WO2012048955A1 - Packaging and dispensing of detergent compositions - Google Patents

Packaging and dispensing of detergent compositions Download PDF

Info

Publication number
WO2012048955A1
WO2012048955A1 PCT/EP2011/065453 EP2011065453W WO2012048955A1 WO 2012048955 A1 WO2012048955 A1 WO 2012048955A1 EP 2011065453 W EP2011065453 W EP 2011065453W WO 2012048955 A1 WO2012048955 A1 WO 2012048955A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
packaged product
coating
detergent
surfactant
Prior art date
Application number
PCT/EP2011/065453
Other languages
French (fr)
Inventor
Judith Maria Bonsall
Andrew Paul Chapple
John Francis Hubbard
Stephen Thomas Keningley
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to EP11752243.3A priority Critical patent/EP2627759B1/en
Priority to IN626MUN2013 priority patent/IN2013MN00626A/en
Priority to BR112013009131-2A priority patent/BR112013009131B1/en
Priority to ES11752243.3T priority patent/ES2644555T3/en
Priority to CN201180049644.4A priority patent/CN103180427B/en
Priority to BR112013008955A priority patent/BR112013008955A2/en
Publication of WO2012048955A1 publication Critical patent/WO2012048955A1/en
Priority to ZA2013/01714A priority patent/ZA201301714B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/02Caps or cap-like covers without lines of weakness, tearing strips, tags, or like opening or removal devices
    • B65D41/26Caps or cap-like covers serving as, or incorporating, drinking or measuring vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/06Containers or packages with special means for dispensing contents for dispensing powdered or granular material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means

Definitions

  • the present invention relates to the dosing and dispensing of concentrated detergent compositions.
  • Concentrated detergent compositions offer potential huge benefits arising from the reduced pack size which has consequent reductions in transportation savings and environmental benefits.
  • Such savings can be eaten away by very quickly by incorrect dosage.
  • Even very small amounts of wastage of highly concentrated products can amount to substantial amounts of chemicals when one considers the huge number of consumers carrying out laundry operations regularly.
  • a problem with some highly concentrated liquids is that the liquids adheres to the dosing device surface, so if the dosing device surface will retain some product after the liquid has been poured from such a device.
  • One solution would be to place the dosing device directly into the wash liquor. However, this then requires a separate dosing and closure device, if the package is to be reclosed during the washing process.
  • Known particulate products may leave less product residue, in the form of fines. However, this is still undesirable.
  • An object of the invention is therefore to provide a packaged concentrated detergent product which eliminates or at least reduces 'lost' product which remains locked in the package without rinsing.
  • a packaged product comprising a combination of a concentrated particulate detergent composition and a package, said package comprising a unitary dosing device and closure, and wherein at least 70 % by number of particles of the composition comprise a high- surfactant core and a hard coating.
  • the combination according to the invention is advantageous in that the closure is the dosing device and there is no need for two separate devices. These are provided by a single common device. The reduced amount of material involved in a single device, is substantial. The large particles of the invention do not form a film over the reservoir.
  • the coating reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing across a surface. This together with the particle size means the any composition left in the package after tipping/pouring etc. are present in localised amounts. A gentle tap releases them should any remain as visible, localised totally removable residue.
  • the invention is highly advantageous for compositions which are dosed via machine dispensing devices, such as the machine drawer of most front loading automatic washing machines; or for those washing processes where the composition is dosed directly into the wash liquor.
  • the package preferably comprises a narrow dispensing aperture.
  • a narrow dispensing aperture would not normally be desirable in a package for conventional particulate laundry compositions.
  • the reliable and predictable flow of the particulate composition of the invention allows for this. Flow can proceed without the blockages normally associated with known laundry powders flowing via narrow dispensing apertures.
  • the reliable, slow and steady flow is provided by the coated particles. From the experiments with consumers, we have determined that this beneficial flow behaviour is due to the way the particles keep flowing even after any tamping down in the container.
  • the large format of the particles does reduce the impact of stickiness as the number of potential bridging points is reduced and the force exerted by each particle when it attempts to move is much greater than a conventional powder due to the mass of each particle being approximately 25 times greater. As such the particles may be described as high mass particles.
  • the invention comprises a packaged product comprising a combination of a concentrated particulate detergent composition and a package, said package comprising a unitary dosing device and closure, and wherein at least 70 % by number of particles of the composition comprise a high mass coated core particulate.
  • the narrow dispensing aperture is preferably 2 - 5 cm in diameter.
  • the package may comprise an elongate, upright reservoir for storing the composition; e.g. a bottle.
  • Other packages may of course be used with the invention such as wide plastic reservoirs, and these comprise preferably a narrow dispensing aperture.
  • the closure mechanism avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness.
  • mechanism may comprise a screw-fit mechanism to ensure proper closure.
  • the closure mechanism may comprise a snap-fit mechanism, preferably with audible feedback to signal positively to the consumer that the package is closed. Due to the particle properties, a smooth lining of the reservoir is not essential. Arifacts such as flanges which are required by the moulding process for plastic closures, do not present a major problem, which would not be the case for a known concentrated detergent powder or liquid composition.
  • the narrow dispensing aperture may be flexible and/or comprise a flexible material so that flexing of the aperture is provided.
  • the narrow dispensing aperture may comprise a pour spout.
  • the narrow dispensing aperture e.g. spout is provided by cutting/tearing the pack or removing a portion of the pack e.g. along a line of weakening.
  • the aperture may be provided by tear strip defined by perforations in the packaging material. In embodiments comprising a tapered portion, this may only be apparent after removal of a portion of the pack. In this application, all percentages, unless indicated otherwise, are intended to be percentages by weight.
  • the single dosing and closure device is preferably sufficiently rigid in material or construction such that a portion e.g. a base or a side wall, can be tapped to move the particles within the device. Preferably such tapping creates audible feedback to the user to guide them as to the passage of the particles.
  • a rigid device is advantageous.
  • the or each package comprises at least one transparent portion. This provides positive feedback to the consumer of the proper emptying of the dosing and closure device.
  • transparent means that its light transmittance is greater than 25% at wavelength of about 410-800 nm.
  • the transparent layer of the package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm).
  • absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 x 100%
  • absorbency of the opaque layer may be measured as more than 0.6.
  • absorbency of the opaque layer may be measured as more than 0.6.
  • absorbency of bottle may be measured as less than 0.6
  • Suitable materials for the package include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or
  • the container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
  • the composition comprises greater than 50 wt% detergent surfactant.
  • the core comprises mainly surfactant.
  • the packaged particles are substantially the same shape and size as one another. The amount of coating on each coated particle is advantageously from 10 to 45, more preferably 20 to 35 % by weight of the particles.
  • the number percentage of the packaged composition of particles comprising the core and coating is preferably at least 85%.
  • the coating comprises water soluble inorganic salt.
  • the coated particles preferably comprise from 0.001 to 3 wt % perfume.
  • the core of the coated particles preferably comprises less than 5 wt%, even more preferably less than 2.5 wt% inorganic materials.
  • the coating is preferably sodium carbonate, optionally in admixture with a minor amount of SCMC and further optionally in admixture with one or more of sodium silicate, water soluble fluorescer, water soluble or dispersible shading dye and pigment or coloured dye.
  • each particle has perpendicular dimensions x, y and z, wherein x is from 0.2 to 2 mm, y is from 2.5 to 8mm (preferably 3 to 8 mm), and z is from 2.5 to 8 mm (preferably 3 to 8 mm),
  • the particles are desirably oblate spheroids with diameter of 3 to 6 mm and thickness of 1 to 2 mm.
  • At least some, and preferably a major portion by number of the particles may be coloured other than white, as this makes it easier to see them to determine that the required dose level has been reached. Multicoloured, e.g. some blue and some white, particles have been found to provide even higher visual appeal.
  • PCT/EP2010/055256 and PCT/EP2010/055257 there is described a process for manufacturing detergent particles comprising the steps of: a) forming a liquid surfactant blend comprising a major amount of surfactant and a minor amount of water, the surfactant part consisting of at least 51 wt% linear alkylbenzene sulfonate and at least one co-surfactant, the surfactant blend consisting of at most 20 wt% nonionic surfactant;
  • step (b) drying the liquid surfactant blend of step (a) in an evaporator or drier to a moisture content of less than 1 .5 wt% and cooling the output from the evaporator or dryer;
  • surfactant blend with a major part of LAS, to an extruder, optionally along with less than 10 wt% of other materials such as perfume, fluorescer, and extruding the surfactant blend to form an extrudate while periodically cutting the extrudate to form hard detergent particles with a diameter across the extruder of greater than 2 mm and a thickness along the axis of the extruder of greater than 0.2 mm, provided that the diameter is greater than the thickness;
  • the extruded hard detergent particles with up to 30 wt% coating material, preferably selected from inorganic material and mixtures of such material and nonionic material with a melting point in the range 40 to 90 °C.
  • the cooled dried output from the evaporator or drier stage (b) comprising at least 95 wt% preferably 96 wt%, more preferably 97 wt%, most preferably 98 wt% surfactant to be transferred to a mill and milled to particles of less than 1 .5 mm, preferably less than 1 mm average diameter before it is fed to the extrusion step (c).
  • a powdered flow aid such as Aerosil®, Alusil®, or Microsil®, with a particle diameter of from 0.1 to 10 pm may be added to the mill in an amount of 0.5 to 5 wt%, preferably 0.5 to 3 wt% (based on output from the mill) and blended into the particles during milling.
  • step b or the intermediate milling step, if used, is fed to the extruder, optionally along with minor amounts (less than 10 wt% total) of other materials such as perfume and /or fluorescer, and the mixture of materials fed to the extruder is extruded to form an extrudate with a diameter of greater than 2 mm, preferably greater than 3 mm, most preferably greater than 4 mm and preferably with a diameter of less than 7 mm, most preferably less than 5 mm, while periodically cutting the extrudate to form hard detergent particles with a maximum thickness of greater than 0.2 mm and less than 3 mm, preferably less than 2 mm, most preferably less than about 1 .5 mm and more than about 0.5 mm, even 0.7 mm.
  • the invention also encompasses other cross sections such as triangular, rectangular and even complex cross sections, such as one mimicking a flower with rotationally symmetrical "petals".
  • the invention can be operated on any extrudate that can be forced through a hole in the extruder or extruder plate; the key being that the average thickness of the extrudate should be kept below the level where dissolution will be slow. As discussed above this is a thickness of about 2 mm. Desirably multiple extrusions are made simultaneously and they may all have the same cross section or may have different cross sections. Normally they will all have the same length as they are cut off by the knife.
  • the cutting knife should be as thin as possible to allow high speed extrusion and minimal distortion of the extrudate during cutting.
  • the extrusion should preferably take place at a temperature of less than 45°C, more preferably less than 40°C to avoid stickiness and facilitate cutting.
  • the extrudates according to the present process are cut so that their major dimension is across the extruder and the minor dimension is along the axis of the extruder. This is the opposite to the normal extrusion of
  • the LAS containing surfactant blends can be extruded to make solid detergent particles that are hard enough to be used without any need to be structured by inorganic materials or other structurants as commonly found in prior art extruded detergent particles.
  • the amount of surfactant in the detergent particle can be much higher and the amount of builder in the detergent particle can be much lower.
  • the blend in step (a) comprises at least about 60 wt%, most preferably at least about 70 wt% surfactant and preferably at most about 40 wt%, most preferably at most 30 wt% water, the surfactant part consisting of at least 51 wt% linear alkyl benzene sulphonate salt (LAS) and at least one co-surfactant;
  • LAS linear alkyl benzene sulphonate salt
  • the co-surfactant is chosen from the group consisting of: SLES, and nonionic, together with optional soap and mixtures thereof.
  • SLES SLES
  • nonionic the upper limit for the amount of nonionic surfactant has been found to be 20 wt% of the total surfactant to avoid the dried material being too soft and cohesive to extrude because it has a hardness value less than 0.5 MPa.
  • the surfactant blend is dried in step (b) to a moisture content of less than 1 .2 wt%, more preferably less than 1.1 wt%, and most preferably less than 1 wt%. Drying may suitably be carried out using a wiped film evaporator or a Chemithon Turbo Tube® drier.
  • the extruded hard detergent particles may be coated by transferring them to a fluid bed and spraying onto them up to 40 wt% (based on coated detergent particle) of inorganic material in aqueous solution and drying off the water.
  • the coating material is not contributing to the wash performance of the composition then it is desirable to keep the level of coating as low as possible, preferably less than 35 wt% even less than 30 wt%, especially for larger extruded particles with a surface area to volume ratio of greater than 4 mm "1 .
  • the invention also provides a detergent composition comprising at least 70 wt%, preferably at least 85 wt% of coated particles made using the process according to the invention.
  • a detergent composition comprising at least 70 wt%, preferably at least 85 wt% of coated particles made using the process according to the invention.
  • compositions with up to 100 wt% of the particles are possible when basic additives are incorporated into the extruded particles, or into their coating.
  • the composition may also comprise, for example, an antifoam granule.
  • the coating is coloured. Particles of different colours may be used in admixture, or they can be blended with contrasting powder. Of course, particles of the same colour as one another may also be used to form a full composition.
  • the coating quality and appearance is very good due to the excellent surface of the cut extrudates onto which the coating is applied in association with the large particle size and S/V ratios of the preferred particles.
  • the detergent particles comprise perfume.
  • the perfume may be added into the extruder or premixed with the surfactant blend in the mill, or in a mixer placed after the mill, either as a liquid or as encapsulated perfume particles.
  • the perfume may be mixed with a nonionic material and blended. Such a blend may alternatively be applied by coating the extruded particles, for example by spraying it mixed with molten nonionic surfactant.
  • Perfume may also be introduced into the composition by means of a separate perfume granule and then the detergent particle does not need to comprise any perfume.
  • the composition comprises greater than 50 wt% detergent surfactant.
  • Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. Thus, it may be advantageous if the extruded core is made using a calcium tolerant surfactant blend according to the test herein described. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used. LAS can be at least partially replaced by MES, or, less preferably, partially replaced by up to 20 wt % PAS.
  • the surfactants are mixed together before being input to the drier. Conventional mixing equipment is used.
  • scraped film devices may be used.
  • a preferred form of scraped film device is a wiped film evaporator.
  • One such suitable wiped film evaporator is the "Dryex system" based on a wiped film evaporator available from Ballestra S.p.A..
  • Alternative drying equipment includes tube-type driers, such as a Chemithon Turbo Tube® drier, and soap driers.
  • the hot material exiting the scraped film drier is subsequently cooled and broken up into suitable sized pieces to feed to the extruder. Simultaneous cooling and breaking into flakes may conveniently be carried out using a chill roll. If the flakes from the chill roll are not suitable for direct feed to the extruder then they can be milled in a milling apparatus and/or they can be blended with other liquid or solid ingredients in a blending and milling apparatus, such as a ribbon mill. Such milled or blended material is desirably of particle size 1 mm or less for feeding to the extruder.
  • Particulate material with a mean particle size of 10 nm to 10 pm is preferred for use as a milling aid.
  • materials there may be mentioned, by way of example: aerosil®, alusil®, and microsil®.
  • the extruder provides further opportunities to blend in ingredients other than surfactants, or even to add further surfactants.
  • all of the anionic surfactant, or other surfactant supplied in admixture with water; i.e. as paste or as solution, is added into the drier to ensure that the water content can then be reduced and the material fed to and through the extruder is sufficiently dry.
  • Additional materials that can be blended into the extruder are thus mainly those that are used at very low levels in a detergent composition: such as fluorescer, shading dye, enzymes, perfume, silicone antifoams, polymeric additives and preservatives.
  • Solid additives are generally preferred. Liquids, such as perfume may be added at levels up to 2.5 wt%, preferably up to 1 .5 wt%. Solid particulate structuring (liquid absorbing) materials or builders, such as zeolite, carbonate, silicate are preferably not added to the blend being extruded. These materials are not needed due to the self structuring properties of the very dry LAS-based feed material. If any is used the total amount should be less than 5 wt%, preferably less than 4 wt%, most preferably less than 3 wt%. At such levels no significant structuring occurs and the inorganic particulate material is added for a different purpose, for instance as a flow aid to improve the feed of particles to the extruder.
  • the output from the extruder is shaped by the die plate used.
  • the extruded material has a tendency to swell up in the centre relative to the periphery.
  • An advantageous variant of the process takes the sliced extruded particles and coats them. This allows the particles to be coloured easily. It also further reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing. Coating makes them more suitable for use in detergent compositions that may be exposed to high humidity for long periods.
  • the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2mm diameter sphere).
  • the extruded particles can be considered as oblate spheroids with a major radius "a” and minor radius "b".
  • the surface area(S) to volume (V) ratio can be calculated as:
  • this surface area to volume ratio must be greater than 3 mm-1 .
  • the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle” should be less than 15 mm-1 .
  • any known coating may be used, for instance organic, including polymer, it has been found to be particularly advantageous to use an inorganic coating deposited by crystallisation from an aqueous solution as this appears to give positive dissolution benefits and the coating gives a good colour to the detergent particle, even at lower coating levels.
  • An aqueous spray-on of coating solution in a fluidised bed may also generate a further slight rounding of the detergent particles during the fluidisation process.
  • Suitable inorganic coating solutions include sodium carbonate, possibly in admixture with sodium sulphate, and sodium chloride. Food dyes, shading dyes, fluorescer and other optical modifiers can be added to the coating by dissolving them in the spray-on solution or dispersion.
  • Use of a builder salt such as sodium carbonate is particularly advantageous because it allows the detergent particle to have an even better performance by buffering the system in use at an ideal pH for maximum detergency of the anionic surfactant system. It also increases ionic strength, which is known to improve cleaning in hard water, and it is compatible with other detergent ingredients that may be admixed with the coated extruded detergent particles.
  • the amount of coating should lie in the range 3 to 50 wt% of the particle, preferably 20 to 40 wt% for the best results in terms of anti-caking properties of the detergent particles.
  • the coated particles dissolve easily in water and leave very low or no residues on dissolution, due to the absence of insoluble structurant materials such as zeolite.
  • the coated particles have an exceptional visual appearance, due to the smoothness of the coating coupled with the smoothness of the underlying particles, which is also believed to be a result of the lack of particulate structuring material in the extruded particles.
  • the coated detergent particle is curved.
  • the size is such that y and z are at least 3 mm, preferably 4 mm, most preferably 5 mm and x lies in the range 1 to 2 mm.
  • the coated detergent detergent particle may be shaped as a disc.
  • the core is primarily surfactant. It may also include detergency additives, such as perfume, shading dye, enzymes, cleaning polymers and soil release polymers.
  • the coated detergent particle comprises between 50 to 90 wt% of a surfactant, most preferably 70 to 90 wt %.
  • a surfactant most preferably 70 to 90 wt %.
  • the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by
  • Suitable anionic detergent compounds that may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • anionic surfactants are sodium lauryl ether sulphate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in
  • EP-A-328 177 (Unilever), which show resistance to salting out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides.
  • the chains of the surfactants may be branched or linear.
  • the fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration.
  • the anionic contribution from soap may be from 0 to 30 wt% of the total anionic. Use of more than 10 wt% soap is not preferred.
  • At least 50 wt % of the anionic surfactant is selected from: sodium C1 1 to C15 alkyl benzene sulphonates; and, sodium C12 to C18 alkyl sulphates.
  • the anionic surfactant is present in the coated detergent particle at levels between 15 to 85 wt%, more preferably 50 to 80wt%. 2) Non-Ionic Surfactants
  • Suitable non-ionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are C6 to C22 alkyl phenol- ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO.
  • the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.
  • the non-ionic surfactant is present in the coated detergent particle at levels between 5 to 75 wt%, more preferably 10 to 40 wt%.
  • Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt%. Preferably all the surfactants are mixed together before being dried. Conventional mixing equipment may be used.
  • the surfactant core of the detergent particle may be formed by roller compaction and subsequently coated with an inorganic salt.
  • the core is calcium tolerant and this is a preferred aspect because this reduces the need for a builder.
  • Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter.
  • the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
  • the surfactant blend in question is prepared at a concentration of 0.7 g surfactant solids per litre of water containing sufficient calcium ions to give a French hardness of 40 (4 x 10-3 Molar Ca2+).
  • Other hardness ion free electrolytes such as sodium chloride, sodium sulphate, and sodium hydroxide are added to the solution to adjust the ionic strength to 0.05M and the pH to 10.
  • the adsorption of light of wavelength 540 nm through 4 mm of sample is measured 15 minutes after sample preparation. Ten measurements are made and an average value is calculated. Samples that give an absorption value of less than 0.08 are deemed to be calcium tolerant.
  • Suitable calcium tolerant co- surfactants include SLES 1 -7EO, and alkyl ethoxylate non-ionic surfactants, particularly those with melting points less than 40°C.
  • a LAS/SLES surfactant blend has a superior foam profile to a LAS Nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam. SLES may be used at levels of up to 30%.
  • a LAS/NI surfactant blend provides a harder particle and its lower foam profile makes it more suited for automatic washing machine use.
  • the main component of the coating is the water soluble inorganic salt.
  • Other water compatible ingredients may be included in the coating.
  • fluorescer for example fluorescer, SCMC, shading dye, silicate, pigments and dyes.
  • SCMC for example fluorescer, SCMC, shading dye, silicate, pigments and dyes.
  • the water soluble inorganic salts are preferably selected from sodium carbonate, sodium chloride, sodium silicate and sodium sulphate, or mixtures thereof, most preferably 70 to 100 wt % sodium carbonate.
  • the water soluble inorganic salt is present as a coating on the particle.
  • the water soluble inorganic salt is preferably present at a level that reduces the stickiness of the detergent particle to a point where the particles are free flowing.
  • the amount of coating should lay in the range 1 to 40 wt % of the particle, preferably 20 to 40 wt %, even more preferably 25 to 35 wt % for the best results in terms of anti-caking properties of the detergent particles.
  • the coating is applied to the surface of the surfactant core, by crystallisation from an aqueous solution of the water soluble inorganic salt.
  • the aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt.
  • An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
  • the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2 mm diameter sphere).
  • this surface area to volume ratio must be greater than 3 mm "1 .
  • the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle” divided by "Volume of coated particle” should be less than 15 mm "1 .
  • a preferred calcium tolerant coated detergent particle comprises 15 to 100 wt% anionic surfactant of which 20 to 30 wt % is sodium lauryl ether sulphate.
  • Dye may advantageously be added to the coating, as noted above it may also be added to the surfactant mix in the core. In that case preferably the dye is dissolved in the surfactant before the core is formed.
  • Dyes are selected from anionic and non-ionic dyes
  • Anionic dyes are negatively charged in an aqueous medium at pH 7.
  • Examples of anionic dyes are found in the classes of acid and direct dyes in the Color Index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists).
  • Anionic dyes preferably contain at least one sulphonate or carboxylate groups.
  • Non-ionic dyes are uncharged in an aqueous medium at pH 7, examples are found in the class of disperse dyes in the Color Index.
  • the dyes may be alkoxylated.
  • Alkoxylated dyes are preferably of the following generic form: Dye-NR1 R2.
  • the NR1 R2 group is attached to an aromatic ring of the dye.
  • R1 and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units. Examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
  • R4 is selected from: H;
  • CH20(CH2CH20)zH and mixtures thereof; and, R5 is selected from: H; and, CH3
  • a preferred alkoxylated dye for use in the invention is:
  • the dye is selected from acid dyes; disperse dyes and alkoxylated dyes.
  • the dye is a non-ionic dye.
  • the dye is selected from those having: anthraquinone; mono-azo; bis- azo; xanthene; phthalocyanine; and, phenazine chromophores. More preferably the dye is selected from those having: anthraquinone and, mono-azo
  • the dye is added to the coating slurry and agitated before applying to the core of the particle.
  • Application may be by any suitable method, preferably spraying on to the core particle as detailed above.
  • the dye may be any colour, preferable the dye is blue, violet, green or red. Most preferably the dye is blue or violet.
  • the dye is selected from: acid blue 80, acid blue 62, acid violet 43, acid green 25, direct blue 86, acid blue 59, acid blue 98, direct violet 9, direct violet 99, direct violet 35, direct violet 51 , acid violet 50, acid yellow 3, acid red 94, acid red 51 , acid red 95, acid red 92, acid red 98, acid red 87, acid yellow 73, acid red 50, acid violet 9, acid red 52, food black 1 , food black 2, acid red 163, acid black 1 , acid orange 24, acid yellow 23, acid yellow 40, acid yellow 1 1 , acid red 180, acid red 155, acid red 1 , acid red 33, acid red 41 , acid red 19, acid orange 10, acid red 27, acid red 26, acid orange 20, acid orange 6, sulphonated Al and Zn
  • phthalocyanines solvent violet 13, disperse violet 26, disperse violet 28, solvent green 3, solvent blue 63, disperse blue 56, disperse violet 27, solvent yellow 33, disperse blue 79: 1 .
  • the dye is preferably a shading dye for imparting a perception of whiteness to a detergent textile.
  • the dye may be covalently bound to polymeric species.
  • a combination of dyes may be used.
  • the coated detergent particle comprises from 70 to 100 wt %, more preferably 85 to 90 wt %, of a detergent composition in a package.
  • the coated detergent particles are substantially the same shape and size by this is meant that at least 90 to 100 % of the coated detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated detergent particle in the corresponding dimension.
  • the particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
  • the ingredients described below may be present in the coating or the core.
  • Fluorescent Agent The coated detergent particle preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Suitable Fluorescers for use in the invention are described in chapter 7 of Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6.
  • Preferred fluorescers are selected from the classes distyrylbiphenyls,
  • the fluorescer is preferably sulphonated.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)- 2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2
  • Tinopal® DMS is the disodium salt of disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino- 1 ,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate.
  • Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the coated detergent particles do not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition may comprise one or more further polymers.
  • further polymers are carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacry late/acrylic acid copolymers.
  • One or more enzymes are preferably present in the composition.
  • the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB
  • lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063, WO 09/107091 and WO09/1 1 1258.
  • Preferred lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1.32. As used herein, the term
  • phospholipase is an enzyme that has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes that participate in the hydrolysis of phospholipids.
  • phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or
  • Suitable proteases include those of animal, vegetable or microbial origin.
  • protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Suitable protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM,
  • DyrazymTM EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase.
  • cutinase used according to the invention may be of any origin.
  • cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • Suitable amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM,
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia,
  • Acremonium e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 , 178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • Cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Peroxidases include GuardzymeTM and NovozymTM 51004
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Sequestrants may be present in the detergent particles.
  • the invention will be further described with reference to the following non-limiting examples.
  • coated large detergent particles are manufactured, following the process in PCT/EP2010/055256.
  • Surfactant raw materials were mixed together to give a 67 wt% active paste comprising 85 parts LAS (linear alkyl benzene sulphonate), 15 parts Nonionic Surfactant.
  • the raw materials used were:
  • Nonionic BASF Lutensol AO30
  • the paste was pre-heated to the feed temperature and fed to the top of a wiped film evaporator to reduce the moisture content and produce a solid intimate surfactant blend, which passed the calcium tolerance test.
  • the conditions used to produce this LAS/NI blend are given in Table 1 .
  • the cooled dried surfactant blend particles were milled using a hammer mill, 2% Alusil® was also added to the hammer mill as a mill aid.
  • the resulting milled material is hygroscopic and so it was stored in sealed containers.
  • the cooled dried milled composition was fed to a twin-screw co-rotating extruder fitted with a shaped orifice plate and cutter blade. A number of other components were also dosed into the extruder as shown in Table 2.
  • the average particle diameter and thickness of samples of the extruded particles were found to be 4.46 mm and 1 .13 mm respectively.
  • the standard deviation was acceptably low.
  • Coating wt% is based on weight of the coated particle. Table 3
  • Coated particles composition is given in Table 4.
  • the coated extruded particles have an excellent appearance due to their high surface smoothness. Without wishing to be bound by theory it is thought that this is because the uncoated particles are larger and more flattened than usual detergent particles and that their core has a much lower solids content than usual (indeed it is free of solid structuring materials, unlike prior art coated extruded particles).
  • Example 2
  • uncompacted (untapped) aerated form determined by measuring the increase in weight due to pouring the composition to fill a 1 litre container. In fact the container is overfilled and then excess powder removed by moving a straight edge over the brim to leave the contents level to the maximum height of the container.
  • the BD container was fitted with a removable collar to extend the height of the container. This extended container was then filled via the poured BD technique. The extended container was then placed on a Retsch Sieve Shaker and allowed to vibrate/tap for 5 min using the 0.2mm/"g" setting on the instrument. The collar was then removed and the excess powder levelled as per the standard BD measurement, the mass of the container measured and the Tapped BD calculated in the usual way.
  • Standard DFR Dynamic Flow Rate
  • a cylindrical glass tube having an internal diameter of 35 mm and a length of 600 mm.
  • the tube is securely clamped with its longitudinal axis vertical. Its lower end is terminated by means of a smooth cone of polyvinyl chloride having an internal angle of 15 DEG and a lower outlet orifice of diameter 22.5 mm.
  • a beam sensor is positioned 150 mm above the outlet, and a second beam sensor is positioned 250 mm above the first sensor.
  • the outlet orifice is temporarily closed, for example, by covering with a piece of card, and detergent composition is poured into the top of the cylinder until the detergent composition level is about 100 mm above the upper sensor.
  • the outlet is then opened and the time t (seconds) taken for the detergent composition level to fall from the upper sensor to the lower sensor is measured electronically.
  • the DFR is the tube volume between the sensors, divided by the time measured.
  • Each sample was given one "prod” after vibration to initiate flow as the outlet was narrow and tended to block with all powders. If one prod was insufficient to start flow then zero flow rate was recorded. Results are given in table 7.
  • the DFR of the uncoated crystals was worse than the smaller spherical coated particles under both tests (tapped and untapped). Uncoated crystals do however, flow much better than the uncoated prior art powders. It is thus feasible to use a small proportion of uncoated crystals in the composition, say up to 30% of the total particles, preferably up to 15% by number.
  • the coated crystals despite their superior appearance to the uncoated crystals have a lower DFR then the uncoated ones, hence the coating is improving appearance but not the flow.
  • the coated crystals do have a very consistent DFR as seen in table 3 (in fact they seem to flow the same way reliably no matter what their history).
  • Figure 1 shows a packaged product according to one aspect of the invention.
  • Figure 2 shows the packaged product of figure 1 in perspective.
  • a packaged product 1 comprising a
  • a concentrated particulate detergent composition 5 (according to as described herein, including any of the above examples of the invention) and a package 3, said package 3 comprising a unitary dosing device and closure 9.
  • the package comprises an elongate, upright reservoir 7 for storing the composition.
  • the package is a bottle 5.
  • the package has a narrow dispensing aperture19, approximately 2-5 cm in diameter, here approximately 3-4 cm.
  • the closure mechanism avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness.
  • the closure mechanism may comprise a screw-fit mechanism to ensure proper closure.
  • the closure mechanism may comprise a snap-fit mechanism, preferably with audible feedback to signal positively to the consumer that the package is closed. Due to the particle properties, a smooth lining of the reservoir is not essential. Arifacts such as flanges which are required by the moulding process for plastic closures, do not present a major problem, which would not be the case for a known concentrated detergent powder or liquid composition.
  • the single dosing and closure device is a sufficiently rigid in material or construction such that a portion e.g. a base or a side wall, can be tapped to move the particles within the device. Such tapping creates audible feedback to the user to guide them as to the passage of the particles.
  • the packaged product comprises a shown containing a particulate detergent composition 5.
  • the circular shaped aperture 19 allows pouring from any angle.
  • the bottle 5 is transparent polyethylene terephthalate (PETE) whereas the dosing closure is polypropylene (PP).
  • the dosing closure mechanism 9 avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness.
  • the closure mechanism comprises a screw-fit mechanism or a snap-fit mechanism. It comprises audible feedback to signal positively to the consumer that the package is closed.
  • the package including the dosing closure device are transparent, providing positive feedback to the consumer of the benefits described above. In so far as the packaging is concerned, "transparent" means that its light transmittance is greater than 25% at wavelength of about 410-800 nm.
  • the transparent layer of the package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm). Alternatively, absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 x 100%
  • absorbency of the opaque layer may be measured as more than 0.6.
  • absorbency of the opaque layer may be measured as more than 0.6.
  • Suitable materials for the package include, but are not limited to:
  • polypropylene PP
  • PE polyethylene
  • PC polycarbonate
  • PA polyamides
  • PETE polyethylene terephthalate
  • PVC polyvinylchloride
  • the container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
  • absorbency of bottle may be measured as less than 0.6
  • Suitable materials for the package and its dosing/closure member also include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS).
  • the container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.

Abstract

A packaged product comprising a combination of a concentrated particulate detergent composition (5) and a package (3), said package comprising a unitary dosing device and closure (9), and wherein at least 70 % by number of particles of the composition comprise a high-surfactant core and a hard coating.

Description

PACKAGING AND DISPENSING OF DETERGENT COMPOSITIONS
The present invention relates to the dosing and dispensing of concentrated detergent compositions.
Concentrated detergent compositions offer potential huge benefits arising from the reduced pack size which has consequent reductions in transportation savings and environmental benefits. However with highly concentrated products, such savings can be eaten away by very quickly by incorrect dosage. Even very small amounts of wastage of highly concentrated products can amount to substantial amounts of chemicals when one considers the huge number of consumers carrying out laundry operations regularly. A problem with some highly concentrated liquids is that the liquids adheres to the dosing device surface, so if the dosing device surface will retain some product after the liquid has been poured from such a device. One solution would be to place the dosing device directly into the wash liquor. However, this then requires a separate dosing and closure device, if the package is to be reclosed during the washing process. Known particulate products may leave less product residue, in the form of fines. However, this is still undesirable.
An object of the invention is therefore to provide a packaged concentrated detergent product which eliminates or at least reduces 'lost' product which remains locked in the package without rinsing. According to one aspect of the invention, there is provided a packaged product comprising a combination of a concentrated particulate detergent composition and a package, said package comprising a unitary dosing device and closure, and wherein at least 70 % by number of particles of the composition comprise a high- surfactant core and a hard coating. The combination according to the invention is advantageous in that the closure is the dosing device and there is no need for two separate devices. These are provided by a single common device. The reduced amount of material involved in a single device, is substantial. The large particles of the invention do not form a film over the reservoir. The coating reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing across a surface. This together with the particle size means the any composition left in the package after tipping/pouring etc. are present in localised amounts. A gentle tap releases them should any remain as visible, localised totally removable residue.
The invention is highly advantageous for compositions which are dosed via machine dispensing devices, such as the machine drawer of most front loading automatic washing machines; or for those washing processes where the composition is dosed directly into the wash liquor.
The provision of a single dosing and closure device is especially advantageous with packages having a narrow dispensing opening. This then only requires a smaller size of closure required, so that the dosing and closure device can be easily handled, in one hand. This allows for deft handling during machine-dosing device filling, such as filling the drawer of the washing machine in a laundry washing processes.
Accordingly the package preferably comprises a narrow dispensing aperture.
A narrow dispensing aperture would not normally be desirable in a package for conventional particulate laundry compositions. However the reliable and predictable flow of the particulate composition of the invention allows for this. Flow can proceed without the blockages normally associated with known laundry powders flowing via narrow dispensing apertures. The reliable, slow and steady flow is provided by the coated particles. From the experiments with consumers, we have determined that this beneficial flow behaviour is due to the way the particles keep flowing even after any tamping down in the container. The large format of the particles does reduce the impact of stickiness as the number of potential bridging points is reduced and the force exerted by each particle when it attempts to move is much greater than a conventional powder due to the mass of each particle being approximately 25 times greater. As such the particles may be described as high mass particles. Accordingly, according to one aspect the invention comprises a packaged product comprising a combination of a concentrated particulate detergent composition and a package, said package comprising a unitary dosing device and closure, and wherein at least 70 % by number of particles of the composition comprise a high mass coated core particulate.
The narrow dispensing aperture is preferably 2 - 5 cm in diameter.
The package may comprise an elongate, upright reservoir for storing the composition; e.g. a bottle. Other packages may of course be used with the invention such as wide plastic reservoirs, and these comprise preferably a narrow dispensing aperture.
The closure mechanism avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness. The closure
mechanism may comprise a screw-fit mechanism to ensure proper closure.
Alternatively, the closure mechanism may comprise a snap-fit mechanism, preferably with audible feedback to signal positively to the consumer that the package is closed. Due to the particle properties, a smooth lining of the reservoir is not essential. Arifacts such as flanges which are required by the moulding process for plastic closures, do not present a major problem, which would not be the case for a known concentrated detergent powder or liquid composition.
The narrow dispensing aperture may be flexible and/or comprise a flexible material so that flexing of the aperture is provided.
Preferably, the narrow dispensing aperture may comprise a pour spout.
Preferably the narrow dispensing aperture e.g. spout is provided by cutting/tearing the pack or removing a portion of the pack e.g. along a line of weakening. For example the aperture may be provided by tear strip defined by perforations in the packaging material. In embodiments comprising a tapered portion, this may only be apparent after removal of a portion of the pack. In this application, all percentages, unless indicated otherwise, are intended to be percentages by weight.
The single dosing and closure device is preferably sufficiently rigid in material or construction such that a portion e.g. a base or a side wall, can be tapped to move the particles within the device. Preferably such tapping creates audible feedback to the user to guide them as to the passage of the particles. For this purpose a rigid device is advantageous.
Preferably the or each package comprises at least one transparent portion. This provides positive feedback to the consumer of the proper emptying of the dosing and closure device.
In so far as the packaging is concerned, "transparent" means that its light transmittance is greater than 25% at wavelength of about 410-800 nm. The transparent layer of the package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm).
Alternatively, absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 x 100%
/j Q absorbency
Conversely, absorbency of the opaque layer may be measured as more than 0.6. For purposes of the invention, as long as one wavelength in the visible light range has greater than 25% transmittance, the container is considered to be
transparent.
Alternatively, absorbency of bottle may be measured as less than 0.6
(approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 1 oabsorbency x 100% and
corresponding absorbency levels for the remaining preferred levels above.
Suitable materials for the package include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or
polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS). The container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding. Preferably the composition comprises greater than 50 wt% detergent surfactant. Preferably the core comprises mainly surfactant. Preferably the packaged particles are substantially the same shape and size as one another. The amount of coating on each coated particle is advantageously from 10 to 45, more preferably 20 to 35 % by weight of the particles.
The number percentage of the packaged composition of particles comprising the core and coating is preferably at least 85%.
Preferably the coating comprises water soluble inorganic salt. The coated particles preferably comprise from 0.001 to 3 wt % perfume.
The core of the coated particles preferably comprises less than 5 wt%, even more preferably less than 2.5 wt% inorganic materials.
The coating is preferably sodium carbonate, optionally in admixture with a minor amount of SCMC and further optionally in admixture with one or more of sodium silicate, water soluble fluorescer, water soluble or dispersible shading dye and pigment or coloured dye.
Preferably, each particle has perpendicular dimensions x, y and z, wherein x is from 0.2 to 2 mm, y is from 2.5 to 8mm (preferably 3 to 8 mm), and z is from 2.5 to 8 mm (preferably 3 to 8 mm),
The particles are desirably oblate spheroids with diameter of 3 to 6 mm and thickness of 1 to 2 mm.
At least some, and preferably a major portion by number of the particles may be coloured other than white, as this makes it easier to see them to determine that the required dose level has been reached. Multicoloured, e.g. some blue and some white, particles have been found to provide even higher visual appeal.
In PCT/EP2010/055256 and PCT/EP2010/055257 there is described a process for manufacturing detergent particles comprising the steps of: a) forming a liquid surfactant blend comprising a major amount of surfactant and a minor amount of water, the surfactant part consisting of at least 51 wt% linear alkylbenzene sulfonate and at least one co-surfactant, the surfactant blend consisting of at most 20 wt% nonionic surfactant;
b) drying the liquid surfactant blend of step (a) in an evaporator or drier to a moisture content of less than 1 .5 wt% and cooling the output from the evaporator or dryer;
c) feeding the cooled material, which output comprises at least 93 wt%
surfactant blend with a major part of LAS, to an extruder, optionally along with less than 10 wt% of other materials such as perfume, fluorescer, and extruding the surfactant blend to form an extrudate while periodically cutting the extrudate to form hard detergent particles with a diameter across the extruder of greater than 2 mm and a thickness along the axis of the extruder of greater than 0.2 mm, provided that the diameter is greater than the thickness;
d) optionally, coating the extruded hard detergent particles with up to 30 wt% coating material, preferably selected from inorganic material and mixtures of such material and nonionic material with a melting point in the range 40 to 90 °C.
To facilitate extrusion it may be advantageous for the cooled dried output from the evaporator or drier stage (b) comprising at least 95 wt% preferably 96 wt%, more preferably 97 wt%, most preferably 98 wt% surfactant to be transferred to a mill and milled to particles of less than 1 .5 mm, preferably less than 1 mm average diameter before it is fed to the extrusion step (c).
To modify the properties of the milled material a powdered flow aid, such as Aerosil®, Alusil®, or Microsil®, with a particle diameter of from 0.1 to 10 pm may be added to the mill in an amount of 0.5 to 5 wt%, preferably 0.5 to 3 wt% (based on output from the mill) and blended into the particles during milling.
The output from step b, or the intermediate milling step, if used, is fed to the extruder, optionally along with minor amounts (less than 10 wt% total) of other materials such as perfume and /or fluorescer, and the mixture of materials fed to the extruder is extruded to form an extrudate with a diameter of greater than 2 mm, preferably greater than 3 mm, most preferably greater than 4 mm and preferably with a diameter of less than 7 mm, most preferably less than 5 mm, while periodically cutting the extrudate to form hard detergent particles with a maximum thickness of greater than 0.2 mm and less than 3 mm, preferably less than 2 mm, most preferably less than about 1 .5 mm and more than about 0.5 mm, even 0.7 mm. Whilst the preferred extrudate is of circular cross section, the invention also encompasses other cross sections such as triangular, rectangular and even complex cross sections, such as one mimicking a flower with rotationally symmetrical "petals". Indeed the invention can be operated on any extrudate that can be forced through a hole in the extruder or extruder plate; the key being that the average thickness of the extrudate should be kept below the level where dissolution will be slow. As discussed above this is a thickness of about 2 mm. Desirably multiple extrusions are made simultaneously and they may all have the same cross section or may have different cross sections. Normally they will all have the same length as they are cut off by the knife. The cutting knife should be as thin as possible to allow high speed extrusion and minimal distortion of the extrudate during cutting. The extrusion should preferably take place at a temperature of less than 45°C, more preferably less than 40°C to avoid stickiness and facilitate cutting. The extrudates according to the present process are cut so that their major dimension is across the extruder and the minor dimension is along the axis of the extruder. This is the opposite to the normal extrusion of
surfactants. Cutting in this way increases the surface area that is a "cut" surface. It also allows the extruded particle to expand considerably along its axis after cutting, whilst maintaining a relatively high surface to volume ratio, which is believed to increase its solubility and also results in an attractive biconvex, or lentil, appearance. Elsewhere we refer to this shape as an oblate spheroid. This is essentially a rotation of an ellipse about its minor axis.
It is surprising that at very low water contents the LAS containing surfactant blends can be extruded to make solid detergent particles that are hard enough to be used without any need to be structured by inorganic materials or other structurants as commonly found in prior art extruded detergent particles. Thus, the amount of surfactant in the detergent particle can be much higher and the amount of builder in the detergent particle can be much lower.
Preferably the blend in step (a) comprises at least about 60 wt%, most preferably at least about 70 wt% surfactant and preferably at most about 40 wt%, most preferably at most 30 wt% water, the surfactant part consisting of at least 51 wt% linear alkyl benzene sulphonate salt (LAS) and at least one co-surfactant;
Preferably, the co-surfactant is chosen from the group consisting of: SLES, and nonionic, together with optional soap and mixtures thereof. The only proviso is that when nonionic is used the upper limit for the amount of nonionic surfactant has been found to be 20 wt% of the total surfactant to avoid the dried material being too soft and cohesive to extrude because it has a hardness value less than 0.5 MPa. Preferably, the surfactant blend is dried in step (b) to a moisture content of less than 1 .2 wt%, more preferably less than 1.1 wt%, and most preferably less than 1 wt%. Drying may suitably be carried out using a wiped film evaporator or a Chemithon Turbo Tube® drier.
The extruded hard detergent particles may be coated by transferring them to a fluid bed and spraying onto them up to 40 wt% (based on coated detergent particle) of inorganic material in aqueous solution and drying off the water.
If the coating material is not contributing to the wash performance of the composition then it is desirable to keep the level of coating as low as possible, preferably less than 35 wt% even less than 30 wt%, especially for larger extruded particles with a surface area to volume ratio of greater than 4 mm"1.
Surprisingly we have found that the appearance of the coated particles in a package is very pleasing. Without wishing to be bound by theory, we believe that this high quality coating appearance is due to the smoothness of the underlying extruded and cut particle. By starting with a smooth surface, we unexpectedly found it easy to obtain a high quality coating finish (as measured by light reflectance and smoothness) using simple coating techniques.
The invention also provides a detergent composition comprising at least 70 wt%, preferably at least 85 wt% of coated particles made using the process according to the invention. However, compositions with up to 100 wt% of the particles are possible when basic additives are incorporated into the extruded particles, or into their coating. The composition may also comprise, for example, an antifoam granule. When the particle is coated it is preferred if the coating is coloured. Particles of different colours may be used in admixture, or they can be blended with contrasting powder. Of course, particles of the same colour as one another may also be used to form a full composition. As described above the coating quality and appearance is very good due to the excellent surface of the cut extrudates onto which the coating is applied in association with the large particle size and S/V ratios of the preferred particles.
It is particularly preferred that the detergent particles comprise perfume. The perfume may be added into the extruder or premixed with the surfactant blend in the mill, or in a mixer placed after the mill, either as a liquid or as encapsulated perfume particles. In an alternative process, the perfume may be mixed with a nonionic material and blended. Such a blend may alternatively be applied by coating the extruded particles, for example by spraying it mixed with molten nonionic surfactant. Perfume may also be introduced into the composition by means of a separate perfume granule and then the detergent particle does not need to comprise any perfume.
The Surfactant Blend
Preferably the composition comprises greater than 50 wt% detergent surfactant. Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. Thus, it may be advantageous if the extruded core is made using a calcium tolerant surfactant blend according to the test herein described. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used. LAS can be at least partially replaced by MES, or, less preferably, partially replaced by up to 20 wt % PAS.
Blending
The surfactants are mixed together before being input to the drier. Conventional mixing equipment is used.
Drying
To achieve the very low moisture content of the surfactant blend, scraped film devices may be used. A preferred form of scraped film device is a wiped film evaporator. One such suitable wiped film evaporator is the "Dryex system" based on a wiped film evaporator available from Ballestra S.p.A.. Alternative drying equipment includes tube-type driers, such as a Chemithon Turbo Tube® drier, and soap driers.
Chilling and Milling The hot material exiting the scraped film drier is subsequently cooled and broken up into suitable sized pieces to feed to the extruder. Simultaneous cooling and breaking into flakes may conveniently be carried out using a chill roll. If the flakes from the chill roll are not suitable for direct feed to the extruder then they can be milled in a milling apparatus and/or they can be blended with other liquid or solid ingredients in a blending and milling apparatus, such as a ribbon mill. Such milled or blended material is desirably of particle size 1 mm or less for feeding to the extruder.
It is particularly advantageous to add a milling aid at this point in the process. Particulate material with a mean particle size of 10 nm to 10 pm is preferred for use as a milling aid. Among such materials, there may be mentioned, by way of example: aerosil®, alusil®, and microsil®.
Extruding and Cutting
The extruder provides further opportunities to blend in ingredients other than surfactants, or even to add further surfactants. However, it is generally preferred that all of the anionic surfactant, or other surfactant supplied in admixture with water; i.e. as paste or as solution, is added into the drier to ensure that the water content can then be reduced and the material fed to and through the extruder is sufficiently dry. Additional materials that can be blended into the extruder are thus mainly those that are used at very low levels in a detergent composition: such as fluorescer, shading dye, enzymes, perfume, silicone antifoams, polymeric additives and preservatives. The limit on such additional materials blended in the extruder has been found to be about 10 wt%, but it is preferred for product quality to be ideal to keep it to a maximum of 5 wt%. Solid additives are generally preferred. Liquids, such as perfume may be added at levels up to 2.5 wt%, preferably up to 1 .5 wt%. Solid particulate structuring (liquid absorbing) materials or builders, such as zeolite, carbonate, silicate are preferably not added to the blend being extruded. These materials are not needed due to the self structuring properties of the very dry LAS-based feed material. If any is used the total amount should be less than 5 wt%, preferably less than 4 wt%, most preferably less than 3 wt%. At such levels no significant structuring occurs and the inorganic particulate material is added for a different purpose, for instance as a flow aid to improve the feed of particles to the extruder.
The output from the extruder is shaped by the die plate used. The extruded material has a tendency to swell up in the centre relative to the periphery. We have found that if a cylindrical extrudate is regularly sliced as it exits the extruder the resulting shapes are short cylinders with two convex ends. These particles are herein described as oblate spheroids, or lentils. This shape is pleasing visually.
Coating
An advantageous variant of the process takes the sliced extruded particles and coats them. This allows the particles to be coloured easily. It also further reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing. Coating makes them more suitable for use in detergent compositions that may be exposed to high humidity for long periods.
By coating such large extruded particles the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2mm diameter sphere).
The extruded particles can be considered as oblate spheroids with a major radius "a" and minor radius "b". Hence, the surface area(S) to volume (V) ratio can be calculated as:
Figure imgf000016_0001
When <≡ is the eccentricity of the particle.
For optimum dissolution properties, this surface area to volume ratio must be greater than 3 mm-1 . However, the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle" should be less than 15 mm-1 . Although the skilled person might assume that any known coating may be used, for instance organic, including polymer, it has been found to be particularly advantageous to use an inorganic coating deposited by crystallisation from an aqueous solution as this appears to give positive dissolution benefits and the coating gives a good colour to the detergent particle, even at lower coating levels. An aqueous spray-on of coating solution in a fluidised bed may also generate a further slight rounding of the detergent particles during the fluidisation process.
Suitable inorganic coating solutions include sodium carbonate, possibly in admixture with sodium sulphate, and sodium chloride. Food dyes, shading dyes, fluorescer and other optical modifiers can be added to the coating by dissolving them in the spray-on solution or dispersion. Use of a builder salt such as sodium carbonate is particularly advantageous because it allows the detergent particle to have an even better performance by buffering the system in use at an ideal pH for maximum detergency of the anionic surfactant system. It also increases ionic strength, which is known to improve cleaning in hard water, and it is compatible with other detergent ingredients that may be admixed with the coated extruded detergent particles. If a fluid bed is used to apply the coating solution, the skilled worker will know how to adjust the spray conditions in terms of Stokes number and possibly Akkermans number (FNm) so that the particles are coated and not significantly agglomerated. Suitable teaching to assist in this may be found in EP1 187903, EP993505 and Powder technology 65 (1991 ) 257-272 (Ennis).
It will be appreciated by those skilled in the art that multiple layered coatings, of the same or different coating materials, could be applied, but a single coating layer is preferred, for simplicity of operation, and to maximise the thickness of the coating. The amount of coating should lie in the range 3 to 50 wt% of the particle, preferably 20 to 40 wt% for the best results in terms of anti-caking properties of the detergent particles. The extruded particulate detergent composition
The coated particles dissolve easily in water and leave very low or no residues on dissolution, due to the absence of insoluble structurant materials such as zeolite. The coated particles have an exceptional visual appearance, due to the smoothness of the coating coupled with the smoothness of the underlying particles, which is also believed to be a result of the lack of particulate structuring material in the extruded particles. The coated detergent particle is curved. The coated detergent particle is preferably lenticular (shaped like a whole dried lentil), an oblate ellipsoid, where z and y are the equatorial diameters and x is the polar diameter; preferably y = z. The size is such that y and z are at least 3 mm, preferably 4 mm, most preferably 5 mm and x lies in the range 1 to 2 mm.
The coated detergent detergent particle may be shaped as a disc.
The core is primarily surfactant. It may also include detergency additives, such as perfume, shading dye, enzymes, cleaning polymers and soil release polymers.
SURFACTANT
The coated detergent particle comprises between 50 to 90 wt% of a surfactant, most preferably 70 to 90 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by
Schwartz, Perry & Berch, Interscience 1958, in the current edition of
"McCutcheon's Emulsifiers and Detergents" published by Manufacturing
Confectioners Company or in "Tenside Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 . Preferably the surfactants used are saturated. 1 ) Anionic Surfactants
Suitable anionic detergent compounds that may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. Most preferred anionic surfactants are sodium lauryl ether sulphate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in
EP-A-328 177 (Unilever), which show resistance to salting out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides. The chains of the surfactants may be branched or linear.
Soaps may also be present. The fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration. The anionic contribution from soap may be from 0 to 30 wt% of the total anionic. Use of more than 10 wt% soap is not preferred.
Preferably, at least 50 wt % of the anionic surfactant is selected from: sodium C1 1 to C15 alkyl benzene sulphonates; and, sodium C12 to C18 alkyl sulphates.
Preferably, the anionic surfactant is present in the coated detergent particle at levels between 15 to 85 wt%, more preferably 50 to 80wt%. 2) Non-Ionic Surfactants
Suitable non-ionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are C6 to C22 alkyl phenol- ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO. Preferably, the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.
Preferably the non-ionic surfactant is present in the coated detergent particle at levels between 5 to 75 wt%, more preferably 10 to 40 wt%.
Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt%. Preferably all the surfactants are mixed together before being dried. Conventional mixing equipment may be used. The surfactant core of the detergent particle may be formed by roller compaction and subsequently coated with an inorganic salt.
Calcium Tolerant Surfactant System
In another aspect the core is calcium tolerant and this is a preferred aspect because this reduces the need for a builder.
Surfactant blends that do not require builders to be present for effective
detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
Calcium-tolerance of the surfactant blend is tested as follows:
The surfactant blend in question is prepared at a concentration of 0.7 g surfactant solids per litre of water containing sufficient calcium ions to give a French hardness of 40 (4 x 10-3 Molar Ca2+). Other hardness ion free electrolytes such as sodium chloride, sodium sulphate, and sodium hydroxide are added to the solution to adjust the ionic strength to 0.05M and the pH to 10. The adsorption of light of wavelength 540 nm through 4 mm of sample is measured 15 minutes after sample preparation. Ten measurements are made and an average value is calculated. Samples that give an absorption value of less than 0.08 are deemed to be calcium tolerant.
Examples of surfactant blends that satisfy the above test for calcium tolerance include those having a major part of LAS surfactant (which is not of itself calcium tolerant) blended with one or more other surfactants (co-surfactants) that are calcium tolerant to give a blend that is sufficiently calcium tolerant to be usable with little or no builder and to pass the given test. Suitable calcium tolerant co- surfactants include SLES 1 -7EO, and alkyl ethoxylate non-ionic surfactants, particularly those with melting points less than 40°C.
A LAS/SLES surfactant blend has a superior foam profile to a LAS Nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam. SLES may be used at levels of up to 30%. A LAS/NI surfactant blend provides a harder particle and its lower foam profile makes it more suited for automatic washing machine use.
THE COATING
The main component of the coating is the water soluble inorganic salt. Other water compatible ingredients may be included in the coating. For example fluorescer, SCMC, shading dye, silicate, pigments and dyes. Water Soluble Inorganic Salts
The water soluble inorganic salts are preferably selected from sodium carbonate, sodium chloride, sodium silicate and sodium sulphate, or mixtures thereof, most preferably 70 to 100 wt % sodium carbonate. The water soluble inorganic salt is present as a coating on the particle. The water soluble inorganic salt is preferably present at a level that reduces the stickiness of the detergent particle to a point where the particles are free flowing.
It will be appreciated by those skilled in the art that multiple layered coatings, of the same or different coating materials, could be applied, but a single coating layer is preferred, for simplicity of operation, and to maximise the thickness of the coating. The amount of coating should lay in the range 1 to 40 wt % of the particle, preferably 20 to 40 wt %, even more preferably 25 to 35 wt % for the best results in terms of anti-caking properties of the detergent particles.
The coating is applied to the surface of the surfactant core, by crystallisation from an aqueous solution of the water soluble inorganic salt. The aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt. An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
By coating the large detergent particles of the current invention the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2 mm diameter sphere).
For optimum dissolution properties, this surface area to volume ratio must be greater than 3 mm"1. However, the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle" should be less than 15 mm"1.
A preferred calcium tolerant coated detergent particle comprises 15 to 100 wt% anionic surfactant of which 20 to 30 wt % is sodium lauryl ether sulphate.
Dye
Dye may advantageously be added to the coating, as noted above it may also be added to the surfactant mix in the core. In that case preferably the dye is dissolved in the surfactant before the core is formed.
Dyes are described in Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6.
Dyes are selected from anionic and non-ionic dyes Anionic dyes are negatively charged in an aqueous medium at pH 7. Examples of anionic dyes are found in the classes of acid and direct dyes in the Color Index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists). Anionic dyes preferably contain at least one sulphonate or carboxylate groups. Non-ionic dyes are uncharged in an aqueous medium at pH 7, examples are found in the class of disperse dyes in the Color Index.
The dyes may be alkoxylated. Alkoxylated dyes are preferably of the following generic form: Dye-NR1 R2. The NR1 R2 group is attached to an aromatic ring of the dye. R1 and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units. Examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
A preferred polyoxyalkylene chain is [(CH2CR3HO)x(CH2CR4HO)yR5) in which x+y < 5 wherein y > 1 and z = 0 to 5, R3 is selected from: H; CH3;
CH20(CH2CH20)zH and mixtures thereof; R4 is selected from: H;
CH20(CH2CH20)zH and mixtures thereof; and, R5 is selected from: H; and, CH3
A preferred alkoxylated dye for use in the invention is:
Figure imgf000024_0001
Preferably the dye is selected from acid dyes; disperse dyes and alkoxylated dyes.
Most preferably the dye is a non-ionic dye.
Preferably the dye is selected from those having: anthraquinone; mono-azo; bis- azo; xanthene; phthalocyanine; and, phenazine chromophores. More preferably the dye is selected from those having: anthraquinone and, mono-azo
chromophores.
In a preferred process, the dye is added to the coating slurry and agitated before applying to the core of the particle. Application may be by any suitable method, preferably spraying on to the core particle as detailed above.
The dye may be any colour, preferable the dye is blue, violet, green or red. Most preferably the dye is blue or violet.
Preferably the dye is selected from: acid blue 80, acid blue 62, acid violet 43, acid green 25, direct blue 86, acid blue 59, acid blue 98, direct violet 9, direct violet 99, direct violet 35, direct violet 51 , acid violet 50, acid yellow 3, acid red 94, acid red 51 , acid red 95, acid red 92, acid red 98, acid red 87, acid yellow 73, acid red 50, acid violet 9, acid red 52, food black 1 , food black 2, acid red 163, acid black 1 , acid orange 24, acid yellow 23, acid yellow 40, acid yellow 1 1 , acid red 180, acid red 155, acid red 1 , acid red 33, acid red 41 , acid red 19, acid orange 10, acid red 27, acid red 26, acid orange 20, acid orange 6, sulphonated Al and Zn
phthalocyanines, solvent violet 13, disperse violet 26, disperse violet 28, solvent green 3, solvent blue 63, disperse blue 56, disperse violet 27, solvent yellow 33, disperse blue 79: 1 .
The dye is preferably a shading dye for imparting a perception of whiteness to a detergent textile.
The dye may be covalently bound to polymeric species. A combination of dyes may be used. The Coated Detergent Particle
Preferably, the coated detergent particle comprises from 70 to 100 wt %, more preferably 85 to 90 wt %, of a detergent composition in a package.
Preferably, the coated detergent particles are substantially the same shape and size by this is meant that at least 90 to 100 % of the coated detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated detergent particle in the corresponding dimension.
Water Content
The particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
Other Ingredients
The ingredients described below may be present in the coating or the core. Fluorescent Agent The coated detergent particle preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Suitable Fluorescers for use in the invention are described in chapter 7 of Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6.
Preferred fluorescers are selected from the classes distyrylbiphenyls,
triazinylaminostilbenes, bis(1 ,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2- yl)biphenyls, 1 ,3-diphenyl-2-pyrazolines and courmarins. The fluorescer is preferably sulphonated.
Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)- 2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2
hydroxyethyl) amino 1 ,3,5-triazin-2-yl)]amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5-triazin-2-yl)]amino} stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
Tinopal® DMS is the disodium salt of disodium 4,4'-bis{[(4-anilino-6-morpholino- 1 ,3,5-triazin-2-yl)]amino} stilbene-2-2' disulfonate. Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
Perfume
Preferably, the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and
Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
It is preferred that the coated detergent particles do not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
Polymers
The composition may comprise one or more further polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacry late/acrylic acid copolymers.
Enzymes
One or more enzymes are preferably present in the composition.
Preferably the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB
1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063, WO 09/107091 and WO09/1 1 1258.
Preferred lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™
(Novozymes A/S) and Lipoclean™. The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1.32. As used herein, the term
phospholipase is an enzyme that has activity towards phospholipids.
Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes that participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or
phosphatidic acid respectively.
Suitable proteases include those of animal, vegetable or microbial origin.
Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Suitable protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™,
Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.). The method of the invention may be carried out in the presence of cutinase.
classified in EC 3.1 .1 .74. The cutinase used according to the invention may be of any origin. Preferably, cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin. Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Suitable amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™,
Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia,
Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 , 178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307. Cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao
Corporation). Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Peroxidases include Guardzyme™ and Novozym™ 51004
(Novozymes A/S).
Further suitable enzymes are disclosed in WO2009/087524, WO2009/090576, WO2009/148983 and WO2008/007318. Enzyme Stabilizers
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
Sequestrants may be present in the detergent particles. The invention will be further described with reference to the following non-limiting examples.
EXAMPLES
In example 1 coated large detergent particles are manufactured, following the process in PCT/EP2010/055256.
EXAMPLE 1 - Preparation of the coated particles
Surfactant raw materials were mixed together to give a 67 wt% active paste comprising 85 parts LAS (linear alkyl benzene sulphonate), 15 parts Nonionic Surfactant. The raw materials used were:
LAS: Unger Ufasan 65
Nonionic: BASF Lutensol AO30
The paste was pre-heated to the feed temperature and fed to the top of a wiped film evaporator to reduce the moisture content and produce a solid intimate surfactant blend, which passed the calcium tolerance test. The conditions used to produce this LAS/NI blend are given in Table 1 .
Table 1
Jacket Vessel Temp. 81 °C
Feed Nominal Throughput 55 kg/hr
Temperature 59 °C
Density 1 .08 kg/I
Product Moisture(KF*) 0.85 %
Free NaOH 0.06 %
*ana ysed by Karl Fischer method On exit from the base of the wiped film evaporator, the dried surfactant blend dropped onto a chill roll, where it was cooled to less than 30°C.
After leaving the chill roll, the cooled dried surfactant blend particles were milled using a hammer mill, 2% Alusil® was also added to the hammer mill as a mill aid. The resulting milled material is hygroscopic and so it was stored in sealed containers.
The cooled dried milled composition was fed to a twin-screw co-rotating extruder fitted with a shaped orifice plate and cutter blade. A number of other components were also dosed into the extruder as shown in Table 2.
Table 2
Figure imgf000033_0001
The average particle diameter and thickness of samples of the extruded particles were found to be 4.46 mm and 1 .13 mm respectively. The standard deviation was acceptably low.
The particles were then coated using a Strea 1 fluid bed. The coating was added as an aqueous solution and coating completed under conditions given in Table 3. Coating wt% is based on weight of the coated particle. Table 3
Figure imgf000034_0001
Coated particles composition is given in Table 4.
Table 4
Figure imgf000034_0002
The coated extruded particles have an excellent appearance due to their high surface smoothness. Without wishing to be bound by theory it is thought that this is because the uncoated particles are larger and more flattened than usual detergent particles and that their core has a much lower solids content than usual (indeed it is free of solid structuring materials, unlike prior art coated extruded particles). Example 2
We measured the ratio of Tapped BD to Poured BD for the coated particles from example 1 (oblate spheroids) and two conventional detergent powders. The results are given in table 5.
Poured BD - The bulk density of the whole detergent composition in the
uncompacted (untapped) aerated form, determined by measuring the increase in weight due to pouring the composition to fill a 1 litre container. In fact the container is overfilled and then excess powder removed by moving a straight edge over the brim to leave the contents level to the maximum height of the container.
Tapped BD - The BD container was fitted with a removable collar to extend the height of the container. This extended container was then filled via the poured BD technique. The extended container was then placed on a Retsch Sieve Shaker and allowed to vibrate/tap for 5 min using the 0.2mm/"g" setting on the instrument. The collar was then removed and the excess powder levelled as per the standard BD measurement, the mass of the container measured and the Tapped BD calculated in the usual way.
Table 5
Figure imgf000035_0001
*extruded 5mm diameter and cut to 1 mm thick before spray coating with sodium carbonate solution to give a particle having a 30 wt% sodium carbonate coating which is an oblate spheroid with slightly flattened sides resulting from the extrusion. As can be seen from table 1 the larger coated particles of the invention settle down in much the same way as the prior art powders. The small difference in the ratios of Poured BD to tapped BD is not significant. Example 3
We measured settling volume after tapping for 1 min using the Retsch sieve shaker at a setting of 0.2 mm/"g". The results are given in table 6.
Table 6
Figure imgf000036_0001
Only the crystals flowed freely out of the measuring cylinder after this experiment. In contrast, both of the prior art powders were compacted and the cylinder needed tapping to get them to flow.
Example 4
Standard DFR (Dynamic Flow Rate) is measured in ml/sec using a cylindrical glass tube having an internal diameter of 35 mm and a length of 600 mm. The tube is securely clamped with its longitudinal axis vertical. Its lower end is terminated by means of a smooth cone of polyvinyl chloride having an internal angle of 15 DEG and a lower outlet orifice of diameter 22.5 mm. A beam sensor is positioned 150 mm above the outlet, and a second beam sensor is positioned 250 mm above the first sensor.
To determine the dynamic flow rate of a detergent composition sample, the outlet orifice is temporarily closed, for example, by covering with a piece of card, and detergent composition is poured into the top of the cylinder until the detergent composition level is about 100 mm above the upper sensor. The outlet is then opened and the time t (seconds) taken for the detergent composition level to fall from the upper sensor to the lower sensor is measured electronically. The DFR is the tube volume between the sensors, divided by the time measured. We mounted this equipment onto the sieve shaker set at 0.2mm/"g" for 1 min. The shaking or vibration being done after filling the cylinder and before the outlet is opened. Each sample was given one "prod" after vibration to initiate flow as the outlet was narrow and tended to block with all powders. If one prod was insufficient to start flow then zero flow rate was recorded. Results are given in table 7.
Table 7
Figure imgf000038_0001
It can be seen from table 7 that the crystals have much improved retention of their flow properties under these conditions - it remained to be determined whether this better retention of flow for the crystals was due to their greater size, their non- spherical shape, or their coating (it being assumed that the spherical powders were not coated).
Example 5
Figure imgf000038_0002
The DFR of the uncoated crystals was worse than the smaller spherical coated particles under both tests (tapped and untapped). Uncoated crystals do however, flow much better than the uncoated prior art powders. It is thus feasible to use a small proportion of uncoated crystals in the composition, say up to 30% of the total particles, preferably up to 15% by number. Surprisingly, from table 8, the coated crystals, despite their superior appearance to the uncoated crystals have a lower DFR then the uncoated ones, hence the coating is improving appearance but not the flow. However, the coated crystals do have a very consistent DFR as seen in table 3 (in fact they seem to flow the same way reliably no matter what their history).
Various non-limiting embodiments of the invention will now be more particularly described with reference to the following figures in which: Figure 1 shows a packaged product according to one aspect of the invention; and
Figure 2 shows the packaged product of figure 1 in perspective.
Referring to the drawings, a packaged product 1 is shown comprising a
combination of a concentrated particulate detergent composition 5 (according to as described herein, including any of the above examples of the invention) and a package 3, said package 3 comprising a unitary dosing device and closure 9. The package comprises an elongate, upright reservoir 7 for storing the composition. In this embodiment, the package is a bottle 5.
The package has a narrow dispensing aperture19, approximately 2-5 cm in diameter, here approximately 3-4 cm.
The closure mechanism avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness. The closure mechanism may comprise a screw-fit mechanism to ensure proper closure. Alternatively, the closure mechanism may comprise a snap-fit mechanism, preferably with audible feedback to signal positively to the consumer that the package is closed. Due to the particle properties, a smooth lining of the reservoir is not essential. Arifacts such as flanges which are required by the moulding process for plastic closures, do not present a major problem, which would not be the case for a known concentrated detergent powder or liquid composition.
The single dosing and closure device is a sufficiently rigid in material or construction such that a portion e.g. a base or a side wall, can be tapped to move the particles within the device. Such tapping creates audible feedback to the user to guide them as to the passage of the particles. The packaged product comprises a shown containing a particulate detergent composition 5. The circular shaped aperture 19 allows pouring from any angle. The bottle 5 is transparent polyethylene terephthalate (PETE) whereas the dosing closure is polypropylene (PP).
The dosing closure mechanism 9 avoids the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness. The closure mechanism comprises a screw-fit mechanism or a snap-fit mechanism. It comprises audible feedback to signal positively to the consumer that the package is closed. The package including the dosing closure device are transparent, providing positive feedback to the consumer of the benefits described above. In so far as the packaging is concerned, "transparent" means that its light transmittance is greater than 25% at wavelength of about 410-800 nm. The transparent layer of the package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm). Alternatively, absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 x 100%
/j Q absorbency
Conversely, absorbency of the opaque layer may be measured as more than 0.6. For purposes of the invention, as long as one wavelength in the visible light range has greater than 25% transmittance, the container is considered to be
transparent.
All percentages, unless indicated otherwise, are intended to be percentages by weight.
The Suitable materials for the package include, but are not limited to:
polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and
polystyrene (PS). The container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
Alternatively, absorbency of bottle may be measured as less than 0.6
(approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 1 oabsorbency x 100% and
corresponding absorbency levels for the remaining preferred levels above.
Suitable materials for the package and its dosing/closure member also include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS). The container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
It is of course to be understood that the invention is not intended to be restricted to the details of the above embodiment which are described by way of example only.

Claims

1 . A packaged product comprising a combination of a concentrated particulate detergent composition and a package, said package comprising a unitary dosing device and closure, and wherein at least 70 % by number of particles of the composition comprise a high-surfactant core and a hard coating.
2. A packaged product according to claim 1 , adapted for use with the machine drawer of most front loading automatic washing machine.
3. A packaged product according to any preceding claim wherein the package comprises a narrow dispensing aperture.
4. A packaged product according to claim 3 wherein the narrow dispensing aperture is preferably 2-5 cm in diameter.
5. A packaged product according to any preceding claim wherein the package comprises an elongate, upright reservoir, such as a bottle.
6. A packaged product according to any preceding claim wherein the package wide reservoir and narrow dispensing aperture.
7. A packaged product according to any preceding claim wherein the single dosing and closure device is preferably sufficiently rigid in material or construction such that a portion e.g. a base or a side wall, can be tapped to move the particles within the device.
8. A packaged product according to claim 7 wherein tapping creates audible feedback to the user to guide them as to the passage of the particles. A packaged product according to any preceding claim wherein the or each package comprises at least one transparent portion.
A packaged product substantially as hereinbefore described and/or with reference to the accompanying drawings.
PCT/EP2011/065453 2010-10-14 2011-09-07 Packaging and dispensing of detergent compositions WO2012048955A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11752243.3A EP2627759B1 (en) 2010-10-14 2011-09-07 Packaging and dispensing of detergent compositions
IN626MUN2013 IN2013MN00626A (en) 2010-10-14 2011-09-07
BR112013009131-2A BR112013009131B1 (en) 2010-10-14 2011-09-07 PACKED PRODUCT
ES11752243.3T ES2644555T3 (en) 2010-10-14 2011-09-07 Packaging and distribution of detergent compositions
CN201180049644.4A CN103180427B (en) 2010-10-14 2011-09-07 The packaging of detergent composition and distribution
BR112013008955A BR112013008955A2 (en) 2010-10-14 2011-09-07 packaged product
ZA2013/01714A ZA201301714B (en) 2010-10-14 2013-03-06 Packaging and dispensing of detergent compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10187507.8 2010-10-14
EP10187507 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012048955A1 true WO2012048955A1 (en) 2012-04-19

Family

ID=43719458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065453 WO2012048955A1 (en) 2010-10-14 2011-09-07 Packaging and dispensing of detergent compositions

Country Status (7)

Country Link
EP (1) EP2627759B1 (en)
CN (1) CN103180427B (en)
BR (2) BR112013008955A2 (en)
ES (1) ES2644555T3 (en)
IN (1) IN2013MN00626A (en)
WO (1) WO2012048955A1 (en)
ZA (1) ZA201301714B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210393A1 (en) * 2016-06-02 2017-12-07 The Procter & Gamble Company Laundry treatment particles including silicone
WO2018234003A1 (en) * 2017-06-21 2018-12-27 Unilever Plc Packaging and dispensing of detergent compositions
US11696591B2 (en) 2019-05-30 2023-07-11 Ecolab Usa Inc. Dispensing system for transferring chemical into a strainer basket assembly

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4269722A (en) * 1976-09-29 1981-05-26 Colgate-Palmolive Company Bottled particulate detergent
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER &amp; GAMBLE COMPANY Foaming surfactant compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
DE4220649A1 (en) * 1992-06-26 1994-01-05 Wundi Chem Fab Weuste & Inkema Washing or cleaning powder container - has cap forming metering vessel and protruding inside it
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
EP0993505A1 (en) 1997-06-16 2000-04-19 Unilever Plc Production of detergent granulates
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
EP1187903A1 (en) 1999-06-21 2002-03-20 The Procter & Gamble Company Process for coating detergent granules in a fluidized bed
US7022660B1 (en) * 1999-03-09 2006-04-04 The Procter & Gamble Company Process for preparing detergent particles having coating or partial coating layers
WO2008007318A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057611A3 (en) * 1981-02-04 1982-08-25 Unilever Plc Soap powders and a process for their manufacture
JP2002538292A (en) * 1999-03-09 2002-11-12 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent particles having a coating or partial coating layer
DE102008010085A1 (en) * 2008-02-19 2009-08-20 Henkel Ag & Co. Kgaa Dosing cap for closing container i.e. bottle, of package, has dead plate dividing cylinder element into two sections, where outer surface of one of sections comprises roundness depth of specific micrometer
CN201864155U (en) * 2010-11-29 2011-06-15 万智泉 Structure device for liquid filling port of energy-saving liquid bottle

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4269722A (en) * 1976-09-29 1981-05-26 Colgate-Palmolive Company Bottled particulate detergent
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER &amp; GAMBLE COMPANY Foaming surfactant compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
DE4220649A1 (en) * 1992-06-26 1994-01-05 Wundi Chem Fab Weuste & Inkema Washing or cleaning powder container - has cap forming metering vessel and protruding inside it
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
EP0993505A1 (en) 1997-06-16 2000-04-19 Unilever Plc Production of detergent granulates
US7022660B1 (en) * 1999-03-09 2006-04-04 The Procter & Gamble Company Process for preparing detergent particles having coating or partial coating layers
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
EP1187903A1 (en) 1999-06-21 2002-03-20 The Procter & Gamble Company Process for coating detergent granules in a fluidized bed
WO2008007318A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"CTFA", 1992, CFTA PUBLICATIONS
"Industrial Dyes", 2003, WILEY-VCH
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY
"OPD", 1993, SCHNELL PUBLISHING CO.
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
H. STACHE: "Tenside Taschenbuch", 1981, CARL HAUSER VERLAG
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
POWDER TECHNOLOGY, vol. 65, 1991, pages 257 - 272
SCHWARTZ, PERRY, BERCH: "SURFACE ACTIVE AGENTS", vol. 2, 1958, INTERSCIENCE
SCHWARTZ, PERRY: "Surface Active Agents", vol. 1, 1949, INTERSCIENCE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210393A1 (en) * 2016-06-02 2017-12-07 The Procter & Gamble Company Laundry treatment particles including silicone
US10196593B2 (en) 2016-06-02 2019-02-05 The Procter & Gamble Company Laundry treatment particles including silicone
WO2018234003A1 (en) * 2017-06-21 2018-12-27 Unilever Plc Packaging and dispensing of detergent compositions
US11696591B2 (en) 2019-05-30 2023-07-11 Ecolab Usa Inc. Dispensing system for transferring chemical into a strainer basket assembly

Also Published As

Publication number Publication date
CN103180427A (en) 2013-06-26
ES2644555T3 (en) 2017-11-29
EP2627759B1 (en) 2017-07-26
IN2013MN00626A (en) 2015-06-12
ZA201301714B (en) 2014-05-28
EP2627759A1 (en) 2013-08-21
BR112013009131A2 (en) 2016-07-19
BR112013008955A2 (en) 2016-06-28
CN103180427B (en) 2016-02-17
BR112013009131B1 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
AU2011316078B2 (en) Packaged particulate detergent composition
EP2639291A1 (en) Packaged particulate detergent composition
US9062281B2 (en) Particulate detergent compositions comprising fluorescer
AU2011315788A1 (en) Particulate detergent compositions comprising fluorescer
EP2627759B1 (en) Packaging and dispensing of detergent compositions
EP2627577B1 (en) Package comprising a laundry composition and method for washing using said package.
AU2011316077B2 (en) Packaged particulate detergent composition
WO2018234003A1 (en) Packaging and dispensing of detergent compositions
EP2627578B1 (en) Transparent packaging of detergent compositions
WO2012049032A1 (en) Refill and refillable packages of concentrated particulate detergent compositions
WO2012049034A1 (en) Packaging and dispensing of detergent compositions
EP2627576B1 (en) Packaged concentrated particulate detergent composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049644.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752243

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2011752243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011752243

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112013008955

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013008955

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013009131

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013008955

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130412

ENP Entry into the national phase

Ref document number: 112013009131

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130415