WO2012039480A1 - ハニカム構造体の検査方法及び検査装置 - Google Patents

ハニカム構造体の検査方法及び検査装置 Download PDF

Info

Publication number
WO2012039480A1
WO2012039480A1 PCT/JP2011/071719 JP2011071719W WO2012039480A1 WO 2012039480 A1 WO2012039480 A1 WO 2012039480A1 JP 2011071719 W JP2011071719 W JP 2011071719W WO 2012039480 A1 WO2012039480 A1 WO 2012039480A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
cross
sealing portion
honeycomb structure
tomographic image
Prior art date
Application number
PCT/JP2011/071719
Other languages
English (en)
French (fr)
Inventor
和也 土本
照夫 小森
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR20137009907A priority Critical patent/KR20130097777A/ko
Priority to EP11826925.7A priority patent/EP2620744A4/en
Priority to CN2011800458300A priority patent/CN103109157A/zh
Priority to US13/825,700 priority patent/US8953738B2/en
Publication of WO2012039480A1 publication Critical patent/WO2012039480A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Definitions

  • the present invention relates to a honeycomb structure inspection method and inspection apparatus.
  • the conventional method has a problem that the operation is complicated and takes time.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an inspection method and an inspection apparatus for a honeycomb structure that are easy to operate and can inspect the length of a sealing portion in a short time.
  • One aspect of the inspection method of the honeycomb structure according to the present invention is: A method for inspecting a honeycomb structure having a partition portion that forms a plurality of flow paths that open to both end faces, and a sealing portion that closes one end of each of the flow paths, Obtaining a computer tomographic image of a first cross section separated from the one end face of the honeycomb structure by a distance Z1 and a second cross section separated from the one end face of the honeycomb structure by a distance Z2 greater than the distance Z1; Determining the presence or absence of the sealing portion in at least one of the plurality of channels based on the computer tomographic image of the first section; Determining the presence or absence of the sealing portion in the at least one flow path based on the computer tomographic image of the second section; Based on the determination result of the presence or absence of the sealing portion based on the computer tomographic image of the first cross section and the determination result of the presence or absence of the sealing portion based on the computer tomographic image of the second cross section, the length
  • One aspect of the inspection apparatus for a honeycomb structure is: Image acquisition means capable of acquiring a computer tomographic image for an arbitrary cross section of a honeycomb structure having a partition wall portion forming a plurality of flow paths opening at both end faces and a sealing portion closing any one of the flow paths; , A computer tomographic image of the first cross section separated from the end face of the honeycomb structure by a distance Z1 with respect to the image acquisition means, and a second cross section separated from the end face of the honeycomb structure by a distance Z2 greater than the distance Z1.
  • An instruction unit for acquiring a computer tomographic image of Based on the computed tomographic image of the first cross section, the presence or absence of the sealing portion in at least one of the plurality of flow paths, and the at least one based on the computed tomographic image of the second cross section A presence / absence determining unit for determining the presence or absence of the sealing portion in the flow path; Based on the determination result of the presence or absence of the sealing portion based on the computer tomographic image of the first cross section and the determination result of the presence or absence of the sealing portion based on the computer tomographic image of the second cross section, the length of the sealing portion is determined.
  • the length of the sealing portion in the flow path is more than Z1 and less than Z2. It can be seen that it is. Moreover, if there exists a sealing part in a 2nd cross section, it turns out that the length of the sealing part in the said flow path is more than Z2. Furthermore, if there is no sealing part in a 1st cross section, it turns out that the length of the sealing part in the said flow path is less than Z1. Therefore, it is possible to easily determine whether the length of the sealing portion of the honeycomb structure is greater than a specific Z1 and less than Z2.
  • the at least one flow path has the sealing portion in the first cross section and the sealing portion in the second cross section has no sealing portion. Judging that the length of the sealing part of the two flow paths is appropriate, for the at least one flow path, when there is a sealing part in the second cross section, or when there is no sealing part in the first cross section, It may be determined that the length of the sealing portion of the at least one flow path is inappropriate.
  • the sealing length determination unit is configured to seal the at least one flow path when the first cross section has a sealing part and the second cross section has no sealing part with respect to the at least one flow path.
  • the at least one flow path is determined when the second section has a sealing part or when the first section has no sealing part. It may be determined that the length of the sealing portion of the road is inappropriate.
  • the honeycomb structure may be a ceramic fired body or a ceramic unfired body.
  • a computer tomographic image may be acquired based on the electromagnetic wave absorption rate of the honeycomb structure.
  • a honeycomb structure inspection method and inspection apparatus that are easy to operate and can inspect the length of the sealing portion in a short time.
  • FIG. 1 is a schematic diagram of an inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the honeycomb structure 100 of FIG. 1 parallel to the Z axis.
  • FIG. 3 is a schematic diagram of a computer tomographic image at a distance Z1 of the honeycomb structure 100 of FIG.
  • FIG. 4 is a schematic diagram of a computer tomographic image at a distance Z2 of the honeycomb structure 100 of FIG.
  • honeycomb structure 100 used as a test object in this embodiment is demonstrated.
  • the honeycomb structure 100 can be used as, for example, a diesel particulate filter.
  • the target honeycomb structure 100 in the present embodiment includes partition walls 112 that form a plurality of flow paths 110 that extend in parallel to each other and open at both end faces 112u and 112d, and It is a cylindrical body having a plurality of sealing portions 114 that closes one end (the upper end or the lower end in FIG. 2) of each flow path 110.
  • the length in the Z direction in which the flow path 110 of the honeycomb structure 100 extends is not particularly limited, but may be, for example, 30 to 500 mm. Further, the outer diameter of the honeycomb structure 100 is not particularly limited, but may be, for example, 30 to 500 mm.
  • the cross-sectional shape of the channel 110 is a square, and each channel 110 is arranged in a square shape, that is, the center of the channel 110 is positioned at the apex of the square and the opposite sides are parallel to each other. Yes.
  • the size of the cross section of the flow path 110 can be, for example, 0.5 to 2.5 mm on a side.
  • the thickness between the flow paths 110 of the partition wall 112 can be 0.05 to 0.5 mm.
  • the material of the partition wall 112 of the honeycomb structure 100 is fired porous ceramics (fired body) or green before firing (ceramics unfired body).
  • the ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • aluminum titanate may further comprise magnesium and / or silicon.
  • each flow path 110 of the honeycomb structure 100 is sealed by the sealing portion 114.
  • the same porous or nonporous ceramics as the honeycomb structure 100 or an unfired body thereof can be used.
  • each other is selected in a zigzag manner selected every other in the vertical and horizontal directions.
  • a portion 114 is provided.
  • Such a honeycomb structure 100 can be manufactured as follows, for example.
  • an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. Then, these are mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the shape of the partition wall, cut to a desired length, and then a known method.
  • a green honeycomb formed body is obtained by drying. And the edge part of the flow path of a green honeycomb molded object is sealed with a sealing material by a well-known method, and the unbaking body of a honeycomb structure is completed. Then, the fired body of the honeycomb structure is completed by firing the unfired body. In addition, after firing the green honeycomb molded body, the end of the flow path may be sealed with a sealing agent and fired.
  • the inspection apparatus 200 includes a probe unit 210 that irradiates a beam from one of the honeycomb structures 100 and acquires the intensity of the beam that has passed through the honeycomb structure 100, a moving unit 220 that holds and moves the honeycomb structure 100, A computer unit 230 connected to the probe unit 210 and the moving unit 220 is mainly provided.
  • the moving unit 220 holds the honeycomb structure 100 so that the axis of the honeycomb structure 100 is oriented in the Z-axis direction, and rotates the honeycomb structure 100 about the Z axis, and the honeycomb structure And an elevating unit 222 that moves 100 up and down in the Z-axis direction.
  • the probe unit 210 includes a beam generation source 212 that irradiates the honeycomb structure 100 with a beam and a beam sensor 214 that detects the intensity of the beam transmitted through the honeycomb structure 100.
  • the beam generation source 212 generates a beam that spreads in a plane in the XY plane, and measures the intensity of the transmitted or excited beam by a plurality of beam sensors 214 arranged in the same plane.
  • the beam for example, electromagnetic waves such as X-rays, ⁇ -rays, terahertz waves (for example, 0.01 to 10 THz), particle beams such as positrons and neutrons, magnetic fields, ultrasonic waves, and the like can be used.
  • the computer unit 230 includes a control unit 232 that controls the probe unit 210 and the moving unit 220, an instruction unit 234 that gives an instruction about a measurement location to the control unit 232, and information on the honeycomb structure 100 based on information obtained by the probe unit 210.
  • CT section 236 for obtaining a computer tomographic image relating to the structure
  • presence / absence determination section 238 for determining the presence / absence of the sealing section based on the obtained image
  • sealing section length determination section for determining the length of the sealing section based on the presence / absence of the sealing section 239.
  • the control unit 232 controls the relative position between the probe unit 210 and the honeycomb structure 100 by driving the moving unit 220, controls the irradiation and detection of the beam by the probe unit 210, and performs computer processing on a desired cross section of the honeycomb structure. Acquire data necessary for acquisition of tomographic images.
  • the CT unit 236 acquires a computer tomographic image at each height Z based on the data obtained by the probe unit 210 obtained for an arbitrary height Z.
  • the moving unit 220, the probe unit 210, the control unit 232, and the CT unit 234 constitute an image acquisition unit 201 that can acquire a computer tomographic image for an arbitrary cross section of the honeycomb structure 100.
  • Such an apparatus is usually called X-ray CT, MRI, PET or the like.
  • the instruction unit 234 issues the following instruction to the control unit 232.
  • an instruction is issued so as to obtain data necessary for generating a computer tomographic image of a cross section separated from the lower end surface 112d of the honeycomb structure 100 by a distance Z1.
  • the elevating unit 222 is driven to adjust the height of the probe 210 to Z1.
  • a step of driving the probe unit 210 to acquire intensity data such as a beam absorptance
  • a step of driving the rotating unit 224 to rotate the angle around the Z axis of the honeycomb structure 100 by a slight angle
  • the instruction unit 234 issues an instruction to the control unit 232 so as to obtain data necessary for generating a computer tomographic image in a cross section at a distance Z2 from the lower end surface 112d of the honeycomb structure 100.
  • Z1 and Z2 are not particularly limited.
  • Z1 may be 1 to 3 mm
  • Z2 may be 3 to 6 mm
  • Z2 to Z1 may be greater than 0 and 5 mm or less.
  • the presence / absence determining unit 236 determines the presence / absence of a sealing portion in the inspection target flow path based on the two computer tomographic images. Specifically, first, based on the computer tomographic image at the height Z1, the presence or absence of the sealing portion 114 in at least one of the plurality of channels is determined. Further, based on the computed tomographic image at the height Z2, the presence / absence of the sealing portion 114 in at least one flow path, which is the same as described above, is determined.
  • the determination method of the presence or absence of the sealing part 114 is not specifically limited, A well-known method can be used, For example, it can determine by the lightness and darkness in each flow-path part in an image.
  • the tomographic image based on a light / dark threshold that can distinguish presence / absence, and make a determination based on the binarized image.
  • the presence or absence of the sealing portion 114 at the height Z1 and the height Z2 is determined, and the determination result is stored.
  • the presence / absence determination may be made by comparing a normal binarized image pattern with an actual binarized image pattern.
  • the sealing length determination unit 239 determines the length of the sealing unit 114. Specifically, in the target flow path 110, when the computer tomographic image at the height Z1 has the sealing portion 114 and the computer tomographic image at the height Z2 does not have the sealing portion 114, the target flow Judge that the length of the road seal is appropriate.
  • the length of the sealing portion 114 is the length in the Z direction along the axis of the flow path 110.
  • the inspection apparatus 200 includes a monitor 240 that displays each tomographic image and the like.
  • the length of the sealing portion 114a of the channel 110a is more than Z1 and less than Z2, and the length of the sealing portion 114b of the channel 110b is more than Z2.
  • the length of the sealing portion 114c of the channel 110c is less than Z1.
  • a honeycomb structure 100 is mounted on a moving part. Then, data such as beam absorption in an XY cross section (first cross section) that is a distance Z1 away from the end face of the honeycomb structure 100 is acquired by an instruction from the instruction section 234, and further, the distance Z2 is separated from the end face of the honeycomb structure 100. Further, data such as beam absorption in the XY section (second section) is acquired. Subsequently, based on these data, the CT unit 236 acquires respective computed tomographic images at the distance Z1 and the distance Z2. Schematic diagrams of the acquired images are shown in FIGS.
  • the sealing length determination unit 239 has a sealing portion in the computed tomographic image at the height Z1 and no sealing portion in the computed tomographic image at the height Z2 for the flow path 110a.
  • the length exceeds Z1 and is less than Z2, and is determined to be appropriate.
  • the sealing length determination unit 239 is unsuitable because the length of the sealing portion 114b in the flow channel 110b exceeds Z2 because the sealing portion 114 is present in the computed tomographic image at the height Z2 in the flow channel 110b. to decide.
  • the sealing length determination unit 239 determines that the length of the sealing portion 114c in the flow channel 110c is less than Z1 because the computer tomographic image at the height Z1 does not have the sealing portion 114 in the flow channel 110c.
  • Such an inspection of the length of the sealing portion can be performed for each flow path in which the sealing portion 140 is to be provided, and can be performed on the upper end surface 112u and the lower end surface 112d of the honeycomb structure 100, respectively. it can.
  • the length of the sealing portion of the honeycomb structure 100 is more than Z1 and less than Z2. Moreover, since it is only necessary to obtain two height tomographic images for each end face, it can be performed in a short time, and it is easy to judge even if there are many flow paths.
  • the determination of the presence or absence of the sealing portion and the determination of the length of the sealing portion are performed by a computer, but these may be determined by human eyes after displaying an image on the monitor 240. Good.
  • the flow path 110 of the honeycomb structure 100 is arranged in the vertical direction, but it can be implemented in any direction such as a horizontal direction.
  • the configuration of the moving unit 220 is not particularly limited.
  • the moving unit 220 may move the probe unit 210 without moving the honeycomb structure 100, and the probe unit 210 and the honeycomb structure 100 may be moved relative to each other. As long as it can be moved automatically.
  • the configuration of the probe unit 210 is not particularly limited as long as it can acquire data necessary for acquiring a computer tomographic image.
  • the cross-sectional shape of the flow path 110 is substantially square, but is not limited to this, and can be rectangular, circular, elliptical, triangular, hexagonal, octagonal, or the like. Moreover, in the flow path 110, those with different diameters and those with different cross-sectional shapes may be mixed. In addition, the arrangement of the flow paths is a square arrangement in FIG. 1, but is not limited to this. it can. Further, the outer shape of the honeycomb filter is not limited to a cylinder, and may be, for example, a triangular prism, a quadrangular prism, a hexagonal prism, an octagonal prism, or the like.

Abstract

 ハニカム構造体100の一端面112dから距離Z1離れた第一断面、及び、ハニカム構造体の一端面112dから距離Z1よりも大きい距離Z2離れた第二断面のコンピュータ断層画像を取得する工程と、第一断面のコンピュータ断層画像に基づいて、複数の流路の内の少なくとも一つの流路における封口部114の有無を判断する工程と、第二断面のコンピュータ断層画像に基づいて、当該少なくとも一つの流路における封口部の有無を判断する工程と、第一断面のコンピュータ断層画像に基づく封口部の有無の判断結果、及び、第二断面のコンピュータ断層画像に基づく封口部の有無の判断結果に基づいて、封口部の長さを判断する工程と、を備える。

Description

ハニカム構造体の検査方法及び検査装置
 本発明は、ハニカム構造体の検査方法及び検査装置に関する。
 従来より、ハニカム構造体の封口部の長さの検査方法として、検査棒を挿入する方法が知られている(例えば、特許文献1、2参照)。
特開2007-10492号公報 特開2008-58116号公報
 しかしながら、従来の方法では操作が煩雑で時間もかかるという問題があった。
 本発明は上記課題に鑑みてなされたものであり、操作が簡単でかつ短時間で封口部の長さを検査できるハニカム構造体の検査方法及び検査装置を提供することを目的とする。
 本発明に係るハニカム構造体の検査方法の一態様は、
 両端面に開口する複数の流路を形成する隔壁部、及び前記各流路のいずれか一端を閉鎖する封口部を有するハニカム構造体の検査方法であって、
 前記ハニカム構造体の一端面から距離Z1離れた第一断面、及び、前記ハニカム構造体の一端面から前記距離Z1よりも大きい距離Z2離れた第二断面のコンピュータ断層画像を取得する工程と、
 前記第一断面のコンピュータ断層画像に基づいて、前記複数の流路の内の少なくとも一つの流路における前記封口部の有無を判断する工程と、
 前記第二断面のコンピュータ断層画像に基づいて、前記少なくとも一つの流路における前記封口部の有無を判断する工程と、
 前記第一断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果、及び、前記第二断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果に基づいて、前記封口部の長さを判断する工程と、を備える。
 本発明に係るハニカム構造体の検査装置の一態様は、
 両端面に開口する複数の流路を形成する隔壁部、及び前記各流路のいずれか一端を閉鎖する封口部を有するハニカム構造体の任意の断面についてコンピュータ断層画像を取得可能な画像取得手段と、
 前記画像取得手段に対して、前記ハニカム構造体の端面から距離Z1離れた第一断面のコンピュータ断層画像、及び、前記ハニカム構造体の端面から、前記距離Z1よりも大きい距離Z2離れた第二断面のコンピュータ断層画像を取得させる指示部と、
 前記第一断面のコンピュータ断層画像に基づいて、前記複数の流路の内の少なくとも一つの流路における前記封口部の有無、及び、前記第二断面のコンピュータ断層画像に基づいて、前記少なくとも一つの流路における前記封口部の有無を判断する有無判断部と、
 前記第一断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果、及び、前記第二断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果に基づいて、前記封口部の長さを判断する封口長さ判断部と、を備える。
 これらの方法又は装置によれば、検査対象となる流路において、第一断面において封口部があり、第二断面において封口部がなければ、当該流路における封口部の長さがZ1超Z2未満であることがわかる。また、第二断面において封口部があれば、当該流路における封口部の長さがZ2超であることがわかる。さらに、第一断面において封口部がなければ、当該流路における封口部の長さがZ1未満であることがわかる。したがって、ハニカム構造体の封口部の長さが特定のZ1超Z2未満であるかの判断が容易に行える。
 ここで、前記封口部の長さを判断する工程では、前記少なくとも一つの流路について、前記第一断面に封口部があり、かつ、前記第二断面に封口部がない場合に、前記少なくとも一つの流路の封口部の長さが適正であると判断し、前記少なくとも一つの流路について、前記第二断面に封口部がある場合、又は、前記第一断面に封口部が無い場合に、前記少なくとも一つの流路の封口部の長さが不適であると判断してもよい。
 また、前記封口長さ判断部は、前記少なくとも一つの流路について、前記第一断面に封口部があり、かつ、前記第二断面に封口部がない場合に、前記少なくとも一つの流路の封口部の長さが適正であると判断し、前記少なくとも一つの流路について、前記第二断面に封口部がある場合、又は、前記第一断面に封口部が無い場合に、前記少なくとも一つの流路の封口部の長さが不適であると判断してもよい。
 また、前記ハニカム構造体は、セラミクス焼成体、又は、セラミクス未焼成体であってもよい。
 また、コンピュータ断層画像を、前記ハニカム構造体の電磁波の吸収率に基づいて取得してもよい。
 本発明によれば、操作が簡単でかつ短時間で封口部の長さを検査できるハニカム構造体の検査方法及び検査装置が提供される。
図1は、本発明の実施形態にかかる検査装置の概略模式図である。 図2は、図1のハニカム構造体100のZ軸に平行な断面図である。 図3は、図2のハニカム構造体100の距離Z1でのコンピュータ断層画像の模式図である。 図4は、図2のハニカム構造体100の距離Z2でのコンピュータ断層画像の模式図である。
 図面を参照して、発明の実施形態について説明する。まず、図1及び図2を参照して、本実施形態で検査対象となるハニカム構造体100について説明する。このハニカム構造体100は、例えば、ディーゼルパティキュレートフィルタとして用いることのできるものである。
 本実施形態において対象となるハニカム構造体100は、図1及び図2に示すように、互いに平行に伸びて両端面112u,112dで開口する複数の流路110を形成する隔壁部112、及び、各流路110のいずれか一端(図2の上端又は下端)を閉鎖する複数の封口部114を有する円柱体である。
 ハニカム構造体100の流路110が延びるZ方向の長さは特に限定されないが、例えば、30~500mmとすることができる。また、ハニカム構造体100の外径も特に限定されないが、例えば、30~500mmとすることできる。流路110の断面形状は正方形であり、各流路110は、正方形配置、すなわち、流路110の中心が正方形の頂点に位置するようにかつ対向する辺同士が平行となるように配置されている。流路110の断面のサイズは、例えば、一辺0.5~2.5mmとすることができる。隔壁部112の流路110間の厚みは、0.05~0.5mmとすることができる。
 ハニカム構造体100の隔壁部112の材質は、焼成された多孔性セラミクス(焼成体)又は、その焼成前のグリーン(セラミクス未焼成体)である。セラミクスは特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。
 上述のように、ハニカム構造体100の各流路110のうちのいずれか一端が封口部114により封口されている。封口部114の材質としては、ハニカム構造体100と同様の多孔性あるいは非孔性セラミクス又はその未焼成体を用いることができる。好ましくは、図1に示すように、各一端面側から見て、行列状に配列された複数の流路110の内の、縦方向及び横方向それぞれ一つおきに選択された千鳥状に封口部114が設けられている。
 このようなハニカム構造体100は例えば以下のようにして製造することができる。
 まず、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。そして、これらを混練機等により混合して原料混合物を得、得られた原料混合物を隔壁部の形状に対応する出口開口を有する押出機から押し出し、所望の長さに切断後、公知の方法で乾燥することにより、グリーンハニカム成形体を得る。そして、グリーンハニカム成形体の流路の端部を公知の方法によって封口材で封口することにより、ハニカム構造体の未焼成体が完成する。そして、この未焼成体を焼成することによりハニカム構造体の焼成体が完成する。なお、グリーンハニカム成形体を焼成してから、封口剤で流路の端部を封口し焼成したものを対象としてもよい。
 続いて、図1を参照して、ハニカム構造体100の封口部114の長さの検査装置200について説明する。
 この検査装置200は、ハニカム構造体100の一方からビームを照射するとともにハニカム構造体100を透過したビームの強度を取得するプローブ部210と、ハニカム構造体100を保持及び移動させる移動部220と、プローブ部210及び移動部220と接続されたコンピュータ部230と、主として備える。
 移動部220は、ハニカム構造体100の軸がZ軸方向を向くようにハニカム構造体100を保持し、かつ、ハニカム構造体100をZ軸周りに回動させる回動部224と、ハニカム構造体100をZ軸方向に上下に移動させる昇降部222と、を有している。
 プローブ部210は、ハニカム構造体100に対してビームを照射するビーム発生源212と、ハニカム構造体100を透過等したビームの強度を検出するビームセンサ214を備える。本実施形態では、ビーム発生源212は、XY平面内に面状に広がるビームを発生し、同じ面内に配置された複数のビームセンサ214により、透過や励起等したビームの強度を測定する。ビームとしては、例えば、X線、γ線、テラヘルツ波(例えば、0.01~10THz)等の電磁波、陽電子、中性子線等の粒子線、磁界、超音波等を利用することができる。
 コンピュータ部230は、プローブ部210及び移動部220を制御する制御部232、制御部232に測定場所についての指示を与える指示部234、プローブ部210により得られた情報に基づいてハニカム構造体100の構造に関するコンピュータ断層画像を得るCT部236、得られた画像に基づいて封口部の有無を判断する有無判断部238、封口部の有無に基づいて封口部の長さを判断する封口部長さ判断部239を備える。
 制御部232は、移動部220の駆動によりプローブ部210とハニカム構造体100との相対位置を制御するとともに、プローブ部210によるビームの照射及び検出を制御し、ハニカム構造体の所望の断面についてコンピュータ断層画像の取得に必要なデータを取得する。
 CT部236は、任意の高さZについて得られたプローブ部210が得たデータに基づいて、各高さZでのコンピュータ断層画像を取得する。
 ここで、移動部220、プローブ部210、制御部232、及び、CT部234が、ハニカム構造体100の任意の断面についてコンピュータ断層画像を取得可能な画像取得手段201を構成している。このような装置は、通常、X線CT、MRI、PET等と呼ばれる。
 指示部234は、制御部232に対して以下のような指示を出す。まず、図2に示すように、ハニカム構造体100の下端面112dから距離Z1離れた断面のコンピュータ断層画像の生成に必要なデータを得るように指示を出す。具体的には、まず、昇降部222を駆動してプローブ210の高さをZ1に合わせる。続いて、プローブ部210を駆動してビームの吸収率等の強度データを取得する工程と、回動部224を駆動してハニカム構造体100のZ軸周りの角度を微少角度回転させる工程と、を繰り返すことにより、コンピュータ断層画像取得に必要なデータを取得する。
 続いて、指示部234は、ハニカム構造体100の下端面112dから距離Z2離れた断面において、コンピュータ断層画像の生成に必要なデータを得るように制御部232に対して指示を出す。ここで、Z1<Z2とする。
 Z1やZ2は特に限定されないが、例えば、Z1は1~3mm、Z2は3~6mm、Z2-Z1は0を超え5mm以下とすることができる。特に、所望の封口部の長さを想定した上で、Z1及びZ2を、その封口部の一端を挟み込む位置とすることが好ましい。
 有無判断部236は、2枚のコンピュータ断層画像に基づいて、検査対象流路における封口部の有無の判断を行う。具体的には、まず、高さZ1でのコンピュータ断層画像に基づいて、複数の流路の内の少なくとも一つの流路における封口部114の有無を判断する。また、高さZ2のコンピュータ断層画像に基づいて、上述と同一の、少なくとも一つの流路における封口部114の有無を判断する。封口部114の有無の判断方法は特に限定されず公知の方法を用いることができ、例えば、画像における各流路部分における濃淡により判断することができる。また、有無の区別が可能な濃淡の閾値により断層画像を二値化し、二値化画像により判断することも好ましい。
 ここでは、好ましくは、封口されるべきすべての流路について、高さZ1及び高さZ2での封口部114の有無を判断し、判断結果を記憶しておく。正常な二値化画像パターンと、実際の二値化画像パターンとの比較により有無判断を行ってもよい。
 封口長さ判断部239は、封口部114の長さを判断する。具体的には、対象となる流路110において、高さZ1でのコンピュータ断層画像に封口部114があり、かつ、高さZ2でのコンピュータ断層画像に封口部114がない場合に、当該対象流路の封口部の長さが適正であると判断する。
 一方、対象となる流路110において、高さZ2でのコンピュータ断層画像に封口部114があれば、当該流路110における封口部114の長さがZ2超であり不適であると判断する。
 さらに、高さZ1でのコンピュータ断層画像に封口部114がなければ、当該流路110における封口部114の長さがZ1未満であり不適であると判断する。
 なお、本実施形態では、封口部114の長さとは、流路110の軸に沿ったZ方向の長さである。
 なお、この検査装置200は各断層画像等を表示するモニタ240を備える。
 続いて、本実施形態の検査装置200を使用した検査装置による検査方法を説明する。ここで、検査対象となるハニカム構造体100には、図2に示すように、流路110aの封口部114aの長さはZ1超Z2未満、流路110bの封口部114bの長さはZ2超、流路110cの封口部114cの長さはZ1未満とする。
 そして、このようなハニカム構造体100を移動部に載置する。そして、指示部234の指示によりハニカム構造体100の端面から距離Z1離れたXY断面(第一断面)でのビームの吸収等のデータを取得し、さらに、ハニカム構造体100の端面から距離Z2離れたXY断面(第二断面)でのビームの吸収等のデータを取得する。続いて、これらのデータに基づいて、CT部236が、距離Z1及び距離Z2でのそれぞれのコンピュータ断層画像を取得する。取得された画像の模式図を図3、4にそれぞれ示す。
 続いて、有無判断部238が、流路に封口部が存在するか判断する。図3は、高さZ=Z1の断面の画像である。流路110a及び110b内には固体が存在する、すなわち、封口部114a、114bが存在していると判断できる。一方、流路110c内には固体は存在せず、封口部114cはZ1の高さに達していないと判断できる。
 図4は、高さZ=Z2の断面の画像である。流路110a及び110c内には固体が存在せず、封口部114a、114cはこの高さZ2まで存在していないことがわかる。一方、流路110b内には固体は存在し、封口部114cはZ2の高さを超えていることがわかる。
 そして、封口長さ判断部239は、流路110aについては、高さZ1でのコンピュータ断層画像に封口部があり、かつ、高さZ2でのコンピュータ断層画像に封口部がないので、封口部の長さがZ1を超えZ2未満であり適切であると判断する。
 一方、封口長さ判断部239は、流路110bにおいて、高さZ2でのコンピュータ断層画像に封口部114があるので、流路110bにおける封口部114bの長さがZ2超であり不適であると判断する。
 さらに、封口長さ判断部239は、流路110cにおいて、高さZ1でのコンピュータ断層画像に封口部114がないので、流路110cにおける封口部114cの長さがZ1未満であると判断する。
 このような、封口部の長さの検査は、封口部140が設けられるべき各流路について行うことができ、また、ハニカム構造体100の上端面112u、下端面112dに対してそれぞれ行うことができる。
 本実施形態によれば、ハニカム構造体100の封口部の長さがZ1超Z2未満であるかの判断が容易に行える。また、各端面につき2つの高さの断層画像を得るだけでよいので短時間に行うことができ、しかも、多くの流路があってもそれぞれ判断するのが容易である。
 本発明は上記実施形態に限定されずさまざまな変形態様が可能である。
 例えば、上記実施形態では、封口部の有無の判断や、封口部の長さの判断はコンピュータにより行っているが、これらは、画像をモニタ240に表示した上で人の目により判断してもよい。
 また、上記実施形態では、ハニカム構造体100の流路110が上下方向に配置されているが、水平方向等、いずれの方向を向いても実施可能である。
 また、移動部220の構成も特に限定されず、例えば、移動部220が、ハニカム構造体100を移動させずにプローブ部210を移動させてもよく、プローブ部210とハニカム構造体100とを相対的に移動させられるものであればよい。
 また、プローブ部210の構成も特に限定されず、コンピュータ断層画像の取得に必要なデータを取得できるものであればよい。
 また、上記実施形態では、流路110の断面形状は、略正方形であるがこれに限定されず、矩形、円形、楕円形、三角形、六角形、八角形等にすることができる。また、流路110には、径の異なるもの、断面形状の異なるものが混在してもよい。また、流路の配置も、図1では正方形配置であるが、これに限定されず、断面において流路の中心軸が正三角形の頂点に配置される正三角形配置、千鳥配置等にすることができる。さらに、ハニカムフィルタの外形も、円柱に限られず、例えば三角柱、四角柱、六角柱、八角柱等とすることができる。
 また、上記実施形態では、高さZ=Z1の断面の画像を取得した後に、高さZ2の画像を取得しているが、逆にしてもよい。
 100…ハニカム構造体、112u,112d…端面、110…流路、112…隔壁部、114、114a、114b、114c…封口部、200…検査装置、236…CT部(指示部)、238…有無判断部、239…封口長さ判断部。

Claims (6)

  1.  両端面に開口する複数の流路を形成する隔壁部、及び前記各流路のいずれか一端を閉鎖する封口部を有するハニカム構造体の検査方法であって、
     前記ハニカム構造体の一端面から距離Z1離れた第一断面、及び、前記ハニカム構造体の前記一端面から前記距離Z1より大きい距離Z2離れた第二断面のコンピュータ断層画像を取得する工程と、
     前記第一断面のコンピュータ断層画像に基づいて、前記複数の流路の内の少なくとも一つの流路における前記封口部の有無を判断する工程と、
     前記第二断面のコンピュータ断層画像に基づいて、前記少なくとも一つの流路における前記封口部の有無を判断する工程と、
     前記第一断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果、及び、前記第二断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果に基づいて、前記封口部の長さを判断する工程と、
     を備えるハニカム構造体の検査方法。
  2.  前記封口部の長さを判断する工程では、前記少なくとも一つの流路について、前記第一断面に封口部があり、かつ、前記第二断面に封口部がない場合に、前記少なくとも一つの流路の封口部の長さが適正であると判断し、前記少なくとも一つの流路について、前記第二断面に封口部がある場合、又は、前記第一断面に封口部が無い場合に、前記少なくとも一つの流路の封口部の長さが不適であると判断する請求項1記載の方法。
  3.  前記ハニカム構造体は、セラミクス焼成体、又は、セラミクス未焼成体である請求項1又は2記載の方法。
  4.  前記コンピュータ断層画像を、前記ハニカム構造体の電磁波の吸収率に基づいて取得する請求項1~3のいずれか一項記載の方法。
  5.  両端面に開口する複数の流路を形成する隔壁部、及び前記各流路のいずれか一端を閉鎖する封口部を有するハニカム構造体の任意の断面についてコンピュータ断層画像を取得可能な画像取得手段と、
     前記画像取得手段に対して、前記ハニカム構造体の端面から距離Z1離れた第一断面のコンピュータ断層画像、及び、前記ハニカム構造体の端面から、前記距離Z1よりも大きい距離Z2離れた第二断面のコンピュータ断層画像を取得させる指示部と、
     前記第一断面のコンピュータ断層画像に基づいて、前記複数の流路の内の少なくとも一つの流路における前記封口部の有無、及び、前記第二断面のコンピュータ断層画像に基づいて、前記少なくとも一つの流路における前記封口部の有無を判断する有無判断部と、
     前記第一断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果、及び、前記第二断面のコンピュータ断層画像に基づく前記封口部の有無の判断結果に基づいて、前記封口部の長さを判断する封口長さ判断部と、
     を備える、ハニカム構造体の検査装置。
  6.  前記封口長さ判断部は、前記少なくとも一つの流路について、前記第一断面に封口部があり、かつ、前記第二断面に封口部がない場合に、前記少なくとも一つの流路の封口部の長さが適正であると判断し、前記少なくとも一つの流路について、前記第二断面に封口部がある場合、又は、前記第一断面に封口部が無い場合に、前記少なくとも一つの流路の封口部の長さが不適であると判断する請求項5記載の装置。
PCT/JP2011/071719 2010-09-24 2011-09-22 ハニカム構造体の検査方法及び検査装置 WO2012039480A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20137009907A KR20130097777A (ko) 2010-09-24 2011-09-22 허니컴 구조체의 검사 방법 및 검사 장치
EP11826925.7A EP2620744A4 (en) 2010-09-24 2011-09-22 METHOD AND DEVICE FOR INSPECTION OF A WAVE STRUCTURE
CN2011800458300A CN103109157A (zh) 2010-09-24 2011-09-22 多孔层状结构体的检查方法及检查装置
US13/825,700 US8953738B2 (en) 2010-09-24 2011-09-22 Method and apparatus for inspecting honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213752 2010-09-24
JP2010213752 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039480A1 true WO2012039480A1 (ja) 2012-03-29

Family

ID=45873963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071719 WO2012039480A1 (ja) 2010-09-24 2011-09-22 ハニカム構造体の検査方法及び検査装置

Country Status (6)

Country Link
US (1) US8953738B2 (ja)
EP (1) EP2620744A4 (ja)
JP (1) JP4913918B1 (ja)
KR (1) KR20130097777A (ja)
CN (1) CN103109157A (ja)
WO (1) WO2012039480A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2906973C (en) * 2013-04-04 2020-10-27 Illinois Tool Works Inc. Helical computed tomography
CN103496010B (zh) * 2013-09-29 2015-04-22 莆田市城厢区星华电子模具有限公司 模具下模冲孔与底座落料孔校正方法
JP6552253B2 (ja) * 2015-04-14 2019-07-31 日本碍子株式会社 多孔質体の微構造解析方法、そのプログラム及び微構造解析装置
JP6501654B2 (ja) * 2015-06-30 2019-04-17 イビデン株式会社 ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2019207629A1 (ja) * 2018-04-23 2019-10-31 日本碍子株式会社 有効又は無効流路を特定する方法及び装置
EP3620234A1 (en) * 2018-09-05 2020-03-11 Yara International ASA Method for monitoring flow in centrifugal separator
US11928806B2 (en) 2020-02-14 2024-03-12 Cummins Inc. Systems and methods for evaluating part density, contamination and defects using computed tomography scanning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201465A (ja) * 2000-01-20 2001-07-27 Ngk Insulators Ltd X線を用いた非破壊検査方法
JP2004261644A (ja) * 2003-02-18 2004-09-24 Toyota Motor Corp 排ガス浄化フィルタ触媒用基材
JP2005283547A (ja) * 2004-03-31 2005-10-13 Ngk Insulators Ltd セラミック構造体の検査方法
JP2008145308A (ja) * 2006-12-12 2008-06-26 Cataler Corp スラリーの確認方法及び確認装置、並びにスラリーのコート方法
JP2010138770A (ja) * 2008-12-10 2010-06-24 Denso Corp セラミックフィルタ、その製造方法、及びその評価方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351760A (en) * 1963-08-26 1967-11-07 Robert L Brown Methods of evaluating and inspecting adhesively bonded joints and structures adapted for such evaluation and inspection
US6154522A (en) * 1999-02-11 2000-11-28 Mcdonnell Douglas Corporation Method, system and apparatus for aiming a device emitting a radiant beam
US6378387B1 (en) * 2000-08-25 2002-04-30 Aerobotics, Inc. Non-destructive inspection, testing and evaluation system for intact aircraft and components and method therefore
US6341153B1 (en) * 2000-10-27 2002-01-22 Genesis Engineering Company System and method for portable nondestructive examination with realtime three-dimensional tomography
JP3904933B2 (ja) * 2001-03-30 2007-04-11 日本碍子株式会社 欠陥を検出する検査方法及び検査装置
JP2004264644A (ja) 2003-03-03 2004-09-24 Jfe Engineering Kk ごみ焼却炉の運転訓練装置
US7110496B1 (en) * 2004-07-21 2006-09-19 Science Applications International Corporation Portable system and method for non-intrusive radioscopic imaging
JP2007010492A (ja) 2005-06-30 2007-01-18 Hitachi Metals Ltd セラミックハニカムフィルタの検査方法
US8499633B2 (en) * 2006-05-16 2013-08-06 Corning Incorporated Non-contact ultrasonic testing method and device for ceramic honeycomb structures
US7614304B2 (en) * 2006-05-16 2009-11-10 Corning Incorporated Ultrasonic testing system and method for ceramic honeycomb structures
JP2008058116A (ja) 2006-08-31 2008-03-13 Denso Corp 栓詰めハニカム構造体の検査方法および検査装置
JP2010522106A (ja) * 2007-03-20 2010-07-01 コーニング インコーポレイテッド セラミック・フィルタのための低収縮率施栓用混合物、栓を施されたハニカム・フィルタおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201465A (ja) * 2000-01-20 2001-07-27 Ngk Insulators Ltd X線を用いた非破壊検査方法
JP2004261644A (ja) * 2003-02-18 2004-09-24 Toyota Motor Corp 排ガス浄化フィルタ触媒用基材
JP2005283547A (ja) * 2004-03-31 2005-10-13 Ngk Insulators Ltd セラミック構造体の検査方法
JP2008145308A (ja) * 2006-12-12 2008-06-26 Cataler Corp スラリーの確認方法及び確認装置、並びにスラリーのコート方法
JP2010138770A (ja) * 2008-12-10 2010-06-24 Denso Corp セラミックフィルタ、その製造方法、及びその評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620744A4 *

Also Published As

Publication number Publication date
US8953738B2 (en) 2015-02-10
JP4913918B1 (ja) 2012-04-11
KR20130097777A (ko) 2013-09-03
EP2620744A4 (en) 2015-05-06
CN103109157A (zh) 2013-05-15
US20130188769A1 (en) 2013-07-25
EP2620744A1 (en) 2013-07-31
JP2012088305A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4913918B1 (ja) ハニカム構造体の検査方法及び検査装置
EP1730503B1 (en) Method for inspecting ceramic structures
JP6669738B2 (ja) セラミックス体の表面検査方法
JP4614001B2 (ja) 透過x線を用いた三次元定量方法
JP5401351B2 (ja) ハニカム構造体の検査方法
JP6779224B2 (ja) ハニカム構造体の端面検査方法
KR20210024438A (ko) 방사선 투과 검사 방법 및 장치, 및 미다공막의 제조 방법
WO2013008789A1 (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置
CN113464254B (zh) 柱状蜂窝过滤器的检查方法
WO2013008848A1 (ja) ハニカムフィルタの欠陥の検査方法及び検査装置並びにハニカムフィルタの製造方法
JP5616193B2 (ja) ハニカム構造体の欠陥の検査方法、及び、ハニカム構造体の欠陥の検査装置
JP4288265B2 (ja) 電磁波イメージングシステム、構造物透視装置および構造物透視方法
US20210302325A1 (en) Inspection method and inspection system for cylindrical honeycomb structure made of ceramics
JP2013140073A (ja) ハニカム構造体の封口部の検査装置及び検査方法
JP6005394B2 (ja) ハニカムフィルタの製造方法、及び、ハニカムフィルタの製造システム
Schmidt Jr et al. Optimization of a Portable Microwave Interference Scanning System for Nondestructive Testing of Multi‐Layered Dielectric Materials
JP2011232030A (ja) ディーゼルパティキュレートフィルタの評価方法及び評価装置
WO2015111618A1 (ja) ハニカム構造体およびこれを備えるガス処理装置
WO2012137649A1 (ja) ハニカム構造体用の外形検査装置及びハニカム構造体の製造方法
Bruno et al. X-ray refraction 2D and 3D techniques
Roth et al. Fine Scale Metrology on Cylindrical Structures Using X-ray Micro-computed Tomography
JP2017015509A (ja) ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
Green et al. Comparing Thermography and X-Ray Computed Tomography Analyses of Composite Helmets

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045830.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011826925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13825700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009907

Country of ref document: KR

Kind code of ref document: A