40a, 40b. Each sensor 1 comprises an occupancy detector 2, transmission means 4 and control means 6, such as a microprocessor, which receive a first signal from the detector 2 informing about their occupancy status. This first signal, whether occupancy or not, can be transmitted to the system through the transmission means 4 which are, for example, a transmitting antenna. The detector 2 is preferably a capacitive detector formed by two electrodes 40a, 40b or flat plates separated from each other and arranged with their flat face parallel to the coated surface, so that the occupancy is measured as the variation of the equivalent capacity measured between the electrodes 40a, 40b.
Uno de los objetos de la invención es garantizar una correcta y sencilla alimentación del sistema. Para ello, el sistema comprende también una fuente 14 externa de alimentación a través de energía electromagnética de baja potencia, y compatibles con el uso humano. Normalmente, estos rangos de potencia vienen determinados por normativa. Esta energía es captada por los medios de captación 8 para alimentar el sensor 1 . Esto ofrece una ventaja destacable con respecto a otros sistemas del estado de la técnica ya que elimina cualquier tipo de cableado eléctrico entre sensores 1 . En una primera forma de realización del sistema, la fuente 14 es una antena de radiofrecuencia. Esta antena emite ondas de radiofrecuencia de baja potencia en una banda ICM ("Industrial, Científica y Médica") reservadas para el uso no comercial de radiofrecuencias en las áreas industrial, científica y médica. De forma preferente la antena de la fuente 14 emite a una frecuencia comprendida entre 600 y 1500 MHz. Al objeto de proponer una antena de alimentación eficiente y omnidireccional que alimentase a los sensores desde unos 4 m de distancia, se partió de un sensor 1 formado por un circuito impreso de unos 15x15 cm. Así, se observó que para lograr una antena eficiente y omnidireccional, era apropiado emitir desde la fuente 14 con una longitud de onda de entre 0,2m y 0,5 m. Una vez detectada una banda de frecuencias óptima para alimentar el sistema de suelo se utilizó una frecuencia de unos 868 MHz, por ser ésta una frecuencia libre dentro de la banda ICM. No obstante, otras frecuencias dentro del rango citado también podrían ser utilizadas en la aplicación. Por otra parte, la antena transmisora de potencia tiene unos 2W de potencia, lo cual garantiza la seguridad de uso del sistema en un entorno público. One of the objects of the invention is to guarantee a correct and simple feeding of the system. For this, the system also comprises an external power source 14 through low power electromagnetic energy, and compatible with human use. Normally, these power ranges are determined by regulations. This energy is captured by the capture means 8 to feed the sensor 1. This offers a remarkable advantage over other prior art systems since it eliminates any type of electrical wiring between sensors 1. In a first embodiment of the system, the source 14 is a radio frequency antenna. This antenna emits low-power radio frequency waves in an ICM band ("Industrial, Scientific and Medical") reserved for non-commercial use of radio frequencies in the industrial, scientific and medical areas. Preferably, the source 14 antenna emits at a frequency between 600 and 1500 MHz. In order to propose an efficient and omnidirectional power antenna that feeds the sensors from about 4 m distance, it was split from a sensor 1 formed for a printed circuit of about 15x15 cm. Thus, it was observed that to achieve an efficient and omnidirectional antenna, it was appropriate to emit from the source 14 with a wavelength between 0.2m and 0.5m. Once an optimum frequency band was detected to power the ground system, a frequency of about 868 MHz was used, since this is a free frequency within the ICM band. However, other frequencies within the cited range could also be used in the application. On the other hand, the transmitting power antenna has about 2W of power, which guarantees the safety of use of the system in a public environment.
El sensor 1 representado en la figura 1 comprende también un acumulador 12 de la energía captada por los medios de captación 8 y se encarga de almacenarla hasta lograr un voltaje apropiado de alimentación, de manera que el sensor 1 pueda informar al sistema de su estado de ocupación a través de la antena de los medios de transmisión 4. Preferentemente el acumulador 12 está hecho a partir de un condensador de bajas pérdidas. Por otra parte, como se aprecia en la figura 1 , los medios de captación 8 del sensor de la figura 1 son una antena receptora. Esta antena receptora es un dipolo sintonizado a 868 MHz. The sensor 1 shown in Figure 1 also comprises an accumulator 12 of the energy captured by the collection means 8 and is responsible for storing it up to achieve an appropriate supply voltage, so that the sensor 1 can inform the system of its occupancy status through the antenna of the transmission means 4. Preferably the accumulator 12 is made from a low loss capacitor. On the other hand, as seen in Figure 1, the pick-up means 8 of the sensor of Figure 1 is a receiving antenna. This receiving antenna is an 868 MHz tuned dipole.
En la figura 2, se aprecia una realización alternativa del sistema. En este caso se trata de un sistema más robusto ya que está todo recubierto por el revestimiento de la superficie. En particular, los sensores 1 del sistema, que sustancialmente son iguales que los explicados anteriormente, están rodeados por una fuente 14 de energía consistente de una fuente de corriente 30 que alimenta una espira 32 principal. La espira 32 está dispuesta de forma que rodea a los sensores 1 . Los sensores 1 presentan los medios de captación 8 que en este caso son una bobina arrollada alrededor del perímetro del sensor. La corriente inducida por dicha espira 32 tiene una frecuencia de entre 100 y 300 kHz. Por ejemplo, en el caso de monitorizar una superficie cuadrada de 10x10 metros se observó que convenía irradiar los sensores 1 con una longitud de onda entre 100 y 300 veces superior a las dimensiones de la espira, es decir de longitud de onda comprendida entre 1000 y 3000 metros. Una vez detectada una banda de frecuencias óptima para alimentar el sistema de suelo se utilizó una frecuencia 125 kHz, por ser ésta una frecuencia libre dentro de la banda ICM. No obstante, otras frecuencias dentro del rango citado también podrían ser utilizadas en la aplicación. En la figura 3 se aprecia en detalle una posible forma de realización del circuito del sensor 1 según la invención. En la parte inferior de la figura 3 se aprecian los medios de captación 8 consistentes en una bobina L1 montada en paralelo con un condensador C1 destinado a sintonizar la señal recibida de la fuente 14. A continuación, representado de forma esquemática se observa un circuito rectificador D1 encargado de transformar la intensidad en corriente continua. El circuito rectificador puede ser cualquiera de los utilizados habitualmente en el estado de la técnica, como, por ejemplo, un puente de diodos. El siguiente módulo corresponde a acumulador 12. El acumulador 12 consiste en dos condensadores C2, C3 de bajas pérdidas, es decir con corrientes de fuga menores que 5 μΑ (microamperios), y que están diseñados para cargarse hasta un máximo de 4V. Hasta aquí se han descrito los elementos encargados de adquirir la energía de la fuente 14 y posteriormente almacenarla para alimentar el sensor 1. In Figure 2, an alternative embodiment of the system is seen. In this case it is a more robust system since it is all covered by the surface coating. In particular, the sensors 1 of the system, which are substantially the same as those explained above, are surrounded by a power source 14 consisting of a current source 30 that feeds a main coil 32. The coil 32 is arranged so that it surrounds the sensors 1. The sensors 1 have the collection means 8 which in this case are a coil wound around the perimeter of the sensor. The current induced by said coil 32 has a frequency between 100 and 300 kHz. For example, in the case of monitoring a square surface of 10x10 meters, it was observed that it was convenient to irradiate sensors 1 with a wavelength between 100 and 300 times greater than the dimensions of the loop, that is to say wavelength between 1000 and 3000 meters Once an optimum frequency band was detected to power the ground system, a 125 kHz frequency was used, since this is a free frequency within the ICM band. However, other frequencies within the cited range could also be used in the application. A possible embodiment of the sensor circuit 1 according to the invention can be seen in detail in Figure 3. In the lower part of Figure 3, the collection means 8 consisting of a coil L1 mounted in parallel with a capacitor C1 designed to tune the signal received from the source 14 are shown. Next, schematically represented a rectifier circuit is observed D1 responsible for transforming the intensity into direct current. The rectifier circuit can be any of those commonly used in the state of the art, such as a diode bridge. The following module corresponds to accumulator 12. The accumulator 12 consists of two capacitors C2, C3 of low losses, that is to say with leakage currents less than 5 μΑ (microamps), and which are designed to be charged up to a maximum of 4V. So far, the elements responsible for acquiring the energy from the source 14 and subsequently storing it to power the sensor 1 have been described.
A la salida del acumulador 12 está previsto un elemento regulador 34 consistente en un transformador conocido por el experto en la materia y encargado de transformar la tensión de 4 V a 2,5 V. El regulador 34 alimenta, por un lado, los medios de control 6, que pueden ser un microprocesador, la antena de los medios de transmisión 4 y el detector 2. At the outlet of the accumulator 12 a regulating element 34 is provided consisting of a transformer known to the person skilled in the art and responsible for transforming the voltage from 4 V to 2.5 V. The regulator 34 feeds, on the one hand, the means of control 6, which can be a microprocessor, the antenna of the transmission means 4 and the detector 2.
El detector 2 recibe una corriente continua de 2,5 V que nuevamente es convertida mediante el excitador 36 a corriente alterna para alimentar los electrodos 40a, 40b planos. Ante la presencia de un cuerpo sobre el sensor 1 , y cuando se alimenta el circuito de detección, el dispositivo de medición 38 detecta una variación de capacidad entre los electrodos 40a, 40b y esta variación se comunica a los medios de control 6. The detector 2 receives a 2.5 V direct current which is again converted by the exciter 36 to alternating current to supply the flat electrodes 40a, 40b. In the presence of a body on the sensor 1, and when the detection circuit is powered, the measuring device 38 detects a variation in capacity between the electrodes 40a, 40b and this variation is communicated to the control means 6.
El sensor 1 explicado tiene dos modos de funcionamiento: un modo receptor de energía y un modo emisor de datos. A modo de ejemplo no limitativo, los medios de control 6 se encargan de alternar ambos estados de la siguiente forma: durante un minuto, se produce la carga del acumulador 12, mientras que el resto del circuito a partir de este punto se encuentra inactivo, es decir que el sensor 1 no envía datos al sistema, sino que se limita a acumular energía. Cuando se han alcanzado los 4V, el acumulador descarga instantáneamente en 5 ms (milisegundos) la energía acumulada. El excitador 36 transforma la corriente continua en alterna y excita los electrodos 40a, 40b. En este periodo de tiempo se realiza la medición de variación de capacidad entre los electrodos 40a, 40b. A continuación el microprocesador procesa una primera señal de ocupación y la envía, a través de la antena, junto con una segunda señal de identificación del sensor 1 correspondiente. Opcionalmente, en el circuito de la figura 3 la bobina L1 de captación y la antena de los medios de transmisión 4, en una forma preferente pueden ser un mismo elemento. En las figuras 4 y 5, se aprecia una baldosa 42a sensitiva para recubrir el sistema de suelo. La baldosa 42a tiene una cara vista 50 apta para ser pisada y una cara oculta y comprende un sensor 1 de ocupación previsto por debajo de dicha cara vista 50 como los descritos en las figuras 1 a 3. De forma especialmente preferente las baldosas 42a sensitivas están fabricadas en hormigón. En el desarrollo de la invención se ha comprobado que con una frecuencia de excitación por parte del detector 2 de 1 a 100 MHz y preferentemente de 10 a 40 MHz se obtienen resultados satisfactorios para la medición de ocupación a través de baldosas 42a de hormigón. Debido a que el sensor 1 , en el caso de baldosas de hormigón, está recubierto por una capa relativamente gruesa se comprobó que a frecuencias superiores a 100 MHz el hormigón tenía un comportamiento inductivo, mientras que a frecuencias inferiores a 1 MHz, el comportamiento era resistivo. En cambio en el rango de frecuencias indicado el comportamiento del hormigón era capacitivo. The sensor 1 explained has two modes of operation: a power receiver mode and a data transmitter mode. By way of non-limiting example, the control means 6 are in charge of alternating both states in the following way: for one minute, the charge of the accumulator 12 is produced, while the rest of the circuit from this point is inactive, that is to say that sensor 1 does not send data to the system, but is limited to accumulate energy. When the 4V have been reached, the accumulator instantly discharges the accumulated energy in 5 ms (milliseconds). The exciter 36 transforms the direct current into alternating current and excites the electrodes 40a, 40b. In this period of time the measurement of capacity variation between the electrodes 40a, 40b is performed. The microprocessor then processes a first occupancy signal and sends it, through the antenna, together with a second identification signal of the corresponding sensor 1. Optionally, in the circuit of Figure 3 the pickup coil L1 and the antenna of the transmission means 4, in a preferred form, can be the same element. In Figures 4 and 5, a sensitive tile 42a is shown to cover the floor system. The tile 42a has a visible face 50 suitable for being stepped on and a hidden face and comprises an occupancy sensor 1 provided below said face 50 as described in Figures 1 to 3. Especially preferably the sensitive tiles 42a are made of concrete. In the development of the invention it has been found that with an excitation frequency on the part of the detector 2 from 1 to 100 MHz and preferably from 10 to 40 MHz, satisfactory results are obtained for measuring occupancy through concrete tiles 42a. Because the sensor 1, in the case of concrete tiles, is covered by a relatively thick layer it was found that at frequencies greater than 100 MHz the concrete had an inductive behavior, while at frequencies below 1 MHz, the behavior was resistive In contrast, in the frequency range indicated, the behavior of the concrete was capacitive.
Como se aprecia en las figuras, 4 y 5, en la invención no es imprescindible que el sistema de suelo esté recubierto únicamente con baldosas 42a sensitivas, sino que algunas de las baldosas del sistema pueden ser baldosas 42b convencionales. Así, de forma preferente los sensores 1 están distribuidos a razón de entre 2 y 8 sensores por metro cuadrado de suelo. En la forma de realización de la figura 4, se aprecian tres baldosas adyacentes 42a, 42b, de las cuales únicamente la baldosa 42a central comprende un sensor 1 por debajo con las características que se han explicado en las figuras 1 a 3. Por otra parte, en esta primera forma de realización la baldosa 42a sensitiva presenta una cavidad 48 por debajo de la cara vista 50 que permite la introducción del sensor 1. Esta cavidad 48 se puede realizar de distintas formas, por ejemplo, directamente de molde o mecanizada posteriormente. Luego, el sensor 1 se solidariza con la baldosa 42a de hormigón mediante una resina 44 protectora de relleno. La resina 44 tiene en este caso dos efectos: en primer lugar protege el sensor 1 frente al entorno agresivo del suelo 46, y en segundo lugar permite crear un elemento modular fácilmente montable sobre la superficie a monitorizar. As can be seen in figures 4 and 5, it is not essential in the invention that the floor system be coated only with sensitive tiles 42a, but that some of the system tiles can be conventional tiles 42b. Thus, the sensors 1 are preferably distributed at a rate of between 2 and 8 sensors per square meter of soil. In the embodiment of Figure 4, three adjacent tiles 42a, 42b are visible, of which only the central tile 42a comprises a sensor 1 below with the characteristics explained in Figures 1 to 3. On the other hand In this first embodiment, the sensitive tile 42a has a cavity 48 below the face 50 which allows the introduction of the sensor 1. This cavity 48 can be made in different ways, for example, directly from the mold or subsequently machined. Then, the sensor 1 is in solidarity with the concrete tile 42a by a protective filling resin 44. In this case, resin 44 has two effects: first, it protects the sensor 1 against the aggressive soil environment 46, and secondly it allows to create a modular element easily mountable on the surface to be monitored.
Alternativamente, el sistema se puede realizar según el ejemplo de la figura 5. En este caso, el sensor 1 no está empotrado en la baldosa 42a sensitiva, sino que está dispuesto por debajo de dicha baldosa 42a adyacente y adherido a la cara oculta. En este caso el sensor 1 también está protegido mediante una resina 44 de recubrimiento. En las figura 6 se muestra una posible forma de realización del detector 2 capacitivo del sensor 1 . En este caso, el sensor 1 está dispuesto como en la figura 5 por debajo de una baldosa 42a sensitiva recubierto por la resina 44. Como se aprecia de forma esquemática, el sensor 1 en forma una placa de circuito impreso de 15x15 cm comprende los dos electrodos 40a, 40b laminares planos dispuestos con su cara de mayor superficie paralela a la cara externa de la baldosa 42. Cuando el excitador 36 alimenta ambos electrodos 40a, 40b se forma un campo eléctrico desde las caras superior 54a e inferior 56a del electrodo 40a positivo hasta las respectivas caras 54b, 56b del electrodo 40b negativo. Como ya es sabido por el experto en la materia, las líneas de campo entre ambos electrodos 40a, 40b son infinitas y no siguen exactamente la trayectoria de las líneas esquemáticas representada en la figura, las cuales se han trazado simplemente a modo de ejemplo ilustrativo y no limitativo. Cuando una persona u objeto se acerca a la baldosa 42a interponiéndose entre las líneas del campo eléctrico, la persona varía el campo eléctrico entre las caras superiores 54a, 54b y por consiguiente modificando temporalmente la capacidad equivalente del condensador. Esta variación de capacidad es detectada por los medios de detección 38 y procesado por los medios de control 6 para enviar este nuevo estado de ocupación a través de la correspondiente antena ya descrita. En una forma de realización preferente mostrada en la figura 7, el sensor 1 además de presentar la misma configuración explicada en la figura 6, presenta también un plano de masa 52 que recubre inferiormente toda la superficie del sensor 1. Gracias al plano de masa 52, se dificulta o prácticamente se elimina el campo eléctrico entre las caras inferiores 56a, 56b de los electrodos 40a, 40b. Como consecuencia se incrementa el campo eléctrico que pasa entre las caras superiores 54a, 54b y con ello también la sensibilidad del sensor 1. Con ello, al interponer un objeto en el campo eléctrico entre electrodos 40a, 40b, la variación de capacidad equivalente medida es todavía mayor y más fácilmente detectable. Alternatively, the system can be realized according to the example of Figure 5. In this case, the sensor 1 is not embedded in the sensitive tile 42a, but is disposed below said adjacent tile 42a and adhered to the hidden face. In this case the sensor 1 is also protected by a coating resin 44. Figure 6 shows a possible embodiment of the capacitive detector 2 of the sensor 1. In this case, the sensor 1 is arranged as in Figure 5 below a sensitive tile 42a covered by the resin 44. As can be seen schematically, the sensor 1 in the form of a 15x15 cm printed circuit board comprises the two flat laminar electrodes 40a, 40b arranged with their face of greater surface parallel to the outer face of the tile 42. When the exciter 36 feeds both electrodes 40a, 40b an electric field is formed from the upper 54a and lower 56a faces of the positive electrode 40a to the respective faces 54b, 56b of the negative electrode 40b. As is known by the person skilled in the art, the field lines between both electrodes 40a, 40b are infinite and do not exactly follow the path of the schematic lines represented in the figure, which have been drawn simply as an illustrative example and not limiting When a person or object approaches the tile 42a interposing between the lines of the electric field, the person varies the electric field between the upper faces 54a, 54b and therefore temporarily modifying the equivalent capacitor capacity. This variation in capacity is detected by the detection means 38 and processed by the control means 6 to send this new occupancy state through the corresponding antenna already described. In a preferred embodiment shown in Figure 7, the sensor 1, in addition to presenting the same configuration explained in Figure 6, also has a ground plane 52 that covers the entire surface of the sensor 1 below. Thanks to the ground plane 52 , the field is difficult or virtually eliminated electrical between the lower faces 56a, 56b of the electrodes 40a, 40b. As a consequence, the electric field that passes between the upper faces 54a, 54b is increased, and thus also the sensitivity of the sensor 1. Thus, when an object is interposed in the electric field between electrodes 40a, 40b, the measured equivalent capacity variation is even older and more easily detectable.
En la forma de realización según la figura 8, cada electrodo 40a, 40b tiene su propio plano de masa 52. Finalmente, en la figura 9 se muestra otra posible configuración del detector 2, en la que el plano de masa 52 se encuentra entre el primer y segundo electrodos 40a, 40b. In the embodiment according to Figure 8, each electrode 40a, 40b has its own mass plane 52. Finally, in Figure 9 another possible configuration of the detector 2 is shown, in which the mass plane 52 is between the first and second electrodes 40a, 40b.
En las figuras 10 y 1 1 , se muestra de forma muy esquemática una vista en planta superior del sensor 1 . Como ya entenderá el experto en la materia, los sensores 1 comprenden las otras partes del circuito ya descritas, pero que por simplicidad éstas no se han representado en estas dos figuras. En el sensor 1 de la figura 10, los electrodos 40a, 40b son dos cuadrados concéntricos, mientras que en la figura 1 1 son dos círculos concéntricos. Ambas realizaciones permiten mejorar la detección de personas cercanas al sensor 1 ya que las líneas de campo eléctrico entre electrodos 40a, 40b son omnidireccionales. In figures 10 and 1 1, a top plan view of the sensor 1 is shown very schematically. As the person skilled in the art will understand, the sensors 1 comprise the other parts of the circuit already described, but which for simplicity have not been represented in these two figures. In sensor 1 of Figure 10, electrodes 40a, 40b are two concentric squares, while in Figure 1 1 they are two concentric circles. Both embodiments allow to improve the detection of people close to the sensor 1 since the electric field lines between electrodes 40a, 40b are omnidirectional.
De forma especialmente preferente cualquiera de las formas de realización de los sensores 1 descritos es susceptible de incorporar unos medios de identificación 10 a modo de dispositivo RFID. La ventaja en este caso se obtiene del hecho de que es un elemento pasivo que no consume energía durante la fase de carga ni se desprograma, reduciéndose con ello el consumo del sensor 1 , pero además permite geoposicionar los sensores 1 de forma muy simple. En la figura 12, se aprecia una forma de realización esquemática de un sistema de suelo según la invención a partir del cual se puede llevar a cabo un procedimiento de gestión de la densidad de ocupación de una superficie de uso colectivo y más particularmente la gestión de una cola de espera. En particular, el sistema de suelo comprende una pluralidad de baldosas 42a sensitivas adyacentes que recubren una superficie y que incorporan sensores 1 como los descritos anteriormente. Como ya se ha comentado, a pesar de que en este caso se representa con un sensor 1 por baldosa 42a, no es imprescindible que cada baldosa tenga un sensor 1 . Por otra parte, el sistema de suelo comprende unos medios de procesado 24 provistos de unos medios receptores 18 a modo de antena que reciben la información de los medios de transmisión 4, es decir la primera y segunda señales 20, 22. Unos medios de representación 26, tales como una pantalla, están conectados a los medios de procesado 24 para facilitar la información a las personas que están esperando en la cola. Alternativamente, los medios de representación 26 también pueden estar comunicados con los medios de procesado 24 por ondas de radiofrecuencia o sistemas inalámbricos de transmisión de datos conocidos por el experto en la materia. Particularly preferably, any of the embodiments of the described sensors 1 is capable of incorporating identification means 10 as an RFID device. The advantage in this case is obtained from the fact that it is a passive element that does not consume energy during the charging phase nor does it deprogram, thereby reducing the consumption of the sensor 1, but also allows the sensors 1 to be positioned in a very simple way. In figure 12, a schematic embodiment of a floor system according to the invention can be seen from which a procedure for managing the density of occupancy of a collective use surface can be carried out and more particularly the management of A waiting queue In particular, the floor system comprises a plurality of adjacent sensitive tiles 42a covering a surface and incorporating sensors 1 as described above. As already mentioned, although in this case it is represented with a sensor 1 per tile 42a, it is not essential that each tile has a sensor 1. On the other hand, the floor system comprises processing means 24 provided with receiver means 18 as an antenna that receive the information of the transmission means 4, that is the first and second signals 20, 22. Representation means 26, such as a screen, are connected to the processing means 24 to provide information to the people waiting in the queue. Alternatively, the representation means 26 may also be communicated with the processing means 24 by radio frequency waves or wireless data transmission systems known to the person skilled in the art.
En servicio, la ocupación de un sensor 1 es detectada por los detectores 2 de ocupación, lo cual en la figura 12 está representado esquemáticamente por baldosas sombreadas. Los medios de control 6, a través de los medios de transmisión 4, transmiten a los medios de recepción 18 del sistema una primera señal 20 de ocupación proveniente de los detectores 2 de ocupación y una segunda señal 22 de identificación del sensor 1 correspondiente proveniente de los medios de identificación 10. Estas señales se envían a intervalos de tiempo constantes para poder tener una evolución realista de la ocupación del sistema de suelo. In service, the occupation of a sensor 1 is detected by the occupancy detectors 2, which in figure 12 is schematically represented by shaded tiles. The control means 6, through the transmission means 4, transmit to the reception means 18 of the system a first occupancy signal 20 from the occupancy detectors 2 and a second identification signal 22 of the corresponding sensor 1 from the means of identification 10. These signals are sent at constant intervals of time in order to have a realistic evolution of the occupation of the soil system.
Por simplicidad, en la figura 12 se ha esquematizado el envío de las señales mediante una única flecha para cada señal de un único sensor 1 , no obstante, cada sensor 1 ocupado envía su propias señales correspondientes de forma individualizada. También cabe comentar que todos los sensores 1 envían sus señales correspondientes, tanto si están ocupados, como si no lo están en el momento en que cada sensor 1 es alimentado instantáneamente. De esta forma, si un determinado sensor 1 , no está emitiendo su estado de ocupación, el sistema puede detectar si el sensor 1 está averiado. En el procedimiento según la invención esquematizado en la figura 14, en un primer instante, los sensores S1 , S2, etc. se encuentran en modo receptor, es decir acumulando energía proveniente de la fuente externa 14. Los sensores S1 , S2... también están geoposicionados, es decir que en todo momento el sistema sabe en que posición relativa del sistema se encuentra un sensor Si determinado. Una vez cargados, los medios de control 6 pasan a cada sensor 1 de modo receptor a modo emisor, es decir que la energía acumulada en el acumulador 12 es suministrada hacia el resto del circuito. Así, en un primer instante temporal Ti se realiza la captación de ocupación de cada uno de los sensores S1 , S2, etc. y los medios de control 6 envían la primera y segunda señales 20, 22 (ocupación y identidad de sensor) hacia los medios receptores 18. Así, en el siguiente paso, el sistema determina en tiempo real una primera densidad de ocupación en de este primer instante Ti mediante una aproximación estadística. Luego los sensores S1 , S2, etc. pasan nuevamente a modo receptor y a continuación una vez cargados pasan de nuevo a modo emisor en un segundo instante de tiempo Ti+1 . Así, se captan nuevamente la primera y segunda señales 20, 22 de cada sensor y se determina en tiempo real una segunda densidad de ocupación también mediante una aproximación estadística. Finalmente, los medios de procesado 24 comparan las densidades de ocupación medidas en Ti y Ti+1 y se ejecuta una acción de gestión. Como se aprecia en la figura 14, el proceso se repite continuamente, de manera que en la siguiente etapa el estado inicial se corresponde con los datos obtenidos en el instante Ti+1 , mientras que el sistema procede a una nueva captación de ocupación y determinación de identidad de cada sensor S1 , S2, etc. en el instante Ti+2. For simplicity, the sending of the signals by means of a single arrow has been schematized in Figure 12 for each signal of a single sensor 1, however, each occupied sensor 1 sends its own corresponding signals individually. It should also be noted that all sensors 1 send their corresponding signals, whether they are busy, or if they are not at the moment when each sensor 1 is fed instantly. In this way, if a certain sensor 1 is not emitting its occupancy status, the system can detect if the sensor 1 is broken. In the process according to the invention schematized in Figure 14, at first, the sensors S1, S2, etc. they are in receiver mode, that is to say accumulating energy from the external source 14. The sensors S1, S2 ... are also mapped, that is to say that at all times the system knows in which relative position of the system a sensor is located If determined . Once charged, the control means 6 passes to each sensor 1 from receiver mode to transmitter mode, that is to say that the energy accumulated in the accumulator 12 is supplied to the rest of the circuit. Thus, in a first temporary moment Ti the occupancy capture of each of the sensors S1, S2, etc. is carried out. and the control means 6 send the first and second signals 20, 22 (occupation and sensor identity) to the receiving means 18. Thus, in the next step, the system determines in real time a first occupancy density in of this first instant Ti through a statistical approximation. Then the sensors S1, S2, etc. they go back to receiver mode and then once loaded they go back to sender mode in a second moment of time Ti + 1. Thus, the first and second signals 20, 22 of each sensor are captured again and a second occupation density is determined in real time also by a statistical approximation. Finally, the processing means 24 compares the occupation densities measured in Ti and Ti + 1 and a management action is executed. As can be seen in figure 14, the process is repeated continuously, so that in the next stage the initial state corresponds to the data obtained at the time Ti + 1, while the system proceeds to a new occupation and determination acquisition Identity of each sensor S1, S2, etc. in the instant Ti + 2.
De modo preferente la densidad instantánea de ocupación se puede obtener como un porcentaje de ocupación del sistema de suelo. Alternativamente, el sistema puede comparar directamente de forma gráfica por comparación de superficies ocupadas entre el primer y segundo instantes. Preferably, the instantaneous occupancy density can be obtained as a percentage of occupation of the soil system. Alternatively, the system can directly compare graphically by comparing occupied surfaces between the first and second instants.
Para el ejemplo de realización de gestión de colas, los medios de procesado 24 transfieren esta información a los medios de representación 26 de forma que las personas que están realizando la cola obtienen información en tiempo real de la espera aproximada en la cola. For the example of performing queue management, the processing means 24 transfers this information to the representation means 26 so that the people who are queuing get real-time information of the approximate wait in the queue.
Opcionalmente, tal y como se aprecia en la figura 13, la invención prevé también que una pluralidad de sistemas de suelo montados en distintos lugares puedan estar intercomunicados entre sí a través de los medios de procesado 24 centrales. En este caso cada uno de los lugares dotados de sistemas de suelo de acceso al recinto está provisto de unos medios de representación 26. De esta forma, por ejemplo, en una ciudad con varios monumentos de interés cuyo acceso presente el sistema de suelo según la invención, se puede informar en tiempo real a los visitantes sobre los tiempos de espera de cada uno de los monumentos a visitar. Esto presenta la ventaja de que los usuarios puedan desplazarse a aquellos monumentos con menores tiempos de espera. Con ello, los turistas se reparten entre los distintos monumentos de forma más óptima y por lo tanto se pueden visitar los monumentos reduciendo los tiempos de espera globales en el conjunto de recintos a acceder. Optionally, as seen in Figure 13, the invention also provides that a plurality of floor systems mounted in different locations can be intercommunicated with each other through the central processing means 24. In this case, each of the places equipped with access floor systems to the enclosure is provided with means of representation 26. In this way, for example, in a city with several interesting monuments whose access presents the ground system according to the In this way, visitors can be informed in real time about the waiting times of each of the monuments to visit. This has the advantage that users can move to those monuments with shorter waiting times. With this, the tourists are distributed among the different monuments in a more optimal way and therefore the monuments can be visited reducing the overall waiting times in the set of enclosures to be accessed.

Claims

REIVINDICACIONES
1 .- Sistema de suelo para detectar la ocupación de una superficie (46) de uso colectivo que comprende un recubrimiento y una pluralidad de sensores (1 ) de ocupación previstos bajo dicha superficie (46) recubierta, comprendiendo cada sensor (1 ) 1 .- Floor system for detecting the occupation of a collective use surface (46) comprising a coating and a plurality of occupancy sensors (1) provided under said coated surface (46), each sensor comprising (1)
[a] un detector (2) de ocupación,  [a] an occupancy detector (2),
[b] unos medios de transmisión (4) y  [b] transmission means (4) and
[c] unos medios de control (6) aptos para recibir una primera señal de ocupación de dicho detector (2) y transmitir dicha primera señal (20) a través de dichos medios de transmisión (4),  [c] control means (6) capable of receiving a first occupancy signal of said detector (2) and transmitting said first signal (20) through said transmission means (4),
caracterizado porque dicho sistema de suelo (1 ) además comprende characterized in that said floor system (1) also comprises
[d] por lo menos una fuente externa (14) de alimentación mediante energía electromagnética, y porque  [d] at least one external source (14) of electromagnetic energy supply, and because
[e] dicho sensor (1 ) comprende unos medios de captación (8) de energía aptos para captar la energía electromagnética de dicha fuente externa (14) y alimentar eléctricamente dicho sensor (1 ).  [e] said sensor (1) comprises energy collection means (8) capable of capturing the electromagnetic energy of said external source (14) and electrically feeding said sensor (1).
2.- Sistema de suelo según la reivindicación 1 , caracterizado porque dicho sensor (1 ) comprende un acumulador (12) de la energía proveniente de dicha fuente externa (14) que almacena la energía captada por dichos medios de captación (8). 2. Floor system according to claim 1, characterized in that said sensor (1) comprises an accumulator (12) of energy from said external source (14) that stores the energy collected by said collection means (8).
3.- Sistema de suelo según la reivindicación 2, caracterizado porque dicho acumulador (12) comprende un condensador (C2) con corrientes de fuga menores que 5 μΑ, siendo dicho sensor (1 ) alimentado de forma intermitente por parte de dicho acumulador (12) cada vez que dicho condensador (C2) está cargado. 3. Floor system according to claim 2, characterized in that said accumulator (12) comprises a condenser (C2) with leakage currents less than 5 μΑ, said sensor (1) being intermittently fed by said accumulator (12 ) each time said capacitor (C2) is charged.
4.- Sistema de suelo según cualquiera de las reivindicaciones 1 a 3, caracterizado porque dicha fuente externa (14) es una antena de radiofrecuencia y dichos medios de captación (8) de energía electromagnética comprenden una antena de captación de ondas de radiofrecuencia de frecuencia comprendida entre 600 y 1500 MHz. 4. Floor system according to any one of claims 1 to 3, characterized in that said external source (14) is a radio frequency antenna and said electromagnetic energy collection means (8) comprise a radio frequency frequency wave capture antenna between 600 and 1500 MHz.
5.- Sistema de suelo según la reivindicación 4, caracterizado porque dicha antena de captación es simultáneamente dichos medios de transmisión (4). 5. Floor system according to claim 4, characterized in that said collection antenna is simultaneously said transmission means (4).
6.- Sistema de suelo según cualquiera de las reivindicaciones 1 a 3, caracterizado porque dicha fuente externa (14) es una espira (32) principal alimentada por corriente que rodea dicha pluralidad de sensores (1 ) y porque dichos medios de captación (8) de energía electromagnética de cada sensor (1 ) comprenden una bobina apta para recibir una corriente inducida por dicha espira (32) principal. 6. Floor system according to any of claims 1 to 3, characterized in that said external source (14) is a main loop (32) supplied by current surrounding said plurality of sensors (1) and because said collection means (8 ) of electromagnetic energy of each sensor (1) comprise a coil capable of receiving a current induced by said main loop (32).
7. - Sistema de suelo según la reivindicación 6, caracterizado porque dicha corriente inducida por dicha espira (32) tiene una frecuencia de entre 100 y 300 kHz. 7. - Floor system according to claim 6, characterized in that said current induced by said turn (32) has a frequency between 100 and 300 kHz.
8. - Sistema de suelo según la reivindicación 7, caracterizado porque dicha corriente inducida por dicha espira (32) tiene una frecuencia menor de 125 kHz. 8. - Floor system according to claim 7, characterized in that said current induced by said turn (32) has a frequency less than 125 kHz.
9. - Sistema de suelo según cualquiera de las reivindicaciones 2 a 8, caracterizado porque dichos medios de control (6) modifican el estado de dicho sensor (1 ) entre un modo receptor en el que dicho sensor (1 ) acumula dicha energía electromagnética en dicho acumulador (12) y un modo emisor en el que dicho acumulador alimenta eléctricamente dicho sensor (1 ) y dicho sensor (1 ) emite dicha primera señal (20) de ocupación a través de dichos medios de transmisión (4). 9. - Floor system according to any of claims 2 to 8, characterized in that said control means (6) modify the state of said sensor (1) between a receiver mode in which said sensor (1) accumulates said electromagnetic energy in said accumulator (12) and an emitting mode in which said accumulator electrically feeds said sensor (1) and said sensor (1) emits said first occupancy signal (20) through said transmission means (4).
10. - Sistema de suelo según cualquiera de las reivindicaciones 1 a 9, caracterizado porque dicho detector (2) de ocupación es capacitivo. 10. - Floor system according to any of claims 1 to 9, characterized in that said occupancy detector (2) is capacitive.
1 1. - Sistema de suelo según la reivindicación 10, caracterizado porque dicho detector (2) de ocupación está formado por un primer y un segundo electrodos (40a, 40b) laminares planos dispuestos con su cara plana orientada sustancialmente paralela al suelo (46) y alimentados por una corriente alterna de frecuencia de excitación de 1 a 100 MHz y preferentemente de 10 a 40 MHz que genera un campo eléctrico entre dichos primer y segundo electrodos (40a, 40b), detectándose el estado de ocupación de dicho sistema de suelo como la variación de capacidad equivalente entre dichos primer y segundo electrodos (40a, 40b) de dicho detector (2). 1 1. - Floor system according to claim 10, characterized in that said occupancy detector (2) is formed by a first and second flat electrodes (40a, 40b) arranged with their flat face oriented substantially parallel to the ground (46) and fed by an alternating current of excitation frequency of 1 to 100 MHz and preferably 10 to 40 MHz that generates an electric field between said first and second electrodes (40a, 40b), detecting the state of occupation of said floor system as the variation of equivalent capacity between said first and second electrodes (40a, 40b) of said detector (2).
12. - Sistema de suelo según la reivindicación 1 1 , caracterizado porque dicho detector (2) de ocupación comprende unos planos de masa (52) que recubren dichos primer y segundo electrodos y que están previstos interiormente a dicho primer y segundo electrodos (40a, 40b). 12. - Floor system according to claim 1, characterized in that said occupancy detector (2) comprises ground planes (52) covering said first and second electrodes and which are provided internally to said first and second electrodes (40a, 40b).
13. - Sistema de suelo según la reivindicación 12, caracterizado porque un único plano de masa (52) recubre dichos primer y segundo electrodos (40a, 40b). 13. - Floor system according to claim 12, characterized in that a single mass plane (52) covers said first and second electrodes (40a, 40b).
14. - Sistema de suelo según la reivindicación 1 1 , caracterizado porque dicho detector (2) de ocupación comprende un plano de masa (52) previsto entre dichos primer y segundo electrodos (40a, 40b). 14. - Floor system according to claim 1, characterized in that said occupancy detector (2) comprises a ground plane (52) provided between said first and second electrodes (40a, 40b).
15. - Sistema de suelo según cualquiera de las reivindicaciones 1 1 a 14, caracterizado porque dichos primer y segundo electrodos (40a, 40b) están dispuestos de forma concéntrica. 15. - Floor system according to any one of claims 1 to 14, characterized in that said first and second electrodes (40a, 40b) are arranged concentrically.
16.- Sistema de suelo según cualquiera de las reivindicaciones 1 a 15, caracterizado porque además comprende unos medios receptores (18) aptos para recibir de dichos medios de transmisión (4) dicha primera señal (20) de ocupación y una segunda señal (22) de identificación de cada uno de dichos sensores (1 ) y unos medios de procesado (24) conectados con dichos medios receptores (18) aptos para determinar una densidad de ocupación de dicho sistema de suelo a partir de dichas primera y segunda señales (20, 22). 16. Floor system according to any of claims 1 to 15, characterized in that it further comprises receiving means (18) capable of receiving said first occupancy signal (20) and said second signal (22) from said transmission means (4). ) for identifying each of said sensors (1) and processing means (24) connected with said receiving means (18) capable of determining an occupation density of said floor system from said first and second signals (20 , 22).
17. - Sistema de suelo según la reivindicación 16, caracterizado porque además comprende unos medios de representación (26) asociados a dichos medios de procesado (24), aptos para representar dicha densidad de ocupación. 17. - Floor system according to claim 16, characterized in that it further comprises representation means (26) associated with said processing means (24), capable of representing said occupation density.
18. - Sistema de suelo según cualquiera de las reivindicaciones 1 a 17 caracterizado porque comprende entre 2 y 8 sensores (1 ) por metro cuadrado de suelo. 18. - Floor system according to any one of claims 1 to 17 characterized in that it comprises between 2 and 8 sensors (1) per square meter of soil.
19.- Baldosa sensitiva con una cara vista (50) apta para ser pisada y una cara oculta opuesta a dicha cara vista (50), que comprende por lo menos un sensor (1 ) de ocupación previsto por debajo de dicha cara vista (50), comprendiendo cada sensor (1 ) 19.- Sensitive tile with a visible face (50) suitable for being stepped on and a hidden face opposite to said visible face (50), comprising at least one occupancy sensor (1) provided below said visible face (50 ), comprising each sensor (1)
[a] un detector (2) de ocupación,  [a] an occupancy detector (2),
[b] unos medios de transmisión (4) y  [b] transmission means (4) and
[c] unos medios de control (6) aptos para recibir una primera señal de ocupación de dicho detector (2) y transmitir dicha primera señal (20) a través de dichos medios de transmisión (4),  [c] control means (6) capable of receiving a first occupancy signal of said detector (2) and transmitting said first signal (20) through said transmission means (4),
caracterizada porque [d] dicho sensor (1 ) comprende unos medios de captación (8) de energía aptos para captar la energía electromagnética de una fuente externa (14) y alimentar eléctricamente dicho sensor (1 ). characterized in that [d] said sensor (1) comprises energy collection means (8) capable of capturing the electromagnetic energy from an external source (14) and electrically feeding said sensor (1).
20.- Baldosa sensitiva según la reivindicación 19, caracterizada porque dicho sensor (1 ) comprende un acumulador (12) de la energía proveniente de dicha fuente externa (14) que almacena la energía captada por dichos medios de captación (8). 20. Sensitive tile according to claim 19, characterized in that said sensor (1) comprises an accumulator (12) of energy from said external source (14) that stores the energy collected by said collection means (8).
21.- Baldosa sensitiva según la reivindicación 20, caracterizado porque dicho acumulador (12) comprende un condensador (C2) con corrientes de fuga menores que 5 μΑ, siendo dicho sensor (1 ) alimentado de forma intermitente por parte de dicho acumulador (12) cada vez que dicho condensador (C2) está cargado. 21. Sensitive tile according to claim 20, characterized in that said accumulator (12) comprises a capacitor (C2) with leakage currents less than 5 μΑ, said sensor (1) being intermittently fed by said accumulator (12) each time said capacitor (C2) is charged.
22.- Baldosa sensitiva según cualquiera de las reivindicaciones 18 a 21 , caracterizada porque es de un material paramagnético. 22. Sensitive tile according to any of claims 18 to 21, characterized in that it is of a paramagnetic material.
23.- Baldosa sensitiva según cualquiera de las reivindicaciones 18 a 22, caracterizada porque dicha baldosa comprende una cavidad (48) en dicha cara oculta y porque dicho sensor (1 ) está empotrado en dicha cavidad (48) mediante una resina (44) protectora de relleno. 23. Sensitive tile according to any of claims 18 to 22, characterized in that said tile comprises a cavity (48) in said hidden face and that said sensor (1) is embedded in said cavity (48) by means of a protective resin (44) of filling.
24. - Baldosa según cualquiera de las reivindicaciones 18 a 23, caracterizada porque dicho sensor (1 ) está dispuesto por debajo de dicha baldosa (42) adyacente a dicha cara oculta, estando dicho sensor (1 ) revestido de una resina (44) protectora. 24. - Tile according to any of claims 18 to 23, characterized in that said sensor (1) is disposed below said tile (42) adjacent to said hidden face, said sensor (1) being coated with a protective resin (44) .
25. - Procedimiento de gestión de la ocupación de una superficie (46) de uso colectivo, caracterizado porque dicha densidad de ocupación se encuentra sobre un sistema de suelo (16) que comprende 25. - Procedure for managing the occupation of a collective use surface (46), characterized in that said occupation density is on a floor system (16) comprising
[a] por lo menos una fuente externa (14) de alimentación mediante energía electromagnética, y  [a] at least one external source (14) of electromagnetic energy supply, and
[b] una pluralidad de sensores (1 ) que comprenden unos medios de captación (8) de energía aptos para captar la energía electromagnética de dicha fuente externa (14) y alimentar eléctricamente dicho sensor (1 ), siendo cada uno de dichos sensores (1 ) apto para transmitir una primera señal (20) de ocupación y una segunda señal (22) de identificación y  [b] a plurality of sensors (1) comprising energy collection means (8) capable of capturing the electromagnetic energy of said external source (14) and electrically feeding said sensor (1), each of said sensors ( 1) suitable for transmitting a first occupancy signal (20) and a second identification signal (22) and
[c] unos medios de procesado (24) de dichas primeras y segundas señales (20, 22),  [c] processing means (24) of said first and second signals (20, 22),
comprendiendo dicho procedimiento las etapas de: said procedure comprising the steps of:
[d] captar dichas primera y dicha segunda señales (20, 22) de cada uno de dichos sensores (1 ), en un primer instante temporal, determinando en tiempo real una primera densidad de ocupación de dicho sistema de suelo (16) en dicho primer instante (Ti),  [d] capturing said first and said second signals (20, 22) of each of said sensors (1), in a first time, determining in real time a first occupation density of said floor system (16) in said first instant (Ti),
[e] captar dichas primera y dicha segunda señales (20, 22) de cada uno de dichos sensores (1 ), en un segundo instante temporal, determinando en tiempo real una segunda densidad de ocupación de dicho sistema de suelo [e] capturing said first and said second signals (20, 22) of each of said sensors (1), in a second time, determining in real time a second occupation density of said floor system
(16) en dicho segundo instante (Ti+1 ), (16) in said second instant (Ti + 1),
[f] comparar dichas primera y segunda densidades de ocupación,  [f] compare these first and second occupancy densities,
[g] ejecutar una acción de gestión en función de dicha comparación [f].  [g] execute a management action based on that comparison [f].
26.- Procedimiento según la reivindicación 25, caracterizado porque dicha densidad de ocupación se obtiene como un porcentaje de sensores (1 ) ocupados de dicho sistema de suelo (16). 26.- Method according to claim 25, characterized in that said occupancy density is obtained as a percentage of sensors (1) occupied of said floor system (16).
27.- Procedimiento según la reivindicación 25, caracterizado porque dicha densidad de ocupación se obtiene como un área instantánea de ocupación de dicho sistema de suelo (16). 27. Method according to claim 25, characterized in that said occupation density is obtained as an instantaneous area of occupation of said floor system (16).
28.- Procedimiento según cualquiera de las reivindicaciones 25 a 27, caracterizado porque cada uno de dichos sensores (1 ) está geoposicionado en dicho sistema de suelo (16). 28.- Method according to any of claims 25 to 27, characterized in that each of said sensors (1) is positioned in said floor system (16).
29.- Procedimiento según cualquiera de las reivindicaciones 25 a 28, caracterizado porque dicha acción consiste en determinar el tiempo de espera en una cola. 29.- Method according to any of claims 25 to 28, characterized in that said action consists in determining the waiting time in a queue.
PCT/ES2010/070494 2010-07-16 2010-07-16 Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor WO2012007600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070494 WO2012007600A1 (en) 2010-07-16 2010-07-16 Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070494 WO2012007600A1 (en) 2010-07-16 2010-07-16 Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor

Publications (1)

Publication Number Publication Date
WO2012007600A1 true WO2012007600A1 (en) 2012-01-19

Family

ID=43880959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070494 WO2012007600A1 (en) 2010-07-16 2010-07-16 Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor

Country Status (1)

Country Link
WO (1) WO2012007600A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2534697A1 (en) 1982-10-13 1984-04-20 Electronique Controle Mesure S Device for detecting the passage of objects and/or persons
US6750769B1 (en) * 2002-12-12 2004-06-15 Sun Microsystems, Inc. Method and apparatus for using RFID tags to determine the position of an object
US20050200453A1 (en) * 2004-01-27 2005-09-15 Turner Richard H Method and apparatus for detection and tracking of objects within a defined area
US20060273903A1 (en) * 2005-06-03 2006-12-07 Kim Young W Apparatus for identifying objects using radio frequency and apparatus and method for tracking position of object using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2534697A1 (en) 1982-10-13 1984-04-20 Electronique Controle Mesure S Device for detecting the passage of objects and/or persons
US6750769B1 (en) * 2002-12-12 2004-06-15 Sun Microsystems, Inc. Method and apparatus for using RFID tags to determine the position of an object
US20050200453A1 (en) * 2004-01-27 2005-09-15 Turner Richard H Method and apparatus for detection and tracking of objects within a defined area
US20060273903A1 (en) * 2005-06-03 2006-12-07 Kim Young W Apparatus for identifying objects using radio frequency and apparatus and method for tracking position of object using the same

Similar Documents

Publication Publication Date Title
US10491050B2 (en) Ad hoc wireless sensor package
CN103329455B (en) Wireless energy transmits and continuous signal of radio set coexists
US9704643B2 (en) Contactless power transmission device, and power feeder and power receiver for use in the same
CN102548789B (en) For the device of inductive transmission of electric energy
US20100328044A1 (en) Inductive power system and method of operation
KR102246174B1 (en) manhole cover and manhole management system using the same
US8447238B2 (en) RF transmitter device and method for operating the same
US10929732B2 (en) Power receiving-type information acquisition and transmission device, and information acquisition system
KR20170081179A (en) Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure
WO2015139566A1 (en) System and method for providing navigation information
US8896329B2 (en) Irregularity detection in a structure of an aircraft
KR101412665B1 (en) Road state sesing device and road-surrounding monitoring system using the same
EP2650663A1 (en) Water-leakage detection method and water-leakage detection device
AU2012329628A1 (en) Monitoring an object
KR20090046392A (en) Traffic monitoring apparatus using terrestrial magnetism sensor
JP2009289099A (en) Floor-mounted rfid tag and rfid detection device
EP3591806A1 (en) Ground-side power supply device
KR20130129333A (en) Apparatus for stray electric field energy harvesting and supplying electric power of sensor network
WO2012007600A1 (en) Floor system for detecting the occupancy of a surface for collective use, sensitive tile and method for managing said floor
CA2881733A1 (en) Antenna device, transmitter module using the antenna device, and location identifying system using the transmitter module
KR20120056121A (en) Vehicle Detecter Modal UNIT
US10826335B2 (en) Ad-hoc wireless sensor package
ES2558730B1 (en) Radio frequency parked vehicle detection system and procedure
KR100955805B1 (en) The device for detecting live wire state of the high voltage wire using the wireless communication method
KR102077567B1 (en) Foreign Object Detector and wireless charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10759688

Country of ref document: EP

Kind code of ref document: A1