WO2013010611A1 - Trockentransformator - Google Patents

Trockentransformator Download PDF

Info

Publication number
WO2013010611A1
WO2013010611A1 PCT/EP2012/002555 EP2012002555W WO2013010611A1 WO 2013010611 A1 WO2013010611 A1 WO 2013010611A1 EP 2012002555 W EP2012002555 W EP 2012002555W WO 2013010611 A1 WO2013010611 A1 WO 2013010611A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
transformer
transformer according
drying
cooling channel
Prior art date
Application number
PCT/EP2012/002555
Other languages
English (en)
French (fr)
Inventor
Benjamin Weber
Michael Luckey
Wolfgang Mönig
Marcos Bockholt
Original Assignee
Abb Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ag filed Critical Abb Technology Ag
Priority to CN201280035579.4A priority Critical patent/CN103688322B/zh
Publication of WO2013010611A1 publication Critical patent/WO2013010611A1/de
Priority to US14/158,084 priority patent/US9761366B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases

Definitions

  • the invention relates to a dry-type transformer for mobile applications, comprising a transformer core and at least one radially inner first and one radially outer second wound around a common winding axis and penetrated by the transformer core hollow cylindrical winding segment, which are nested and radially spaced from each other, so that between a hollow cylindrical Cooling channel is pronounced, wherein spacer elements are provided for spacing, which are arranged such that the cooling channel can be flowed through in the axial direction of a coolant.
  • line-based utility networks are available for the transmission of electrical energy. Depending on the electrical power to be transmitted, these have a nominal voltage of, for example, 380 kV, 110 kV or even 10 kV, with typically a mains frequency of 50 or 60 Hz being used.
  • a supply network for the supply of stationary loads is typically 3-phase, so there is a system with three supply lines available, in which the current and voltage in a symmetrical state at a phase shift of 120 ° to each other in terms of amount are equal.
  • Energy supply systems for mobile consumers are typically constructed single-phase, ie the supply takes place via a single supply line, wherein the return then takes place via the metallic rail.
  • two supply lines are usually provided due to the non-existent and usable as a return rail rail.
  • the network frequency in such applications at least in Europe 16 2/3 Hertz, in some cases, such as S-Bru also isolated DC voltage is used.
  • S-Bru also isolated DC voltage is used.
  • To transform the typical AC supply voltage of 10kV to 15kV mobile transformers are provided, which are then integrated, for example, in the underfloor area of a passenger train.
  • a dry-type transformer of the type mentioned at the outset is characterized in that the spacer elements are so shaped and arranged along the radial circumference of the cooling channel over its axial length that the proportional weight of the horizontal transformer lies against at least one contact surface of the at least one second winding segment can be removed without a deformation of the cooling or the scattering channel formed by this occurs.
  • an alternative cooling system is provided, which works without oil but preferably with air. Due to the lower heat capacity of air, therefore, according to the invention, a significantly enlarged contact surface of the transformer winding to the cooling medium is provided. hen. Furthermore, an increased coolant throughput, for example by means of a blower, is advantageous.
  • cooling channels which are provided between the nested hollow-cylindrical winding segments. These serve on the one hand to influence the short-circuit impedance of the dry-type transformer according to the invention, and are therefore also to be regarded as a stray channel insofar as they are arranged between two galvanically separated winding segments. On the other hand, these serve to cool the transformer winding from the inside.
  • a coolant in particular air, to be forced to flow through these cooling channels. Air has the advantage that the heated air can be discharged directly to the environment without an additional heat exchanger.
  • additional cooling channels are optionally provided to increase the cooling surface, for example, between a plurality of series-connected winding segments, which form a lower or higher voltage winding.
  • the transformer lying, so that the winding axis of the windings thus extends in a horizontal plane.
  • a particularly flat and more planar construction of the transformer is achieved, which accommodates the available flat but rather large space in the underfloor area.
  • the spacing of the hollow-cylindrical winding segments is provided by spacer elements of insulating material, through which a support is provided in at least predominantly radial direction to the winding axis.
  • the installation of such a dry-type transformer according to the prior art is vertical. This has for one cooling reasons, namely that then along the winding axis extending cooling channels are then operated by natural cooling by ambient air flows from bottom to top through the cooling channels. On the other hand, this is also mechanical.
  • the transformer is namely on the underside of its transformer core, bringing its total weight, for example 500kg to 1000kg, directly over the Auflageflä- surface of the transformer core can be removed.
  • the arranged on the legs of the transformer core windings are thus aligned vertically and thus exposed predominantly weight forces in the direction of the winding axis.
  • a force stress in the winding of a direction radially to the winding axis does not take place in a vertical orientation of the transformer.
  • the support elements of the cooling channels of a dry-type transformer of the prior art are also correspondingly not designed for such a radial force load. Nevertheless, it is provided according to the invention, the dry-type transformer lying on corresponding bearing surfaces of its windings can be arranged or at least storable. Even if a dry transformer in the underfloor area is mainly attached to the sides of its transformer core, so that actually its weight would not be removed through the windings, so its transformer core but with a length of for example 2m is so long that due to gravity, a deflection of the same takes place. Thus, even in this case, the winding according to the invention for receiving increased radial forces to be trained to counteract bending.
  • the respective windings are to be trained accordingly also for receiving radial force stresses. According to the invention, therefore, it is provided that the arrangement of spacer elements be compacted accordingly in critical areas for a specific arrangement position of the transformer so that the maximum compressive stress per base area of a spacer element is not exceeded, even in the horizontal position of the dry transformer.
  • a typical size of a transformer according to the invention with a two leg core has a length of, 1, 5m - 2.5m, a height of 0.75 m and a width of 1, 5m.
  • the dry-type transformer according to the invention advantageously avoids the use of oil and nevertheless has suitable cooling possibilities. Furthermore, it is designed by its horizontal arrangement in flat construction, so that it can be easily integrated into the underfloor area of a locomotive or a wagon. By a selective reinforcement or compression of the spacer elements in the cooling channels, a corresponding stabilization of the winding (s) is carried out for a horizontal position of the transformer to remove the entire weight of the transformer down.
  • the at least one second winding segment has exactly one respective preferred contact surface, via which only the proportionate weight of the horizontal transformer can be removed, without a deformation of the cooling channels.
  • the dry-type transformer then has a specific lying preferred position.
  • the spacers are only for the preferred position to strengthen or compact, so that the cost of the reinforcement is reduced to a minimum.
  • the spacer elements are arranged compressed in the radial direction to the respective support surface, so that in the corresponding areas of the cooling channel increased radial compressibility entitlement results.
  • the spacer elements are arranged compressed in the radial direction to the respective support surface, so that in the corresponding areas of the cooling channel increased radial compressibility entitlement results.
  • the spacer elements are strip-like or channel-like pronounced and preferably extend along the Winding axis.
  • the hollow cylindrical cooling channel is subdivided into a plurality of fluidically favorable running in the axial direction of the cooling channels. The cooling effect is thus improved and homogenized in an advantageous manner.
  • the spacer elements are pronounced as selective support elements.
  • This offers on the one hand manufacturing advantages, for example, in accordance with diagonal to the axial direction staggered arrangement of the selective support elements also improved cooling effect is achieved.
  • a punctiform support element has, for example, a circular floor plan, for example with a diameter of 4 cm, and a height of also 4 cm, depending on the desired shape of the scattering or the cooling channel.
  • a respective hollow-cylindrical third winding segment interleaved between the respective first and second winding segments is provided, wherein in each case a cooling channel is provided between the respective winding segments.
  • the at least one radially inner first and the at least one radially outer second winding segment is provided for undervoltage and the at least one radially middle third winding segment for high voltage.
  • the short-circuit impedance of the transformer is advantageously increased, which then leads to reduced short-circuit currents in case of failure.
  • the radially inner winding is provided for example for the supply of a train heating, while the radially outer winding is then provided for the supply of the drive.
  • the transformer core has exactly two legs around which in each case at least one first and one second winding segment are arranged.
  • the Zweischkelaus entry is particularly in consideration of the single-phase of a traction power supply network advantage.
  • the division of the respective low and high voltage windings on the two legs leads to an increased utilization of the available existing space and thus to a very compact design of the transformer according to the invention.
  • the latter is arranged in a housing enclosing it, which has an inlet opening and an outlet opening, wherein air baffles are provided within the housing, which are arranged such that coolant entering through the inlet opening along the respective nested winding segments is serpentine-like through the housing or the cooling channels or scattering channels formed in them is guided to the outlet opening.
  • the housing offers mechanical protection of the transformer, which is particularly advantageous in the case of the arrangement in the underfloor area. The guidance of the cooling air longitudinally through air baffles of defined channels preferably through the cooling or stray channels improves the cooling effect.
  • the inlet and outlet openings are on the same side of the transformer housing. This facilitates the maintenance-related inclusion or removal of such a transformer.
  • a blower is provided to force cooling air through the coil segments.
  • the housing and holding structures used therein, such as, for example, the pressing bars for the transformer core are manufactured in lightweight construction, for example made of aluminum.
  • the weight of the transformer is thereby reduced in an advantageous manner, which is particularly advantageous due to the intended mobile use of the transformer, for example in rail vehicles.
  • vibration damping and adapted to the shape of the respective bearing surfaces supporting elements are provided by which the dry transformer is supported on the support surfaces and / or fixed.
  • a homogeneous pressure load of the bearing surfaces is guaranteed. Due to the vibration-damping properties of the support elements, both the intrinsic Oscillation of the transformer in operation, for example, 16 2/3 Hz, as well as shocks from the movement, for example, a locomotive in which the transformer is integrated, damped.
  • interleaved winding segments are cast together.
  • This increases the mechanical stability of the electrical part of the winding and advantageously increases the respective compressive strength.
  • An encapsulation or a solidification of the winding takes place for example by means of an epoxy resin.
  • a tape-like prepreg material can also be used as layer insulation between respective winding layers, which is introduced during winding of the windings.
  • the transformer winding is heated and the B-staged resin contained in the prepreg is completely polymerized, which then leads to mechanical stabilization of the respective windings.
  • respective first, respective second and / or respective third winding segments are galvanically connected to one another. This can be done both by means of a series connection and a parallel connection.
  • high voltage windings are connected in series to reduce the voltage stress and lower voltage windings for increasing the current carrying capacity in parallel.
  • a transformer according to the invention comprises a two-limb core each having two nested winding arrangements.
  • the at least one first and the at least one second winding segment are galvanically connected in series, so that an autotransformer is formed.
  • This optionally has several taps and is characterized by a particularly high power density.
  • FIG. 1 shows a section through an exemplary hollow cylindrical cooling channel
  • Fig. 2 shows a first section through exemplary nested one another
  • Fig. 3 is a second section through exemplary nested one another
  • Fig. 4 is a sectional view of an exemplary first dry-type transformer as well
  • Fig. 5 is a sectional view of an exemplary second dry-type transformer.
  • Fig. 1 shows a section 10 through an exemplary hollow cylindrical cooling channel, wherein the radially inwardly and outwardly adjacent winding segments are not shown.
  • a hollow cylindrical cooling channel is formed, in which in the radial direction strip-like spacer elements 24, 26, 28 are arranged, which extend along the axis of the winding. These are made for example of a glass fiber reinforced composite material or pressboard. Between the spacer elements 24, 26, 28 thereby channels 16, 18, 20, 22 are formed along the axial extent, which are inventively provided as cooling channels for flowing through air.
  • the cooling channel is shown in its desired orientation, wherein in the lower region, the spacer elements 24, 26, 28 are denser, so with a smaller distance from one another, are arranged. Therefore, the compressive strength of the cooling channel is increased in its lower region such that the weight of a transformer or transformer core, not shown here, can be removed without deformation of the cooling channel or of the scattering channel formed by it.
  • Fig. 2 shows a first section 30 by nested winding segments 32, 34, which in this case have an approximately rectangular cross-section. Such a cross-sectional shape is advantageous for increasing the fill factor or for maximum utilization of the limited space available in the underfloor area of a railway car or a locomotive.
  • the radial spacing of the first 34 and second 32 winding segments is effected by strip-like spacer elements 40, 42, wherein respective cooling channels 36, 38 are formed therebetween.
  • the nested winding segments are shown in their desired orientation, ie lying, with a support surface 44 is indicated in the lower region. To increase the compressive strength of the nested winding segments in the radial direction to the support surface 44, the distribution of the spacer elements in the lower region is compressed accordingly.
  • Fig. 3 shows a second section through nested winding segments 54, 56, 58, which in this case have a circular cross-section. Between the winding segments 54, 56, 58 serving as cooling channels cooling channels 60, 62 are formed, wherein the measures provided for in these spacers are not shown in this illustration.
  • the radially inner first winding segment 54 encloses a transformer core leg 52 and, seen electrically, is a low-voltage winding, for example a 400V supply for a train heater.
  • the radially middle third winding segment represents a high-voltage winding, for example a 15 kV winding, which is fed by a catenary of a traction power supply.
  • the radially outer second winding 58 is a low-voltage winding and supplies, for example, the electric drive of a locomotive, not shown.
  • FIG. 4 shows a side sectional view 70 of an exemplary first dry type transformer.
  • a two-leg transformer core 86 Arranged in an aluminum housing 72 is a two-leg transformer core 86, which is enclosed on each of its legs by respective arrays of nested winding segments 82, 84.
  • At the respective lower portions of the arrays of interleaved winding segments are wedge-like and on the mold
  • the outer contour supporting surfaces of the radially outer coil segments adapted support members 78 provided from a hard rubber material over which the weight of the windings and the transformer core are proportionately removed down. These are in turn arranged on a respective intermediate element 76, for example an aluminum strip.
  • respective damping elements 88 similar in shape are provided, which enable a fixation of the windings 82, 84 or of the transformer in the housing 72, which of course do not serve for the removal of the weight.
  • An air guide plate 74 between the winding assemblies 82, 84 serves to form a respective guide channel for coolant, which extends along the winding segments.
  • the dimensions of the housing are, for example, 0.7 m in height, 1.6 m in width and 2.4 m in length. Due to the horizontal arrangement, an arrangement in the underfloor area of a railway carriage is possible despite the increased space required by the cooling channels.
  • FIG. 5 shows a sectional view 90 of an exemplary second dry-type transformer. This substantially corresponds to that shown in Fig. 4, but is shown in a plan viewperspetive.
  • a housing 112 Arranged in a housing 112 is a two-leg transformer core 92, which is enclosed on its two legs by nested hollow-cylindrical winding segments 94, 96.
  • the housing 112 has an inlet opening 98 and an outlet opening 100, wherein by means of air guide plates 106, 108, 110 a serpentine-like guidance of inflowing air 102 is ensured by the housing.
  • the introduced with a blower, not shown air heats up when flowing through the inner housing in the direction indicated by corresponding arrows and then exits at the outlet opening 100 as a heated air stream 104 again.
  • Cross section through exemplary hollow cylindrical cooling channel radially outer boundary of the cooling channel radially outer boundary of the cooling channel
  • first cooling channel segment of the nested winding segments second cooling channel segment of the nested winding segments first spacer element
  • first nested winding segments second nested winding segments

Abstract

Die Erfindung betrifft einen Trockentransformator (70, 90) für mobile Anwendungen, umfassend einen Transformatorkern (86, 92) und wenigstens ein radial inneres erstes (34, 54) und ein radial äußeres zweites (32, 58) um eine gemeinsame Wickelachse gewickeltes und von dem Transformatorkern (86, 92) durchgriffenes hohlzylindrisches Wicklungssegment, welche ineinander verschachtelt und radial voneinander beabstandet sind, so dass dazwischen ein hohlzylindrischer Kühlkanal (10, 60, 62) ausgeprägt ist. Zur Beabstandung sind Abstandselemente (24, 26, 28, 40, 42) vorgesehen, welche derart angeordnet sind, dass der Kühlkanal (10, 60, 62) in axialer Richtung von einem Kühlmittel durchströmbar ist. Die Abstandselemente (24, 26, 28, 40, 42) sind längs des radialen Umfangs des Kühlkanals (10, 60, 62) über dessen axiale Länge derart ausgeprägt und angeordnet, dass das anteilige Gewicht des liegenden Transformators an wenigstens einer Auflagefläche (44) des wenigstens einen zweiten Wicklungssegmentes (32, 58) abtragbar ist, ohne dass eine Deformation des Kühlkanals (10, 60, 62) erfolgt.

Description

Trockentransformator
Beschreibung
Die Erfindung betrifft einen Trockentransformator für mobile Anwendungen, umfassend einen Transformatorkern und wenigstens ein radial inneres erstes und ein radial äußeres zweites um eine gemeinsame Wickelachse gewickeltes und von dem Transformatorkern durchgriffenes hohlzylindrisches Wicklungssegment, welche ineinander verschachtelt und radial voneinander beabstandet sind, so dass dazwischen ein hohlzylindrischer Kühlkanal ausgeprägt ist, wobei zur Beabstandung Abstandselemente vorgesehen sind, welche derart angeordnet sind, dass der Kühlkanal in axialer Richtung von einem Kühlmittel durchströmbar ist.
Es ist allgemein bekannt, dass für die Übertragung von elektrischer Energie entsprechende leitungsgebundene Versorgungsnetze zur Verfügung stehen. Je nach zu übertragender elektrischer Leistung weisen diese eine Nennspannung von beispielsweise 380kV, 110kV oder auch 10kV auf, wobei typischerweise eine Netzfrequenz von 50 beziehungsweise 60Hz zum Einsatz kommt. Ein Versorgungsnetz für die Versorgung stationärer Verbraucher ist typischerweise 3-phasig aufgebaut, es steht also ein System mit drei Versorgungsleitungen zur Verfügen, bei denen im symmetrischen Zustand Strom und Spannung bei einer Phasenverschiebung von jeweils 120° zueinander betragsmäßig gleich sind.
Energieversorgungssysteme für mobile Verbraucher, wie beispielsweise Eisenbahnen oder Straßenbahnen sind typischerweise einphasig aufgebaut, d.h. die Versorgung erfolgt über eine einzelne Versorgungsleitung wobei die Rückleitung dann über die metallische Schiene erfolgt. Bei Oberleitungsbussen sind aufgrund der nicht vorhandenen und als Rückleiter benutzbaren Schiene in der Regel zwei Versorgungsleitungen vorgesehen. Üblicherweise beträgt die Netzfrequenz bei derartigen Anwendungen zumindest in Europa 16 2/3 Hertz, in einigen Fällen wie S-Bahnen kommt auch vereinzelt Gleichspannung zur Anwendung. Zur Transformation der typischen Wechselversorgungsspannung von 10kV bis 15kV sind mobile Transformatoren vorgesehen, welche dann beispielsweise in den Unterflurbereich eines Personenzuges integriert werden.
Diese haben aufgrund der Unterfluranordnung nur einen insbesondere bezüglich der Höhe sehr begrenzten Raum zur Verfügung und sind zumeist als Öltransformatoren ausgeführt. Das Öl dient hierbei einerseits als Kühlmittel zur Abführung der im Betrieb entstehenden Verlustwärme als auch als Isolationsmittel, durch welches geringere Isolationsabstände und damit eine kompakte Bauform realisiert werden können.
Nachteilig hierbei ist jedoch, dass ein derartiger Transformator aus mechanischen Gründen zumeist nur stehend angeordnet werden kann, was aber dem flachen Platzangebot im Unterflurbereich entgegensteht. Zudem ist aus Sicherheitsgründen Öl als brennbares Medium in einem Verkehrsmittel wenn möglich zu vermeiden. In diesem Fall entfällt insbesondere die Kühlwirkung des Öls.
Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, einen möglichst flexibel anzuordnenden Trockentransformator für mobile Anwendungen anzugeben.
Diese Aufgabe wird gelöst durch einen Trockentransformator der eingangs genannten Art. Dieser ist dadurch gekennzeichnet, dass die Abstandselemente längs des radialen Umfangs des Kühlkanals über dessen axiale Länge derart ausgeprägt und angeordnet sind, dass das anteilige Gewicht des liegenden Transformators an wenigstens einer Auflagefläche des wenigstens einen zweiten Wicklungssegmentes abtragbar ist, ohne dass eine Deformation des Kühl- beziehungsweise des durch diesen gebildeten Streukanals erfolgt.
Durch den Wegfall des Öls als Kühlmittel, welches die im Betrieb entstehende Verlustwärme beispielsweise zu einem Wärmetauscher abführt, ist ein alternatives Kühlsystem vorzusehen, welches ohne Öl sondern vorzugsweise mit Luft arbeitet. Aufgrund der geringeren Wärmekapazität von Luft ist daher erfindungsgemäß eine deutlich vergrößerte Kontaktfläche der Transformatorwicklung zum Kühlmedium vorgese- hen. Fernerhin ist ein erhöhter Kühlmitteldurchsatz, beispielsweise mittels eines Gebläses, von Vorteil.
Dies wird insbesondere durch die Kühlkanäle erreicht, welche zwischen den ineinander verschachtelten hohlzylindrischen Wicklungssegmenten vorgesehen sind. Diese dienen einerseits der Beeinflussung der Kurzschlussimpedanz des erfindungsgemäßen Trockentransformators, sind also auch als Streukanal anzusehen, insofern sie zwischen zwei galvanisch getrennten Wicklungssegmenten angeordnet sind. Andererseits dienen die diese der Kühlung der Transformatorwicklung von innen. Erfindungsgemäß ist es nämlich vorgesehen ein Kühlmittel, insbesondere Luft, forciert durch diese Kühlkanäle strömen zu lassen. Luft bietet den Vorteil, dass die erwärmte Luft ohne zusätzlichen Wärmetauscher direkt an die Umgebung abgegeben werden kann. Erfindungsgemäß sind zur Erhöhung der Kühlfläche optional auch weitere Kühlkanäle vorgesehen, beispielsweise zwischen mehreren in Reihe geschalteten Wicklungssegmenten, welche eine Unter- oder Oberspannungswicklung bilden. Hierdurch wird jedoch der benötigte Raumbedarf des erfindungsgemäßen Trockentransformators gegenüber einem vergleichbaren Öltransformator erhöht.
Deshalb ist es erfindungsgemäß vorgesehen, den Transformator liegend anzuordnen, so dass die Wickelachse der Wicklungen also in einer waagerechten Ebene verläuft. Hierdurch wird eine besonders flache und eher flächigere Bauweise des Transformators erreicht, welche dem zur Verfügung stehenden flachen aber eher großflächigen Raumangebot im Unterflurbereich entgegenkommt.
Die Beabstandung der hohlzylindrischen Wicklungssegmente ist durch Abstandselemente aus isolierendem Material vorgesehen, durch welche eine Abstützung in zumindest überwiegend radialer Richtung zur Wickelachse gegeben ist. Die Aufstellung eines derartigen Trockentransformators nach dem Stand der Technik ist senkrecht. Dies hat zum einen kühltechnische Gründe, nämlich dass dann sich längs der Wickelachse erstreckende Kühlkanäle dann durch natürliche Kühlung betreibbar sind, indem Umgebungsluft von unten nach oben durch die Kühlkanäle strömt. Dies ist zum anderen aber auch mechanisch bedingt. Bei senkrechter Anordnung steht der Transformator nämlich auf der Unterseite seines Transformatorkernes, womit sein gesamtes Gewicht, beispielsweise 500kg bis 1000kg, direkt über die Auflageflä- che des Transformatorkerns auf die Standfläche abgetragen werden kann. Die auf den Schenkeln des Transformatorkerns angeordneten Wicklungen sind somit stehend ausgerichtet und damit überwiegend Gewichtskräften in Richtung der Wickelachse ausgesetzt. Eine Kraftbeanspruchung in der Wicklung einer Richtung radial zur Wickelachse erfolgt in einer stehenden Ausrichtung des Transformators nicht.
Aufgrund der typischerweise nicht vorhandenen beziehungsweise nur unwesentlichen Kraftbeanspruchung in radialer Richtung sind die Abstützelemente der Kühlkanäle eines Trockentransformators des Standes der Technik auch entsprechend nicht für eine derartige radiale Kraftbeanspruchung ausgelegt. Dennoch ist es erfindungsgemäß vorgesehen, den Trockentransformator liegend auf entsprechenden Auflageflächen seiner Wicklungen anordenbar oder zumindest lagerbar zu machen. Selbst wenn ein Trockentransformator im Unterflurbereich überwiegend an den Seiten seines Transformatorkerns befestigt ist, so dass eigentlich dessen Gewicht nicht über die Wicklungen abzutragen wäre, so ist dessen Transformatorkern aber mit einer Länge von beispielsweise 2m so lang, dass schwerkraftbedingt eine Durchbiegung desselben erfolgt. Somit ist selbst in diesem Fall die Wicklung erfindungsgemäß zur Aufnahme von erhöhten radial wirkenden Kräften zu ertüchtigen, um einem Durchbiegen entgegen zu wirken.
Um die erfindungsgemäße liegende Anordnung des Trockentransformators auf entsprechenden Auflageflächen der Außenflächen der Wicklungen zu realisieren, sind die jeweiligen Wicklungen entsprechend auch zur Aufnahme radialer Kraftbeanspruchungen zu ertüchtigen. Erfindungsgemäß ist daher vorgesehen die Anordnung von Abstandselementen in für eine bestimmte liegende Anordnungsposition des Transformators kritischen Bereichen entsprechend zu verdichten, so dass die maximale Druckbeanspruchung pro Grundfläche eines Abstandselementes auch bei liegender Position des Trockentransformators nicht überschritten wird. Alternativ zu einem Isolierwerkstoff, wie beispielsweise einem glasfaserverstärktem Verbundwerkstoff oder Pressspan, ist je nach Spannungsverhältnissen über dem Kühlkanal auch die Verwendung eines Metalls für ein Abstandselement denkbar, beispielsweise ein massives Aluminiumprofil, insofern der Kühlkanal zwischen mehreren Segmenten einer Unterspannungswicklung von beispielsweise 400V befindlich ist. In diesem Fall ist aufgrund der geringen Spannungsbeanspruchung keine Isolationsfähigkeit des Ab- Standselementes gefordert, diese wird vielmehr bereits von der üblichen Isolation des Wickelleiters übernommen. Eine typische Baugröße eines erfindungsgemäßen Transformators mit einem Zweischenkelkern weist beispielsweise eine Länge von, 1 ,5m - 2,5m, eine Höhe von 0,75m und eine Breite von 1 ,5m auf.
Der erfindungsgemäße Trockentransformator vermeidet in vorteilhafter Weise die Verwendung von Öl und verfügt dennoch über entsprechende Kühlmöglichkeiten. Fernerhin ist er durch seine liegende Anordnung in Flachbauweise ausgeführt, so dass er einfach in den Unterflurbereich einer Lokomotive beziehungsweise eines Waggons integrierbar ist. Durch eine selektive Verstärkung beziehungsweise Verdichtung der Abstandselemente in den Kühlkanälen ist für eine liegende Position des Transformators eine entsprechende Stabilisierung der Wicklung(en) erfolgt, um das gesamte Gewicht des Transformators nach unten abzutragen.
Gemäß einer weiteren Ausgestaltungsform des erfindungsgemäßen Trockentransformators weist das wenigstens eine zweite Wicklungssegment genau eine jeweilige Vorzugsauflagefläche auf, über ausschließlich welche das anteilige Gewicht des liegenden Transformators abtragbar ist, ohne dass eine Deformation der Kühlkanäle erfolgt. Der Trockentransformator weist dann eine bestimmte liegende Vorzugsposition auf. Somit sind die Abstandselemente lediglich für die Vorzugsposition zu verstärken oder zu verdichten, so dass der Aufwand für die Verstärkung auf ein Minimum reduziert ist.
Entsprechend einer weiteren Erfindungsvariante sind daher die Abstandselemente in radialer Richtung zur jeweiligen Auflagefläche verdichtet angeordnet, so dass sich in den entsprechenden Bereichen des Kühlkanals eine erhöhte radiale Druckbean- spruchbarkeit ergibt. Es besteht grundsätzlich bei gegebenem Material der Abstandselemente die Möglichkeit, diese in den entsprechenden Bereichen entweder in einem geringeren Abstand zueinander, also verdichtet, anzuordnen, oder aber auch, die Breite beziehungsweise Kontaktflächen der Abstandselemente entsprechend zu erhöhen.
Einer weiteren Ausführungsform der Erfindung folgend sind die Abstandselemente leisten- oder kanalähnlich ausgeprägt und erstrecken sich vorzugsweise längs der Wickelachse. Hierdurch wird der hohlzylindrische Kühlkanal in mehrere strömungstechnisch günstig in axialer Richtung verlaufende Kühlkanäle unterteilt. Die Kühlwirkung wird damit in vorteilhafter Weise verbessert und homogenisiert.
Entsprechend einer weiteren Ausführungsform der Erfindung sind die Abstandselemente als punktuelle Stützelemente ausgeprägt. Dies bietet zum einen fertigungstechnische Vorteile, wobei beispielsweise bei entsprechend diagonal zur axialen Richtung versetzter Anordnung der punktuellen Stützelemente ebenfalls eine verbesserte Kühlwirkung erzielt wird. Ein punktuelles Stützelement weist beispielsweise einen kreisrunden Grundriss auf, beispielsweise mit einem Durchmesser von 4cm, und eine Höhe von ebenfalls 4cm, je nach gewünschter Ausprägung des Streu- beziehungsweise des Kühlkanals.
Gemäß einer weiteren erfindungsgemäßen Ausgestaltung des Trockentransformators ist ein jeweiliges hohlzylindrisches drittes zwischen dem jeweiligen ersten und zweiten Wicklungssegmenten verschachteltes Wicklungssegment vorgesehen, wobei zwischen den jeweiligen Wicklungssegmenten jeweils ein Kühlkanal vorgesehen ist. Vorzugsweise ist das wenigstens eine radial innere erste und das wenigstens eine radial äußere zweite Wicklungssegment für Unterspannung vorgesehen und das wenigstens eine radial mittlere dritte Wicklungssegment für Oberspannung. Durch die atypische Anordnung der Oberspannungswicklung, also beispielsweise mit einer Nennspannung von 15kV, zwischen zwei Unterspannungswicklungen, beispielsweise mit einer Nennspannung von 0,4kV, wird die Kurzschlussimpedanz des Transformators in vorteilhafter Weise erhöht, was dann im Fehlerfall zu reduzierten Kurzschlussströmen führt. Die radial innere Wicklung ist beispielsweise für die Versorgung einer Zugheizung vorgesehen, während die radial äußere Wicklung dann für die Versorgung des Antriebs vorgesehen ist.
Entsprechend einer bevorzugten Ausführungsform der Erfindung weist der Transformatorkern genau zwei Schenkel auf um welche jeweils wenigstens ein erstes und ein zweites Wicklungssegment angeordnet sind. Die Zweischenkelausführung ist insbesondere unter Berücksichtigung der Einphasigkeit eines Bahnstromversorgungsnetzes von Vorteil. Die Aufteilung der jeweiligen Unter- und Oberspannungswicklungen auf die beiden Schenkel führt zu einer erhöhten Ausnutzung des zur Verfügung ste- henden Raumangebotes und damit zu einer möglichst kompakten Bauweise des erfindungsgemäßen Transformators.
Gemäß einer bevorzugten Ausgestaltungsvariante des Trockentransformator ist dieser in einem ihn umschließenden Gehäuse angeordnet, welches eine Einlassöffnung und eine Auslassöffnung aufweist, wobei innerhalb des Gehäuses Luftleitbleche vorgesehen sind, welche derart angeordnet sind, dass durch die Einlassöffnung eintretendes Kühlmittel längs jeweiliger verschachtelter Wicklungssegmente serpentinenähnlich durch das Gehäuse beziehungsweise die Kühlkanäle oder in ihnen gebildeten Streukanälen zur Auslassöffnung geführt ist. Das Gehäuse bietet einerseits einen mechanischen Schutz des Transformators, was insbesondere bei der Anordnung im Unterflurbereich von Vorteil ist. Die Führung der Kühlluft längs durch Luftleitbleche festgelegter Kanäle vorzugsweise durch die Kühl- beziehungsweise Streukanäle verbessert die Kühlwirkung. Durch die serpentinenähnliche Führung der Kühlluft längs jeweiliger Wicklungssegmente ist insbesondere für die Variante mit zwei verschachtelten Wicklungssegmenten erreicht, dass Ein- und Auslassöffnung auf derselben Seite des Transformatorgehäuses sind. Dies erleichtert den wartungsbedingten Einbeziehungsweise Ausbau eines derartigen Transformators. Vorzugsweise ist ein Gebläse vorgesehen, um Kühlluft durch die Wicklungssegmente zu pressen.
In einer weiteren Erfindungsvariante sind das Gehäuse und darin verwendete Haltekonstruktionen wie beispielsweise die Pressbalken für den Transformatorkern in Leichtbauweise gefertigt, beispielsweise aus Aluminium. Das Gewicht des Transformators wird dadurch in vorteilhafter Weise reduziert, was insbesondere aufgrund des vorgesehenen mobilen Einsatzes des Transformators beispielsweise in Schienenfahrzeugen von Vorteil ist.
Vorteilhafterweise sind vibrationsdämpfende und an die Form der jeweiligen Auflageflächen angepasste Abstützelemente vorgesehen sind, durch welche der Trockentransformator an den Auflageflächen abgestützt und/oder fixiert ist. Durch die Anpassung der beispielsweise keilähnlichen und beispielsweise aus einem Hartgummi bestehenden Abstützelemente auf die äußere Form der jeweiligen Auflageflächen ist eine homogene Druckbelastung der Auflageflächen gewährleistet. Aufgrund der virb- rationsdämpfenden Eigenschaften der Abstützelemente sind sowohl die Eigen- Schwingung des Transformators im Betrieb, beispielsweise 16 2/3 Hz, als auch Stoßeinwirkungen durch die Bewegung beispielsweise einer Lokomotive, in welcher der Transformator integriert ist, gedämpft.
Einer bevorzugten Ausführungsform des erfindungsgemäßen Trockentransformators folgend sind ineinander verschachtelte Wicklungssegmente miteinander vergossen. Dies erhöht die mechanische Stabilität des elektrischen Teils der Wicklung und steigert in vorteilhafter Weise die jeweilige Druckbeanspruchbarkeit. Ein Verguss beziehungsweise eine Verfestigung der Wicklung erfolgt beispielsweise mittels eines Epoxydharzes. Gegebenenfalls ist auch ein bandähnliches Prepregmaterial als Lagenisolation zwischen jeweiligen Wickellagen verwendbar, welches beim Wickeln der Windungen eingebracht wird. In einem abschließenden Erhitzungsprozess wird die Transformatorwicklung erhitzt und das in dem Prepreg enthaltene Harz im B-Zustand wird vollständig polymerisiert, was dann zu einer mechanischen Stabilisierung der jeweiligen Wicklungen führt.
Erfindungsgemäß ist es in einer Variante vorgesehen, dass jeweilige erste, jeweilige zweite und/oder jeweilige dritte Wicklungssegmente galvanisch miteinander verbunden sind. Dies kann sowohl mittels einer Reihen- als auch einer Parallelschaltung erfolgen. Vorzugsweise werden Oberspannungswicklungen zur Reduktion der Spannungsbeanspruchung in Reihe geschaltet und Unterspannungswicklungen zur Erhöhung der Strombelastbarkeit parallel. Typischerweise umfasst ein erfindungsgemäßer Transformator einen Zweischenkelkern mit jeweils zwei ineinander geschachtelten Wicklungsanordnungen. Selbstverständlich ist es auch möglich, mehrere jeweilige erste, zweite und/oder dritte in derselben Wicklungsanordnung ineinandergeschachtelte Wicklungssegmente beispielsweise in Reihe zu schalten.
Weiterhin ist es erfindungsgemäß auch vorgesehen, dass das wenigstens eine erste und das wenigstens eine zweite Wicklungssegment galvanisch in Reihe geschaltet sind, so dass ein Spartransformator gebildet ist. Dieser weist optional mehrere Anzapfungen auf und zeichnet sich durch eine besonders hohe Leistungsdichte aus.
Weitere vorteilhafte Ausgestaltungsmöglichkeiten sind den weiteren abhängigen Ansprüchen zu entnehmen. Anhand der in den Zeichnungen dargestellten Ausführungsbeispiele sollen die Erfindung, weitere Ausführungsformen und weitere Vorteile näher beschrieben werden.
Es zeigen:
Fig. 1 einen Schnitt durch einen exemplarischen hohlzylindrischen Kühlkanal,
Fig. 2 einen ersten Schnitt durch exemplarische ineinander geschachtelte
Wicklungssegmente,
Fig. 3 einen zweiten Schnitt durch exemplarische ineinander geschachtelte
Wicklungssegmente,
Fig. 4 eine Schnittansicht von einem exemplarischen ersten Trockentransformator sowie
Fig. 5 eine Schnittansicht von einem exemplarischen zweiten Trockentransformator.
Fig. 1 zeigt einen Schnitt 10 durch einen exemplarischen hohlzylindrischen Kühlkanal, wobei die radial innen und außen angrenzenden Wicklungssegmente nicht dargestellt sind. Zwischen einer radial äußeren 12 und radial inneren 14 Begrenzung ist ein hohlzylindrischer Kühlkanal gebildet, in welchem in radialer Richtung leistenähnliche Abstandselemente 24, 26, 28 angeordnet sind, welche sich längs der Achse der Wicklung erstrecken. Diese sind beispielsweise aus einem glasfaserverstärkten Verbundmaterial oder Pressspan gefertigt. Zwischen den Abstandselementen 24, 26, 28 sind dadurch sich längs der axialen Erstreckung Kanäle 16, 18, 20, 22 gebildet, welche erfindungsgemäß als Kühlkanäle zum Durchströmen mit Luft vorgesehen sind. Der Kühlkanal ist in seiner Sollausrichtung gezeigt, wobei in dem unteren Bereich die Abstandselementen 24, 26, 28 dichter, also mit geringerem Abstand zueinander, angeordnet sind. Deshalb ist die Druckbelastbarkeit des Kühlkanals in seinem unteren Bereich derart erhöht, das hierüber das Gewicht eines nicht gezeigten Transformators beziehungsweise Transformatorkerns abgetragen werden kann, ohne dass eine Deformation des Kühlkanals beziehungsweise des durch diesen gebildeten Streukanals erfolgt. Fig. 2 zeigt einen ersten Schnitt 30 durch ineinander geschachtelte Wicklungssegmente 32, 34, welche in diesem Fall einen näherungsweise rechteckigen Querschnitt aufweisen. Eine derartige Querschnittsform ist vorteilhaft zur Erhöhung des Füllfaktors beziehungsweise zur maximalen Ausnutzung des begrenzten Raumangebotes im Unterflurbereich eines Eisenbahnwaggons oder einer Lokomotive. Die radiale Be- abstandung des ersten 34 und zweiten 32 Wicklungssegmentes erfolgt durch leistenähnliche Abstandselemente 40, 42, wobei dazwischen jeweilige Kühlkanäle 36, 38 gebildet sind. Die ineinander geschachtelten Wicklungssegmente sind in ihrer Sollausrichtung gezeigt, also liegend, wobei im unteren Bereich eine Auflagefläche 44 angedeutet ist. Zur Erhöhung der Druckbeanspruchbarkeit der ineinander geschachtelten Wicklungssegmente in radialer Richtung zur Auflagefläche 44 ist die Verteilung der Abstandselemente im unteren Bereich entsprechend verdichtet.
Fig. 3 zeigt einen zweiten Schnitt durch ineinander geschachtelte Wicklungssegmente 54, 56, 58, welche in diesem Fall einen kreisähnlichen Querschnitt aufweisen. Zwischen den Wicklungssegmenten 54, 56, 58 sind als Kühlkanäle dienende Kühlkanäle 60, 62 ausgebildet, wobei die in diesen vorgesehenen Abstandselemente in dieser Darstellung nicht gezeigt sind. Das radial innere erste Wicklungssegment 54 umschließt einen Transformatorkernschenkel 52 und ist elektrisch gesehen eine Unterspannungswicklung, beispielsweise eine 400V Versorgung für eine Zugheizung. Das radial mittlere dritte Wicklungssegment stellt eine Oberspannungswicklung dar, beispielsweise eine 15kV Wicklung, welche von einer Oberleitung einer Bahnstromversorgung gespeist wird. Die radial äußere zweite Wicklung 58 ist eine Unterspannungswicklung und versorgt beispielsweise den elektrischen Antrieb einer nicht gezeigten Lokomotive.
Fig. 4 zeigt eine seitliche Schnittansicht 70 von einem exemplarischen ersten Trockentransformator. In einem Aluminiumgehäuse 72 liegend angeordnet ist ein Zweischenkeltransformatorkern 86, welcher an jedem seiner Schenkel von jeweiligen Anordnungen ineinander geschachtelter Wicklungssegmente 82, 84 umschlossen ist. Es sind jeweils drei hohlzylindrische Wicklungssegmente ineinander geschachtelt, wobei radial dazwischen jeweilige hohlzylindrische Kühl- beziehungsweise Streukanäle vorgesehen sind. An den jeweiligen unteren Bereichen der Anordnungen der ineinander geschachtelten Wicklungssegmente sind keilähnliche und auf die Form der äußeren Kontur Auflageflächen der der radial äußeren Wicklungssegmente an- gepasste Abstützelemente 78 aus einem Hartgummimaterial vorgesehen, über welche das Gewicht der Wicklungen und des Transformatorkerns anteilig nach unten abgetragen werden. Diese sind ihrerseits auf einem jeweiligen Zwischenelement 76, beispielsweise einer Aluminiumleiste, angeordnet. Im oberen Bereich sind jeweilige von der Form her ähnliche Dämpfungselemente 88 vorgesehen, welche eine Fixierung der Wicklungen 82, 84 beziehungsweise des Transformators in dem Gehäuse 72 ermöglichen, welche jedoch selbstverständlich nicht der Abtragung des Gewichtes dienen. Ein Luftleitblech 74 zwischen den Wicklungsanordnungen 82, 84 dient der Ausprägung eines jeweiligen Führungskanals für Kühlmittel, welcher sich längs der Wicklungssegmente erstreckt. Die Dimensionen des Gehäuses betragen beispielsweise 0,7m in der Höhe, 1 ,6m in der Breite und 2,4m in der Länge. Durch die liegende Anordnung ist trotz des durch die Kühlkanäle bedingten erhöhten Raumbedarfs eine Anordnung im Unterflurbereich eines Eisenbahnwaggons möglich.
Fig. 5 zeigt eine Schnittansicht 90 von einem exemplarischen zweiten Trockentransformator. Dieser entspricht im Wesentlichen dem in der Fig. 4 gezeigten, ist aber in einer Draufsichtperspetive dargestellt. In einem Gehäuse 112 liegend angeordnet ist ein Zweischenkeltransformatorkern 92, welcher an seinen beiden Schenkeln von ineinandergeschachtelten hohlzylindrischen Wicklungssegmenten 94, 96 umschlossen ist. Das Gehäuse 112 weist eine Einlassöffnung 98 und eine Auslassöffnung 100 auf, wobei mittels Luftleitblechen 106, 108 ,110 eine serpentinenähnliche Führung von einströmender Luft 102 durch das Gehäuse gewährleistet ist. Die mit einem nicht gezeigten Gebläse eingebrachte Luft erwärmt sich beim Durchströmen des inneren Gehäuses in der mit entsprechenden Pfeilen angedeuteten Richtung und tritt dann an der Austrittsöffnung 100 als erwärmter Luftstrom 104 wieder aus. Bezugszeichenliste Schnitt durch exemplarischen hohlzylindrischen Kühlkanal radial äußere Begrenzung des Kühlkanals
radial innere Begrenzung des Kühlkanals
erstes Kühlkanalsegment
zweites Kühlkanalsegment
drittes Kühlkanalsegment
viertes Kühlkanalsegment
erstes Abstandselement des Kühlkanals
zweites Abstandselement des Kühlkanals
drittes Abstandselement des Kühlkanals
ersten Schnitt durch ineinander geschachtelte Wicklungssegmente radial äußeres zweites Wicklungssegment
radial inneres erstes Wicklungssegment
erster Kühlkanalsegment der geschachtelten Wicklungssegmente zweites Kühlkanalsegment der geschachtelten Wicklungssegmente erstes Abstandselement
zweites Abstandselement
Auflagefläche
zweiter Schnitt durch ineinander geschachtelte Wicklungssegmente Transformatorkernschenkel
erstes Wicklungssegment
drittes Wicklungssegment
zweites Wicklungssegment
erster Kühlkanal
zweiter Kühlkanal
Schnittansicht von exemplarischem ersten Trockentransformator Gehäuse
erstes Luftleitblech
Zwischenelement
Abstützelement
Luftkanal
erste ineinandergeschachtelte Wicklungssegmente zweite ineinandergeschachtelte Wicklungssegmente
Transformatorkernjoch
Dämpfungselement
Schnittansicht von exemplarischem zweitem Trockentransformator
Transformatorkern
erste ineinander geschachtelte Wicklungssegmente
zweite ineinander geschachtelte Wicklungssegmente
Einlassöffnung
Auslassöffnung
einströmende Luft
ausströmende Luft
zweites Luftleitblech
drittes Luftleitblech
viertes Luftleitblech
Gehäuse

Claims

Patentansprüche
1. Trockentransformator (70, 90) für mobile Anwendungen, umfassend einen Transformatorkern (52, 86, 92) und wenigstens ein radial inneres erstes (34, 54) und ein radial äußeres zweites (32, 58) um eine gemeinsame Wickelachse gewickeltes und von dem Transformatorkern (86, 92) durchgriffenes hohlzylindrisches Wicklungssegment, welche ineinander verschachtelt und radial voneinander beabstandet sind, so dass dazwischen ein hohlzylindrischer Kühlkanal (10, 60, 62) ausgeprägt ist, wobei zur Beabstandung Abstandselemente (24, 26, 28, 40, 42) vorgesehen sind, welche derart angeordnet sind, dass der Kühlkanal (10, 60, 62) in axialer Richtung von einem Kühlmittel durchströmbar ist, dadurch gekennzeichnet,
dass die Abstandselemente (24, 26, 28, 40, 42) längs des radialen Umfangs des Kühlkanals (10, 60, 62) über dessen axiale Länge derart ausgeprägt und angeordnet sind, dass das anteilige Gewicht des liegenden Trockentransformators ausschließlich an genau einer Vorzugsauflagefläche (44) des wenigstens einen zweiten Wicklungssegmentes (32, 58) abtragbar ist, ohne dass eine Deformation des Kühlkanals (10, 60, 62) erfolgt.
2. Trockentransformator nach Anspruch 1 , dadurch gekennzeichnet, dass die Abstandselemente (24, 26, 28, 40, 42) in radialer Richtung zur jeweiligen Auflagefläche (44) verdichtet angeordnet sind, so dass sich in den entsprechenden Bereichen des Kühlkanals (10, 60, 62) eine erhöhte radiale Druckbeanspruchbarkeit ergibt.
3. Trockentransformator nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Abstandselemente (24, 26, 28, 40, 42) leisten- oder kanalähnlich ausgeprägt sind und sich vorzugsweise längs der Wickelachse erstrecken.
4. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abstandselemente (24, 26, 28, 40, 42) als punktuelle Stützelemente ausgeprägt sind.
5. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein jeweiliges hohlzylindrisches drittes (56) zwischen dem jeweiligen ersten (34, 54) und zweiten (32, 58) Wicklungssegmenten verschachteltes Wicklungssegment vorgesehen ist, wobei zwischen den jeweiligen Wicklungssegmenten (32, 34, 54, 56, 58) jeweils ein Kühlkanal (10, 60, 62) vorgesehen ist.
6. Trockentransformator nach Anspruch 6, dadurch gekennzeichnet, dass das wenigstens eine radial innere erste (34, 54) und das wenigstens eine radial äußere zweite (32, 58) Wicklungssegment für Unterspannung vorgesehen ist und das wenigstens eine radial mittlere dritte Wicklungssegment (56) für Oberspannung.
7. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transformatorkern (52, 86, 92) genau zwei Schenkel (52) aufweist um welche jeweils wenigstens ein erstes (34, 54) und ein zweites (32, 58) Wicklungssegment angeordnet sind.
8. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dieser in einem ihn umschließenden Gehäuse (72, 112) angeordnet ist, welches eine Einlassöffnung (98) und eine Auslassöffnung (100) aufweist, wobei innerhalb des Gehäuses (72, 112) Luftleitbleche (74, 106, 108, 110) vorgesehen sind, welche derart angeordnet sind, dass durch die Einlassöffnung (98) eintretendes Kühlmittel längs jeweiliger verschachtelter Wicklungssegmente (30) serpentinenähnlich durch das Gehäuse (72, 112) beziehungsweise die Kühlkanäle (10, 60, 62) oder in ihnen gebildeten Kühlkanälen (16, 18, 20, 22, 36, 38) zur Auslassöffnung geführt ist.
9. Trockentransformator nach Anspruch 9, dadurch gekennzeichnet, dass das Gehäuse (72, 112) und darin verwendete Haltekonstruktionen in Leichtbauweise gefertigt sind.
10. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass vibrationsdämpfende und an die Form der jeweiligen Auflageflächen (44) angepasste Abstützelemente (78) vorgesehen sind, durch welche der Trockentransformator an den Auflageflächen (44) abgestützt und/oder fixiert ist.
11. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ineinander verschachtelte Wicklungssegmente (30) miteinander vergossen sind.
12. Trockentransformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jeweilige erste (34, 54), jeweilige zweite (32, 58) und/oder jeweilige dritte (56) Wicklungssegmente galvanisch miteinander verbunden sind.
13. Trockentransformator nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das wenigstens eine erste (34, 54) und das wenigstens eine zweite (32, 58) Wicklungssegment galvanisch in Reihe geschaltet sind, so dass ein Spartransformator gebildet ist.
PCT/EP2012/002555 2011-07-18 2012-06-16 Trockentransformator WO2013010611A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280035579.4A CN103688322B (zh) 2011-07-18 2012-06-16 干式变压器
US14/158,084 US9761366B2 (en) 2011-07-18 2014-01-17 Dry-type transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11005855.9 2011-07-18
EP11005855.9A EP2549495B1 (de) 2011-07-18 2011-07-18 Trockentransformator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/158,084 Continuation US9761366B2 (en) 2011-07-18 2014-01-17 Dry-type transformer

Publications (1)

Publication Number Publication Date
WO2013010611A1 true WO2013010611A1 (de) 2013-01-24

Family

ID=46331214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/002555 WO2013010611A1 (de) 2011-07-18 2012-06-16 Trockentransformator

Country Status (5)

Country Link
US (1) US9761366B2 (de)
EP (1) EP2549495B1 (de)
CN (1) CN103688322B (de)
ES (1) ES2679821T3 (de)
WO (1) WO2013010611A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827346B1 (de) * 2013-07-17 2016-11-16 ABB Schweiz AG Trockentransformator
JP6416504B2 (ja) * 2014-05-26 2018-10-31 東芝産業機器システム株式会社 モールド形静止誘導機器およびその製造方法
CN104240929A (zh) * 2014-09-18 2014-12-24 江苏科兴电器有限公司 一种单相浇注式组合计量干式互感器
EP3007189B1 (de) 2014-10-07 2020-04-15 ABB Power Grids Switzerland AG Fahrzeugtransformator
DE102016118149A1 (de) * 2016-09-26 2018-03-29 Abb Schweiz Ag Transformator
EP3343575B1 (de) * 2016-12-28 2020-03-18 ABB Schweiz AG Druckausgleicher einer unterwasserinstallation
DE102017102436A1 (de) * 2017-02-08 2018-08-09 Abb Schweiz Ag Trockentransformator mit Luftkühlung
MX2019015008A (es) * 2017-06-13 2020-02-26 Radyne Corp Ensamble de autotransformador portatil toroidal.
EP3666728A4 (de) 2017-08-09 2021-03-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation System zur verwendung von ozongas
EP3692556B1 (de) * 2017-10-04 2021-10-20 ScandiNova Systems AB Anordnung und transformator mit der anordnung
CN108512168B (zh) * 2018-05-16 2019-11-22 江苏凯西电气设备科技有限公司 一种变压器母线防护装置
CN109346271B (zh) * 2018-11-14 2024-02-23 江苏思源赫兹互感器有限公司 一种升压变压器
EP3660874B1 (de) * 2018-11-29 2022-04-13 Hitachi Energy Switzerland AG Trockentransformator
CN110124200B (zh) * 2019-04-01 2023-07-18 天津博雅信息科技有限公司 一种磁刺激线圈双面液冷装置
KR102077039B1 (ko) * 2020-01-07 2020-02-14 알앤알 주식회사 필 카펫의 스페이서 위치결정용 템플레이트
CN113571296A (zh) * 2021-07-05 2021-10-29 广东中顺电气制造有限公司 一种干式变压器使用的通用气道绝缘板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383266A (en) * 1993-03-17 1995-01-24 Square D Company Method of manufacturing a laminated coil to prevent expansion during coil loading
EP1715495A2 (de) * 2005-04-21 2006-10-25 TMC Italia S.p.A. Harzisolierter Trockentransformator
US20110063062A1 (en) * 2009-09-11 2011-03-17 Abb Technology Ag Disc wound transformer with improved cooling

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1342304A (en) * 1920-06-01 Insulated support for electrical conductors
US1624896A (en) * 1922-06-16 1927-04-12 Westinghouse Electric & Mfg Co Transformer-coil-spacing device
US2544845A (en) * 1948-09-13 1951-03-13 Mcgraw Electric Co Transformer construction
US2863130A (en) * 1957-03-21 1958-12-02 Gen Electric Coil construction for electromagnetic induction apparatus
US3086184A (en) * 1957-03-26 1963-04-16 Gen Electric Coil structure for electromagnetic induction apparatus
US2918639A (en) * 1957-05-15 1959-12-22 Gen Electric Spacer for electrical windings
US2990528A (en) * 1960-02-25 1961-06-27 Mc Graw Edison Co Lightweight distribution transformer
GB1042941A (en) * 1963-02-13 1966-09-21 Economic Foundations Ltd Improvements in or relating to tunnel boring machines
US3386058A (en) * 1966-11-21 1968-05-28 Westinghouse Electric Corp Inductive assembly with supporting means
US3447112A (en) * 1967-11-16 1969-05-27 Westinghouse Electric Corp Air cooled transformer
US3708875A (en) * 1971-09-17 1973-01-09 Westinghouse Electric Corp Methods of constructing electrical inductive apparatus
US4129938A (en) * 1975-08-25 1978-12-19 Hariolf Hagenbucher Method of making tubular coils with cooling and insulating channels
US4129845A (en) * 1977-07-15 1978-12-12 Electric Power Research Institute, Inc. Vaporization cooled electrical apparatus
DE3584401D1 (de) * 1984-07-24 1991-11-21 Voigt & Haeffner Gmbh Transformatorschaltung.
JPH071780Y2 (ja) * 1990-06-15 1995-01-18 三菱電機株式会社 電磁誘導機器
US5588201A (en) * 1991-03-21 1996-12-31 Siemens Aktiengesellschaft Process for producing a cast resin coil
US5455551A (en) * 1993-05-11 1995-10-03 Abb Power T&D Company Inc. Integrated temperature sensing duct spacer unit and method of forming
US7023312B1 (en) * 2001-12-21 2006-04-04 Abb Technology Ag Integrated cooling duct for resin-encapsulated distribution transformer coils
CN1641810A (zh) * 2004-01-11 2005-07-20 浙江沪光变压器有限公司 C级非包封线圈干式变压器
CN103779043B (zh) * 2012-10-25 2017-09-26 台达电子企业管理(上海)有限公司 大功率电磁组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383266A (en) * 1993-03-17 1995-01-24 Square D Company Method of manufacturing a laminated coil to prevent expansion during coil loading
EP1715495A2 (de) * 2005-04-21 2006-10-25 TMC Italia S.p.A. Harzisolierter Trockentransformator
US20110063062A1 (en) * 2009-09-11 2011-03-17 Abb Technology Ag Disc wound transformer with improved cooling

Also Published As

Publication number Publication date
CN103688322B (zh) 2016-06-29
US9761366B2 (en) 2017-09-12
ES2679821T3 (es) 2018-08-31
US20140132381A1 (en) 2014-05-15
EP2549495B1 (de) 2018-05-23
CN103688322A (zh) 2014-03-26
EP2549495A1 (de) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2549495B1 (de) Trockentransformator
EP0056580B1 (de) Wicklung für einen luftgekühlten Trockentransformator oder für eine Drosselspule mit Distanzelementen in den Luftkanälen
EP2592635B1 (de) Unterflur-Transformator
WO2012031646A1 (de) Transformatorwicklung
EP2661756A1 (de) Transformatorwicklung mit kühlkanal
EP2523196B1 (de) Wicklungsfixiervorrichtung
EP2639800A1 (de) Transformator für ein elektrisch angetriebenes Fahrzeug
EP1133779B1 (de) Transformator - insbesondere giessharztransformator
EP2793244B1 (de) Trockentransformatorspule und Trockentransformator
DE2647654C2 (de)
DE102015118652A1 (de) Spulenanordnung
EP2975618B1 (de) Kern für eine elektrische Induktionseinrichtung
EP2239745A1 (de) Leistungstransformator mit amorphem Kern
DE723560C (de) Transformator
DE202013103599U1 (de) Elektrisches Bauteil
EP0053691B1 (de) Saugdrossel für Hochstromtransformatoren
EP3510607B1 (de) Kern für eine elektrische induktionseinrichtung
EP0223954B1 (de) Ventildrossel, insbesondere für Hochspannungs-Gleichstrom-Übertragungsanlagen
DE752882C (de) Hochspannungstransformator mit zu Paketen zusammengefassten Spulen
EP1282142B1 (de) Elektrische Wicklungsanordnung
EP3301694A1 (de) Kühlung von induktiven bauelementen
WO2010049041A1 (de) Transformator
AT157256B (de) Transformator, insbesondere für große Leistung und hohe Spannung.
EP1255258A1 (de) Elektrische Wicklungsanordnung
WO2021058229A1 (de) Ausgleichsblock für luftdrosselspulen und transformatoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12729001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12729001

Country of ref document: EP

Kind code of ref document: A1