WO2012033248A1 - Intelligent energy storage system and method - Google Patents

Intelligent energy storage system and method Download PDF

Info

Publication number
WO2012033248A1
WO2012033248A1 PCT/KR2010/006372 KR2010006372W WO2012033248A1 WO 2012033248 A1 WO2012033248 A1 WO 2012033248A1 KR 2010006372 W KR2010006372 W KR 2010006372W WO 2012033248 A1 WO2012033248 A1 WO 2012033248A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
energy storage
module
individual
Prior art date
Application number
PCT/KR2010/006372
Other languages
French (fr)
Korean (ko)
Inventor
황상문
고병욱
Original Assignee
주식회사 프로파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로파워 filed Critical 주식회사 프로파워
Publication of WO2012033248A1 publication Critical patent/WO2012033248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy storage system, and more particularly, to an intelligent energy storage system and method that provides a control function and a communication function for power control of a battery module.
  • Electricity must be consumed at the moment it is produced. Thus, electricity has stored the power produced and has used batteries as an auxiliary means for use where and when needed.
  • Batteries can be divided into primary battery and secondary battery.
  • UPS uninterruptible power supply
  • Prior art UPS is mainly focused on the function of simply storing the power in case of power failure and supplying power when necessary, and has a problem that does not have a detailed control function and communication function to increase the user's convenience and system efficiency.
  • an object of the present invention is to provide an intelligent energy storage system for performing integrated control and monitoring of the assembly of battery modules.
  • An intelligent energy storage system for achieving the technical problem is to form a plurality of battery modules and to monitor the status information including the voltage, current and temperature of the plurality of battery cells formed in each of the battery modules
  • a module assembly unit configured to form individual battery management systems in each of the battery modules to control overcurrent, overdischarge, and overcharge during charging and discharging of battery cells
  • a central control unit for receiving state information of each battery cell of each battery module from the plurality of individual battery management systems and transmitting a control command for controlling the state information of each battery cell to the respective battery management systems;
  • a power converter configured to store power received from the outside in each of the battery modules according to the control of the central controller, or transmit the stored power to the outside by performing cross-flow conversion and step-up / down-voltage. Selecting one of the power source of the power source and stores the power received from the selected power source in the battery cell of the selected individual battery module based on the energy remaining amount of each individual battery module.
  • An intelligent energy storage method forms a plurality of battery modules, and monitors state information including voltages, currents, and temperatures of a plurality of battery cells formed in each battery module, thereby charging and discharging the battery cells.
  • a central control apparatus for managing the plurality of individual battery management systems, the method comprising: receiving status information of each battery cell of each battery module from each individual battery management system; And the central controller selects one power source among a plurality of power sources, and analyzes the state information of each battery cell based on the power received from the selected power source based on the energy remaining amount of each individual battery module. Storing in each battery cell of an individual battery module.
  • the present invention has the effect of providing an energy storage system as an assembly of battery modules and an intelligent energy storage system capable of controlling and monitoring power through communication with each battery module.
  • the present invention can be carried separately by separating a plurality of battery modules in each individual battery module unit has an effect that can be used easily regardless of the place.
  • the intelligent energy storage system can be installed in several places, and each network can be networked as a distributed auxiliary power device, thereby establishing a stable power distribution policy.
  • the present invention has the effect of enabling the use of power and state management by controlling the intelligent energy storage system even in remote locations through wired and wireless communication.
  • the intelligent energy storage system of the present invention having such an effect is an electric vehicle, such as an electric bicycle, an electric bicycle, an electric motorcycle, an electric tricycle, an electric vehicle, and other hybrid electric vehicles, which are driven by electric two-wheel, three-wheel, four-wheel. It can be widely used as a charging system such as means.
  • FIG. 1 is a front view of an intelligent energy storage system according to an embodiment of the present invention.
  • FIG. 2 is a view showing the rear portion of the intelligent energy storage system according to an embodiment of the present invention.
  • FIG 3 is a front view of a battery module according to an embodiment of the present invention.
  • FIG. 4 is a view showing the rear portion of the battery module according to an embodiment of the present invention.
  • FIG. 5 is a view showing a front portion of the panel coupled to the rear portion of the battery module according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating each battery module being connected when the rear part of the intelligent energy storage system of FIG. 2 is opened, that is, the rear part of the panel of FIG. 5.
  • FIG. 7 is a view showing an intelligent energy storage method according to an embodiment of the present invention.
  • FIG. 1 is a view showing a front portion of the intelligent energy storage system according to an embodiment of the present invention
  • Figure 2 is a view showing a rear portion of the intelligent energy storage system according to an embodiment of the present invention.
  • An intelligent energy storage system includes a module assembly unit 100, a power converter 200, a power output unit 300, and a central control unit 400.
  • the module assembly unit 100 combines n secondary battery modules directly and in parallel to form a plurality of battery modules 110.
  • each battery module 110 implements a plurality of secondary cells of the battery cells in n series connections and m parallel connections.
  • the secondary battery includes all secondary batteries capable of performing charging and discharging, such as lead-acid batteries, nickel-hydrogen batteries, lithium ion batteries, lithium polymer batteries, and iron phosphate batteries.
  • Each battery module 110 may be connected continuously and in parallel to increase energy storage capacity.
  • Each battery module 110 has a battery management system (BMS) 130 formed on one side and controls overcurrent control, overdischarge control, overcharge control, and operating temperature of each cell during charging and discharging.
  • BMS battery management system
  • the BMS 130 controls a voltage / current path of each battery cell by controlling a voltage / current path in which each battery cell is drawn or drawn by placing a separate electric circuit in a cell external BMS formed in each battery cell.
  • the BMS 130 stores the amount of power introduced into all battery cells during charging and measures the amount of power consumed during discharge to show the energy remaining amount (State of Charge, SOC) of the battery module 110.
  • the BMS 130 may monitor the state of each battery cell, that is, the voltage and current amount, and monitor the state of the battery module (whole battery cell) 110.
  • the BMS 130 receives and transmits the state information of the battery cell including the power amount, voltage, current state, energy remaining amount, etc. of each battery cell to the central control unit 400 and controls the central control unit 400. Each battery cell is controlled by receiving a command.
  • the BMS 130 monitors the state of the plurality of battery cells to monitor and maintain the voltage, current, and temperature of the battery cells so that they can be maintained and used under optimum conditions, optimal maintenance by diagnosis of the battery cells, and safe operation. Includes alarms and precautions, data integrity, and system diagnostics.
  • the power converter 200 is an integrated unit of the inverter and the converter to receive power from the outside to store in the module assembly unit 100 and output the stored power in direct current or alternating current DC, AC conversion and boost, Perform decompression.
  • the power output unit 300 is provided with a connector and a socket for outputting direct current and alternating current, and in the case of alternating current, 110 volt and 220 volt sockets are installed.
  • the central control unit 400 assigns the BMS 130 of each battery module 110 as a slave as a master, controls each component module of the intelligent energy storage system based on the embedded module, and controls each battery module ( The BMS 130 of 110 is controlled through communication.
  • the central control unit 400 is a monitoring unit 410 using an LCD panel having a touch screen function to display the status information of the intelligent energy storage system on the front side of the intelligent energy storage system, and is connected to the internal sleeping mode in an emergency to stop the system operation. However, it includes an emergency switch 420 and a power switch 430 that perform a function of preserving the monitored data.
  • the monitoring unit 410 may select and view necessary information through a touch screen function.
  • the central control unit 400 may program the control process of the intelligent energy storage system through the monitoring unit 410.
  • the central control unit 400 may communicate with the plurality of BMSs 130 to designate a charging or discharging time point of each battery module 110 for each time zone or to variably perform the amount of input / output power.
  • the central control unit 400 conforms to the ZigBee protocol, which enables home networking within a predetermined area, enables wireless LAN connection when moving, and provides remote intelligent energy storage system for status information of a plurality of battery cells via wired or wireless Internet. Transmission is possible.
  • Intelligent energy storage systems are installed in multiple locations and distributed as auxiliary power units, each connected to a Supervisory Control and Data Acquisition (SCADA) and controlled through SCADA to control power exchange between intelligent energy storage systems and each intelligent
  • SCADA Supervisory Control and Data Acquisition
  • the components of the energy storage system can be controlled to create an energy network.
  • the central control unit 400 is composed of a PC base is programmable and provides a wired / wireless communication method so that state management can be performed at a remote location.
  • FIG 3 is a view showing a front portion of a battery module according to an embodiment of the present invention
  • Figure 4 is a view showing a rear portion of a battery module according to an embodiment of the present invention.
  • the front part of the battery module 110 has a handle 112 at the top and bottom and is mounted to the battery module 110 at the center to facilitate the detachment and movement in an industrial standard 19 inch rack to which the plurality of battery modules 110 are mounted. It includes a module monitoring unit 114 and a function selection button that can observe the state of the plurality of battery cells in real time.
  • the plurality of battery modules 110 operate as one module, but if necessary, the battery modules 110 may be separately separated and used.
  • the function selection button includes a CD (Cell Display) 116 and a MO (Mode) 118.
  • the CD 116 has N or N ⁇ M battery cells in one battery module 110.
  • the LED of the back panel is turned on every time the battery module is pressed to see the status information of each battery cell.
  • the number of battery cells is increased by one, so that the entire battery cells in the battery module 110 can be selected. In this way, when each battery cell is selected, the status information such as the number, voltage, and current of the selected battery cells can be displayed and displayed. Button.
  • the MO 118 is a button for selecting a display mode, and each time the mode button is pressed in the state of the battery module 110, the MO 118 is switched in the order of a unique ID, voltage, current, remaining capacity, and temperature assigned to the module, and displays the corresponding information. This button is displayed and displayed on the module monitoring unit 114.
  • the rear part of the battery module 110 is a module control terminal 124 through which control signals for controlling the charging terminal 120, the discharge terminal 122, and the battery module 110 used for charging and discharging the battery cell are transmitted and received. Include.
  • FIG. 5 is a diagram illustrating a front portion of a panel to which a rear portion of a battery module according to an embodiment of the present invention is coupled
  • FIG. 6 is a view of each battery when the rear portion of the intelligent energy storage system of FIG. 2 is opened according to an embodiment of the present invention. That is, the module is connected, that is, a view showing the rear portion of the panel of FIG.
  • the rear panel of the module assembly 100 of the industrial standard 19-inch rack has a panel that matches the size of each battery module 110.
  • the panel includes a second charging terminal, a second discharge terminal, and a second module control terminal that are joined to the rear portion of each battery module 110.
  • the second charging terminal, the second discharge terminal, and the second module control terminal are male terminals of the charging terminal 120, the discharge terminal 122, and the module control terminal 124 formed on the rear surface of the battery module 110 of FIG. 4. Coupling with the female terminal.
  • FIG. 6 is a rear view of the panel of FIG. 5 and is seen from the wiring terminal side of FIG. 5.
  • FIG. 7 is a view showing an intelligent energy storage method according to an embodiment of the present invention.
  • the central control unit 400 selects one power source among the plurality of power sources (S100).
  • the light sensor and the wind sensor are determined as inputs to enable selection of a power source.
  • the central control unit 400 may set a time zone in which power consumption is limited for each time zone, and may receive power from the selected power source when the load power is consumed below a preset reference value.
  • the central control unit 400 receives the state information of each battery cell of each battery module 110 from the plurality of BMS 130 and transmits a control command for controlling the state information of each battery cell to each BMS 130. (S102).
  • the central control unit 400 analyzes the state information of each battery cell based on the power received from the selected power source and supplies the power to each battery cell of the selected individual battery module 110 based on the energy remaining amount of each individual battery module 110. Save (S104).
  • the central control unit 400 may exchange power by networking with a remote intelligent energy storage system and a wired / wireless internet, and exchange state information of its battery cell with a remote intelligent energy storage system (S106). .

Abstract

An intelligent energy storage system comprises the following steps: forming a plurality of battery modules and forming an individual battery management system in each battery module, wherein the individual battery management system controls overcurrent, excessive charging, and excessive discharging during charging and discharging of multiple battery cells formed in each battery module by monitoring battery cell status information which includes voltage, current, and temperature; allowing a central control device, which manages a plurality of individual battery management systems, to receive the status information of each battery cell in each battery module from each individual battery management system; and allowing the central control device to select one power source among a plurality of power sources and to store power received from the selected power source in each battery cell of an individual battery module which is selected on the basis of the amount of energy remaining in each individual battery module by analyzing the status information of each battery cell.

Description

지능형 에너지 저장 시스템 및 방법Intelligent energy storage system and method
본 발명은 에너지 저장 시스템으로서, 특히 배터리 모듈의 전력 제어를 위해 제어 기능과 통신 기능을 제공하는 지능형 에너지 저장 시스템 및 방법에 관한 것이다.The present invention relates to an energy storage system, and more particularly, to an intelligent energy storage system and method that provides a control function and a communication function for power control of a battery module.
전기는 생산되는 순간에 소비되어야 한다. 따라서, 전기는 생산된 전력을 저장했다 필요한 장소, 시간에 사용하기 위한 보조수단으로 배터리를 이용해왔다.Electricity must be consumed at the moment it is produced. Thus, electricity has stored the power produced and has used batteries as an auxiliary means for use where and when needed.
배터리는 1차 전지와 2차 전지로 나눌 수 있는데 특히, 2차 전지를 이용한 예로 무정전 전원 장치(Uninterruptible Power Supply, UPS)를 이용하여 그리드(Grid) 전원이 차단되었을 때 전력을 공급하기 위한 수단으로 이용되어 왔다.Batteries can be divided into primary battery and secondary battery. In particular, as a means for supplying power when grid power is cut off using an uninterruptible power supply (UPS) as an example of using a secondary battery. Has been used.
종래 기술의 UPS는 정전에 대비하여 단순히 전력을 저장했다가 필요시 전력을 공급하는 기능 위주로 이루어져 있으며 사용자의 편의와 시스템의 효율을 높이기 위한 세부 제어 기능과 통신 기능을 가지지 못하는 문제점이 있었다.Prior art UPS is mainly focused on the function of simply storing the power in case of power failure and supplying power when necessary, and has a problem that does not have a detailed control function and communication function to increase the user's convenience and system efficiency.
이와 같은 문제점을 해결하기 위하여, 본 발명은 배터리 모듈의 집합체의 통합적인 제어 및 모니터링을 수행하는 지능형 에너지 저장 시스템을 제공하는데 그 목적이 있다.In order to solve this problem, an object of the present invention is to provide an intelligent energy storage system for performing integrated control and monitoring of the assembly of battery modules.
본 발명은 지능형 에너지 저장 시스템을 여러 곳에 설치하고 각각의 지능형 에너지 저장 시스템 간의 유무선 네트워킹을 통해 분산된 보조 동력 장치를 제공하는데 그 목적이 있다.It is an object of the present invention to provide a distributed auxiliary power unit by installing an intelligent energy storage system in several places and through wired and wireless networking between each intelligent energy storage system.
이러한 기술적 과제를 달성하기 위한 본 발명의 특징에 따른 지능형 에너지 저장 시스템은 복수개의 배터리 모듈을 형성하고 상기 각 배터리 모듈에 형성된 복수개의 배터리 셀의 전압, 전류 및 온도를 포함한 상태 정보를 모니터링하여 상기 각 배터리 셀의 충전, 방전시 과전류, 과방전, 과충전을 제어하는 개별 배터리 관리 시스템을 상기 각 배터리 모듈에 형성한 모듈 집합부; 상기 복수의 개별 배터리 관리 시스템로부터 상기 각 배터리 모듈의 각 배터리 셀의 상태 정보를 수신하고 상기 각 배터리 셀의 상태 정보를 제어하는 제어 명령을 상기 각 개별 배터리 관리 시스템으로 전송하는 중앙 제어 장치; 및 상기 중앙 제어 장치의 제어에 따라 외부로부터 수신한 전력을 상기 각 배터리 모듈에 저장하거나 저장된 전력을 직교류 변환 및 승감압을 수행하여 외부로 전송하는 전력 변환부를 포함하며, 상기 중앙 제어 장치는 복수의 전력 소스 중 하나의 전력 소스를 선택하고 상기 선택한 전력 소스로부터 수신한 전력을 상기 각 개별 배터리 모듈의 에너지 잔존량을 기초로 선택된 개별 배터리 모듈의 배터리 셀에 저장하는 것을 특징으로 한다.An intelligent energy storage system according to a feature of the present invention for achieving the technical problem is to form a plurality of battery modules and to monitor the status information including the voltage, current and temperature of the plurality of battery cells formed in each of the battery modules A module assembly unit configured to form individual battery management systems in each of the battery modules to control overcurrent, overdischarge, and overcharge during charging and discharging of battery cells; A central control unit for receiving state information of each battery cell of each battery module from the plurality of individual battery management systems and transmitting a control command for controlling the state information of each battery cell to the respective battery management systems; And a power converter configured to store power received from the outside in each of the battery modules according to the control of the central controller, or transmit the stored power to the outside by performing cross-flow conversion and step-up / down-voltage. Selecting one of the power source of the power source and stores the power received from the selected power source in the battery cell of the selected individual battery module based on the energy remaining amount of each individual battery module.
본 발명의 특징에 따른 지능형 에너지 저장 방법은 복수개의 배터리 모듈을 형성하고, 상기 각 배터리 모듈에 형성된 복수개의 배터리 셀의 전압, 전류 및 온도를 포함한 상태 정보를 모니터링하여 상기 각 배터리 셀의 충전, 방전시 과전류, 과방전, 과충전을 제어하는 개별 배터리 관리 시스템을 상기 각 배터리 모듈에 형성하는 단계; 상기 복수의 개별 배터리 관리 시스템을 관리하는 중앙 제어 장치는 상기 각 개별 배터리 관리 시스템으로부터 상기 각 배터리 모듈의 각 배터리 셀의 상태 정보를 수신하는 단계; 및 상기 중앙 제어 장치는 복수의 전력 소스 중 하나의 전력 소스를 선택하고 상기 선택한 전력 소스로부터 수신한 전력을 상기 각 배터리 셀의 상태 정보를 분석하여 상기 각 개별 배터리 모듈의 에너지 잔존량을 기초로 선택한 개별 배터리 모듈의 각 배터리 셀에 저장하는 단계를 포함한다.An intelligent energy storage method according to an aspect of the present invention forms a plurality of battery modules, and monitors state information including voltages, currents, and temperatures of a plurality of battery cells formed in each battery module, thereby charging and discharging the battery cells. Forming a separate battery management system in each battery module to control over current, over discharge, and over charging; A central control apparatus for managing the plurality of individual battery management systems, the method comprising: receiving status information of each battery cell of each battery module from each individual battery management system; And the central controller selects one power source among a plurality of power sources, and analyzes the state information of each battery cell based on the power received from the selected power source based on the energy remaining amount of each individual battery module. Storing in each battery cell of an individual battery module.
전술한 구성에 의하여, 본 발명은 배터리 모듈의 집합체로서 에너지 저장 시스템을 구축하고 각 배터리 모듈과의 통신을 통해 전력의 제어 및 모니터링이 가능한 지능형 에너지 저장 시스템을 제공하는 효과가 있다.According to the above-described configuration, the present invention has the effect of providing an energy storage system as an assembly of battery modules and an intelligent energy storage system capable of controlling and monitoring power through communication with each battery module.
본 발명은 복수의 배터리 모듈을 각 개별적인 배터리 모듈 단위로 분리하여 휴대할 수 있어 장소에 구애 받지 않고 간편하게 사용할 수 있는 효과가 있다.The present invention can be carried separately by separating a plurality of battery modules in each individual battery module unit has an effect that can be used easily regardless of the place.
본 발명은 지능형 에너지 저장 시스템을 여러 곳에 설치하여 분산된 보조 동력 장치로서 각각 네트워킹하여 안정된 전력 배분 정책을 수립할 수 있어 전력 수급에 유리한 효과가 있다.According to the present invention, the intelligent energy storage system can be installed in several places, and each network can be networked as a distributed auxiliary power device, thereby establishing a stable power distribution policy.
본 발명은 유무선 통신 방식을 통해 원격지에서도 지능형 에너지 저장 시스템을 제어하여 전력 사용 및 상태 관리가 가능한 효과가 있다.The present invention has the effect of enabling the use of power and state management by controlling the intelligent energy storage system even in remote locations through wired and wireless communication.
이와 같은 효과를 갖는 본 발명의 지능형 에너지 저장 시스템은 전기로 구동되어지는 이륜, 삼륜, 사륜 등의 이동수단, 즉 전기자전거, 전기이륜차, 전기삼륜차, 전기자동차, 그 외 하이브리드전기자동차와 같은 전기이동수단 등의 충전시스템으로 널리 활용될 수 있다.The intelligent energy storage system of the present invention having such an effect is an electric vehicle, such as an electric bicycle, an electric bicycle, an electric motorcycle, an electric tricycle, an electric vehicle, and other hybrid electric vehicles, which are driven by electric two-wheel, three-wheel, four-wheel. It can be widely used as a charging system such as means.
도 1은 본 발명의 실시예에 따른 지능형 에너지 저장 시스템의 전면부를 나타낸 도면이다.1 is a front view of an intelligent energy storage system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 지능형 에너지 저장 시스템의 후면부를 나타낸 도면이다.2 is a view showing the rear portion of the intelligent energy storage system according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 배터리 모듈의 전면부를 나타낸 도면이다.3 is a front view of a battery module according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 배터리 모듈의 후면부를 나타낸 도면이다.4 is a view showing the rear portion of the battery module according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 배터리 모듈의 후면부가 결합되는 판넬의 정면부를 나타낸 도면이다.5 is a view showing a front portion of the panel coupled to the rear portion of the battery module according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 도 2의 지능형 에너지 저장 시스템의 후면부를 열었을 때 각각의 배터리 모듈이 연결되어 있는 모습으로 즉, 도 5의 판넬의 후면부를 나타낸 도면이다.FIG. 6 is a view illustrating each battery module being connected when the rear part of the intelligent energy storage system of FIG. 2 is opened, that is, the rear part of the panel of FIG. 5.
도 7은 본 발명의 실시예에 따른 지능형 에너지 저장 방법을 나타낸 도면이다.7 is a view showing an intelligent energy storage method according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
도 1은 본 발명의 실시예에 따른 지능형 에너지 저장 시스템의 전면부를 나타낸 도면이고, 도 2는 본 발명의 실시예에 따른 지능형 에너지 저장 시스템의 후면부를 나타낸 도면이다.1 is a view showing a front portion of the intelligent energy storage system according to an embodiment of the present invention, Figure 2 is a view showing a rear portion of the intelligent energy storage system according to an embodiment of the present invention.
본 발명의 실시예에 따른 지능형 에너지 저장 시스템은 모듈 집합부(100), 전력 변환부(200), 전력 출력부(300) 및 중앙 제어 장치(400)를 포함한다.An intelligent energy storage system according to an embodiment of the present invention includes a module assembly unit 100, a power converter 200, a power output unit 300, and a central control unit 400.
모듈 집합부(100)는 n개의 2차 전지 모듈을 직, 병렬로 조합하여 복수개의 배터리 모듈(110)을 형성한다. 여기서, 각 배터리 모듈(110)은 복수개의 2차 전지인 배터리 셀을 n개의 직렬 연결과 다시 m개의 병렬 연결로 구현한다. 여기서, 2차 전지는 연축전지, 니켈수소전지, 리듐이온전지, 리튬폴리머전지, 인산염철 전지 등 충전과 방전을 수행할 수 있는 모든 2차 전지를 포함한다.The module assembly unit 100 combines n secondary battery modules directly and in parallel to form a plurality of battery modules 110. Here, each battery module 110 implements a plurality of secondary cells of the battery cells in n series connections and m parallel connections. Here, the secondary battery includes all secondary batteries capable of performing charging and discharging, such as lead-acid batteries, nickel-hydrogen batteries, lithium ion batteries, lithium polymer batteries, and iron phosphate batteries.
각각의 배터리 모듈(110)은 직, 병렬로 계속하여 연결하여 에너지 저장 용량을 늘릴 수 있다.Each battery module 110 may be connected continuously and in parallel to increase energy storage capacity.
각각의 배터리 모듈(110)은 일측에 배터리 관리 시스템(Battery Management System, BMS)(130)이 형성되어 있으며 충전과 방전시 각각의 셀의 과전류 제어, 과방전 제어, 과충전 제어, 동작 온도를 제어한다.Each battery module 110 has a battery management system (BMS) 130 formed on one side and controls overcurrent control, overdischarge control, overcharge control, and operating temperature of each cell during charging and discharging. .
복수의 배터리 셀을 직, 병렬로 스태킹(Stacking)하여 충전과 방전을 거듭하다 보면 각 배터리 셀의 내부 저항값의 밸런스가 틀어져 전체 배터리 셀의 균형이 깨지게 된다.When a plurality of battery cells are stacked and stacked in parallel, charging and discharging are repeated, so that the balance of the internal resistance of each battery cell is distorted, thereby breaking the balance of the entire battery cells.
이러한 경우, BMS(130)는 각각의 배터리 셀에 형성된 셀 외부 BMS 내에 별도의 전기 회로를 두어 각 배터리 셀의 인입 또는 인출되는 전압/전류 경로를 제어하여 각 배터리 셀의 전압 밸런싱(Balancing)을 맞추어준다.In this case, the BMS 130 controls a voltage / current path of each battery cell by controlling a voltage / current path in which each battery cell is drawn or drawn by placing a separate electric circuit in a cell external BMS formed in each battery cell. give.
BMS(130)는 충전시 전체 배터리 셀에 인입된 전력량을 저장해두고 방전시 소모된 전력량을 계량하여 배터리 모듈(110)의 에너지 잔존량(State of Charge, SOC)를 보여준다.The BMS 130 stores the amount of power introduced into all battery cells during charging and measures the amount of power consumed during discharge to show the energy remaining amount (State of Charge, SOC) of the battery module 110.
BMS(130)는 각각의 배터리 셀의 상태 즉 전압과 전류량을 모니터할 수 있고 배터리 모듈(전체 배터리 셀)(110)의 상태를 모니터링한다.The BMS 130 may monitor the state of each battery cell, that is, the voltage and current amount, and monitor the state of the battery module (whole battery cell) 110.
BMS(130)는 전술한 각각의 배터리 셀의 전력량, 전압, 전류 상태, 에너지 잔존량 등을 포함한 배터리 셀의 상태 정보를 수신하여 중앙 제어 장치(400)로 전송하고 중앙 제어 장치(400)로부터 제어 명령을 수신하여 각 배터리 셀을 제어한다.The BMS 130 receives and transmits the state information of the battery cell including the power amount, voltage, current state, energy remaining amount, etc. of each battery cell to the central control unit 400 and controls the central control unit 400. Each battery cell is controlled by receiving a command.
다시 말해, BMS(130)는 복수의 배터리 셀의 상태를 모니터링하여 최적의 조건에서 유지하고 사용할 수 있도록 배터리 셀의 전압, 전류 및 온도의 모니터링, 배터리 셀의 진단에 의한 최적 유지 관리, 안전 운영을 위한 경보 및 사전 예방 조치, 데이터 보전, 시스템 진단 기능을 포함한다.In other words, the BMS 130 monitors the state of the plurality of battery cells to monitor and maintain the voltage, current, and temperature of the battery cells so that they can be maintained and used under optimum conditions, optimal maintenance by diagnosis of the battery cells, and safe operation. Includes alarms and precautions, data integrity, and system diagnostics.
전력 변환부(200)는 인버터와 컨버터의 일체형으로 외부로부터 전력을 수신하여 모듈 집합부(100)에 저장하고 저장된 전력을 직류 또는 교류로 출력하여 부하에 공급할 수 있도록 하는 직류, 교류 변환과 승압, 감압을 수행한다.The power converter 200 is an integrated unit of the inverter and the converter to receive power from the outside to store in the module assembly unit 100 and output the stored power in direct current or alternating current DC, AC conversion and boost, Perform decompression.
전력 출력부(300)는 직류와 교류를 출력할 수 있도록 컨넥터와 소켓이 설치되어 있고 교류의 경우 110 볼트용과 220 볼트용 소켓이 설치되어 있다.The power output unit 300 is provided with a connector and a socket for outputting direct current and alternating current, and in the case of alternating current, 110 volt and 220 volt sockets are installed.
중앙 제어 장치(400)는 마스터로서 각각의 배터리 모듈(110)의 BMS(130)를 슬레이브로 할당하고 임베디드(Embedded) 모듈을 기반으로 지능형 에너지 저장 시스템의 각 구성 모듈을 제어하며 각각의 배터리 모듈(110)의 BMS(130)를 통신을 통하여 제어한다.The central control unit 400 assigns the BMS 130 of each battery module 110 as a slave as a master, controls each component module of the intelligent energy storage system based on the embedded module, and controls each battery module ( The BMS 130 of 110 is controlled through communication.
중앙 제어 장치(400)는 지능형 에너지 저장 시스템의 전면부의 지능형 에너지 저장 시스템의 상태 정보를 표시하도록 터치 스크린 기능을 가지는 LCD 판넬을 사용한 모니터링부(410), 비상시 내부 슬리핑 모드로 연결되어 시스템 동작이 중단되나 모니터링한 데이터를 보존하는 기능을 수행하는 비상 스위치(420) 및 전원 스위치(430)를 포함한다. 모니터링부(410)는 터치 스크린 기능을 통해 필요한 정보를 선택하여 볼 수 있다.The central control unit 400 is a monitoring unit 410 using an LCD panel having a touch screen function to display the status information of the intelligent energy storage system on the front side of the intelligent energy storage system, and is connected to the internal sleeping mode in an emergency to stop the system operation. However, it includes an emergency switch 420 and a power switch 430 that perform a function of preserving the monitored data. The monitoring unit 410 may select and view necessary information through a touch screen function.
중앙 제어 장치(400)는 지능형 에너지 저장 시스템의 제어 과정을 모니터링부(410)를 통해 프로그램 할 수도 있다.The central control unit 400 may program the control process of the intelligent energy storage system through the monitoring unit 410.
즉, 중앙 제어 장치(400)는 복수의 BMS(130)와 통신하여 각 배터리 모듈(110)의 충전 또는 방전 시점을 시간대별로 지정하거나 입출력되는 전력의 크기를 가변적으로 수행하도록 프로그램 할 수 있다.That is, the central control unit 400 may communicate with the plurality of BMSs 130 to designate a charging or discharging time point of each battery module 110 for each time zone or to variably perform the amount of input / output power.
중앙 제어 장치(400)는 지그비(ZigBee) 프로토콜의 적합성을 가져 정해진 구역 내 홈 네트워킹 구현이 가능하고 이동시 무선랜 연결이 가능하며 유무선 인터넷을 통해 복수의 배터리 셀의 상태 정보를 원격의 지능형 에너지 저장 시스템으로 전송이 가능하다.The central control unit 400 conforms to the ZigBee protocol, which enables home networking within a predetermined area, enables wireless LAN connection when moving, and provides remote intelligent energy storage system for status information of a plurality of battery cells via wired or wireless Internet. Transmission is possible.
지능형 에너지 저장 시스템은 여러 장소에 설치하고 분산된 보조 동력 장치로서 각각 네트워킹하여 원방 감시 제어 시스템(Supervisory Control and Data Acquisition, SCADA)과 연결되며 SCADA를 통해 제어하면 지능형 에너지 저장 시스템 간의 전력 교환 및 각 지능형 에너지 저장 시스템의 구성 요소를 제어할 수 있어 에너지 네트워크를 구축할 수 있다.Intelligent energy storage systems are installed in multiple locations and distributed as auxiliary power units, each connected to a Supervisory Control and Data Acquisition (SCADA) and controlled through SCADA to control power exchange between intelligent energy storage systems and each intelligent The components of the energy storage system can be controlled to create an energy network.
중앙 제어 장치(400)는 PC 베이스로 구성되어 프로그램이 가능하고 유무선 통신 방식을 제공하여 원격지에서도 상태 관리가 가능하다.The central control unit 400 is composed of a PC base is programmable and provides a wired / wireless communication method so that state management can be performed at a remote location.
도 3은 본 발명의 실시예에 따른 배터리 모듈의 전면부를 나타낸 도면이고, 도 4는 본 발명의 실시예에 따른 배터리 모듈의 후면부를 나타낸 도면이다.3 is a view showing a front portion of a battery module according to an embodiment of the present invention, Figure 4 is a view showing a rear portion of a battery module according to an embodiment of the present invention.
배터리 모듈(110)의 전면부는 복수개의 배터리 모듈(110)이 장착되는 산업용 표준 19인치 랙에서 탈착 및 이동을 용이하게 하기 위하여 상하에 손잡이(112)가 있고 중앙에는 배터리 모듈(110)에 장착되는 복수개의 배터리 셀의 상태를 실시간으로 관측할 수 있는 모듈 모니터링부(114)와 기능 선택 버튼을 포함한다.The front part of the battery module 110 has a handle 112 at the top and bottom and is mounted to the battery module 110 at the center to facilitate the detachment and movement in an industrial standard 19 inch rack to which the plurality of battery modules 110 are mounted. It includes a module monitoring unit 114 and a function selection button that can observe the state of the plurality of battery cells in real time.
지능형 에너지 저장 시스템은 복수개의 배터리 모듈(110)이 하나의 모듈로 동작하지만 필요시 배터리 모듈(110)을 별도로 분리하여 사용할 수도 있다.In the intelligent energy storage system, the plurality of battery modules 110 operate as one module, but if necessary, the battery modules 110 may be separately separated and used.
기능 선택 버튼은 CD(Cell Display)(116) 및 MO(Mode)(118)를 포함한다.The function selection button includes a CD (Cell Display) 116 and a MO (Mode) 118.
CD(116)는 하나의 배터리 모듈(110)에 N개 또는 N×M개의 배터리 셀이 있는데, 이때 각 배터리 셀의 상태 정보를 보기 위하여 한번 누를 때마다 백 패널(Back Panel)의 LED가 점등되고 배터리 셀의 번호가 하나씩 증가하여 배터리 모듈(110) 내의 전체 배터리 셀을 선택할 수 있으며 이렇게 하여 각각의 배터리 셀이 선택되면, 선택된 배터리 셀의 번호, 전압, 전류 등의 상태 정보를 표시하여 볼 수 있도록 하는 버튼이다.The CD 116 has N or N × M battery cells in one battery module 110. At this time, the LED of the back panel is turned on every time the battery module is pressed to see the status information of each battery cell. The number of battery cells is increased by one, so that the entire battery cells in the battery module 110 can be selected. In this way, when each battery cell is selected, the status information such as the number, voltage, and current of the selected battery cells can be displayed and displayed. Button.
MO(118)는 디스플레이 모드를 선택하는 버튼으로 배터리 모듈(110) 단위의 상태에서 모드 버튼을 누를 때마다 모듈에 지정된 고유 ID, 전압, 전류, 잔존 용량, 온도 등의 순으로 전환되면서 해당 정보를 모듈 모니터링부(114)에 표시하여 나타내주는 버튼이다.The MO 118 is a button for selecting a display mode, and each time the mode button is pressed in the state of the battery module 110, the MO 118 is switched in the order of a unique ID, voltage, current, remaining capacity, and temperature assigned to the module, and displays the corresponding information. This button is displayed and displayed on the module monitoring unit 114.
배터리 모듈(110)의 후면부는 배터리 셀을 충전, 방전시 사용되는 충전단자(120), 방전단자(122) 및 배터리 모듈(110)을 제어하기 위한 제어 신호가 송수신되는 모듈 컨트롤 단자(124)를 포함한다.The rear part of the battery module 110 is a module control terminal 124 through which control signals for controlling the charging terminal 120, the discharge terminal 122, and the battery module 110 used for charging and discharging the battery cell are transmitted and received. Include.
도 5는 본 발명의 실시예에 따른 배터리 모듈의 후면부가 결합되는 판넬의 정면부를 나타낸 도면이고, 도 6은 본 발명의 실시예에 따른 도 2의 지능형 에너지 저장 시스템의 후면부를 열었을 때 각각의 배터리 모듈이 연결되어 있는 모습으로 즉, 도 5의 판넬의 후면부를 나타낸 도면이다.FIG. 5 is a diagram illustrating a front portion of a panel to which a rear portion of a battery module according to an embodiment of the present invention is coupled, and FIG. 6 is a view of each battery when the rear portion of the intelligent energy storage system of FIG. 2 is opened according to an embodiment of the present invention. That is, the module is connected, that is, a view showing the rear portion of the panel of FIG.
도 5에 도시된 바와 같이, 산업용 표준 19인치 랙의 모듈 집합부(100)의 뒷면에는 각각의 배터리 모듈(110)의 크기와 일치하는 판넬이 있다.As shown in FIG. 5, the rear panel of the module assembly 100 of the industrial standard 19-inch rack has a panel that matches the size of each battery module 110.
판넬에는 각각의 배터리 모듈(110)의 후면부와 접합되는 제2 충전단자, 제2 방전단자, 제2 모듈 컨트롤 단자가 있다.The panel includes a second charging terminal, a second discharge terminal, and a second module control terminal that are joined to the rear portion of each battery module 110.
제2 충전단자, 제2 방전단자, 제2 모듈 컨트롤 단자는 수놈 단자로 도 4의 배터리 모듈(110)의 후면부에 형성된 충전단자(120), 방전단자(122), 모듈 컨트롤 단자(124)의 암놈 단자와 결합한다.The second charging terminal, the second discharge terminal, and the second module control terminal are male terminals of the charging terminal 120, the discharge terminal 122, and the module control terminal 124 formed on the rear surface of the battery module 110 of FIG. 4. Coupling with the female terminal.
다시 말해, 배터리 모듈(110)을 랙에 밀어 넣으면 도 4의 배터리 모듈(110)의 후면부가 들어가서 도 5의 판넬의 정면부와 암 수 결합이 이루어진다.In other words, when the battery module 110 is pushed into the rack, the rear part of the battery module 110 of FIG. 4 enters and the male and female coupling is performed with the front part of the panel of FIG. 5.
도 6에 도시된 바와 같이, 랙의 뒷문을 열면 모듈 집합부(100)의 뒷면 판넬이 보이고 4개의 배터리 모듈(110)을 직렬로 결합시켜 놓았다.As shown in FIG. 6, when the rear door of the rack is opened, the rear panel of the module assembly 100 is shown and four battery modules 110 are coupled in series.
다시 말해, 도 6은 도 5의 판넬의 후면부로 도 5의 배선 단자측에서 본 그림이다.In other words, FIG. 6 is a rear view of the panel of FIG. 5 and is seen from the wiring terminal side of FIG. 5.
도 7은 본 발명의 실시예에 따른 지능형 에너지 저장 방법을 나타낸 도면이다.7 is a view showing an intelligent energy storage method according to an embodiment of the present invention.
중앙 제어 장치(400)는 복수의 전력 소스 중 하나의 전력 소스를 선택한다(S100). The central control unit 400 selects one power source among the plurality of power sources (S100).
예를 들어, 하나의 홈을 대상으로 태양광과 풍력 발전 장치를 연결해 놓은 경우, 광센서와 바람 센서를 입력으로 판단하여 전력 소스의 선택이 가능하게 한다.For example, when the solar and wind power generation devices are connected to a single home, the light sensor and the wind sensor are determined as inputs to enable selection of a power source.
중앙 제어 장치(400)는 시간대별로 전력 사용량이 한가한 시간대를 설정할 수 있고 기설정된 기준값 이하로 부하 전력이 소비되고 있을 때 선택한 전력 소스로부터 전력을 수신할 수도 있다.The central control unit 400 may set a time zone in which power consumption is limited for each time zone, and may receive power from the selected power source when the load power is consumed below a preset reference value.
중앙 제어 장치(400)는 복수의 BMS(130)로부터 각 배터리 모듈(110)의 각 배터리 셀의 상태 정보를 수신하고 각 배터리 셀의 상태 정보를 제어하는 제어 명령을 각 BMS(130)로 전송한다(S102).The central control unit 400 receives the state information of each battery cell of each battery module 110 from the plurality of BMS 130 and transmits a control command for controlling the state information of each battery cell to each BMS 130. (S102).
중앙 제어 장치(400)는 선택한 전력 소스로부터 수신한 전력을 각 배터리 셀의 상태 정보를 분석하여 각 개별 배터리 모듈(110)의 에너지 잔존량을 기초로 선택한 개별 배터리 모듈(110)의 각 배터리 셀에 저장한다(S104).The central control unit 400 analyzes the state information of each battery cell based on the power received from the selected power source and supplies the power to each battery cell of the selected individual battery module 110 based on the energy remaining amount of each individual battery module 110. Save (S104).
또한, 중앙 제어 장치(400)는 원격의 지능형 에너지 저장 시스템과 유무선 인터넷을 통해 네트워킹하여 전력을 교환할 수 있고 원격의 지능형 에너지 저장 시스템과 자신의 배터리 셀의 상태 정보를 교환할 수 있다(S106).In addition, the central control unit 400 may exchange power by networking with a remote intelligent energy storage system and a wired / wireless internet, and exchange state information of its battery cell with a remote intelligent energy storage system (S106). .
이상에서 설명한 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.The embodiments of the present invention described above are not implemented only by the apparatus and / or method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention, a recording medium on which the program is recorded, and the like. Such implementations may be readily implemented by those skilled in the art from the description of the above-described embodiments.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (9)

  1. 복수개의 배터리 모듈을 형성하고 상기 각 배터리 모듈에 형성된 복수개의 배터리 셀의 전압, 전류 및 온도를 포함한 상태 정보를 모니터링하여 상기 각 배터리 셀의 충전, 방전시 과전류, 과방전, 과충전을 제어하는 개별 배터리 관리 시스템을 상기 각 배터리 모듈에 형성한 모듈 집합부;An individual battery which forms a plurality of battery modules and monitors state information including voltages, currents, and temperatures of the plurality of battery cells formed in each battery module to control overcurrent, overdischarge, and overcharge during charging and discharging of the battery cells. A module aggregation unit forming a management system in each of the battery modules;
    상기 복수의 개별 배터리 관리 시스템로부터 상기 각 배터리 모듈의 각 배터리 셀의 상태 정보를 수신하고 상기 각 배터리 셀의 상태 정보를 제어하는 제어 명령을 상기 각 개별 배터리 관리 시스템으로 전송하는 중앙 제어 장치; 및A central control unit for receiving state information of each battery cell of each battery module from the plurality of individual battery management systems and transmitting a control command for controlling the state information of each battery cell to the respective battery management systems; And
    상기 중앙 제어 장치의 제어에 따라 외부로부터 수신한 전력을 상기 각 배터리 모듈에 저장하거나 저장된 전력을 직교류 변환 및 승감압을 수행하여 외부로 전송하는 전력 변환부를 포함하며,And a power converter configured to store the power received from the outside in the battery module under the control of the central controller or to transmit the stored power to the outside by performing cross-flow conversion and step-up / down-voltage.
    상기 중앙 제어 장치는 복수의 전력 소스 중 하나의 전력 소스를 선택하고 상기 선택한 전력 소스로부터 수신한 전력을 상기 각 개별 배터리 모듈의 에너지 잔존량을 기초로 선택된 개별 배터리 모듈의 배터리 셀에 저장하는 것을 특징으로 하는 지능형 에너지 저장 시스템.The central control apparatus selects one of the plurality of power sources and stores the power received from the selected power source in the battery cells of the selected individual battery modules based on the energy remaining amount of each of the individual battery modules. Intelligent energy storage system.
  2. 제1항에 있어서,The method of claim 1,
    상기 중앙 제어 장치는 상기 개별 배터리 관리 시스템과의 통신을 통해 상기 각 배터리 셀에서 전압, 전류의 인입 또는 인출되는 경로를 제어하여 상기 각 배터리 셀의 전압 밸런스를 맞추어 주는 것을 특징으로 하는 지능형 에너지 저장 시스템.The central control unit controls the voltage balance of each battery cell by controlling a path of drawing or withdrawing voltage and current from each battery cell through communication with the individual battery management system. .
  3. 제1항에 있어서,The method of claim 1,
    상기 중앙 제어 장치는 상기 선택한 전력 소스로부터 전력을 수신하는 시간대를 설정하거나 기설정된 기준값 이하로 부하 전력이 소모되고 있을 때 전력을 수신하여 저장하는 것을 특징으로 하는 지능형 에너지 저장 시스템.The central controller sets an time zone for receiving power from the selected power source or receives and stores power when load power is being consumed below a predetermined reference value.
  4. 제1항에 있어서,The method of claim 1,
    상기 각 배터리 모듈은 슬라이딩 형태로 밀어넣어 탈부착 가능하고 중앙에 상기 복수개의 배터리 셀의 상태를 실시간으로 관측할 수 있는 모듈 모니터링부와 상기 각 배터리 셀의 상태 정보를 표시하여 볼 수 있는 셀 디스플레이 제1 기능 선택 버튼과 디스플레이 모드를 선택하는 제2 기능 선택 버튼이 형성된 전면부; 및Each of the battery modules may be pushed in a sliding form, and may be detachable. A cell display for displaying and displaying state information of each battery cell and a module monitoring unit for observing the state of the plurality of battery cells in real time. A front portion having a function selection button and a second function selection button for selecting a display mode; And
    상기 각 배터리 셀을 충전, 방전시 사용되는 충전단자와 방전단자 및 상기 각 배터리 모듈을 제어하기 위한 제어 신호를 송수신하는 모듈 컨트롤 단자가 형성된 후면부A rear part having a module control terminal configured to transmit and receive a charging terminal and a discharge terminal used to charge and discharge the respective battery cells, and a control signal for controlling the respective battery modules.
    를 포함하는 것을 특징으로 하는 지능형 에너지 저장 시스템.Intelligent energy storage system comprising a.
  5. 제1항에 있어서,The method of claim 1,
    상기 중앙 제어 장치는 상기 복수의 개별 배터리 관리 시스템과 통신하여 상기 각 배터리 모듈의 충전 또는 방전 시점을 시간대별로 지정하고 입출력되는 전력의 크기를 가변적으로 수행하도록 프로그램이 가능한 것을 특징으로 하는 지능형 에너지 저장 시스템.The central control apparatus may be programmed to communicate with the plurality of individual battery management systems to designate a charging or discharging time point of each battery module for each time zone and to variably perform the amount of input / output power. .
  6. 복수개의 배터리 모듈을 형성하고, 상기 각 배터리 모듈에 형성된 복수개의 배터리 셀의 전압, 전류 및 온도를 포함한 상태 정보를 모니터링하여 상기 각 배터리 셀의 충전, 방전시 과전류, 과방전, 과충전을 제어하는 개별 배터리 관리 시스템을 상기 각 배터리 모듈에 형성하는 단계;Individual to form a plurality of battery modules, and to monitor the state information including the voltage, current and temperature of the plurality of battery cells formed in each battery module to control the over-current, over-discharge, over-charge during the charge, discharge of each battery cell Forming a battery management system in each of the battery modules;
    상기 복수의 개별 배터리 관리 시스템을 관리하는 중앙 제어 장치는 상기 각 개별 배터리 관리 시스템으로부터 상기 각 배터리 모듈의 각 배터리 셀의 상태 정보를 수신하는 단계; 및A central control apparatus for managing the plurality of individual battery management systems, the method comprising: receiving state information of each battery cell of each battery module from each individual battery management system; And
    상기 중앙 제어 장치는 복수의 전력 소스 중 하나의 전력 소스를 선택하고 상기 선택한 전력 소스로부터 수신한 전력을 상기 각 배터리 셀의 상태 정보를 분석하여 상기 각 개별 배터리 모듈의 에너지 잔존량을 기초로 선택한 개별 배터리 모듈의 각 배터리 셀에 저장하는 단계The central controller selects one power source from among a plurality of power sources, and analyzes the state information of each battery cell based on the power received from the selected power source, and selects the selected power based on the energy remaining amount of each individual battery module. Storing in each battery cell of the battery module
    를 포함하는 것을 특징으로 하는 지능형 에너지 저장 방법.Intelligent energy storage method comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 각 배터리 셀에 저장하는 단계는,The storing in each of the battery cells,
    상기 선택한 전력 소스로부터 전력을 수신하는 시간대를 설정하거나 기설정된 기준값 이하로 부하 전력이 소모되고 있을 때 전력을 수신하여 상기 각 배터리 셀에 저장하는 단계를 포함하는 것을 특징으로 하는 지능형 에너지 저장 방법.And setting a time zone for receiving power from the selected power source or receiving and storing power in each of the battery cells when the load power is being consumed below a predetermined reference value.
  8. 제6항에 있어서,The method of claim 6,
    상기 각 배터리 셀에 저장하는 단계 이후에,After storing in each of the battery cells,
    상기 중앙 제어 장치는 에너지를 저장하여 분배하는 원격의 에너지 저장 시스템과 유무선 인터넷을 통해 네트워킹하여 전력을 교환하거나 상기 각 배터리 셀의 상태 정보를 상기 에너지 저장 시스템으로 전송하고 상기 에너지 저장 시스템으로부터 에너지 상태 정보를 수신하는 단계The central control unit exchanges power through a network of wired and wireless internets with a remote energy storage system that stores and distributes energy, or transfers state information of each battery cell to the energy storage system and energy state information from the energy storage system. Receiving
    를 더 포함하는 것을 특징으로 하는 지능형 에너지 저장 방법.Intelligent energy storage method further comprises.
  9. 제1항 내지 제5항 중 어느 한 항에 따른 지능형 에너지 저장 시스템을 포함하는 전기이동수단의 충전시스템.A charging system for electrophoretic means comprising an intelligent energy storage system according to any one of claims 1 to 5.
PCT/KR2010/006372 2010-09-07 2010-09-17 Intelligent energy storage system and method WO2012033248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100087331A KR101170489B1 (en) 2010-09-07 2010-09-07 Intelligent Energy Storage System and Method Using the Same
KR10-2010-0087331 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012033248A1 true WO2012033248A1 (en) 2012-03-15

Family

ID=45810830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006372 WO2012033248A1 (en) 2010-09-07 2010-09-17 Intelligent energy storage system and method

Country Status (2)

Country Link
KR (1) KR101170489B1 (en)
WO (1) WO2012033248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102447A1 (en) * 2014-01-05 2015-07-09 엘지전자 주식회사 Data transmission method according to battery use pattern

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510155B1 (en) * 2012-05-03 2015-04-08 주식회사 엘지화학 Charge system for energy storage apparatus, Portable charging device applied for it and Method of charge for energy storage apparatus using the same
KR101510154B1 (en) * 2012-05-03 2015-04-08 주식회사 엘지화학 Charge system for energy storage apparatus, Portable charging device applied for it and Method of charging for energy storage apparatus using the same
KR101423961B1 (en) * 2012-05-23 2014-07-31 주식회사 피엠그로우 System and method for replacing battery unit from battery pack
CN102854394A (en) * 2012-08-31 2013-01-02 华南师范大学 System for estimating health state of lithium ion battery and method for estimating health state of lithium ion battery by using same
KR101418173B1 (en) * 2012-12-18 2014-07-10 넥스콘 테크놀러지 주식회사 Input-Output Check Apparatus for Energy Storage System
KR20140096600A (en) 2013-01-28 2014-08-06 삼성에스디아이 주식회사 Battery Pack and method for cell balancing thereof
KR101635544B1 (en) * 2015-02-10 2016-07-01 한전케이디엔 주식회사 Energy operating system
KR102366739B1 (en) * 2015-06-09 2022-02-23 엘지전자 주식회사 Apparatus for controlling charge or discharge of batteries, system for controlling charge or discharge of batteries and method for controlling charge or discharge of batteries
KR101980687B1 (en) 2015-07-28 2019-05-22 엘에스산전 주식회사 Energy Management System
KR102005396B1 (en) * 2015-11-20 2019-10-08 주식회사 엘지화학 Apparatus, program and computer readable recording medium for analyzing log data od energy storeage system
KR102185938B1 (en) * 2018-12-27 2020-12-03 주식회사 한성시스코 Grid participation type electric vehicle charging system with self-propelled type smart energy storage system
KR102284859B1 (en) * 2019-11-08 2021-08-04 주식회사 한성시스코 Grid participant charging system for easy management of multiple chargers
KR102246451B1 (en) * 2019-11-11 2021-04-30 주식회사 에스제이 테크 Module battery system
KR102356504B1 (en) * 2020-04-29 2022-01-28 주식회사 스타리온 container system for transportation and fast state of health assessment of reuse battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707795A (en) * 1983-03-14 1987-11-17 Alber Engineering, Inc. Battery testing and monitoring system
US5619417A (en) * 1994-11-23 1997-04-08 Chrysler Corporation Battery monitoring system for an electric vehicle
US6114835A (en) * 1999-07-26 2000-09-05 Unitrode Corporation Multi-cell battery pack charge balancing circuit
JP2001511637A (en) * 1997-07-25 2001-08-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fault-tolerant battery system using network in battery
JP2004524793A (en) * 2001-03-30 2004-08-12 デザインライン・リミテッド Battery management unit, system, and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707795A (en) * 1983-03-14 1987-11-17 Alber Engineering, Inc. Battery testing and monitoring system
US5619417A (en) * 1994-11-23 1997-04-08 Chrysler Corporation Battery monitoring system for an electric vehicle
JP2001511637A (en) * 1997-07-25 2001-08-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fault-tolerant battery system using network in battery
US6114835A (en) * 1999-07-26 2000-09-05 Unitrode Corporation Multi-cell battery pack charge balancing circuit
JP2004524793A (en) * 2001-03-30 2004-08-12 デザインライン・リミテッド Battery management unit, system, and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102447A1 (en) * 2014-01-05 2015-07-09 엘지전자 주식회사 Data transmission method according to battery use pattern
US9986486B2 (en) 2014-01-05 2018-05-29 Lg Electronics Inc. Data transmission method according to battery use pattern

Also Published As

Publication number Publication date
KR101170489B1 (en) 2012-08-01
KR20120025135A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2012033248A1 (en) Intelligent energy storage system and method
WO2012165771A2 (en) System for storing power comprising modularized bms and method for controlling same
WO2012165858A2 (en) Power storage device, power storage system using same, and method for configuring power storage system
WO2015060576A1 (en) Battery management system capable of transmitting secondary protection signal and diagnostic signal using few insulation elements
CN102239064A (en) Li-ion battery array for vehicle and other large capacity applications
KR102595174B1 (en) Battery system
WO2012157475A1 (en) Power supply system, method for setting identification information of power supply system, and battery unit
CN106450517A (en) Battery module combined system
WO2015057030A1 (en) Communication terminal capable of configuring daisy chain communication network without distinction of input connector and output connector
WO2022014796A1 (en) Portable charging device for electric vehicle battery
CN210577836U (en) Charge-discharge battery module with parallel current sharing and monitoring functions
Slanina et al. Low cost battery management system
CN216085157U (en) Mute high-power generation pack safety box
WO2020215583A1 (en) Battery pack monitoring system and method
CN103101447A (en) Charging display device and method of electric motorcycle
CN116001572A (en) Battery pack and battery pack management method
JP2011019330A (en) Charging apparatus
CN212063510U (en) Integrated off-grid energy storage system and device
CN114161983A (en) Battery replacing system of electric vehicle and charging method of battery pack
WO2015126225A1 (en) Battery management unit and method for setting identifier by using frequency modulation
KR20160128758A (en) Independent power source with wireless communication
CN216086168U (en) High-power silence power generation package and high-voltage control box thereof
CN220492663U (en) Battery unit, battery module, battery cluster and battery pack
CN219458687U (en) Modular power supply system
CN214380269U (en) Emergency power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857035

Country of ref document: EP

Kind code of ref document: A1