WO2012115184A1 - Turbo blood pump and method for producing same - Google Patents

Turbo blood pump and method for producing same Download PDF

Info

Publication number
WO2012115184A1
WO2012115184A1 PCT/JP2012/054407 JP2012054407W WO2012115184A1 WO 2012115184 A1 WO2012115184 A1 WO 2012115184A1 JP 2012054407 W JP2012054407 W JP 2012054407W WO 2012115184 A1 WO2012115184 A1 WO 2012115184A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
mounting hole
impeller
blood pump
lower bearing
Prior art date
Application number
PCT/JP2012/054407
Other languages
French (fr)
Japanese (ja)
Inventor
大森正芳
Original Assignee
株式会社ジェイ・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス filed Critical 株式会社ジェイ・エム・エス
Priority to BR112013020840A priority Critical patent/BR112013020840A2/en
Priority to JP2013501115A priority patent/JP5673795B2/en
Publication of WO2012115184A1 publication Critical patent/WO2012115184A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0467Spherical bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines

Definitions

  • the present invention relates to a turbo-type blood pump that applies a centrifugal force to blood by the rotation of the impeller to cause the blood to flow, and particularly relates to a structure of a bearing portion for supporting the rotation shaft of the impeller.
  • a blood pump is indispensable for extracorporeal blood circulation in an oxygenator or the like.
  • a turbo blood pump is known as a kind of blood pump.
  • the turbo blood pump is configured to generate a differential pressure for feeding blood by centrifugal force by rotating an impeller (impeller) in a pump chamber.
  • the turbo blood pump can reduce the size, weight, and cost of the blood pump because of its operating principle. Further, since the tube is not damaged like the roller pump type blood pump and the durability of the blood pump is excellent, it is suitable for continuous operation for a long time. Therefore, the turbo blood pump is extremely useful as a blood pump for an extracorporeal circulation circuit of a heart-lung machine or a heart assist device after open heart surgery.
  • a turbo blood pump described in Patent Document 1 has a structure as shown in FIG.
  • reference numeral 1 denotes a housing, which forms a pump chamber 2 for allowing blood to pass and flow.
  • the housing 1 is provided with an inlet port 3 that communicates with an upper portion of the pump chamber 2 and an outlet port 4 that communicates with a side portion of the pump chamber 2.
  • An impeller 5 is disposed in the pump chamber 2.
  • the impeller 5 includes six vanes 6, a rotating shaft 7, and a ring-shaped annular coupling portion 8.
  • FIG. 4 is a top view of the impeller 5 and FIG. 5 is a cross-sectional view of the impeller 5.
  • the six vanes include two types of shapes, that is, a main vane 6a and a shorter sub vane 6b, which are alternately arranged.
  • the main vane 6a and the sub vane 6b are collectively referred to as vane 6.
  • the main vane 6 a has a center side end connected to the rotating shaft 7 and a peripheral side end connected to the annular connecting portion 8.
  • the sub vane 6 b has a central end that is not coupled to the rotating shaft 7 but is a free end, and only a peripheral end is coupled to the annular coupling portion 8.
  • the number of main vanes 6a is set to a minimum range for supporting the impeller 5 with the rotary shaft 7 and obtaining a sufficient driving force.
  • the number of main vanes 6a is set to at least three. 3 shows only the shape along the main vane 6a shown in FIG. 4 for the convenience of illustration.
  • the lower end edge of the vane 6 (both the main vane 6a and the sub vane 6b) is arranged so that the apex is along the conical surface with the upward direction. That is, the vane 6 is inclined with respect to the rotating shaft 7 to form a mixed flow pump.
  • the shape of the vane 6 is a three-dimensional curved surface. Accordingly, it is possible to realize a blood pump with reduced hemolysis by suppressing cavitation (flow separation, vortex) generated on the outlet side of the vane 6 while having sufficient ejection ability.
  • the rotating shaft 7 is rotatably supported by an upper bearing 9 and a lower bearing 10 provided in the housing 1. Therefore, the impeller 5 is supported in a stable state at the vertical position by the upper bearing 9 and the lower bearing 10, and the rotation thereof is stabilized.
  • the annular connecting portion 8 is provided with a magnet case 11, and a driven magnet 12 is embedded in the magnet case 11.
  • the driven magnets 12 have a columnar shape, and are arranged in the circumferential direction of the annular connecting portion 8 at regular intervals.
  • the annular connecting portion 8 and the magnet case 11 form a cylindrical inner peripheral surface.
  • a rotor 13 is disposed at the bottom of the housing 1.
  • the rotor 13 has a structure in which a substantially cylindrical magnetic coupling portion 15 is provided on the drive shaft 14.
  • the drive shaft 14 is rotatably supported and connected to a rotation drive source such as a motor to be rotated. Further, the positional relationship between the rotor 13 and the housing 1 is kept constant by elements not shown.
  • a drive magnet 16 is embedded in the upper surface portion of the magnetic coupling portion 15.
  • the drive magnets 16 have a cylindrical shape, and are arranged at regular intervals with six pieces in the circumferential direction.
  • the driving magnet 16 is disposed so as to be in a positional relationship facing the driven magnet 12 across the wall of the housing 1. Accordingly, a magnetically coupled state is formed between the rotor 13 and the impeller 5, and by rotating the rotor 13, a rotational driving force is transmitted to the impeller 5 through magnetic coupling.
  • the upper and lower surfaces of the annular coupling portion 8 on which the driven magnet 12 is installed are not orthogonal to the rotation shaft 7 and are along the same conical surface. Yes.
  • the upper surface of the magnetic coupling portion 15 on which the drive magnet 16 is installed is also an inclined surface.
  • the driven magnet 12 and the drive magnet 16 form a magnetic coupling on the surface inclined with respect to the rotation axis of the impeller 5, the magnetic attractive force acting between the impeller 5 and the rotor 13 is reduced. It occurs in a direction inclined with respect to the rotation axis of the impeller 5. As a result, the downward load on the lower bearing 10 is reduced.
  • the impeller 5 has a space 17 in an inner region of the annular coupling portion 8, and a flow path penetrating vertically between the vanes 6 is formed.
  • a pedestal 18 having a cylindrical outer peripheral surface protruding upward, that is, inside the pump chamber 2 is formed at the center of the bottom of the housing 1.
  • the pedestal 18 is formed so as to fill the space 17 in the region inside the driven magnet 12 and the annular coupling portion 8 below the impeller 5, and the volume of the space is suppressed to the minimum.
  • the upper surface of the pedestal 18 is formed as a conical inclined surface whose apex is directed upward along the lower edge of the vane 6.
  • the bottom of the housing 1 around the pedestal 18 is also formed on the same inclined surface.
  • the pedestal 18 Since the pedestal 18 is formed, the blood filling amount in the pump chamber 2 is reduced. Further, since the annular connecting portion 8 is not of a size that covers the entire bottom surface of the housing 1 but the space 17 is formed, the impeller 5 becomes light in weight, and the driving force necessary for rotation is reduced.
  • the lower bearing 10 is provided at the center of the upper surface of the pedestal 18. The upper bearing 9 is supported at the tips of three bearing columns 19 disposed in the lower end portion of the inlet port 3.
  • the above configuration is effective to improve the state where blood stays in the lower part of the impeller 5 and to eliminate the possibility that thrombus may be formed when the blood pump is used for a long time (percutaneous cardiopulmonary assist method, etc.). It is. That is, in the space region inside the annular connecting portion 8, a flow path that penetrates between the vanes 6 is formed, and the blood that flows to the lower portion of the impeller 5 passes through the vicinity of the lower bearing 10 and passes through the vane. This is because an action of flowing out toward the outer diameter direction of 6 is obtained.
  • the impeller 5 further has a sealing member 20 arranged at the lower part of the vane 6 in a region extending between the rotary shaft 7 and the annular connecting portion 8.
  • the sealing member 20 seals the flow path penetrating between the vane 6 from the space in the region between the rotating shaft 7 and the annular connecting portion 8, leaving a part of the opening 21 around the rotating shaft 7. Yes.
  • the sealing member 20 By providing the sealing member 20, the effect of suppressing the formation of thrombus in the vicinity of the lower bearing 10 on the upper surface of the base 18 is improved. That is, the flow of blood on the bottom surface of the housing 1 flowing toward the center of the impeller 5 along the lower surface of the sealing member 20 is strengthened. Since the blood flow then rises through the opening 21 of the sealing member 20, a blood flow having a sufficient speed is formed along the rotary shaft 7 adjacent to the lower bearing 10, and the cleaning effect on the lower bearing 10 is improved. .
  • a vertical through-hole is provided in the center of the base 18 to form a bearing mounting hole 22 and an adjustment screw mounting hole 23.
  • the lower bearing 10 is mounted in the bearing mounting hole 22, and the adjustment screw 24 is mounted in the adjustment screw mounting hole 23.
  • a female screw is formed on the inner peripheral surface of the adjustment screw mounting hole 23, and a male screw is formed on the outer peripheral surface of the adjustment screw 24.
  • the housing 1 is divided into an upper half 1a on the side including the inlet port 3 and a lower half 1b on the side including the pedestal 18 at the upper and lower dividing surfaces 25.
  • the upper bearing 9 is provided on the upper half 1a.
  • the impeller 5 is mounted in the housing 1 by connecting the upper half 1a and the lower half 1b so that the rotary shaft 7 is supported between the upper bearing 9 and the lower bearing 10.
  • the position of the adjustment screw 24 can be adjusted by screwing with the adjustment screw mounting hole 23. Accordingly, the lower bearing 10 is mounted in the bearing mounting hole 22, the rotating shaft 7 is supported between the upper bearing 9 and the lower bearing 10, and the upper half 1a and the lower half 1b are coupled, and then the adjusting screw. By rotating 24 and adjusting the vertical position of the lower bearing 10, the inter-bearing distance H between the upper bearing 9 and the lower bearing 10 can be adjusted.
  • the rotational torque of the impeller 5 is affected by the distance H between the bearings.
  • the distance H between the bearings is not constant due to a slight error in the dimensions of the molded product and the shaft dimension, and there is also an error in the length of the rotating shaft 7. Variation occurs. Therefore, providing the adjusting screw 24 for adjusting the distance H between the bearings is indispensable for stabilizing the quality.
  • the adjustment screw 24 is necessary as an element part in addition to the lower bearing 10. Therefore, it is inevitable that the increase in the component cost due to the increase in the number of components and the complexity of the manufacturing process due to the large number of components contribute to the increase in cost.
  • the present invention provides a turbo blood pump having a structure capable of improving the structure for adjusting the position of the lower bearing with respect to the rotating shaft of the impeller, reducing the number of parts, and improving the simplicity of the manufacturing process.
  • the purpose is to do.
  • the turbo blood pump of the present invention includes a housing that forms a pump chamber, an inlet port is provided at an upper portion and an outlet port is provided at a side portion, a rotating shaft, a plurality of vanes, and an annular connecting portion, An inner peripheral end of at least a part of the plurality of vanes is coupled to the rotating shaft, and an outer peripheral end of each vane is formed by projecting an impeller coupled to the annular coupling portion and a bottom wall of the housing upward
  • a pedestal having a cylindrical outer peripheral surface corresponding to a space region formed by the cylindrical inner peripheral surface of the annular coupling portion, an upper bearing that rotatably supports an upper end of a rotating shaft of the impeller, and the pedestal
  • a lower bearing that is provided on the upper surface of the housing and rotatably supports the lower end of the rotating shaft of the impeller, and is disposed on the outer lower portion of the housing, and rotationally drives the impeller through magnetic coupling with the annular coupling portion.
  • a chromatography data is provided on the
  • a bearing mounting hole having an inner surface threaded protrusion formed on an inner peripheral surface is provided in the center of the pedestal, and the lower bearing has the lower end of the rotating shaft of the impeller at its upper end.
  • an outer surface threaded protrusion is formed on the outer peripheral surface to be screwed with the inner surface threaded protrusion, and is mounted in the bearing mounting hole through the threaded engagement.
  • a method for manufacturing a turbo blood pump according to the present invention is a method for manufacturing a turbo blood pump having the above-described configuration, wherein the lower bearing is mounted in the bearing mounting hole, and the rotating shaft is connected to the upper bearing and the lower bearing. After the impeller is mounted in the housing so as to be supported in between, the lower bearing exposed below the bearing mounting hole is rotated to screw the outer thread protrusion and the inner thread protrusion. An operation for adjusting the position of the lower bearing in the vertical direction is performed.
  • FIG. 1 is a cross-sectional view of a turbo blood pump according to an embodiment of the present invention.
  • FIG. 2A is a perspective view showing a configuration of a lower bearing of the turbo blood pump.
  • FIG. 2B is a perspective view showing a configuration of a pedestal in the housing of the turbo blood pump.
  • FIG. 3 is a cross-sectional view of a conventional turbo blood pump.
  • FIG. 4 is a top view of the impeller of the turbo blood pump of FIG.
  • FIG. 5 is a cross-sectional view of the impeller.
  • FIG. 6 is a cross-sectional view showing the bearing structure of the turbo blood pump of FIG.
  • the present invention can take the following aspects based on the above configuration.
  • the inner surface thread protrusion forms two threads, and the threads of each thread are set to a length equal to or less than a half circumference in the circumferential direction of the bearing mounting hole.
  • the screw threads are preferably arranged in regions that do not overlap each other in the circumferential direction.
  • the thread of each strip forming the inner surface thread protrusion is set to a length of a half circumference in the circumferential direction of the bearing mounting hole. According to this configuration, it is easy to form an internal thread protrusion in the bearing mounting hole of the pedestal by injection molding and eliminate the need for additional work on the pedestal after injection molding.
  • the bearing mounting hole is a through hole, and an engaging portion with a tool for rotating the lower bearing is provided at a lower end portion of the lower bearing exposed below the bearing mounting hole.
  • the impeller is mounted in the pump chamber so that the rotating shaft is supported between the upper bearing and the lower bearing, and the position of the lower bearing in the bearing mounting hole is adjusted to And the process of appropriately setting the distance between the lower bearing and the lower bearing.
  • a gap between the inner peripheral surface of the bearing mounting hole and the outer peripheral surface of the lower bearing is sealed with an adhesive on the lower end side of the mounted lower bearing.
  • the lower end edge of the vane has an inclination that becomes higher toward the rotation axis, and the impeller is formed with a conical inclined surface along the inclination of the lower end edge of the vane, and the plurality of vanes
  • a sealing member that restricts a flow path between the rotating shaft and a region around the rotating shaft is provided at a lower portion of the vane, and the lower bearing has an upper surface that forms an inclined surface along the inclined surface of the sealing member,
  • the diameter of the lower bearing can be increased by replacing a part of the upper surface of the pedestal that forms the flow path between the sealing member and the upper surface of the lower bearing.
  • the housing is formed by dividing the housing into an upper half on the side including the inlet port and a lower half on the side including the pedestal, and the upper bearing. Is attached to the upper half body, and the upper half body and the lower half body are coupled to each other so that the rotating shaft is supported between the upper bearing and the lower bearing. It may include a step of mounting inside. According to this process, it is possible to easily perform the operation of mounting the impeller in the pump chamber so that the rotating shaft is supported between the upper bearing and the lower bearing.
  • FIG. 1 is a cross-sectional view showing a turbo blood pump according to Embodiment 1 of the present invention.
  • the basic structure of this turbo blood pump is the same as that of the conventional example shown in FIGS. Therefore, elements similar to those shown in FIGS. 3 to 5 are denoted by the same reference numerals, and the repeated description is simplified.
  • the impeller 5 disposed in the pump chamber 2 formed by the housing 1 has a plurality of vanes 6 as in the conventional example, and at least a part of the inner peripheral end thereof is The outer peripheral end of each vane 6 is coupled to an annular connecting portion 8 that is coupled to the rotary shaft 7 and forms an outer peripheral edge.
  • the rotary shaft 7 is rotatably supported by the upper bearing 9 and the lower bearing 26.
  • the lower bearing 26 is mounted in a bearing mounting hole 28 provided in the upper surface portion of the base 27.
  • the configuration of the lower bearing 26 is shown in a perspective view in FIG. 2A, and the configuration of a pedestal 27 having a bearing mounting hole 28 is shown in a perspective view in FIG. 2B.
  • the housing 1 is divided into two parts by an upper and lower dividing surface 25 into an upper half 1 a including the inlet port 3 and a lower half 1 b including the pedestal 27.
  • the upper bearing 9 is provided on the upper half 1a.
  • the impeller 5 is mounted in the housing 1 by connecting the upper half 1a and the lower half 1b so that the rotary shaft 7 is supported between the upper bearing 9 and the lower bearing 26.
  • the pedestal 27 is formed by projecting upward the central portion inside the bottom wall of the housing 1, and has a cylindrical outer peripheral surface corresponding to a space region formed by the cylindrical inner peripheral surface of the annular coupling portion 8. .
  • a part of the upper surface of the pedestal 27 is formed by the upper surface of the lower bearing 26, and is a conical inclined surface whose apex is directed upward. Note that the surface of the bottom surface of the housing 1 that faces the annular connecting portion 8 is also an inclined surface along the annular connecting portion 8.
  • the impeller 5 includes a sealing member 20 disposed below the vane 6.
  • the blocking member 20 forms a conical inclined surface along the inclination of the lower end edge of the vane 6.
  • the sealing member 20 seals the space in the inner region of the annular coupling portion 8 leaving the opening 21 around the rotating shaft 7.
  • a through hole is provided in the central portion of the pedestal 27 to form a bearing mounting hole 28.
  • the lower bearing 26 has an upper large-diameter portion 29 whose outer peripheral diameter is larger than that of the bearing mounting hole 28, and a cylindrical portion that forms a lower portion thereof and whose outer peripheral diameter is smaller than that of the bearing mounting hole 28. 30.
  • a bearing 31 that supports the lower end of the rotating shaft 7 of the impeller 5 is formed at the upper end of the lower bearing 26.
  • An internal thread protrusion 28 a is formed on the inner peripheral surface of the bearing mounting hole 28.
  • an outer surface thread protrusion 26a that is screwed with the inner surface thread protrusion 28a is formed.
  • the large diameter portion 29 of the lower bearing 26 forms an inclined surface whose upper surface is along the inclined surface of the sealing member 20.
  • the lower bearing 26 is mounted in the bearing mounting hole 28 by screwing the outer thread protrusion 26a with the inner thread protrusion 28a. Since the bearing mounting hole 28 is a through-hole, when the lower bearing 26 is mounted in the bearing mounting hole 28, the lower end thereof is exposed below the bearing mounting hole 28. An engaging portion 32 (FIG. 1) with a tool for rotating the lower bearing 26 is provided at the lower end portion of the exposed lower bearing 26. Accordingly, in the manufacturing process, an operation of rotating the lower bearing 26 by engaging the tool with the engaging portion 32 is performed. As a result, the vertical position of the lower bearing 26 in the bearing mounting hole 28 can be adjusted via the screwing of the outer thread protrusion 26a and the inner thread protrusion 28a.
  • the gap between the inner peripheral surface of the bearing mounting hole 28 and the outer peripheral surface of the lower bearing 26 is blocked by an adhesive. This is because the pump chamber 2 communicates with the outside through a gap between the inner peripheral surface of the bearing mounting hole 28 and the outer peripheral surface of the lower bearing 26 when the lower bearing 26 is simply mounted.
  • the bearing mounting hole 28 be a through hole. That is, it is also possible to configure so that the adjustment for rotating the lower bearing 26 is performed by another method.
  • the lower bearing 26 can be rotated using the opening of the inlet port 3.
  • the internal thread protrusion 28a forms two threads, and the thread of each thread is set to the length of the half circumference in the circumferential direction of the bearing mounting hole 28.
  • the threads of the respective strips are arranged in regions that do not overlap with each other in the circumferential direction.
  • Each thread of the inner surface thread protrusion 28a may have a length less than a half circumference. However, it is necessary to secure a length that allows an appropriate screwed state with the outer surface screw projection 26a.
  • the structure for adjusting the position of the lower bearing 26 is formed with a small number of parts, and no additional work is required for the pedestal 27 after injection molding. Thereby, the lower bearing structure which can adjust rotational torque at lower cost can be provided.
  • the turbo blood pump of the present embodiment can be configured using the following materials as an example.
  • a synthetic resin such as polycarbonate, polyethylene terephthalate, polysulfone, etc. is used in terms of weight reduction, easy moldability, strength, dimensional stability, and the like. Can do.
  • the material of the bearing is not particularly limited as long as it has high wear resistance.
  • high durability plastics such as ultra high molecular weight polyethylene and polyether ether ketone (PEEK) can be suitably used.
  • PEEK polyether ether ketone
  • SUS stainless steel
  • the turbo blood pump of the present invention can be manufactured at a low cost for adjusting the position of the lower bearing with respect to the rotation shaft of the impeller, and is useful as a blood pump used for extracorporeal blood circulation in an oxygenator or the like.

Abstract

In the present invention, an impeller (5) is structured with the inner ends of a subset of a plurality of vanes (6) being joined to a rotary shaft (7) and the outer ends of each vane being joined to an annular connection section (8). A pedestal (27) is formed by the bottom wall of a housing (1) protruding upwards, and has a cylindrical outer peripheral surface that corresponds to a space region inside the annular connection section. At the upper center of the pedestal, a bearing-mounting hole (28) to the inner peripheral surface of which an inner screw protrusion (28a) has been formed is provided, and a lower bearing (26) that supports the bottom end of the rotary shaft of the impeller is mounted. The lower bearing has a bearing section (31) and an outer screw protrusion (26a) that threads to the inner screw protrusion is formed at the outer peripheral surface. The position in the vertical direction of the lower bearing with respect to the bearing-mounting hole can be adjusted via the threading of the outer screw protrusion and the inner screw protrusion. The present invention is able to provide a structure for adjusting the position of the lower bearing without follow-up machining of the pedestal after injection molding and with few components.

Description

ターボ式血液ポンプ及びその製造方法Turbo blood pump and method for manufacturing the same
 本発明は、インペラの回転によって血液に遠心力を与えて駆出し流動させるターボ式血液ポンプに関し、特に、インペラの回転軸を支持するための軸受け部分の構造に関する。 The present invention relates to a turbo-type blood pump that applies a centrifugal force to blood by the rotation of the impeller to cause the blood to flow, and particularly relates to a structure of a bearing portion for supporting the rotation shaft of the impeller.
 血液ポンプは、人工心肺装置等における体外血液循環を行うために不可欠である。血液ポンプの一種として、ターボ式血液ポンプが知られている。ターボ式血液ポンプは、ポンプ室内でインペラ(羽根車)を回転させることにより、遠心力により、血液を送液するための差圧を発生させるように構成されている。 A blood pump is indispensable for extracorporeal blood circulation in an oxygenator or the like. A turbo blood pump is known as a kind of blood pump. The turbo blood pump is configured to generate a differential pressure for feeding blood by centrifugal force by rotating an impeller (impeller) in a pump chamber.
 ターボ式血液ポンプは、その動作原理の故に、血液ポンプの小型化、軽量化、低コスト化が可能である。また、ローラポンプ型の血液ポンプのようなチューブの損傷がなく、血液ポンプの耐久性に優れているので、長時間の連続運転に好適である。したがって、ターボ式血液ポンプは、人工心肺装置や開心術後の心補助装置の体外循環回路用の血液ポンプとして極めて有用である。 The turbo blood pump can reduce the size, weight, and cost of the blood pump because of its operating principle. Further, since the tube is not damaged like the roller pump type blood pump and the durability of the blood pump is excellent, it is suitable for continuous operation for a long time. Therefore, the turbo blood pump is extremely useful as a blood pump for an extracorporeal circulation circuit of a heart-lung machine or a heart assist device after open heart surgery.
 例えば特許文献1に記載されているターボ式血液ポンプは、図3に示すような構造を有する。同図において、1はハウジングであり、血液を通過させ流動させるためのポンプ室2を形成している。ハウジング1には、ポンプ室2の上部に連通する入口ポート3と、ポンプ室2の側部に連通する出口ポート4が設けられている。ポンプ室2内にはインペラ5が配置されている。インペラ5は、6枚のベーン6、回転軸7、及びリング状の環状連結部8を有する。 For example, a turbo blood pump described in Patent Document 1 has a structure as shown in FIG. In the figure, reference numeral 1 denotes a housing, which forms a pump chamber 2 for allowing blood to pass and flow. The housing 1 is provided with an inlet port 3 that communicates with an upper portion of the pump chamber 2 and an outlet port 4 that communicates with a side portion of the pump chamber 2. An impeller 5 is disposed in the pump chamber 2. The impeller 5 includes six vanes 6, a rotating shaft 7, and a ring-shaped annular coupling portion 8.
 インペラ5の上面図を図4に、インペラ5の断面図を図5に示す。図4に示すように、6枚のベーンは2種類の形状のもの、すなわち、主ベーン6aと、それより短い副ベーン6bを含み、それらが交互に配置されている。主ベーン6aと副ベーン6bを総称してベーン6と記す。主ベーン6aは、中心側端部が回転軸7に結合し、周縁側端部が環状連結部8に結合している。副ベーン6bは、中心側端部が回転軸7には結合せず自由端となっており、周縁側端部のみが環状連結部8に結合している。副ベーン6bを混在させることにより、全てのベーン6を回転軸7に結合させた場合と比べて、ベーン6による流路の妨げが軽減される。従って、主ベーン6aの本数は、インペラ5を回転軸7で支持し、かつ十分な駆出力を得るための最小限の範囲に設定される。但し、通常、ベーン6は周方向に等間隔に配置されるので、主ベーン6aの本数は少なくとも3本に設定される。なお、図3におけるインペラ5の断面形状は、図示の便宜上、図4に示した主ベーン6aに沿った形状のみが示されている。 4 is a top view of the impeller 5 and FIG. 5 is a cross-sectional view of the impeller 5. As shown in FIG. 4, the six vanes include two types of shapes, that is, a main vane 6a and a shorter sub vane 6b, which are alternately arranged. The main vane 6a and the sub vane 6b are collectively referred to as vane 6. The main vane 6 a has a center side end connected to the rotating shaft 7 and a peripheral side end connected to the annular connecting portion 8. The sub vane 6 b has a central end that is not coupled to the rotating shaft 7 but is a free end, and only a peripheral end is coupled to the annular coupling portion 8. By mixing the sub vanes 6b, the blockage of the flow path by the vanes 6 is reduced as compared with the case where all the vanes 6 are coupled to the rotary shaft 7. Therefore, the number of main vanes 6a is set to a minimum range for supporting the impeller 5 with the rotary shaft 7 and obtaining a sufficient driving force. However, since the vanes 6 are normally arranged at equal intervals in the circumferential direction, the number of main vanes 6a is set to at least three. 3 shows only the shape along the main vane 6a shown in FIG. 4 for the convenience of illustration.
 ベーン6(主ベーン6a及び副ベーン6bとも)の下端縁は、頂点が上方に向いた円錐面に沿うように配置されている。すなわち、ベーン6は回転軸7に対して傾斜して、斜流ポンプを形成している。また、ベーン6の形状は、3次元曲面に形成されている。それにより、充分な駆出能を有しながら、ベーン6の出口側で発生するキャビテーション(流れの剥離、渦流)を抑制し、溶血の低減した血液ポンプを実現できる。 The lower end edge of the vane 6 (both the main vane 6a and the sub vane 6b) is arranged so that the apex is along the conical surface with the upward direction. That is, the vane 6 is inclined with respect to the rotating shaft 7 to form a mixed flow pump. The shape of the vane 6 is a three-dimensional curved surface. Accordingly, it is possible to realize a blood pump with reduced hemolysis by suppressing cavitation (flow separation, vortex) generated on the outlet side of the vane 6 while having sufficient ejection ability.
 図3に示すように、回転軸7は、ハウジング1に設けた上部軸受け9及び下部軸受け10により、回転自在に支持されている。従って、上部軸受け9と下部軸受け10により、インペラ5が上下位置で安定な状態に支持され、その回転は安定したものとなる。環状連結部8には、磁石ケース11が設けられ、磁石ケース11には従動磁石12が埋設されている。従動磁石12は、円柱状であり、環状連結部8の周方向に6個、一定間隔をもって配置されている。環状連結部8及び磁石ケース11は円筒形内周面を形成している。 As shown in FIG. 3, the rotating shaft 7 is rotatably supported by an upper bearing 9 and a lower bearing 10 provided in the housing 1. Therefore, the impeller 5 is supported in a stable state at the vertical position by the upper bearing 9 and the lower bearing 10, and the rotation thereof is stabilized. The annular connecting portion 8 is provided with a magnet case 11, and a driven magnet 12 is embedded in the magnet case 11. The driven magnets 12 have a columnar shape, and are arranged in the circumferential direction of the annular connecting portion 8 at regular intervals. The annular connecting portion 8 and the magnet case 11 form a cylindrical inner peripheral surface.
 ハウジング1の下部には、ロータ13が配置されている。ロータ13は、駆動軸14に略円柱状の磁気結合部15が設けられた構造を有する。駆動軸14は、図示しないが、回転自在に支持されるとともに、モータ等の回転駆動源に連結されて回転駆動される。また、ロータ13とハウジング1とは、図示しない要素により、相互の位置関係が一定に保持されている。磁気結合部15の上面部には駆動磁石16が、埋設されている。駆動磁石16は円柱状であり、周方向に6個、一定間隔をもって配置されている。 A rotor 13 is disposed at the bottom of the housing 1. The rotor 13 has a structure in which a substantially cylindrical magnetic coupling portion 15 is provided on the drive shaft 14. Although not shown, the drive shaft 14 is rotatably supported and connected to a rotation drive source such as a motor to be rotated. Further, the positional relationship between the rotor 13 and the housing 1 is kept constant by elements not shown. A drive magnet 16 is embedded in the upper surface portion of the magnetic coupling portion 15. The drive magnets 16 have a cylindrical shape, and are arranged at regular intervals with six pieces in the circumferential direction.
 駆動磁石16は、ハウジング1の壁を挟んで従動磁石12と対向する位置関係となるように配置されている。従って、ロータ13とインペラ5との間には、磁気的に連結された状態が形成され、ロータ13を回転させることにより、磁気結合を介してインペラ5に回転駆動力が伝達される。 The driving magnet 16 is disposed so as to be in a positional relationship facing the driven magnet 12 across the wall of the housing 1. Accordingly, a magnetically coupled state is formed between the rotor 13 and the impeller 5, and by rotating the rotor 13, a rotational driving force is transmitted to the impeller 5 through magnetic coupling.
 ベーン6の下端縁が円錐面に沿って配置されているので、従動磁石12が設置された環状連結部8の上下面も、回転軸7に対して直交せず、同様の円錐面に沿っている。同様に駆動磁石16が設置された磁気結合部15の上面も傾斜面である。このように、従動磁石12と駆動磁石16とが、インペラ5の回転軸に対して傾斜した面において磁気結合を形成していることにより、インペラ5とロータ13の間に作用する磁気吸引力は、インペラ5の回転軸に対して傾斜した方向に発生する。その結果、下部軸受け10に対する下向きの負荷が軽減される。 Since the lower end edge of the vane 6 is disposed along the conical surface, the upper and lower surfaces of the annular coupling portion 8 on which the driven magnet 12 is installed are not orthogonal to the rotation shaft 7 and are along the same conical surface. Yes. Similarly, the upper surface of the magnetic coupling portion 15 on which the drive magnet 16 is installed is also an inclined surface. As described above, since the driven magnet 12 and the drive magnet 16 form a magnetic coupling on the surface inclined with respect to the rotation axis of the impeller 5, the magnetic attractive force acting between the impeller 5 and the rotor 13 is reduced. It occurs in a direction inclined with respect to the rotation axis of the impeller 5. As a result, the downward load on the lower bearing 10 is reduced.
 インペラ5は、環状連結部8の内側の領域に空間17を有し、ベーン6の間を上下に貫通する流路が形成されている。ハウジング1の底部の中央部には、上方、すなわちポンプ室2の内部に突出した円筒形外周面を有する台座18が形成されている。台座18は、インペラ5の下部の、従動磁石12および環状連結部8の内側の領域の空間17を埋めるように形成され、空間の体積を最少限に抑制している。台座18の上面は、ベーン6の下端縁に沿って、頂点が上方に向いた円錐面状の傾斜面に形成されている。台座18の周囲におけるハウジング1の底部も同様の傾斜面に形成されている。 The impeller 5 has a space 17 in an inner region of the annular coupling portion 8, and a flow path penetrating vertically between the vanes 6 is formed. A pedestal 18 having a cylindrical outer peripheral surface protruding upward, that is, inside the pump chamber 2 is formed at the center of the bottom of the housing 1. The pedestal 18 is formed so as to fill the space 17 in the region inside the driven magnet 12 and the annular coupling portion 8 below the impeller 5, and the volume of the space is suppressed to the minimum. The upper surface of the pedestal 18 is formed as a conical inclined surface whose apex is directed upward along the lower edge of the vane 6. The bottom of the housing 1 around the pedestal 18 is also formed on the same inclined surface.
 台座18が形成されていることにより、ポンプ室2内の血液充填量が低減される。また、環状連結部8が、ハウジング1の底面全体を覆う大きさではなく、空間17が形成されていることにより、インペラ5は軽量となり、回転に必要な駆動力が低減される。下部軸受け10は、台座18の上面部中央に設けられている。なお、上部軸受け9は、入口ポート3の下端部内に配置された3本の軸受け支柱19の先端に支持されている。 Since the pedestal 18 is formed, the blood filling amount in the pump chamber 2 is reduced. Further, since the annular connecting portion 8 is not of a size that covers the entire bottom surface of the housing 1 but the space 17 is formed, the impeller 5 becomes light in weight, and the driving force necessary for rotation is reduced. The lower bearing 10 is provided at the center of the upper surface of the pedestal 18. The upper bearing 9 is supported at the tips of three bearing columns 19 disposed in the lower end portion of the inlet port 3.
 上記構成は、インペラ5の下部に血液が滞留する状態を改善して、血液ポンプの長期使用時(経皮的心肺補助法など)に、血栓が形成される惧れを解消するために効果的である。すなわち、環状連結部8の内側の空間領域に、ベーン6の間を上下に貫通する流路が形成され、インペラ5の下部に流れてきた血液は、下部軸受け10の近傍を通過して、ベーン6の外径方向に向かって流れ出る作用が得られるからである。 The above configuration is effective to improve the state where blood stays in the lower part of the impeller 5 and to eliminate the possibility that thrombus may be formed when the blood pump is used for a long time (percutaneous cardiopulmonary assist method, etc.). It is. That is, in the space region inside the annular connecting portion 8, a flow path that penetrates between the vanes 6 is formed, and the blood that flows to the lower portion of the impeller 5 passes through the vicinity of the lower bearing 10 and passes through the vane. This is because an action of flowing out toward the outer diameter direction of 6 is obtained.
 インペラ5は更に、回転軸7と環状連結部8の間に亘る領域のベーン6の下部に配置された封鎖部材20を有する。封鎖部材20は、回転軸7と環状連結部8の間に亘る領域の空間からベーン6の間に貫通する流路を、回転軸7の周囲に一部の開口部21を残して封鎖している。 The impeller 5 further has a sealing member 20 arranged at the lower part of the vane 6 in a region extending between the rotary shaft 7 and the annular connecting portion 8. The sealing member 20 seals the flow path penetrating between the vane 6 from the space in the region between the rotating shaft 7 and the annular connecting portion 8, leaving a part of the opening 21 around the rotating shaft 7. Yes.
 封鎖部材20を設けることにより、台座18の上面の下部軸受け10の近傍における血栓の形成を抑制する効果が向上する。すなわち、ハウジング1の底面部の血液が、封鎖部材20の下面に沿ってインペラ5の中心に向って流動する流れが強まるからである。血液流はその後、封鎖部材20の開口部21を通って上昇するので、下部軸受け10に隣接し回転軸7に沿って十分な速度の血液流が形成され、下部軸受け10に対する洗浄効果が向上する。 By providing the sealing member 20, the effect of suppressing the formation of thrombus in the vicinity of the lower bearing 10 on the upper surface of the base 18 is improved. That is, the flow of blood on the bottom surface of the housing 1 flowing toward the center of the impeller 5 along the lower surface of the sealing member 20 is strengthened. Since the blood flow then rises through the opening 21 of the sealing member 20, a blood flow having a sufficient speed is formed along the rotary shaft 7 adjacent to the lower bearing 10, and the cleaning effect on the lower bearing 10 is improved. .
特開2010-207346号公報JP 2010-207346 A
 図3に示した従来例のターボ式血液ポンプでは、下部軸受け10およびその周辺の台座18の構造が簡略化して記載されているが、より具体的な構造を図6に示す。 In the conventional turbo type blood pump shown in FIG. 3, the structure of the lower bearing 10 and the pedestal 18 around it is described in a simplified manner, but a more specific structure is shown in FIG.
 台座18の中央部には、上下方向の貫通孔が設けられ、軸受け装着孔22及び調節ネジ装着孔23を形成している。軸受け装着孔22には下部軸受け10が装着され、調節ネジ装着孔23には、調節ネジ24が装着されている。調節ネジ装着孔23の内周面には、雌ネジが形成され、調節ネジ24の外周面には雄ネジが形成されている。 A vertical through-hole is provided in the center of the base 18 to form a bearing mounting hole 22 and an adjustment screw mounting hole 23. The lower bearing 10 is mounted in the bearing mounting hole 22, and the adjustment screw 24 is mounted in the adjustment screw mounting hole 23. A female screw is formed on the inner peripheral surface of the adjustment screw mounting hole 23, and a male screw is formed on the outer peripheral surface of the adjustment screw 24.
 ハウジング1は、上下分割面25で、入口ポート3を含む側の上半体1aと、台座18を含む側の下半体1bとに2分割して形成されている。上部軸受け9は上半体1aに設けられている。回転軸7が上部軸受け9と下部軸受け10の間に支持される状態となるように、上半体1aと下半体1bとを結合させて、インペラ5をハウジング1内に装着する。 The housing 1 is divided into an upper half 1a on the side including the inlet port 3 and a lower half 1b on the side including the pedestal 18 at the upper and lower dividing surfaces 25. The upper bearing 9 is provided on the upper half 1a. The impeller 5 is mounted in the housing 1 by connecting the upper half 1a and the lower half 1b so that the rotary shaft 7 is supported between the upper bearing 9 and the lower bearing 10.
 調節ネジ24は、調節ネジ装着孔23との螺合により、上下方向の位置が調節可能である。従って、下部軸受け10を軸受け装着孔22に装着し、回転軸7を上部軸受け9と下部軸受け10の間に支持させて、上半体1aと下半体1bとを結合させた後、調節ネジ24を回動させて、下部軸受け10の上下方向位置を調節すれば、上部軸受け9と下部軸受け10の間の軸受け間距離Hを調整することができる。 The position of the adjustment screw 24 can be adjusted by screwing with the adjustment screw mounting hole 23. Accordingly, the lower bearing 10 is mounted in the bearing mounting hole 22, the rotating shaft 7 is supported between the upper bearing 9 and the lower bearing 10, and the upper half 1a and the lower half 1b are coupled, and then the adjusting screw. By rotating 24 and adjusting the vertical position of the lower bearing 10, the inter-bearing distance H between the upper bearing 9 and the lower bearing 10 can be adjusted.
 インペラ5の回転トルクは、軸受け間距離Hに影響される。血液ポンプを組立てただけの状態では、成形品寸法や軸寸法の僅かな誤差により軸受け間距離Hは一定にはならず、また回転軸7の長さの誤差もあるため、インペラ5の回転トルクにバラツキが生ずる。従って、軸受け間距離Hを調整するための調節ネジ24を設けることは、品質を安定させるために不可欠であった。 The rotational torque of the impeller 5 is affected by the distance H between the bearings. In the state where the blood pump is just assembled, the distance H between the bearings is not constant due to a slight error in the dimensions of the molded product and the shaft dimension, and there is also an error in the length of the rotating shaft 7. Variation occurs. Therefore, providing the adjusting screw 24 for adjusting the distance H between the bearings is indispensable for stabilizing the quality.
 しかし、このためには上記構成の場合、要素部品として、下部軸受け10に加えて調節ネジ24が必要である。従って、部品点数の増加による部品コストの増加、及び部品点数の多さに起因する製造工程の煩雑さが、コスト上昇の一因となることは避けられなかった。 However, for this purpose, in the case of the above configuration, the adjustment screw 24 is necessary as an element part in addition to the lower bearing 10. Therefore, it is inevitable that the increase in the component cost due to the increase in the number of components and the complexity of the manufacturing process due to the large number of components contribute to the increase in cost.
 また、ハウジング1に設けられた台座18に対して、射出成形後に調節ネジ装着孔23へのネジ穴の追加工が必要である。このことも、製造工程の煩雑さを増大させ、コストを上昇させる一因となっていた。 Further, it is necessary to add a screw hole to the adjusting screw mounting hole 23 after the injection molding for the pedestal 18 provided in the housing 1. This also increases the complexity of the manufacturing process and increases the cost.
 そこで本発明は、インペラの回転軸に対する下部軸受けの位置調整のための構造を改良して、部品点数を減らし、製造工程の簡潔さを向上させることが可能な構成を有するターボ式血液ポンプを提供することを目的とする。 Accordingly, the present invention provides a turbo blood pump having a structure capable of improving the structure for adjusting the position of the lower bearing with respect to the rotating shaft of the impeller, reducing the number of parts, and improving the simplicity of the manufacturing process. The purpose is to do.
 本発明のターボ式血液ポンプは、ポンプ室を形成し、上部に入口ポートが設けられ、側部に出口ポートが設けられたハウジングと、回転軸、複数のベーン及び環状連結部を有し、前記複数のベーンの少なくとも一部の内周端は前記回転軸と結合し、前記各ベーンの外周端は前記環状連結部に結合しているインペラと、前記ハウジングの底部壁を上方に突出させて形成され、前記環状連結部の円筒状の内周面が形成する空間領域に対応する円筒状の外周面を有する台座と、前記インペラの回転軸の上端を回転自在に支持する上部軸受けと、前記台座の上面部に設けられ前記インペラの回転軸の下端を回転自在に支持する下部軸受けと、前記ハウジングの外側下部に配置され、前記環状連結部との磁気結合を介して前記インペラを回転駆動するロータとを備えている。 The turbo blood pump of the present invention includes a housing that forms a pump chamber, an inlet port is provided at an upper portion and an outlet port is provided at a side portion, a rotating shaft, a plurality of vanes, and an annular connecting portion, An inner peripheral end of at least a part of the plurality of vanes is coupled to the rotating shaft, and an outer peripheral end of each vane is formed by projecting an impeller coupled to the annular coupling portion and a bottom wall of the housing upward A pedestal having a cylindrical outer peripheral surface corresponding to a space region formed by the cylindrical inner peripheral surface of the annular coupling portion, an upper bearing that rotatably supports an upper end of a rotating shaft of the impeller, and the pedestal A lower bearing that is provided on the upper surface of the housing and rotatably supports the lower end of the rotating shaft of the impeller, and is disposed on the outer lower portion of the housing, and rotationally drives the impeller through magnetic coupling with the annular coupling portion. And a chromatography data.
 上記課題を解決するために、前記台座の中央部には、内周面に内面ネジ突起が形成された軸受け装着孔が設けられ、前記下部軸受けは、その上端に前記インペラの回転軸の下端を支持する軸受け部を有するとともに、外周面に前記内面ネジ突起と螺合する外面ネジ突起が形成され、その螺合を介して前記軸受け装着孔に装着されている。 In order to solve the above problems, a bearing mounting hole having an inner surface threaded protrusion formed on an inner peripheral surface is provided in the center of the pedestal, and the lower bearing has the lower end of the rotating shaft of the impeller at its upper end. In addition to having a bearing portion to support, an outer surface threaded protrusion is formed on the outer peripheral surface to be screwed with the inner surface threaded protrusion, and is mounted in the bearing mounting hole through the threaded engagement.
 本発明のターボ式血液ポンプの製造方法は、上記構成のターボ式血液ポンプの製造方法であって、前記下部軸受けを前記軸受け装着孔に装着し、前記回転軸が前記上部軸受と前記下部軸受けの間に支持された状態になるように前記インペラを前記ハウジング内に装着した後、前記軸受け装着孔の下方に露出した前記下部軸受けを回動させて、前記外面ネジ突起と前記内面ネジ突起の螺合を介して、前記下部軸受けの上下方向の位置を調整する操作を行うことを特徴とする。 A method for manufacturing a turbo blood pump according to the present invention is a method for manufacturing a turbo blood pump having the above-described configuration, wherein the lower bearing is mounted in the bearing mounting hole, and the rotating shaft is connected to the upper bearing and the lower bearing. After the impeller is mounted in the housing so as to be supported in between, the lower bearing exposed below the bearing mounting hole is rotated to screw the outer thread protrusion and the inner thread protrusion. An operation for adjusting the position of the lower bearing in the vertical direction is performed.
 上記構成によれば、下部軸受け自身が外面ネジ突起を有することにより、他の部材を要することなく上下方向の位置を調整するための構造が形成される。従って、部品点数が増加することなく、また製造工程を簡潔性を向上させて、製品のコストを低減させることが可能である。 According to the above configuration, since the lower bearing itself has the external thread protrusion, a structure for adjusting the position in the vertical direction is formed without requiring other members. Therefore, it is possible to reduce the cost of the product without increasing the number of parts and improving the simplicity of the manufacturing process.
図1は、本発明の実施の形態におけるターボ式血液ポンプの断面図である。FIG. 1 is a cross-sectional view of a turbo blood pump according to an embodiment of the present invention. 図2Aは、同ターボ式血液ポンプの下部軸受けの構成を示す斜視図である。FIG. 2A is a perspective view showing a configuration of a lower bearing of the turbo blood pump. 図2Bは、同ターボ式血液ポンプのハウジングにおける台座の構成を示す斜視図である。FIG. 2B is a perspective view showing a configuration of a pedestal in the housing of the turbo blood pump. 図3は、従来例のターボ式血液ポンプの断面図である。FIG. 3 is a cross-sectional view of a conventional turbo blood pump. 図4は、図3のターボ式血液ポンプのインペラの上面図である。FIG. 4 is a top view of the impeller of the turbo blood pump of FIG. 図5は、同インペラの断面図である。FIG. 5 is a cross-sectional view of the impeller. 図6は、図3のターボ式血液ポンプの軸受け構造を示す断面図である。FIG. 6 is a cross-sectional view showing the bearing structure of the turbo blood pump of FIG.
 本発明は、上記構成を基本として以下のような態様をとることができる。 The present invention can take the following aspects based on the above configuration.
 すなわち、上記構成のターボ式血液ポンプは、前記内面ネジ突起は2条のネジ山を形成し、各条のネジ山は前記軸受け装着孔の周方向における半周以下の長さに設定され、各条のネジ山は、相互に周方向の重ならない領域に配置されていることが好ましい。特に、前記内面ネジ突起を形成する各条のネジ山は、前記軸受け装着孔の周方向における半周の長さに設定されていることが好ましい。この構成によれば、台座の軸受け装着孔に射出成形により内面ネジ突起を形成して、射出成形後の台座に対する追加工を不要とすることが容易である。 That is, in the turbo type blood pump having the above-described configuration, the inner surface thread protrusion forms two threads, and the threads of each thread are set to a length equal to or less than a half circumference in the circumferential direction of the bearing mounting hole. The screw threads are preferably arranged in regions that do not overlap each other in the circumferential direction. In particular, it is preferable that the thread of each strip forming the inner surface thread protrusion is set to a length of a half circumference in the circumferential direction of the bearing mounting hole. According to this configuration, it is easy to form an internal thread protrusion in the bearing mounting hole of the pedestal by injection molding and eliminate the need for additional work on the pedestal after injection molding.
 また、前記軸受け装着孔は貫通孔であり、前記軸受け装着孔の下方に露出する前記下部軸受けの下端部に、前記下部軸受けを回動させるための工具との係合部が設けられていることが好ましい。この構成によれば、回転軸が上部軸受と下部軸受けの間に支持された状態になるようにインペラをポンプ室内に装着し、軸受け装着孔内での下部軸受けの位置を調節して、上部軸受と下部軸受け間の間隔を適切に設定する工程を容易に行なうことができる。 Further, the bearing mounting hole is a through hole, and an engaging portion with a tool for rotating the lower bearing is provided at a lower end portion of the lower bearing exposed below the bearing mounting hole. Is preferred. According to this configuration, the impeller is mounted in the pump chamber so that the rotating shaft is supported between the upper bearing and the lower bearing, and the position of the lower bearing in the bearing mounting hole is adjusted to And the process of appropriately setting the distance between the lower bearing and the lower bearing.
 また、装着された前記下部軸受けの下端側において、前記軸受け装着孔の内周面と前記下部軸受けの外周面の間の隙間が接着材により目止めされていることが好ましい。この構成によれば、下部軸受けの位置調節を外部から行った後に、軸受け装着孔の内周面と下部軸受けの外周面の間の隙間を通して、ポンプ室と外部が連通することを容易に回避できる。 Further, it is preferable that a gap between the inner peripheral surface of the bearing mounting hole and the outer peripheral surface of the lower bearing is sealed with an adhesive on the lower end side of the mounted lower bearing. According to this configuration, after adjusting the position of the lower bearing from the outside, it is possible to easily avoid communication between the pump chamber and the outside through the gap between the inner peripheral surface of the bearing mounting hole and the outer peripheral surface of the lower bearing. .
 また、前記ベーンの下端縁は、前記回転軸に向かって高くなる傾斜を持ち、前記インペラには、前記ベーンの下端縁の傾斜に沿った円錐面状の傾斜面を形成し、前記複数のベーンの間の流路を前記回転軸の周囲の領域に制限する封鎖部材が前記ベーンの下部に設けられ、前記下部軸受けは、上面が前記封鎖部材の傾斜面に沿った傾斜面を形成し、外周径が前記軸受け装着孔よりも大きい上側径大部と、その下部を形成し外周径が前記軸受け装着孔よりも小さく、外周面に前記外面ネジ突起が形成された下側円筒部とを含む構成とすることができる。この構成によれば、封鎖部材との間の流路を形成する台座の上面の一部を下部軸受けの上面により代替して、下部軸受けの直径を大きくすることができる。これにより、製造工程における下部軸受けの取り扱いが容易となり、また、台座の形状を簡潔にすることができる。 The lower end edge of the vane has an inclination that becomes higher toward the rotation axis, and the impeller is formed with a conical inclined surface along the inclination of the lower end edge of the vane, and the plurality of vanes A sealing member that restricts a flow path between the rotating shaft and a region around the rotating shaft is provided at a lower portion of the vane, and the lower bearing has an upper surface that forms an inclined surface along the inclined surface of the sealing member, A configuration including an upper diameter large portion having a diameter larger than that of the bearing mounting hole, and a lower cylindrical portion forming a lower portion thereof and having an outer peripheral diameter smaller than that of the bearing mounting hole and having the outer surface thread protrusion formed on the outer peripheral surface. It can be. According to this configuration, the diameter of the lower bearing can be increased by replacing a part of the upper surface of the pedestal that forms the flow path between the sealing member and the upper surface of the lower bearing. Thereby, handling of the lower bearing in the manufacturing process is facilitated, and the shape of the pedestal can be simplified.
 また、上記構成のターボ式血液ポンプの製造方法においては、前記ハウジングを前記入口ポートを含む側の上半体と前記台座を含む側の下半体とに2分割して形成し、前記上部軸受けを前記上半体に設け、前記回転軸が前記上部軸受と前記下部軸受けの間に支持された状態なるように前記上半体と前記下半体とを結合させることにより、前記インペラを前記ハウジング内に装着する工程を含んでもよい。この工程によれば、回転軸が上部軸受と下部軸受けの間に支持された状態になるようにインペラをポンプ室内に装着する操作を容易に行なうことが可能である。 In the method for manufacturing a turbo blood pump having the above-described structure, the housing is formed by dividing the housing into an upper half on the side including the inlet port and a lower half on the side including the pedestal, and the upper bearing. Is attached to the upper half body, and the upper half body and the lower half body are coupled to each other so that the rotating shaft is supported between the upper bearing and the lower bearing. It may include a step of mounting inside. According to this process, it is possible to easily perform the operation of mounting the impeller in the pump chamber so that the rotating shaft is supported between the upper bearing and the lower bearing.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態1におけるターボ式血液ポンプを示す断面図である。このターボ式血液ポンプの基本的な構造は、図3~図5に示した従来例のものと同様である。従って、図3~図5に示した要素と同様の要素については、同一の参照符号を付して、説明の繰り返しを簡略化する。
(Embodiment)
FIG. 1 is a cross-sectional view showing a turbo blood pump according to Embodiment 1 of the present invention. The basic structure of this turbo blood pump is the same as that of the conventional example shown in FIGS. Therefore, elements similar to those shown in FIGS. 3 to 5 are denoted by the same reference numerals, and the repeated description is simplified.
 図1に示すターボ式血液ポンプでは、従来例と同様、ハウジング1が形成するポンプ室2内に配置されたインペラ5は、複数のベーン6を有し、その少なくとも一部の内周端部が回転軸7と結合し、外周縁部を形成する環状連結部8に各ベーン6の外周端部が結合している。回転軸7は、上部軸受け9と下部軸受け26により回転自在に支持されている。下部軸受け26は、台座27の上面部に設けられた軸受け装着孔28に装着されている。下部軸受け26の構成を、図2Aに斜視図で示し、軸受け装着孔28を有する台座27の構成を、図2Bに斜視図で示す。 In the turbo type blood pump shown in FIG. 1, the impeller 5 disposed in the pump chamber 2 formed by the housing 1 has a plurality of vanes 6 as in the conventional example, and at least a part of the inner peripheral end thereof is The outer peripheral end of each vane 6 is coupled to an annular connecting portion 8 that is coupled to the rotary shaft 7 and forms an outer peripheral edge. The rotary shaft 7 is rotatably supported by the upper bearing 9 and the lower bearing 26. The lower bearing 26 is mounted in a bearing mounting hole 28 provided in the upper surface portion of the base 27. The configuration of the lower bearing 26 is shown in a perspective view in FIG. 2A, and the configuration of a pedestal 27 having a bearing mounting hole 28 is shown in a perspective view in FIG. 2B.
 ハウジング1は、上下分割面25により、入口ポート3を含む側の上半体1aと、台座27を含む側の下半体1bとに2分割して形成されている。上部軸受け9は上半体1aに設けられている。回転軸7が上部軸受け9と下部軸受け26の間に支持される状態になるように、上半体1aと下半体1bとを結合させて、インペラ5をハウジング1内に装着する。 The housing 1 is divided into two parts by an upper and lower dividing surface 25 into an upper half 1 a including the inlet port 3 and a lower half 1 b including the pedestal 27. The upper bearing 9 is provided on the upper half 1a. The impeller 5 is mounted in the housing 1 by connecting the upper half 1a and the lower half 1b so that the rotary shaft 7 is supported between the upper bearing 9 and the lower bearing 26.
 台座27は、ハウジング1の底部壁内側の中央部を上方に突出させて形成されており、環状連結部8の円筒状の内周面が形成する空間領域に対応する円筒状の外周面を有する。台座27の上面の一部は、下部軸受け26の上面により形成され、頂点が上方に向いた円錐面状の傾斜面となっている。なお、ハウジング1の底面の環状連結部8と対向する面も、環状連結部8に沿った傾斜面となっている。 The pedestal 27 is formed by projecting upward the central portion inside the bottom wall of the housing 1, and has a cylindrical outer peripheral surface corresponding to a space region formed by the cylindrical inner peripheral surface of the annular coupling portion 8. . A part of the upper surface of the pedestal 27 is formed by the upper surface of the lower bearing 26, and is a conical inclined surface whose apex is directed upward. Note that the surface of the bottom surface of the housing 1 that faces the annular connecting portion 8 is also an inclined surface along the annular connecting portion 8.
 インペラ5は、ベーン6の下方に配置された封鎖部材20を備えている。封鎖部材20は、ベーン6の下端縁の傾斜に沿った円錐面状の傾斜面を形成している。封鎖部材20は、環状連結部8の内部領域の空間を、回転軸7の周囲に開口部21を残して封鎖している。 The impeller 5 includes a sealing member 20 disposed below the vane 6. The blocking member 20 forms a conical inclined surface along the inclination of the lower end edge of the vane 6. The sealing member 20 seals the space in the inner region of the annular coupling portion 8 leaving the opening 21 around the rotating shaft 7.
 図2Bに示したように、台座27の中央部には貫通孔が設けられて、軸受け装着孔28を形成している。下部軸受け26は、図2Aに示したように、外周径が軸受け装着孔28よりも大きく広がった上側の径大部29と、その下部を形成し外周径が軸受け装着孔28よりも小さい円筒部30とから構成されている。下部軸受け26の上端には、インペラ5の回転軸7の下端を支持する軸受け部31が形成されている。 As shown in FIG. 2B, a through hole is provided in the central portion of the pedestal 27 to form a bearing mounting hole 28. As shown in FIG. 2A, the lower bearing 26 has an upper large-diameter portion 29 whose outer peripheral diameter is larger than that of the bearing mounting hole 28, and a cylindrical portion that forms a lower portion thereof and whose outer peripheral diameter is smaller than that of the bearing mounting hole 28. 30. A bearing 31 that supports the lower end of the rotating shaft 7 of the impeller 5 is formed at the upper end of the lower bearing 26.
 軸受け装着孔28の内周面には、内面ネジ突起28aが形成されている。下部軸受け26の円筒部30の外周面には、内面ネジ突起28aと螺合する外面ネジ突起26aが形成されている。下部軸受け26の径大部29は、上面が封鎖部材20の傾斜面に沿った傾斜面を形成している。 An internal thread protrusion 28 a is formed on the inner peripheral surface of the bearing mounting hole 28. On the outer peripheral surface of the cylindrical portion 30 of the lower bearing 26, an outer surface thread protrusion 26a that is screwed with the inner surface thread protrusion 28a is formed. The large diameter portion 29 of the lower bearing 26 forms an inclined surface whose upper surface is along the inclined surface of the sealing member 20.
 下部軸受け26は、外面ネジ突起26aを内面ネジ突起28aに螺合させることにより、軸受け装着孔28に装着されている。軸受け装着孔28は貫通孔であるため、下部軸受け26が軸受け装着孔28に装着されたときに、その下端が軸受け装着孔28の下方に露出する。その露出する下部軸受け26の下端部には、下部軸受け26を回動させるための工具との係合部32(図1)が設けられている。従って、製造工程においては、係合部32に工具を係合させて下部軸受け26を回動させる操作を行う。それにより、外面ネジ突起26aと内面ネジ突起28aの螺合を介して、軸受け装着孔28内での下部軸受け26の上下方向の位置を調整することができる。 The lower bearing 26 is mounted in the bearing mounting hole 28 by screwing the outer thread protrusion 26a with the inner thread protrusion 28a. Since the bearing mounting hole 28 is a through-hole, when the lower bearing 26 is mounted in the bearing mounting hole 28, the lower end thereof is exposed below the bearing mounting hole 28. An engaging portion 32 (FIG. 1) with a tool for rotating the lower bearing 26 is provided at the lower end portion of the exposed lower bearing 26. Accordingly, in the manufacturing process, an operation of rotating the lower bearing 26 by engaging the tool with the engaging portion 32 is performed. As a result, the vertical position of the lower bearing 26 in the bearing mounting hole 28 can be adjusted via the screwing of the outer thread protrusion 26a and the inner thread protrusion 28a.
 軸受け間距離が適切になるように下部軸受け26の位置を調整した後には、軸受け装着孔28の内周面と下部軸受け26の外周面の間の隙間は、接着剤により目止めされる。下部軸受け26を装着しただけの状態では、軸受け装着孔28の内周面と下部軸受け26の外周面の間の隙間を通して、ポンプ室2が外部と連通しているからである。このように、製造工程における下部軸受け26の装着工程の未完了状態では、外面ネジ突起26aと内面ネジ突起28aの螺合を介して、下部軸受け26の上下方向の位置を調整可能であるが、製造完了後には下部軸受け26の位置は固定されている。 After adjusting the position of the lower bearing 26 so that the distance between the bearings is appropriate, the gap between the inner peripheral surface of the bearing mounting hole 28 and the outer peripheral surface of the lower bearing 26 is blocked by an adhesive. This is because the pump chamber 2 communicates with the outside through a gap between the inner peripheral surface of the bearing mounting hole 28 and the outer peripheral surface of the lower bearing 26 when the lower bearing 26 is simply mounted. Thus, in the unfinished state of the mounting process of the lower bearing 26 in the manufacturing process, it is possible to adjust the vertical position of the lower bearing 26 through the screwing of the outer thread protrusion 26a and the inner thread protrusion 28a. After the manufacturing is completed, the position of the lower bearing 26 is fixed.
 なお、軸受け装着孔28を貫通孔とすることは必須ではない。すなわち、下部軸受け26を回動させる調整を、他の方法で行うように構成することも可能である。例えば、入口ポート3の開口部を利用して下部軸受け26を回動させることも可能である。あるいは、下半体1bのみの状態で、軸受け装着孔28に対する下部軸受け26の位置調整を行うことも可能である。すなわち、上半体1aと下半体1bの寸法精度、上部軸受け9の位置の精度等を測定して、下部軸受け26を軸受け装着孔28に対して設定すべき位置関係を算出する。次に、その算出した値により、下半体1bのみの状態で、軸受け装着孔28に対して下部軸受け26の位置調整を行う。その後、インペラ5を装着して上半体1aと下半体1bを合体させる。 Note that it is not essential that the bearing mounting hole 28 be a through hole. That is, it is also possible to configure so that the adjustment for rotating the lower bearing 26 is performed by another method. For example, the lower bearing 26 can be rotated using the opening of the inlet port 3. Alternatively, it is also possible to adjust the position of the lower bearing 26 with respect to the bearing mounting hole 28 in the state of only the lower half 1b. That is, the dimensional accuracy of the upper half 1a and the lower half 1b, the accuracy of the position of the upper bearing 9 and the like are measured, and the positional relationship for setting the lower bearing 26 with respect to the bearing mounting hole 28 is calculated. Next, based on the calculated value, the position of the lower bearing 26 is adjusted with respect to the bearing mounting hole 28 with only the lower half 1b. Thereafter, the impeller 5 is attached to combine the upper half 1a and the lower half 1b.
 図2Bに示されるように、内面ネジ突起28aは2条のネジ山を形成し、各条のネジ山は軸受け装着孔28の周方向における半周の長さに設定されている。また、各条のネジ山は、相互に周方向の重ならない領域に配置されている。それにより、軸受け装着孔28の内周面に内面ネジ突起28aが形成された構造を、射出成形で容易に製造可能である。 As shown in FIG. 2B, the internal thread protrusion 28a forms two threads, and the thread of each thread is set to the length of the half circumference in the circumferential direction of the bearing mounting hole 28. In addition, the threads of the respective strips are arranged in regions that do not overlap with each other in the circumferential direction. As a result, the structure in which the inner surface screw projections 28a are formed on the inner peripheral surface of the bearing mounting hole 28 can be easily manufactured by injection molding.
 半周のみの2条のネジ山であっても、ピッチを任意に設定することで、軸受け間距離の調整に余裕をもたせることが可能であり。内面ネジ突起28aの各条のネジ山は、半周未満の長さであってもよい。但し、外面ネジ突起26aとの適切な螺合状態が得られる長さは確保する必要がある。 っ て も Even if it is a two-thread thread with only a half circumference, it is possible to provide a margin for adjusting the distance between the bearings by setting the pitch arbitrarily. Each thread of the inner surface thread protrusion 28a may have a length less than a half circumference. However, it is necessary to secure a length that allows an appropriate screwed state with the outer surface screw projection 26a.
 以上のように、本実施の形態の構成によれば、下部軸受け26の位置調整のための構造が、少ない部品点数で形成され、また、射出成形後の台座27に対する追加工が不要となる。これにより、より低コストで回転トルク調整が可能な下部軸受け構造を提供できる。 As described above, according to the configuration of the present embodiment, the structure for adjusting the position of the lower bearing 26 is formed with a small number of parts, and no additional work is required for the pedestal 27 after injection molding. Thereby, the lower bearing structure which can adjust rotational torque at lower cost can be provided.
 なお、本実施の形態のターボ式血液ポンプは、一例として、以下のような材質を用いて構成することができる。インペラ5及びハウジング1の材質(従って台座27の材質も)としては、例えば、軽量化、易成型性、強度、寸法安定性等の点からポリカーボネート、ポリエチレンテレフタレート、ポリスルフォン等の合成樹脂を用いることができる。軸受けの素材は耐摩耗性の大きいものであれば良く、例えば超高分子量ポリエチレン、ポリエーテルエーテルケトン(PEEK)等の高耐久性プラスチックが好適に利用できる。インペラ5の回転軸7の材質としては、例えばSUS(ステンレス鋼)を用いることができる。 It should be noted that the turbo blood pump of the present embodiment can be configured using the following materials as an example. As the material of the impeller 5 and the housing 1 (and hence the material of the pedestal 27), for example, a synthetic resin such as polycarbonate, polyethylene terephthalate, polysulfone, etc. is used in terms of weight reduction, easy moldability, strength, dimensional stability, and the like. Can do. The material of the bearing is not particularly limited as long as it has high wear resistance. For example, high durability plastics such as ultra high molecular weight polyethylene and polyether ether ketone (PEEK) can be suitably used. As a material of the rotating shaft 7 of the impeller 5, for example, SUS (stainless steel) can be used.
 本発明のターボ式血液ポンプは、インペラの回転軸に対する下部軸受けの位置調整のための構造が安価に作成可能であり、人工心肺装置等における体外血液循環に用いる血液ポンプとして有用である。 The turbo blood pump of the present invention can be manufactured at a low cost for adjusting the position of the lower bearing with respect to the rotation shaft of the impeller, and is useful as a blood pump used for extracorporeal blood circulation in an oxygenator or the like.
 1 ハウジング
 1a 上半体
 1b 下半体
 2 ポンプ室
 3 入口ポート
 4 出口ポート
 5 インペラ
 6 ベーン
 6a 主ベーン
 6b 副ベーン
 7 回転軸
 8 環状連結部
 9 上部軸受け
 10、26 下部軸受け
 11 磁石ケース
 12 従動磁石
 13 ロータ
 14 駆動軸
 15 磁気結合部
 16 駆動磁石
 17 空間
 18、27 台座
 19 軸受け支柱
 20 封鎖部材
 21 開口部
 22、28 軸受け装着孔
 23 調節ネジ装着孔
 24 調節ネジ
 25 上下分割面
 26a 外面ネジ突起
 28a 内面ネジ突起
 29 径大部
 30 円筒部
 31 軸受け部
DESCRIPTION OF SYMBOLS 1 Housing 1a Upper half body 1b Lower half body 2 Pump chamber 3 Inlet port 4 Outlet port 5 Impeller 6 Vane 6a Main vane 6b Sub vane 7 Rotating shaft 8 Annular connection part 9 Upper bearing 10, 26 Lower bearing 11 Magnet case 12 Driven magnet DESCRIPTION OF SYMBOLS 13 Rotor 14 Drive shaft 15 Magnetic coupling part 16 Drive magnet 17 Space 18, 27 Base 19 Bearing support | pillar 20 Sealing member 21 Opening part 22, 28 Bearing mounting hole 23 Adjustment screw mounting hole 24 Adjustment screw 25 Vertical split surface 26a Outer surface thread protrusion 28a Internal thread protrusion 29 Large diameter part 30 Cylindrical part 31 Bearing part

Claims (8)

  1.  ポンプ室を形成し、上部に入口ポートが設けられ、側部に出口ポートが設けられたハウジングと、
     回転軸、複数のベーン及び環状連結部を有し、前記複数のベーンの少なくとも一部の内周端は前記回転軸と結合し、前記各ベーンの外周端は前記環状連結部に結合しているインペラと、
     前記ハウジングの底部壁を上方に突出させて形成され、前記環状連結部の円筒状の内周面が形成する空間領域に対応する円筒状の外周面を有する台座と、
     前記インペラの回転軸の上端を回転自在に支持する上部軸受けと、
     前記台座の上面部に設けられ前記インペラの回転軸の下端を回転自在に支持する下部軸受けと、
     前記ハウジングの外側下部に配置され、前記環状連結部との磁気結合を介して前記インペラを回転駆動するロータとを備えたターボ式血液ポンプにおいて、
     前記台座の中央部には、内周面に内面ネジ突起が形成された軸受け装着孔が設けられ、
     前記下部軸受けは、その上端に前記インペラの回転軸の下端を支持する軸受け部を有するとともに、外周面に前記内面ネジ突起と螺合する外面ネジ突起が形成され、その螺合を介して前記軸受け装着孔に装着されていることを特徴とするターボ式血液ポンプ。
    A housing that forms a pump chamber and is provided with an inlet port at the top and an outlet port at the side;
    A rotating shaft, a plurality of vanes, and an annular connecting portion, wherein at least some of the inner peripheral ends of the plurality of vanes are connected to the rotating shaft, and the outer peripheral ends of the vanes are connected to the annular connecting portion; Impeller,
    A pedestal having a cylindrical outer peripheral surface formed by projecting the bottom wall of the housing upward and corresponding to a space region formed by the cylindrical inner peripheral surface of the annular coupling portion;
    An upper bearing that rotatably supports the upper end of the rotating shaft of the impeller;
    A lower bearing which is provided on the upper surface of the pedestal and rotatably supports the lower end of the rotating shaft of the impeller;
    In the turbo blood pump, which is disposed at the outer lower portion of the housing and includes a rotor that rotationally drives the impeller through magnetic coupling with the annular coupling portion,
    In the central part of the pedestal is provided a bearing mounting hole in which an internal thread protrusion is formed on the inner peripheral surface,
    The lower bearing has a bearing portion that supports a lower end of the rotating shaft of the impeller at an upper end thereof, and an outer surface threaded protrusion that is screwed with the inner surface threaded protrusion is formed on an outer peripheral surface. A turbo blood pump characterized by being mounted in a mounting hole.
  2.  前記内面ネジ突起は2条のネジ山を形成し、各条のネジ山は前記軸受け装着孔の周方向における半周以下の長さに設定され、各条のネジ山は、相互に周方向の重ならない領域に配置されている請求項1に記載のターボ式血液ポンプ。 The inner surface thread projections form two threads, and each thread is set to a length not more than a half circumference in the circumferential direction of the bearing mounting hole. The turbo type blood pump according to claim 1, wherein the turbo blood pump is disposed in a region that does not become necessary.
  3.  前記内面ネジ突起を形成する各条のネジ山は、前記軸受け装着孔の周方向における半周の長さに設定されている請求項2に記載のターボ式血液ポンプ。 The turbo blood pump according to claim 2, wherein the thread of each strip forming the internal thread protrusion is set to a length of a half circumference in the circumferential direction of the bearing mounting hole.
  4.  前記軸受け装着孔は貫通孔であり、前記軸受け装着孔の下方に露出する前記下部軸受けの下端部に、前記下部軸受けを回動させるための工具との係合部が設けられている請求項1~3のいずれか1項に記載のターボ式血液ポンプ。 2. The bearing mounting hole is a through hole, and an engaging portion with a tool for rotating the lower bearing is provided at a lower end portion of the lower bearing exposed below the bearing mounting hole. 4. The turbo blood pump according to any one of items 1 to 3.
  5.  装着された前記下部軸受けの下端側において、前記軸受け装着孔の内周面と前記下部軸受けの外周面の間の隙間が接着材により目止めされている請求項4に記載のターボ式血液ポンプ。 The turbo blood pump according to claim 4, wherein a gap between an inner peripheral surface of the bearing mounting hole and an outer peripheral surface of the lower bearing is sealed with an adhesive on a lower end side of the mounted lower bearing.
  6.  前記ベーンの下端縁は、前記回転軸に向かって高くなる傾斜を持ち、
     前記インペラには、前記ベーンの下端縁の傾斜に沿った円錐面状の傾斜面を形成し、前記複数のベーンの間の流路を前記回転軸の周囲の領域に制限する封鎖部材が前記ベーンの下部に設けられ、
     前記下部軸受けは、上面が前記封鎖部材の傾斜面に沿った傾斜面を形成し、外周径が前記軸受け装着孔よりも大きい上側径大部と、その下部を形成し外周径が前記軸受け装着孔よりも小さく、外周面に前記外面ネジ突起が形成された下側円筒部とを含む請求項1~5のいずれか1項に記載のターボ式血液ポンプ。
    The lower edge of the vane has an inclination that increases toward the rotation axis,
    The impeller includes a sealing member that forms a conical inclined surface along an inclination of a lower end edge of the vane and restricts a flow path between the plurality of vanes to a region around the rotating shaft. At the bottom of the
    The lower bearing has an upper surface forming an inclined surface along the inclined surface of the sealing member, an outer peripheral diameter larger than the bearing mounting hole, and a lower portion thereof, and the outer peripheral diameter is the bearing mounting hole. The turbo blood pump according to any one of claims 1 to 5, further comprising a lower cylindrical portion that is smaller than the lower cylindrical portion and has the outer surface thread projection formed on an outer peripheral surface thereof.
  7.  請求項1に記載のターボ式血液ポンプの製造方法であって、
     前記軸受け装着孔を貫通孔とし、
     前記下部軸受けを前記軸受け装着孔に装着し、
     前記回転軸が前記上部軸受と前記下部軸受けの間に支持された状態になるように前記インペラを前記ハウジング内に装着した後、
     前記軸受け装着孔の下方に露出した前記下部軸受けを回動させて、前記外面ネジ突起と前記内面ネジ突起の螺合を介して、前記下部軸受けの上下方向の位置を調整する操作を行うことを特徴とするターボ式血液ポンプの製造方法。
    It is a manufacturing method of the turbo type blood pump according to claim 1,
    The bearing mounting hole is a through hole,
    Attaching the lower bearing to the bearing mounting hole,
    After mounting the impeller in the housing so that the rotating shaft is supported between the upper bearing and the lower bearing,
    The lower bearing exposed below the bearing mounting hole is rotated, and an operation of adjusting the vertical position of the lower bearing is performed through screwing of the outer surface screw protrusion and the inner surface screw protrusion. A method for producing a turbo blood pump.
  8.  前記ハウジングを前記入口ポートを含む側の上半体と前記台座を含む側の下半体とに2分割して形成し、前記上部軸受けを前記上半体に設け、
     前記回転軸が前記上部軸受と前記下部軸受けの間に支持された状態になるように前記上半体と前記下半体とを結合させることにより、前記インペラを前記ハウジング内に装着する請求項7に記載のターボ式血液ポンプの製造方法。
    Forming the housing in two divided into an upper half on the side including the inlet port and a lower half on the side including the pedestal, and providing the upper bearing on the upper half;
    8. The impeller is mounted in the housing by coupling the upper half and the lower half so that the rotating shaft is supported between the upper bearing and the lower bearing. A method for producing a turbo blood pump according to claim 1.
PCT/JP2012/054407 2011-02-24 2012-02-23 Turbo blood pump and method for producing same WO2012115184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112013020840A BR112013020840A2 (en) 2011-02-24 2012-02-23 turbo blood pump and method to produce the same
JP2013501115A JP5673795B2 (en) 2011-02-24 2012-02-23 Turbo blood pump and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011038583 2011-02-24
JP2011-038583 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012115184A1 true WO2012115184A1 (en) 2012-08-30

Family

ID=46720958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054407 WO2012115184A1 (en) 2011-02-24 2012-02-23 Turbo blood pump and method for producing same

Country Status (3)

Country Link
JP (1) JP5673795B2 (en)
BR (1) BR112013020840A2 (en)
WO (1) WO2012115184A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060765A1 (en) * 2012-10-18 2014-04-24 Calon Cardio Technology Ltd Centrifugal pump
EP3195887A4 (en) * 2014-09-19 2018-03-28 Terumo Kabushiki Kaisha Centrifugal pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018280236A1 (en) 2017-06-07 2020-01-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
JP7319266B2 (en) 2017-11-13 2023-08-01 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems and methods of use
CN112004563A (en) 2018-02-01 2020-11-27 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507048A (en) * 1979-03-16 1985-03-26 Jacques Belenger Centrifugal clinical blood pump
JPH08501366A (en) * 1992-07-30 1996-02-13 スピン コーポレイション Spiral blood pump
JPH11504549A (en) * 1996-02-20 1999-04-27 クリトン・メディカル・インコーポレーテッド Sealless rotary blood pump with passive magnetic radial bearing and axial bearing immersed in blood
US6227820B1 (en) * 1999-10-05 2001-05-08 Robert Jarvik Axial force null position magnetic bearing and rotary blood pumps which use them
JP2008183229A (en) * 2007-01-30 2008-08-14 Jms Co Ltd Turbo type blood pump
JP2010207346A (en) * 2009-03-09 2010-09-24 Jms Co Ltd Turbo blood pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507048A (en) * 1979-03-16 1985-03-26 Jacques Belenger Centrifugal clinical blood pump
JPH08501366A (en) * 1992-07-30 1996-02-13 スピン コーポレイション Spiral blood pump
JPH11504549A (en) * 1996-02-20 1999-04-27 クリトン・メディカル・インコーポレーテッド Sealless rotary blood pump with passive magnetic radial bearing and axial bearing immersed in blood
US6227820B1 (en) * 1999-10-05 2001-05-08 Robert Jarvik Axial force null position magnetic bearing and rotary blood pumps which use them
JP2008183229A (en) * 2007-01-30 2008-08-14 Jms Co Ltd Turbo type blood pump
JP2010207346A (en) * 2009-03-09 2010-09-24 Jms Co Ltd Turbo blood pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060765A1 (en) * 2012-10-18 2014-04-24 Calon Cardio Technology Ltd Centrifugal pump
CN104902939A (en) * 2012-10-18 2015-09-09 卡龙心脏科技有限公司 Centrifugal pump
EP3195887A4 (en) * 2014-09-19 2018-03-28 Terumo Kabushiki Kaisha Centrifugal pump
US10363348B2 (en) 2014-09-19 2019-07-30 Terumo Kabushiki Kaisha Centrifugal pump

Also Published As

Publication number Publication date
JPWO2012115184A1 (en) 2014-07-07
BR112013020840A2 (en) 2016-10-04
JP5673795B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673795B2 (en) Turbo blood pump and method for manufacturing the same
JP4655231B2 (en) Turbo blood pump
JP4548450B2 (en) Turbo blood pump
JP5267227B2 (en) Turbo blood pump
US8523539B2 (en) Centrifugal pump
JP6134702B2 (en) Centrifugal pump and centrifugal pump manufacturing method
KR20190004384A (en) Reciprocating fluid agitator
CN112524038B (en) Centrifugal pump and pump housing
JP5590213B2 (en) Turbo blood pump
JP2018134428A (en) Centrifugal Pump
JP2018061600A (en) Centrifugal type blood pump
US20180369467A1 (en) Blood pump
JP5828459B2 (en) Centrifugal blood pump
TWI390110B (en) Vane pump
JP2017048703A (en) Centrifugal Pump
JP2019117174A (en) Impeller type flow rate sensor and flow rate control system
JP5885986B2 (en) Pump device
JP2016188591A (en) Centrifugal pump device
JP2017158899A (en) Centrifugal blood pump
JP6720629B2 (en) Centrifugal pump and method of manufacturing centrifugal pump
JP2016188593A (en) Centrifugal pump device
CN105736361A (en) Gear pump
JP2017172500A (en) Centrifugal Pump
JP2017172499A (en) Centrifugal Pump
JP2015084792A (en) Housing and blood pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013501115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020840

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12749753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013020840

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130815