WO2013018984A2 - Master gripper structure for surgical robot - Google Patents

Master gripper structure for surgical robot Download PDF

Info

Publication number
WO2013018984A2
WO2013018984A2 PCT/KR2012/004093 KR2012004093W WO2013018984A2 WO 2013018984 A2 WO2013018984 A2 WO 2013018984A2 KR 2012004093 W KR2012004093 W KR 2012004093W WO 2013018984 A2 WO2013018984 A2 WO 2013018984A2
Authority
WO
WIPO (PCT)
Prior art keywords
grip
handle member
user
surgical robot
master
Prior art date
Application number
PCT/KR2012/004093
Other languages
French (fr)
Korean (ko)
Other versions
WO2013018984A3 (en
Inventor
최승욱
장배상
이민규
원종석
Original Assignee
(주)미래컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)미래컴퍼니 filed Critical (주)미래컴퍼니
Publication of WO2013018984A2 publication Critical patent/WO2013018984A2/en
Publication of WO2013018984A3 publication Critical patent/WO2013018984A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Definitions

  • the present invention relates to a master gripper structure of a surgical robot.
  • surgery refers to healing a disease by cutting, slitting, or manipulating skin, mucous membranes, or other tissues with a medical device.
  • open surgery which incise the skin of the surgical site and open, treat, shape, or remove the organs inside of the surgical site, has recently been performed using robots due to problems such as bleeding, side effects, patient pain, and scars. This alternative is in the spotlight.
  • Such a surgical robot may be divided into a master unit that generates and transmits a signal required by a doctor's operation, and a slave unit that receives a signal from an operation unit and directly applies a manipulation necessary to a patient.
  • the slave unit may be divided as each part of a single surgical robot, or each may be a separate device, that is, the operation unit may be divided into a master robot and the driving unit may be disposed in an operating room, respectively.
  • the master part of the surgical robot is provided with a device for the doctor's operation.
  • the surgeon does not directly manipulate the instruments required for the operation, but the various instruments mounted on the robot by operating the above-mentioned devices are required for the operation. Perform the action.
  • a surgical instrument is mounted on the slave part of the surgical robot, and an effector is coupled to the end of the instrument.
  • the effector is made of various shapes and structures, such as tongs, scissors, knives, needles, etc., depending on the type of surgical operation.
  • the effector of the instrument is used for surgery according to the shape and structure.
  • a variety of operations, such as grip, cutting, and suturing, may be performed as necessary.
  • a gripper may be installed in the master device to control the operation of the effector. That is, as shown in FIG. 1, the pair of grippers 8 protrude into the shape of wings on both sides of the handle member 12 of the master handle 40 of the surgical robot, so as to have a tong shape (effect shape of the effector as a whole). By installing the gripper, the effector also performs the tong operation corresponding to the user operating the gripper 8.
  • the pair of grippers 8 when the handle member is rotated about its longitudinal direction (see the arrow in FIG. 1), the pair of grippers 8 also rotate, so that the user may move the gripper according to the rotation state of the handle member. Situations may not occur smoothly.
  • the handle member is rotated so that the gripper is placed vertically (upper). If the user does not easily grasp the gripper, the user can rotate the finger so that the thumb and index finger go upward and downward, respectively, to smoothly grip the gripper.
  • the doctor may hold or release the gripper while looking at the endoscope screen (that is, without the gripper). Therefore, in the conventional gripper structure described above, the doctor may not grip the gripper properly depending on the surgical situation. Cases can occur, and the risk of leading to medical accidents cannot be ruled out.
  • the background art described above is technical information possessed by the inventors for the derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention.
  • US Patent Publication No. 6,714,839 discloses a gripper structure protruding in the shape of a wing on both sides of the handle member
  • US Patent No. US 6,669,693 is a tissue ablation device consisting of an umbrella flesh Is disclosed.
  • the present invention improves the conventional gripper structure, and provides a master gripper structure of a surgical robot that enables a user to smoothly grip and grip the gripper regardless of the rotation state of the master handle.
  • a gripper structure provided on a master handle of a surgical robot and receiving a grip operation from a user, the rod shape being rotatably coupled to the master handle in the longitudinal direction thereof.
  • the handle member and the handle member and the handle member is contracted toward the outer circumferential surface of the handle member according to the user's grip operation, and is disposed radially along the outer circumferential portion of the handle member to receive a grip operation from the user regardless of the degree of rotation of the handle member.
  • a master gripper structure of a surgical robot including a grip part which maintains a constant part and a sensing part which senses information corresponding to a degree of contraction of the grip part by a user's grip operation and outputs a sensing signal.
  • the grip portion includes a plurality of grip elements that are radially arranged around the outer circumferential surface of the handle member and have a solid shape, the vertices of which are connected to one end of the handle member, to form an umbrella structure having one end of the handle member as a vertex. have.
  • a plurality of grip elements radially hinged to one end of the handle member and arranged radially around the outer circumferential surface of the handle member may form an umbrella structure having one end of the handle member as a vertex.
  • the steamer structure can be achieved.
  • a reference point may be formed so that a user may sense with a finger in a grip manipulation process.
  • the plurality of grip elements may be provided with a plurality of reference points, respectively, corresponding to the user's finger.
  • the whole of the plurality of grip elements may be retracted toward the outer circumferential surface of the handle member, or only some of the manipulated grip elements may be retracted toward the outer circumferential surface of the handle member.
  • the sensing unit may output different sensing signals with respect to a user's grip operation on the first grip element among the plurality of grip elements and a user's grip operation on the second grip element among the plurality of grip elements, respectively.
  • the control unit may further include a control unit configured to receive a sensing signal and generate a control signal and transmit the control signal to a surgical robot, wherein the control unit calculates a representative value from different sensing signals, generates a control signal corresponding to the representative value, or generates different sensing signals. Corresponding to each other, it is possible to generate different control signals.
  • the surgical robot is equipped with a surgical instrument that moves in a plurality of operating degrees of freedom, and different control signals may be matched with the degrees of freedom of operation of the instruments, respectively.
  • the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
  • a gripper (gripper) structure for receiving a grip operation from the user, which is rotatably coupled to the master handle, the longitudinal direction of the axis
  • a rod-shaped handle member and a sensing unit configured to be radially disposed along the outer circumference of the handle member to maintain a constant state in which a grip operation can be input from a user regardless of the degree of rotation of the handle member, but the sensing unit includes:
  • a master gripper structure of a surgical robot characterized in that for outputting a sensing signal by sensing the force by the grip operation.
  • a reference point may be formed so that a user may detect with a finger in a grip manipulation process.
  • the sensing unit may be formed of one force sensor surrounding the outer circumferential surface of the handle member, or may be formed of a plurality of force sensors disposed along the outer circumferential surface of the handle member.
  • the sensing unit may output different sensing signals with respect to a user's grip operation on the first force sensor among the plurality of force sensors and a user's grip operation on the second force sensor among the plurality of force sensors, respectively. have.
  • the control unit may further include a control unit configured to receive a sensing signal and generate a control signal and transmit the control signal to a surgical robot, wherein the control unit calculates a representative value from different sensing signals, generates a control signal corresponding to the representative value, or generates different sensing signals. Different control signals can be generated correspondingly.
  • the surgical robot is equipped with a surgical instrument moving in a plurality of operating degrees of freedom, and different control signals may be matched to the degrees of freedom of operation of the instruments, respectively.
  • the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
  • a gripper (gripper) structure for receiving a grip operation from the user, which is rotatably coupled to the master handle, the longitudinal direction of the axis
  • a grip member which is hinged to one end of the handle member so as to be disposed on a rod-shaped handle member and a part of the outer peripheral portion of the handle member, and is contracted toward the outer peripheral surface of the handle member according to a user's grip operation, and a grip portion by a user's grip operation.
  • the sensing unit for outputting the first sensing signal by sensing the information corresponding to the degree of contraction of the sensor and the grip unit of the outer peripheral portion of the handle member is installed, the second sensing signal by sensing the force by the grip operation of the user Receiving a force sensor and a first sensing signal and the second sensing signal and generates a control signal corresponding to the transfer to the surgical robot
  • the master of the surgical robot gripper structure is provided that includes fishermen.
  • the controller may generate different control signals in correspondence with the first sensing signal and the second sensing signal.
  • the surgical robot is equipped with a surgical instrument moving in a plurality of operating degrees of freedom, and different control signals may be matched to the degrees of freedom of operation of the instruments, respectively.
  • the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
  • the grip portion by allowing the grip portion to be radially disposed along the outer circumference of the handle member, such as an umbrella structure, an umbrella meat structure, a steamer structure, a sensor installation structure, and so on, the user is irrespective of the degree of rotation of the master handle, that is, Even if the handle member is rotated at any angle, the grip operation can always be performed in the same state.
  • the handle member such as an umbrella structure, an umbrella meat structure, a steamer structure, a sensor installation structure, and so on
  • the sensing signal generated by the grip operation is different depending on the degree of rotation of the handle member, from which different control signals
  • FIG. 1 is a view showing a gripper structure according to the prior art.
  • FIG. 2 is a conceptual diagram showing the overall structure of a surgical robot according to an embodiment of the present invention.
  • FIG 3 and 4 illustrate a gripper structure according to the first embodiment of the present invention.
  • 5 to 7 show a gripper structure according to a second embodiment of the present invention.
  • FIG. 8 is a view showing a gripper structure according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of FIG. 8.
  • FIG 10 and 11 are views showing the operating state of the gripper according to the embodiment of the present invention.
  • FIG. 12 is a view showing a gripper structure according to the fourth embodiment of the present invention.
  • FIG. 13 is a view showing a gripper structure according to the fifth embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 2 is a conceptual diagram showing the overall structure of a surgical robot according to an embodiment of the present invention.
  • a surgical robot 1 a surgical robot 1, a master handle 3, an instrument 5, a handle member 10, a grip part 20, a sensing part 30, and a controller 50 are illustrated.
  • This embodiment improves the disadvantages of the gripper structure in which a pair of grippers protrude into a wing shape on both sides of the handle member 10 as shown in FIG. 1, and has a conical shape along the outer circumference of the handle member 10.
  • the user grasps and operates the gripper by using the thumb and index finger, and if the handle member is rotated, the gripper When the user is out of the horizontal state, the user rotates the handle member so that the gripper becomes horizontal again, and then there is an inconvenience of holding and holding the gripper.
  • the gripper structure according to the present embodiment regardless of the rotation state of the handle member 10 (and the grip portion 20), the user can hold and operate the grip portion 20 using the thumb and the index finger, and the grip portion It is not necessary to rotate the handle member 10 separately to properly grasp (20), and furthermore, even if the thumb and the index finger does not necessarily hold the grip 20 with an arbitrary finger, the same operation is possible.
  • the master gripper is a structure provided in the master handle 3 of the surgical robot 1, and a user of the surgical robot 1 uses a finger to grip the gripper.
  • a thumb and forefinger may hold or press (or press) or release (ie, grip) an operation, and the surgical robot 1 receives a user's grip operation on the gripper and based on the operation Various control signals for operating the robot 1 are generated.
  • the user grips each part of the grip part 20 (see 'grip element' described later) with a finger, and pinches or spreads the finger so that the grip part 20 is collapsed (contracted) or expanded (expanded) to be manipulated.
  • Manipulation ' the operation of the effect of the instrument (5) in order to collapse or open corresponding to the grip operation will be described as' grip operation'.
  • the master gripper structure includes a handle member 10 coupled to the master handle 3, a grip part 20 arranged based on the handle member 10, and a user operation result on the grip part 20. It consists of a sensing unit 30 for detecting.
  • the handle member 10 is a member constituting the basic skeleton of the gripper structure, has a rod shape extending in the longitudinal direction, and is coupled to the master handle 3 so as to rotate in the longitudinal direction thereof.
  • the handle member 10 can be manufactured in a cylindrical shape, and the cylinder is centered on a longitudinal axis (that is, an axis penetrating the center of the upper and lower circles).
  • An end of the handle member 10 may be coupled to the master handle 3 so as to rotate.
  • the grip part 20 is a part which a user grabs for a grip operation, ie, a part deformed by a user's grabbing operation.
  • the grip portion 20 according to the present embodiment is to allow the user to operate the grip regardless of the degree of rotation of the handle member 10, as shown in Figures 3 to 8, the outer peripheral portion of the handle member 10 Along radially.
  • the grip part 20 is not protruded only to a specific part of the handle member 10, but is evenly distributed along the outer circumference of the handle member 10, so that the user may be uniform regardless of the rotation state of the handle member 10. In the situation, the grip part 20 can be operated. That is, the grip part 20 according to the present exemplary embodiment has an advantage of maintaining a constant state in which a grip operation can be input from a user regardless of the rotation of the handle member 10.
  • the grip part 20 since the grip part 20 is disposed radially around the handle member 10, when the user grasps the grip part 20, the grip part 20 is in close contact with the outer circumferential surface of the handle member 10. It can be retracted and manipulated in such a way that when the user releases the grip 20, it unfolds back to its original state (disposed radially around the handle).
  • a finger receiver such as a thimble or a ring may be installed in the grip unit 20 so that the user's finger can be inserted, and the user grips the finger while inserting the thumb and index finger into the finger receiver, respectively.
  • the grip part 20 When the 20 is contracted and the finger is opened, the grip part 20 may be unfolded in its original state.
  • the sensing part 30 senses the contraction degree (and / or the unfolded degree) of the grip part 20 to the user.
  • the sensing signal is output so as to know whether the grip operation has been performed to such an extent.
  • the gripper structure according to the present embodiment is a structure in which a hinge shaft is installed at a portion where the grip portion 20 is coupled to the handle member 10 and a motor and an encoder are connected to the hinge shaft (see FIG. 4).
  • a hinge shaft is installed at a portion where the grip portion 20 is coupled to the handle member 10 and a motor and an encoder are connected to the hinge shaft (see FIG. 4).
  • the encoder senses the sensing part according to the present embodiment. 30).
  • the grip part 20 is connected to the handle member 10 by a hinge axis, and the structure is connected to the motor and the encoder (see 'M' in FIG. 4) through a wire or a rod.
  • the motor may be omitted (encoder only) if only the sensing of how much the grip portion 20 is pressed and there is no need to provide a reaction force to the grip portion 20.
  • the encoder does not necessarily need to be installed in order to sense how pressed the grip unit 20 may be provided with a hall sensor or the like. In other words, other sensors, such as Hall sensors and potentiometers, are possible.
  • the gripper structure according to the present embodiment is a structure in which a force sensor is installed in the grip unit 20 and a signal sensed by the force sensor is transmitted to the controller 50 of the robot, the user grips the grip unit 20.
  • the grip part 20 is contracted by the grabbing operation, a signal is output according to a result of the user pressing the force sensor in the process, in which case the force sensor may correspond to the sensing part 30 according to the present embodiment.
  • the sensing unit 30 may be implemented in various structures, and performs a common function in that the sensing unit 30 senses information corresponding to the degree of contraction of the grip unit 20 as the user grips. .
  • the sensing signal output from the sensing unit 30 is transmitted to the control unit 50 of the surgical robot 1, and the control unit 50 generates and transmits a control signal based on the sensing signal, thereby performing various operations necessary for surgery.
  • the robot is controlled to perform.
  • FIGS. 3 and 4 show a gripper structure according to a first embodiment of the present invention
  • FIGS. 5 to 7 show a gripper structure according to a second embodiment of the present invention
  • FIG. A gripper structure according to a third embodiment is shown
  • FIG. 9 is a cross-sectional view of FIG. 3-9, the handle member 10, the grip 20, the grip elements 22, 24, 26, and the reference point 28 are shown.
  • 3 through 8 illustrate embodiments of various grip portion structures.
  • the grip portion 20 is made of a so-called 'umbrella structure'.
  • the grip portion 20 may consist of several grip elements 22, each grip element 22 being pressed or unfolded by a user's grip manipulation.
  • the plurality of grip elements 22 are radially arranged around the outer circumferential surface of the handle member 10 and are respectively coupled to one end of the handle member 10, so that one end of the handle member 10 is viewed as a vertex. A solid shape or a cone shape is achieved.
  • FIG. 3 such a structure is referred to as an 'umbrella structure', and the grip portion 20 of the umbrella structure having one end of the handle member 10 as a vertex is illustrated in FIG. 3.
  • the grip portion 20 is made of a so-called 'umbrella structure'.
  • the grip portion 20 may consist of several grip elements 24, each grip element 24 being pressed or unfolded by a user's grip manipulation.
  • the plurality of grip elements 24 are arranged radially around the outer circumferential surface of the handle member 10, and are radially hinged to one end of the handle member 10, respectively.
  • 'Umbrella stand' and grip element 24 is shaped like 'umbrella' with one end of handle member 10 as a vertex.
  • FIG. 5 illustrates an grip portion 20 of an umbrella structure having one end of the handle member 10 as a vertex.
  • the grip part 20 is made of a face material corresponding to the umbrella cloth, and the grip part 20 is operated in such a way that the grip part 20 shrinks as a whole or wrinkles are generated for each unit grip element 22.
  • the grip elements 24 are respectively retracted while rotating to approach the handle member 10 (see FIG. 6 (a)), and are respectively extended to rotate away from the handle member 10. Can be operated (see FIG. 6 (b)).
  • FIG. 8 is a case where the grip portion 20 is made of a so-called 'steamer structure'.
  • FIG. 9 shows a cross section in a direction perpendicular to the longitudinal direction of the handle member with respect to FIG. 8.
  • the grip portion 20 may consist of several grip elements 26, each grip element 26 being pressed or unfolded by a user's grip manipulation.
  • the plurality of grip elements 26 are arranged radially around the outer circumferential surface of the handle member 10, each of which is radially hinged to one end of the handle member 10, and partially sequentially overlaps each other. Is radially chained, so as to look at the overall shape to form a 'steamer' based on one end of the handle member (10).
  • FIGS. 8 and 9 such a structure is referred to as a 'steamer structure', and the grip part 20 of the steamer structure based on one end of the handle member 10 is illustrated in FIGS. 8 and 9.
  • each grip element 24 is configured to rotate independently (as well as to rotate in conjunction with each other), while the steamer structure illustrated in FIGS. 8 and 9 is illustrated.
  • the grip elements 26 are sequentially overlapped with each other, so that when one grip element 26 is manipulated to contract (or expand), the rest of the grip elements 26 also contract (or expand). Can be operated in a manner.
  • each grip element 20 forms a shape of a circle (for umbrella structure), a regular hexagon (for umbrella structure), or the like, when viewed in the longitudinal direction of the handle member 10.
  • 22, 24 and 26 are arrange
  • the grip elements 22, 24, and 26 according to the present exemplary embodiment are not necessarily arranged to form a circle, a regular hexagon, and a regular polygon, but are elliptical or any one when viewed in the longitudinal direction of the handle member 10. It may be arranged to form an elongated hexagon, polygon, and the like.
  • the grip elements 22, 24, and 26 are disposed to implement the gripper structure by arranging the plurality of grip elements 22, 24, and 26 radially (an umbrella structure, an umbrella structure, a steamer structure, and the like).
  • a reference point 28 which can be sensed by a finger may be formed on some of the fingers to allow the user to check whether a specific grip element is caught in the grip manipulation process.
  • the user when the user manipulates the gripper with his finger while looking at the endoscope screen during the robotic surgery, the user forms the reference point 28 such as a small protrusion on the part where the user's thumb touches a specific grip element. You can also check whether you have a particular grip element without looking at it.
  • the grip part 20 is not only a structure in which the grip operation can be performed by any finger, but also allows the user to grasp a certain grip element by allowing the user to identify the grip element as a reference using only a finger touch. It is possible to know tactilely whether or not (to grab a reference grip element), so that the user can easily implement 'hand-eye coordination' to match the motion of the hand and the eye during the surgical procedure. .
  • the reference point is not necessarily formed only on one of the grip elements, may be formed on a plurality of parts of the grip elements, or may form different reference points for the entire grip element.
  • one grip is used as a reference point for the grip element that the thumb and the middle of the grip elements touch.
  • a reference point is formed on the grip element that the index finger touches, and two projections are formed as reference points on the grip element that the index finger touches, and a finger is formed in the process of grasping the grip part by the user. It can be tactilely guided by which grip element was captured.
  • 10 and 11 are views showing an operating state of the gripper according to an embodiment of the present invention. 10 and 11, the handle member 10, the grip 20, the grip elements 24, 24a, 24b, 24c, the sensing unit 30, and the controller 50 are shown.
  • the user performs a grip operation on some of the plurality of grip elements 22, 24, and 26, in which case the plurality of grip elements 22 according to the user's grip operation.
  • 24, 26 can implement a grip structure such that the whole can be shrunk (or expanded) all at once, or only some of the grip elements manipulated by the user (only between the opposing grip elements pressed by fingers) can be shrunk (or expanded)
  • FIG. 10 illustrates the grip part structure shown in FIG. 5 as an example, but the grip part operating method shown in FIG. 10 may also be applied to the grip part structures shown in FIGS. 3 and 8.
  • the hinge shafts of the umbrellas are connected to each other by gear coupling or the like.
  • the rest of the grip elements 24 may be moved as a whole according to an operation on one of the grip elements 24, and the hinge axes of the umbrellas may move independently of each other ( By not connecting to each other), as shown in FIG. 10 (b), only a part of the grip element 24 may be moved according to an operation on the part of the grip element 24.
  • FIG. 10 The grip element illustrated in FIG. 10 is described again with reference to FIG. 11, which is shown in the form seen in the longitudinal direction of the handle member 10, as shown in FIG. 11A, for any one grip element 24a.
  • the remaining grip elements 24b and 24c may be moved as a whole, and as shown in FIG. 11 (b), only a part of the grip elements 24b moves in accordance with an operation on a part of the grip elements 24b.
  • the sensing unit 30 when only the manipulated grip element 24 is to be moved independently, it may be possible to give different outputs to the operation result for each grip element 24. That is, in the sensing unit 30 according to the present embodiment, the grip operation on some grip elements (first grip elements) and the grip operation on some other grip elements (second grip elements) are different from each other.
  • the sensing signal may be output. For example, as shown in FIG. 11, when the grip part 20 includes three pairs (six) of grip elements 24a, 24b, and 24c in total, each pair of grip elements 24a, 24b, and 24c may be used. According to the grip operation, three different sensing signals may be output.
  • a first sensing signal is output and a grip on the second grip element pair 24b is output.
  • the second sensing signal may be output, and in the case of the grip manipulation with respect to the third grip element pair 24c, the third sensing signal may be output.
  • sensing unit 30 This can be variously implemented according to the configuration of the sensing unit 30.
  • the sensing unit 30 is implemented in the form of an encoder connected to the motor as described above, the encoder drives the motor (in the grip operation).
  • the grip element 24 (actuated by) may be identified such that a different signal is output for each grip element 24.
  • the motor may be omitted (encoder only) and the grip element (
  • other sensors such as a hall sensor, may be installed to sense how much 24 is pressed.
  • the sensing unit 30 when the sensing unit 30 is implemented in the form of a force sensor installed on each grip element 24, the sensing signal may be independently output for each force sensor.
  • control unit 50 of the surgical robot may receive the sensing signal independently output for each grip element 24 and generate the control signal independently to correspond to each sensing signal.
  • the above-described plurality of control signals may be matched to the freedom of operation of each jaw. have.
  • the grip unit 20 includes a total of three pairs (6) of grip elements 24, and three sensing signals are output for each pair of grip elements 24.
  • the branch control signal is generated, the surgical instrument moves with three degrees of freedom of rotation, tilting, and gripping, so that the three control signals match each of the three degrees of freedom.
  • a user manipulates any pair of grip elements 24 to control the rotation of the instrument, another pair of grip elements 24 controls the tilting of the instrument, and another pair of grip elements 24 ) To control the gripping of the instrument.
  • control signals generated independently may be matched to each instrument.
  • the grip part 20 is composed of a total of three pairs (6) of grip elements 24, and three sensing signals are output for each pair of grip elements 24.
  • a control signal is generated, when three instruments are mounted on the surgical robot, the three control signals are matched to each of the three instruments, so that the user manipulates any one pair of grip elements 24 to control the first robot. It is also possible to control the instrument, manipulate the other pair of grip elements 24 to control the second instrument, and manipulate another pair of grip elements 24 to control the third instrument.
  • each independent sensing signal is to be used for one control It may be.
  • control unit 50 of the surgical robot receives different sensing signals, calculates the representative value by integrating the sensing signals (for example, calculate the maximum value or the average value), and calculated
  • any one of the plurality of grip elements 24 may be manipulated so as to control one of the control objects (for example, a specific degree of freedom among a plurality of operating degrees of the instrument, or a specific instrument among the plurality of instruments, etc.). ) May be controlled.
  • FIG. 12 is a view showing a gripper structure according to a fourth embodiment of the present invention. Referring to FIG. 12, the handle member 10, the reference point 28, the sensing unit 30, the force sensors 32 and 34, and the controller 50 are illustrated.
  • the grip member 20 which is moved by the user's grip operation is omitted, and the force sensors 32 and 34 are disposed along the outer circumferential surface of the handle member 10, thereby providing a handle member ( 10) It senses the grip operation of the user and senses the degree of grip operation by the magnitude of the user's grip.
  • the master gripper according to the present embodiment is also a structure provided in the master handle 3 of the surgical robot as shown in FIG. 2, the handle member 10 coupled to the master handle 3, and the handle member ( And a sensing unit 30 for detecting a user's grip manipulation with respect to 10).
  • the handle member 10 is a member constituting the basic skeleton of the gripper structure as in the above-described embodiment, and has a rod shape extending in the longitudinal direction, and is coupled to the master handle 3 so as to rotate in the longitudinal direction thereof. do.
  • the sensing unit 30 is disposed radially along the outer circumference of the handle member 10. That is, the sensing unit 30 according to the present embodiment, so that the user can operate the grip regardless of the degree of rotation of the handle member 10, as shown in Figure 12, the outer peripheral portion of the handle member 10 Along the radial direction.
  • the sensing unit 30 is not only installed at a specific portion of the handle member 10, but is evenly distributed along the outer circumferential portion of the handle member 10, so that the user may be uniform regardless of the rotation state of the handle member 10. In one situation, the operation of holding the handle member 10 can be performed. That is, the sensing unit 30 according to the present exemplary embodiment maintains the state in which the grip operation can be input from the user regardless of the rotation of the handle member 10.
  • the sensing unit 30 when the user manipulates the handle member 10 and the user presses the sensing unit 30 (force sensors 32 and 34) in the process, the sensing unit 30 is controlled by the user's grip operation. It senses the force and outputs the sensing signal.
  • the sensing unit 30 includes a belt-shaped force sensor 32 surrounding the outer circumferential surface of the handle member 10 as illustrated in FIG. 12A, or the handle member as illustrated in FIG. 12B. It is also possible to comprise a plurality of force sensors 34 arranged at predetermined intervals along the outer circumferential surface of (10).
  • the sensing is different from each other according to the user's finger holding area.
  • the value may be sensed.
  • a representative value for example, a maximum value, a minimum value, an average value, etc.
  • a sensing signal for example, a maximum value, a minimum value, an average value, etc.
  • the sensing signal can be output independently from each sensor, in this case, the control unit 50 of the surgical robot different
  • Each sensing signal may be integrated to calculate a representative value (eg, a maximum value, a minimum value, an average value, etc.), and a control signal for controlling the surgical robot may be generated to correspond to the calculated representative value.
  • the sensing unit 30 when installing a plurality of force sensors 34, it is possible to output different output for the operation results for each force sensor 34. That is, in the sensing unit 30 according to the present embodiment, the grip operation on some force sensors (first force sensor) and the grip operation on some other force sensors (second force sensor) are different from each other.
  • the sensing signal may be output.
  • the sensing unit 30 when the sensing unit 30 includes three pairs (six) of force sensors 34, three pairs of force sensors 34 differ from each other according to the grip operation of the user for each pair of force sensors 34.
  • the sensing signal of the branch can be output.
  • control unit 50 of the surgical robot may receive the sensing signal independently output for each force sensor 34 and generate the control signal independently to correspond to each sensing signal.
  • the surgical robot or the surgical instrument may be controlled to be operated in different ways according to the position (angle) of the force applied to the handle member 10 by the grip operation of the user.
  • the surgical robot is equipped with an instrument for performing a grip operation and an electrosurgical device, and a position where the thumb of the user touches the handle member 10 is 0 degrees, the user handle member 10 Holding the 0 degree and near 180 degrees of the instrument performs the grip operation, the user can hold the -30 degrees and 120 degrees of the handle member 10 can be controlled to operate the electrosurgery.
  • the master gripper structure may be implemented by mixing the grip part structure of the 'wing moving' type illustrated in FIGS. 3 to 8 and the structure in which the force sensor illustrated in FIG. 12 is installed.

Abstract

Disclosed is a master gripper structure for a surgical robot. A gripper structure, which is furnished on the master handle of a surgical robot and receives the input of grip manipulations by a user, comprises: a rod-shaped handle member which is connected to a master handle so as to be rotatable around the lengthwise axis thereof; a grip section, which contracts toward the outer peripheral surface of the handle member in response to grip manipulation by a user, and which is radially arranged along the outer peripheral surface of the handle member, and thus can maintain the same state in which grip manipulation by a user can be received, regardless of the extent to which the handle member is rotated; and a sensing unit which senses information corresponding to the extent of the contraction of the grip section due to the grip manipulation by a user, and outputs a sensing signal. The gripper structure has a grip section radially arranged on the outer peripheral section of a handle member, with structures such as an umbrella structure, an umbrella rib structure, a steamer structure, or the structure in which sensors are installed, thus a user can always perform grip manipulations in the same state, regardless of the degree to which the handle member is rotated, i.e. the rotational angle of the handle member.

Description

수술용 로봇의 마스터 그립퍼 구조Master Gripper Structure of Surgical Robot
본 발명은 수술용 로봇의 마스터 그립퍼 구조에 관한 것이다.The present invention relates to a master gripper structure of a surgical robot.
의학적으로 수술이란 피부나 점막, 기타 조직을 의료 기계를 사용하여 자르거나 째거나 조작을 가하여 병을 고치는 것을 말한다. 특히, 수술부위의 피부를 절개하여 열고 그 내부에 있는 기관 등을 치료, 성형하거나 제거하는 개복 수술 등은 출혈, 부작용, 환자의 고통, 흉터 등의 문제로 인하여 최근에는 로봇(robot)을 사용한 수술이 대안으로서 각광받고 있다.Medically, surgery refers to healing a disease by cutting, slitting, or manipulating skin, mucous membranes, or other tissues with a medical device. In particular, open surgery, which incise the skin of the surgical site and open, treat, shape, or remove the organs inside of the surgical site, has recently been performed using robots due to problems such as bleeding, side effects, patient pain, and scars. This alternative is in the spotlight.
이러한 수술용 로봇은 의사의 조작에 의해 필요한 신호를 생성하여 전송하는 마스터(master)부와, 조작부로부터 신호를 받아 직접 환자에 수술에 필요한 조작을 가하는 슬레이브(slave)부로 구분될 수 있는데, 마스터부와 슬레이브부는 하나의 수술용 로봇의 각 부분으로서 구분되거나, 각각 별도의 장치로, 즉 조작부는 마스터 로봇으로, 구동부는 슬레이브 로봇으로 구분되어 수술실에 각각 배치될 수도 있다.Such a surgical robot may be divided into a master unit that generates and transmits a signal required by a doctor's operation, and a slave unit that receives a signal from an operation unit and directly applies a manipulation necessary to a patient. And the slave unit may be divided as each part of a single surgical robot, or each may be a separate device, that is, the operation unit may be divided into a master robot and the driving unit may be disposed in an operating room, respectively.
수술용 로봇의 마스터부에는 의사의 조작을 위한 디바이스가 설치되는데, 로봇 수술의 경우 집도의는 수술에 필요한 인스트루먼트를 직접 조작하는 것이 아니라, 전술한 디바이스를 조작하여 로봇에 장착된 각종 인스트루먼트가 수술에 필요한 동작을 수행하도록 한다.The master part of the surgical robot is provided with a device for the doctor's operation. In the case of robot surgery, the surgeon does not directly manipulate the instruments required for the operation, but the various instruments mounted on the robot by operating the above-mentioned devices are required for the operation. Perform the action.
수술용 로봇의 슬레이브부에는 수술용 인스트루먼트가 장착되며, 인스트루먼트의 말단에는 이펙터(effector)가 결합된다. 이펙터는 수술 동작의 종류에 따라 집게, 가위, 나이프, 바늘 등 다양한 형상 및 구조로 이루어지는데, 전술한 것처럼 마스터부에 설치되는 디바이스를 조작함에 따라, 인스트루먼트의 이펙터는 그 형상 및 구조에 따른 수술에 필요한 동작, 즉 그립(grip), 절단(cutting), 봉합(suturing) 등의 다양한 동작을 수행하게 된다.A surgical instrument is mounted on the slave part of the surgical robot, and an effector is coupled to the end of the instrument. The effector is made of various shapes and structures, such as tongs, scissors, knives, needles, etc., depending on the type of surgical operation. As described above, as the device is installed in the master unit, the effector of the instrument is used for surgery according to the shape and structure. A variety of operations, such as grip, cutting, and suturing, may be performed as necessary.
이 중, 이펙터가 집게 구조로 이루어진 경우, 이펙터의 동작을 제어하기 위해 마스터 디바이스에는 그립퍼(gripper)가 설치될 수 있다. 즉, 도 1에 도시된 것처럼, 수술용 로봇의 마스터 핸들(40)의 핸들부재(12)의 양측으로 한 쌍의 그립퍼(8)가 날개 형상으로 돌설되도록 하여, 전체적으로 집게 형상(이펙터의 집게 형상과 마찬가지로)이 되도록 그립퍼를 설치함으로써, 사용자가 그립퍼(8)를 조작하는 것에 상응하여 이펙터 또한 집게 동작을 수행하도록 하였다.Among these, when the effector has a tong structure, a gripper may be installed in the master device to control the operation of the effector. That is, as shown in FIG. 1, the pair of grippers 8 protrude into the shape of wings on both sides of the handle member 12 of the master handle 40 of the surgical robot, so as to have a tong shape (effect shape of the effector as a whole). By installing the gripper, the effector also performs the tong operation corresponding to the user operating the gripper 8.
그러나, 종래의 마스터 그립퍼 구조에서는 핸들부재가 그 길이방향을 축으로 회전(도 1의 화살표 참조)할 경우 한 쌍의 그립퍼(8)도 회전하게 되므로, 핸들부재의 회전 상태에 따라 사용자가 그립퍼를 원활하게 잡지 못하는 상황이 발생할 수 있다.However, in the conventional master gripper structure, when the handle member is rotated about its longitudinal direction (see the arrow in FIG. 1), the pair of grippers 8 also rotate, so that the user may move the gripper according to the rotation state of the handle member. Situations may not occur smoothly.
예를 들어, 한 쌍의 그립퍼가 수평으로 배치(좌방과 우방)되어 있을 때 사용자가 엄지와 검지를 사용하여 그립퍼를 원활하게 잡을 수 있다고 가정하면, 핸들부재가 회전하여 그립퍼가 수직으로 배치(상방과 하방)되면 사용자는 쉽게 그립퍼를 잡지 못하고 손가락을 회전시켜 엄지와 검지가 각각 상방과 하방으로 가도록 한 후에야 그립퍼를 원활하게 잡을 수 있게 된다.For example, assuming that the user can smoothly grip the gripper using the thumb and index finger when the pair of grippers are placed horizontally (left and right), the handle member is rotated so that the gripper is placed vertically (upper). If the user does not easily grasp the gripper, the user can rotate the finger so that the thumb and index finger go upward and downward, respectively, to smoothly grip the gripper.
로봇 수술 과정에서는 의사가 내시경 화면을 보면서(즉, 그립퍼는 보지 않은 상태에서) 그립퍼를 잡거나 놓는 조작을 하는 경우가 있으며, 따라서 전술한 종래의 그립퍼 구조에서는 수술 상황에 따라 의사가 그립퍼를 제대로 잡지 못하는 경우가 발생할 수 있어, 자칫 의료사고로까지 이어질 우려를 배제할 수 없다.In the robotic surgery process, the doctor may hold or release the gripper while looking at the endoscope screen (that is, without the gripper). Therefore, in the conventional gripper structure described above, the doctor may not grip the gripper properly depending on the surgical situation. Cases can occur, and the risk of leading to medical accidents cannot be ruled out.
전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.The background art described above is technical information possessed by the inventors for the derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention.
한편, 미국 등록특허공보 US6,714,839호에는 핸들부재의 양측으로 날개 형상으로 돌설된 그립퍼 구조가 개시되어 있고, 미국 등록특허공보 US6,669,693호에는 우산살 형상으로 이루어진 조직 제거(tissue ablation) 장치가 개시되어 있다.On the other hand, US Patent Publication No. 6,714,839 discloses a gripper structure protruding in the shape of a wing on both sides of the handle member, US Patent No. US 6,669,693 is a tissue ablation device consisting of an umbrella flesh Is disclosed.
본 발명은, 종래의 그립퍼 구조를 개선한 것으로, 마스터 핸들의 회전 상태에 상관없이 사용자가 원활하게 그립퍼를 잡고 그립 조작을 수 있는 수술용 로봇의 마스터 그립퍼 구조를 제공하는 것이다.The present invention improves the conventional gripper structure, and provides a master gripper structure of a surgical robot that enables a user to smoothly grip and grip the gripper regardless of the rotation state of the master handle.
본 발명의 일 측면에 따르면, 수술용 로봇의 마스터 핸들에 구비되며, 사용자로부터 그립 조작을 입력받기 위한 그립퍼(gripper) 구조로서, 마스터 핸들에, 그 길이방향을 축으로 회전가능하게 결합되는 막대 형상의 핸들부재와, 사용자의 그립 조작에 따라 핸들부재의 외주면을 향해 수축되며, 핸들부재의 외주부를 따라 방사상으로 배치됨으로써, 핸들부재의 회전 정도에 무관하게 사용자로부터 그립 조작을 입력받을 수 있는 상태를 일정하게 유지하는 그립부와, 사용자의 그립 조작에 의한 그립부의 수축 정도에 상응하는 정보를 감지하여 센싱신호를 출력하는 센싱부를 포함하는 수술용 로봇의 마스터 그립퍼 구조가 제공된다.According to an aspect of the present invention, a gripper structure provided on a master handle of a surgical robot and receiving a grip operation from a user, the rod shape being rotatably coupled to the master handle in the longitudinal direction thereof. Of the handle member and the handle member and the handle member is contracted toward the outer circumferential surface of the handle member according to the user's grip operation, and is disposed radially along the outer circumferential portion of the handle member to receive a grip operation from the user regardless of the degree of rotation of the handle member. There is provided a master gripper structure of a surgical robot including a grip part which maintains a constant part and a sensing part which senses information corresponding to a degree of contraction of the grip part by a user's grip operation and outputs a sensing signal.
그립부는, 핸들부재의 외주면의 둘레에 방사상으로 배열되며 그 꼭지점이 핸들부재의 일단부에 결합되는 고깔 형상을 이루는 복수의 그립 요소를 포함하여, 핸들부재의 일단부를 꼭지점으로 하는 우산 구조를 이룰 수 있다. 또는, 핸들부재의 일단부에 방사상으로 힌지결합되어 핸들부재의 외주면의 둘레에 방사상으로 배열되는 복수의 그립 요소를 포함하여, 핸들부재의 일단부를 꼭지점으로 하는 우산살 구조를 이룰 수 있다. 또는, 핸들부재의 일단부에 방사상으로 힌지결합되고 상호 간의 순차적인 일부 중첩 관계가 방사상으로 연쇄되어 핸들부재의 외주면의 둘레에 방사상으로 배열되는 복수의 그립 요소를 포함하여, 핸들부재의 일단부를 베이스로 하는 찜기 구조를 이룰 수 있다.The grip portion includes a plurality of grip elements that are radially arranged around the outer circumferential surface of the handle member and have a solid shape, the vertices of which are connected to one end of the handle member, to form an umbrella structure having one end of the handle member as a vertex. have. Alternatively, a plurality of grip elements radially hinged to one end of the handle member and arranged radially around the outer circumferential surface of the handle member may form an umbrella structure having one end of the handle member as a vertex. Or a plurality of grip elements that are radially hinged to one end of the handle member and have a plurality of sequential overlapping relations radially connected to each other and arranged radially around the outer circumferential surface of the handle member. The steamer structure can be achieved.
복수의 그립 요소 중 일부의 그립 요소에는, 사용자가 그립 조작 과정에서 손가락으로 감지할 수 있도록 기준점이 형성될 수 있다. 또한, 복수의 그립 요소에는, 사용자의 손가락에 대응하여 복수의 형태의 기준점이 각각 형성될 수도 있다. 복수의 그립 요소 중 일부에 대한 사용자의 그립 조작에 상응하여, 복수의 그립 요소 전체가 핸들부재의 외주면 쪽으로 수축되거나, 조작된 일부의 그립 요소만이 핸들부재의 외주면 쪽으로 수축될 수 있다.In some grip elements of the plurality of grip elements, a reference point may be formed so that a user may sense with a finger in a grip manipulation process. In addition, the plurality of grip elements may be provided with a plurality of reference points, respectively, corresponding to the user's finger. Corresponding to the user's grip operation on some of the plurality of grip elements, the whole of the plurality of grip elements may be retracted toward the outer circumferential surface of the handle member, or only some of the manipulated grip elements may be retracted toward the outer circumferential surface of the handle member.
센싱부는, 복수의 그립 요소 중 제1 그립 요소에 대한 사용자의 그립 조작과, 복수의 그립 요소 중 제2 그립 요소에 대한 사용자의 그립 조작에 대하여, 각각 서로 다른 센싱신호를 출력할 수 있다.The sensing unit may output different sensing signals with respect to a user's grip operation on the first grip element among the plurality of grip elements and a user's grip operation on the second grip element among the plurality of grip elements, respectively.
센싱신호를 수신하고 제어신호를 생성하여 수술용 로봇에 전달하는 제어부를 더 포함하되, 제어부는 서로 다른 센싱신호로부터 대푯값을 산출하고, 대푯값에 상응하여 제어신호를 생성하거나, 또는, 서로 다른 센싱신호에 상응하여 각각 서로 다른 제어신호를 생성할 수 있다.The control unit may further include a control unit configured to receive a sensing signal and generate a control signal and transmit the control signal to a surgical robot, wherein the control unit calculates a representative value from different sensing signals, generates a control signal corresponding to the representative value, or generates different sensing signals. Corresponding to each other, it is possible to generate different control signals.
이 경우, 수술용 로봇에는 복수의 작동 자유도로 움직이는 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 인스트루먼트의 작동 자유도에 각각 매칭(matching)될 수 있다. 또는, 수술용 로봇에는 복수의 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 복수의 인스트루먼트에 각각 매칭될 수 있다.In this case, the surgical robot is equipped with a surgical instrument that moves in a plurality of operating degrees of freedom, and different control signals may be matched with the degrees of freedom of operation of the instruments, respectively. Alternatively, the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
한편, 본 발명의 다른 측면에 따르면, 수술용 로봇의 마스터 핸들에 구비되며, 사용자로부터 그립 조작을 입력받기 위한 그립퍼(gripper) 구조로서, 마스터 핸들에, 그 길이방향을 축으로 회전가능하게 결합되는 막대 형상의 핸들부재와, 핸들부재의 외주부를 따라 방사상으로 포설됨으로써, 핸들부재의 회전 정도에 무관하게 사용자로부터 그립 조작을 입력받을 수 있는 상태를 일정하게 유지하는 센싱부를 포함하되, 센싱부는, 사용자의 그립 조작에 의한 힘을 감지하여 센싱신호를 출력하는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조가 제공된다.On the other hand, according to another aspect of the present invention, provided in the master handle of the surgical robot, as a gripper (gripper) structure for receiving a grip operation from the user, which is rotatably coupled to the master handle, the longitudinal direction of the axis A rod-shaped handle member and a sensing unit configured to be radially disposed along the outer circumference of the handle member to maintain a constant state in which a grip operation can be input from a user regardless of the degree of rotation of the handle member, but the sensing unit includes: There is provided a master gripper structure of a surgical robot, characterized in that for outputting a sensing signal by sensing the force by the grip operation.
센싱부에는, 사용자가 그립 조작 과정에서 손가락으로 감지할 수 있도록 기준점이 형성될 수 있다. 센싱부는 핸들부재의 외주면을 감싸는 하나의 포스 센서로 이루어지거나, 핸들부재의 외주면을 따라 포설되는 복수의 포스 센서로 이루어질 수 있다.In the sensing unit, a reference point may be formed so that a user may detect with a finger in a grip manipulation process. The sensing unit may be formed of one force sensor surrounding the outer circumferential surface of the handle member, or may be formed of a plurality of force sensors disposed along the outer circumferential surface of the handle member.
이 경우, 센싱부는, 복수의 포스 센서 중 제1 포스 센서에 대한 사용자의 그립 조작과, 복수의 포스 센서 중 제2 포스 센서에 대한 사용자의 그립 조작에 대하여, 각각 서로 다른 센싱신호를 출력할 수 있다.In this case, the sensing unit may output different sensing signals with respect to a user's grip operation on the first force sensor among the plurality of force sensors and a user's grip operation on the second force sensor among the plurality of force sensors, respectively. have.
센싱신호를 수신하고 제어신호를 생성하여 수술용 로봇에 전달하는 제어부를 더 포함하되, 제어부는 서로 다른 센싱신호로부터 대푯값을 산출하고, 대푯값에 상응하여 제어신호를 생성하거나, 또는, 서로 다른 센싱신호에 상응하여 서로 다른 제어신호를 생성할 수 있다.The control unit may further include a control unit configured to receive a sensing signal and generate a control signal and transmit the control signal to a surgical robot, wherein the control unit calculates a representative value from different sensing signals, generates a control signal corresponding to the representative value, or generates different sensing signals. Different control signals can be generated correspondingly.
수술용 로봇에는 복수의 작동 자유도로 움직이는 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 인스트루먼트의 작동 자유도에 각각 매칭될 수 있다. 또는, 수술용 로봇에는 복수의 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 복수의 인스트루먼트에 각각 매칭될 수 있다.The surgical robot is equipped with a surgical instrument moving in a plurality of operating degrees of freedom, and different control signals may be matched to the degrees of freedom of operation of the instruments, respectively. Alternatively, the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
한편, 본 발명의 다른 측면에 따르면, 수술용 로봇의 마스터 핸들에 구비되며, 사용자로부터 그립 조작을 입력받기 위한 그립퍼(gripper) 구조로서, 마스터 핸들에, 그 길이방향을 축으로 회전가능하게 결합되는 막대 형상의 핸들부재와, 핸들부재의 외주부의 일부에 배치되도록 핸들부재의 일단부에 힌지결합되며, 사용자의 그립 조작에 따라 핸들부재의 외주면을 향해 수축되는 그립부와, 사용자의 그립 조작에 의한 그립부의 수축 정도에 상응하는 정보를 감지하여 제1 센싱신호를 출력하는 센싱부와, 핸들부재의 외주부 중 그립부가 배치되지 않은 부분에 설치되며, 사용자의 그립 조작에 의한 힘을 감지하여 제2 센싱신호를 출력하는 포스 센서와, 제1 센싱신호 및 제2 센싱신호를 수신하고 그에 상응하는 제어신호를 생성하여 수술용 로봇에 전달하는 제어부를 포함하는 수술용 로봇의 마스터 그립퍼 구조가 제공된다.On the other hand, according to another aspect of the present invention, provided in the master handle of the surgical robot, as a gripper (gripper) structure for receiving a grip operation from the user, which is rotatably coupled to the master handle, the longitudinal direction of the axis A grip member which is hinged to one end of the handle member so as to be disposed on a rod-shaped handle member and a part of the outer peripheral portion of the handle member, and is contracted toward the outer peripheral surface of the handle member according to a user's grip operation, and a grip portion by a user's grip operation. The sensing unit for outputting the first sensing signal by sensing the information corresponding to the degree of contraction of the sensor and the grip unit of the outer peripheral portion of the handle member is installed, the second sensing signal by sensing the force by the grip operation of the user Receiving a force sensor and a first sensing signal and the second sensing signal and generates a control signal corresponding to the transfer to the surgical robot The master of the surgical robot gripper structure is provided that includes fishermen.
제어부는 제1 센싱신호 및 제2 센싱신호에 상응하여 각각 서로 다른 제어신호를 생성할 수 있다. 수술용 로봇에는 복수의 작동 자유도로 움직이는 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 인스트루먼트의 작동 자유도에 각각 매칭될 수 있다. 또는, 수술용 로봇에는 복수의 수술용 인스트루먼트가 장착되며, 서로 다른 제어신호는 복수의 인스트루먼트에 각각 매칭될 수 있다.The controller may generate different control signals in correspondence with the first sensing signal and the second sensing signal. The surgical robot is equipped with a surgical instrument moving in a plurality of operating degrees of freedom, and different control signals may be matched to the degrees of freedom of operation of the instruments, respectively. Alternatively, the surgical robot may be equipped with a plurality of surgical instruments, and different control signals may be matched to the plurality of instruments, respectively.
전술한 것 외의 다른 측면, 특징, 잇점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명의 바람직한 실시예에 따르면, 우산 구조, 우산살 구조, 찜기 구조, 센서 포설 구조 등과 같이 핸들부재의 외주부를 따라 그립부가 방사상으로 배치되도록 함으로써, 사용자는 마스터 핸들의 회전 정도에 상관없이, 즉 핸들부재가 어느 각도로 회전되더라도, 항상 동일한 상태에서 그립 조작을 할 수 있다.According to a preferred embodiment of the present invention, by allowing the grip portion to be radially disposed along the outer circumference of the handle member, such as an umbrella structure, an umbrella meat structure, a steamer structure, a sensor installation structure, and so on, the user is irrespective of the degree of rotation of the master handle, that is, Even if the handle member is rotated at any angle, the grip operation can always be performed in the same state.
또한, 핸들부재의 회전에 상관없이 항상 동일한 상태에서 그립 조작이 가능한 그립퍼 구조를 활용하여, 핸들부재가 회전한 정도에 따라 그립 조작에 의해 생성되는 센싱신호가 서로 달라지도록 하고, 그로부터 서로 다른 제어신호가 생성되도록 함으로써, 사용자는 그립퍼의 잡는 각도를 달리하는 것만으로 수술용 로봇을 다양하게 제어할 수 있다.In addition, by utilizing a gripper structure capable of always operating the grip in the same state irrespective of the rotation of the handle member, the sensing signal generated by the grip operation is different depending on the degree of rotation of the handle member, from which different control signals By allowing the to be generated, the user can control the surgical robot in various ways simply by changing the grip angle of the gripper.
도 1은 종래기술에 따른 그립퍼 구조를 나타낸 도면.1 is a view showing a gripper structure according to the prior art.
도 2는 본 발명의 실시예에 따른 수술용 로봇의 전체적인 구조를 나타낸 개념도.2 is a conceptual diagram showing the overall structure of a surgical robot according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 제1 실시예에 따른 그립퍼 구조를 나타낸 도면.3 and 4 illustrate a gripper structure according to the first embodiment of the present invention.
도 5 내지 도 7은 본 발명의 제2 실시예에 따른 그립퍼 구조를 나타낸 도면.5 to 7 show a gripper structure according to a second embodiment of the present invention.
도 8은 본 발명의 제3 실시예에 따른 그립퍼 구조를 나타낸 도면.8 is a view showing a gripper structure according to the third embodiment of the present invention.
도 9는 도 8의 단면도.9 is a cross-sectional view of FIG. 8;
도 10 및 도 11은 본 발명의 실시예에 따른 그립퍼의 작동 상태를 나타낸 도면.10 and 11 are views showing the operating state of the gripper according to the embodiment of the present invention.
도 12는 본 발명의 제4 실시예에 따른 그립퍼 구조를 나타낸 도면.12 is a view showing a gripper structure according to the fourth embodiment of the present invention.
도 13은 본 발명의 제5 실시예에 따른 그립퍼 구조를 나타낸 도면.13 is a view showing a gripper structure according to the fifth embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and in the following description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and redundant description thereof will be omitted. Shall be.
도 2는 본 발명의 실시예에 따른 수술용 로봇의 전체적인 구조를 나타낸 개념도이다. 도 2를 참조하면, 수술용 로봇(1), 마스터 핸들(3), 인스트루먼트(5), 핸들부재(10), 그립부(20), 센싱부(30), 제어부(50)가 도시되어 있다.2 is a conceptual diagram showing the overall structure of a surgical robot according to an embodiment of the present invention. Referring to FIG. 2, a surgical robot 1, a master handle 3, an instrument 5, a handle member 10, a grip part 20, a sensing part 30, and a controller 50 are illustrated.
본 실시예는, 도 1에 도시된 것과 같이 핸들부재(10)의 양측으로 한 쌍의 그립퍼가 날개 형상으로 돌설된 그립퍼 구조의 단점을 개선한 것으로, 핸들부재(10)의 외주부를 따라 원뿔 형상, 우산 형상, 우산살 형상, 찜기 형상 등으로 그립퍼를 제작함으로써 핸들부재(10)의 회전 정도에 상관없이 항상 균일한 상태로 사용자가 그립퍼를 잡고 조작할 수 있도록 한 것을 특징으로 한다.This embodiment improves the disadvantages of the gripper structure in which a pair of grippers protrude into a wing shape on both sides of the handle member 10 as shown in FIG. 1, and has a conical shape along the outer circumference of the handle member 10. By manufacturing the gripper in the shape of an umbrella, umbrella shape, steamer, etc., the user can hold and operate the gripper in a uniform state regardless of the degree of rotation of the handle member 10.
즉, 종래의 그립퍼 구조에서는 한 쌍의 날개 형상의 그립퍼가 수평 상태(또는 소정의 기준 상태)를 유지할 경우에 사용자는 엄지와 검지를 사용하여 그립퍼를 잡고 조작하며, 만일 핸들부재가 회전하여 그립퍼가 수평 상태로부터 벗어나면 사용자는 핸들부재를 회전시켜 그립퍼가 다시 수평 상태가 되도록 한 후 그립퍼를 잡고 조작해야 하는 불편함이 있었다.That is, in the conventional gripper structure, when the pair of wing-type grippers maintain a horizontal state (or a predetermined reference state), the user grasps and operates the gripper by using the thumb and index finger, and if the handle member is rotated, the gripper When the user is out of the horizontal state, the user rotates the handle member so that the gripper becomes horizontal again, and then there is an inconvenience of holding and holding the gripper.
이에 대해, 본 실시예에 따른 그립퍼 구조에서는, 핸들부재(10)(및 그립부(20))의 회전 상태에 상관없이 사용자는 엄지와 검지를 사용하여 그립부(20)를 잡고 조작할 수 있고, 그립부(20)를 제대로 잡기 위해 핸들부재(10)를 따로 회전시킬 필요가 없으며, 나아가 반드시 엄지와 검지가 아니더라도 임의의 손가락으로 그립부(20)를 잡아도 마찬가지의 조작이 가능하도록 한 것이다.On the other hand, in the gripper structure according to the present embodiment, regardless of the rotation state of the handle member 10 (and the grip portion 20), the user can hold and operate the grip portion 20 using the thumb and the index finger, and the grip portion It is not necessary to rotate the handle member 10 separately to properly grasp (20), and furthermore, even if the thumb and the index finger does not necessarily hold the grip 20 with an arbitrary finger, the same operation is possible.
본 실시예에 따른 마스터 그립퍼(gripper)는, 도 2에 도시된 것처럼, 수술용 로봇(1)의 마스터 핸들(3)에 구비되는 구조물로서, 수술용 로봇(1)의 사용자는 그립퍼를 손가락(예를 들면, 엄지와 검지)으로 잡고 쥐거나(누르거나) 놓는 조작, 즉 그립(grip) 조작을 하고, 수술용 로봇(1)은 그립퍼에 대한 사용자의 그립 조작을 입력받아 이를 기초로 수술용 로봇(1)을 작동시키기 위한 각종 제어신호를 생성한다.The master gripper according to the present embodiment, as shown in FIG. 2, is a structure provided in the master handle 3 of the surgical robot 1, and a user of the surgical robot 1 uses a finger to grip the gripper. For example, a thumb and forefinger) may hold or press (or press) or release (ie, grip) an operation, and the surgical robot 1 receives a user's grip operation on the gripper and based on the operation Various control signals for operating the robot 1 are generated.
이하, 사용자가 그립부(20)의 각 부분(후술하는 '그립 요소' 참조)을 손가락으로 잡고 손가락을 오므리거나 벌려, 그립부(20)가 오므라지거나(수축) 펼쳐지도록(확장) 조작하는 것을 '그립 조작'이라 하고, 그립 조작에 상응하여 인스트루먼트(5)의 이펙터가 오므라지거나 벌어지도록 작동되는 것을 '그립 동작'이라 명명하여 설명한다.Hereinafter, the user grips each part of the grip part 20 (see 'grip element' described later) with a finger, and pinches or spreads the finger so that the grip part 20 is collapsed (contracted) or expanded (expanded) to be manipulated. Manipulation ', the operation of the effect of the instrument (5) in order to collapse or open corresponding to the grip operation will be described as' grip operation'.
본 실시예에 따른 마스터 그립퍼 구조는, 마스터 핸들(3)에 결합되는 핸들부재(10)와, 핸들부재(10)를 기준으로 배치되는 그립부(20), 그리고 그립부(20)에 대한 사용자 조작 결과를 감지하는 센싱부(30)로 이루어진다.The master gripper structure according to the present embodiment includes a handle member 10 coupled to the master handle 3, a grip part 20 arranged based on the handle member 10, and a user operation result on the grip part 20. It consists of a sensing unit 30 for detecting.
핸들부재(10)는 그립퍼 구조의 기본 골격을 이루는 부재로서, 길이방향으로 연장된 막대 형상으로 이루어지며, 그 길이방향을 축으로 회전할 수 있도록 마스터 핸들(3)에 결합된다. 예를 들어, 후술하는 도 3 내지 도 12에 도시된 것처럼, 핸들부재(10)를 원기둥 형상으로 제작할 수 있으며, 원기둥이 길이방향의 축(즉, 상하면의 원의 중심을 관통하는 축)을 중심으로 회전할 수 있도록 핸들부재(10)의 단부가 마스터 핸들(3)에 결합될 수 있다.The handle member 10 is a member constituting the basic skeleton of the gripper structure, has a rod shape extending in the longitudinal direction, and is coupled to the master handle 3 so as to rotate in the longitudinal direction thereof. For example, as shown in FIGS. 3 to 12 to be described later, the handle member 10 can be manufactured in a cylindrical shape, and the cylinder is centered on a longitudinal axis (that is, an axis penetrating the center of the upper and lower circles). An end of the handle member 10 may be coupled to the master handle 3 so as to rotate.
그립부(20)는 사용자가 그립 조작을 하기 위해 잡는 부분, 다시 말하면 사용자의 잡는 조작에 의해 변형되는 부분이다. 본 실시예에 따른 그립부(20)는 핸들부재(10)의 회전 정도에 무관하게 사용자가 잡는 조작을 할 수 있도록 하기 위해, 도 3 내지 도 8에 도시된 것처럼, 핸들부재(10)의 외주부를 따라 방사상으로 배치될 수 있다.The grip part 20 is a part which a user grabs for a grip operation, ie, a part deformed by a user's grabbing operation. The grip portion 20 according to the present embodiment is to allow the user to operate the grip regardless of the degree of rotation of the handle member 10, as shown in Figures 3 to 8, the outer peripheral portion of the handle member 10 Along radially.
이처럼, 그립부(20)가 핸들부재(10)의 특정 부분에만 돌설되는 것이 아니라, 핸들부재(10)의 외주부를 따라 고르게 분포되도록 함으로써, 사용자는 핸들부재(10)의 회전 상태와 상관없이 균일한 상황에서 그립부(20)를 잡는 조작을 할 수 있다. 즉, 본 실시예에 따른 그립부(20)는 핸들부재(10)의 회전에 무관하게 사용자로부터 그립 조작을 입력받을 수 있는 상태를 일정하게 유지할 수 있다는 장점을 가진다.As such, the grip part 20 is not protruded only to a specific part of the handle member 10, but is evenly distributed along the outer circumference of the handle member 10, so that the user may be uniform regardless of the rotation state of the handle member 10. In the situation, the grip part 20 can be operated. That is, the grip part 20 according to the present exemplary embodiment has an advantage of maintaining a constant state in which a grip operation can be input from a user regardless of the rotation of the handle member 10.
종래의 한 쌍의 날개 형상의 그립퍼는 사용자가 그립퍼를 잡으면 날개가 핸들부재(10)에 밀착되어 접혀졌다가, 사용자가 그립퍼를 놓으면 다시 원래 상태로 펼쳐지는 방식으로 조작되었다.Conventional pairs of wing-type grippers were manipulated in such a way that when the user grabbed the gripper, the wings were folded in close contact with the handle member 10 and then unfolded again when the user released the gripper.
본 실시예에 따른 그립퍼는, 그립부(20)가 핸들부재(10)의 주변에 방사상으로 배치되어 있으므로, 사용자가 그립부(20)를 잡으면 그립부(20)는 핸들부재(10)의 외주면에 밀착되도록 수축되며, 사용자가 그립부(20)를 놓으면 다시 원래 상태로(핸들 주변에 방사상으로 배치된 상태로) 펼쳐지는 방식으로 조작될 수 있다.In the gripper according to the present embodiment, since the grip part 20 is disposed radially around the handle member 10, when the user grasps the grip part 20, the grip part 20 is in close contact with the outer circumferential surface of the handle member 10. It can be retracted and manipulated in such a way that when the user releases the grip 20, it unfolds back to its original state (disposed radially around the handle).
또는, 사용자의 손가락을 삽입할 수 있도록 골무나 링 등의 손가락 수용부를 그립부(20)에 설치하여, 사용자가 엄지와 검지를 각각 손가락 수용부에 삽입한 상태에서 손가락을 오므리는 동작을 하면 그립부(20)가 수축되고, 손가락을 벌리는 동작을 하면 그립부(20)가 원래 상태로 펼쳐지도록 할 수도 있다.Alternatively, a finger receiver such as a thimble or a ring may be installed in the grip unit 20 so that the user's finger can be inserted, and the user grips the finger while inserting the thumb and index finger into the finger receiver, respectively. When the 20 is contracted and the finger is opened, the grip part 20 may be unfolded in its original state.
이처럼, 사용자가 그립 조작을 하면 그립부(20)가 수축되거나 펼쳐지게 되는데, 본 실시예에 따른 센싱부(30)는 이러한 그립부(20)의 수축 정도(및/또는 펼쳐진 정도)를 감지하여 사용자가 어느 정도로 그립 조작을 했는지를 알 수 있도록 센싱신호를 출력하게 된다.As such, when the user manipulates the grip, the grip part 20 is contracted or unfolded. The sensing part 30 according to the present embodiment senses the contraction degree (and / or the unfolded degree) of the grip part 20 to the user. The sensing signal is output so as to know whether the grip operation has been performed to such an extent.
예를 들어, 본 실시예에 따른 그립퍼 구조가, 그립부(20)가 핸들부재(10)에 결합되는 부위에 힌지축이 설치되고 힌지축에 모터 및 인코더가 연결되어 있는 구조(도 4 참조)라고 할 때, 사용자가 그립부(20)를 잡는 조작을 하여 그립부(20)가 수축되면 그로 인해 힌지축 및 모터가 회전한 정도가 인코더를 통해 출력되며, 이 경우 인코더가 본 실시예에 따른 센싱부(30)에 해당할 수 있다.For example, the gripper structure according to the present embodiment is a structure in which a hinge shaft is installed at a portion where the grip portion 20 is coupled to the handle member 10 and a motor and an encoder are connected to the hinge shaft (see FIG. 4). When the user grips the grip part 20 and the grip part 20 contracts, the hinge shaft and the degree of rotation of the motor are output through the encoder. In this case, the encoder senses the sensing part according to the present embodiment. 30).
도 4에는, 그립부(20)가 핸들부재(10)에 힌지축으로 연결되어 있고, 그것이 와이어나 로드 등을 통해 모터 및 인코더(도 4의 'M' 참조)에 연결된 구조가 예시되어 있다. 이 구조에서, 그립부(20)가 얼마나 눌렸는지 센싱만 하고 그립부(20)에 반력을 제공할 필요가 없는 경우라면 모터는 생략(인코더만 설치)될 수도 있다. 또한, 그립부(20)가 얼마나 눌렸는지 센싱하기 위해 반드시 인코더가 설치되어야 하는 것은 아니며, 홀 센서 등을 설치할 수도 있다. 즉, 인코더 이외에 홀 센서, 포텐셔미터 등 다른 센서도 가능하다.In FIG. 4, the grip part 20 is connected to the handle member 10 by a hinge axis, and the structure is connected to the motor and the encoder (see 'M' in FIG. 4) through a wire or a rod. In this structure, the motor may be omitted (encoder only) if only the sensing of how much the grip portion 20 is pressed and there is no need to provide a reaction force to the grip portion 20. In addition, the encoder does not necessarily need to be installed in order to sense how pressed the grip unit 20 may be provided with a hall sensor or the like. In other words, other sensors, such as Hall sensors and potentiometers, are possible.
한편, 본 실시예에 따른 그립퍼 구조가, 그립부(20)에 포스 센서가 설치되고 포스 센서에 의해 센싱된 신호가 로봇의 제어부(50)에 전달되는 구조라고 할 때, 사용자가 그립부(20)를 잡는 조작을 하여 그립부(20)가 수축되면 그 과정에서 사용자가 포스 센서를 가압한 결과에 따른 신호가 출력되며, 이 경우 포스 센서가 본 실시예에 따른 센싱부(30)에 해당할 수 있다.On the other hand, when the gripper structure according to the present embodiment is a structure in which a force sensor is installed in the grip unit 20 and a signal sensed by the force sensor is transmitted to the controller 50 of the robot, the user grips the grip unit 20. When the grip part 20 is contracted by the grabbing operation, a signal is output according to a result of the user pressing the force sensor in the process, in which case the force sensor may correspond to the sensing part 30 according to the present embodiment.
즉, 본 실시예에 따른 센싱부(30)는 다양한 구조로 구현될 수 있으며, 사용자가 그립 조작을 함에 따라 그립부(20)가 수축되는 정도에 상응하는 정보를 감지한다는 점에서 공통된 기능을 수행한다.That is, the sensing unit 30 according to the present exemplary embodiment may be implemented in various structures, and performs a common function in that the sensing unit 30 senses information corresponding to the degree of contraction of the grip unit 20 as the user grips. .
센싱부(30)로부터 출력된 센싱신호는 수술용 로봇(1)의 제어부(50)로 전달되며, 제어부(50)는 센싱신호에 기초하여 제어신호를 생성, 전달함으로써, 수술에 필요한 각종 동작을 수행하도록 로봇을 제어하게 된다.The sensing signal output from the sensing unit 30 is transmitted to the control unit 50 of the surgical robot 1, and the control unit 50 generates and transmits a control signal based on the sensing signal, thereby performing various operations necessary for surgery. The robot is controlled to perform.
도 3 및 도 4는 본 발명의 제1 실시예에 따른 그립퍼 구조를 나타낸 도면이고, 도 5 내지 도 7은 본 발명의 제2 실시예에 따른 그립퍼 구조를 나타낸 도면이고, 도 8는 본 발명의 제3 실시예에 따른 그립퍼 구조를 나타낸 도면이고, 도 9는 도 8의 단면도이다. 도 3 내지 도 9를 참조하면, 핸들부재(10), 그립부(20), 그립 요소(22, 24, 26), 기준점(28)이 도시되어 있다.3 and 4 show a gripper structure according to a first embodiment of the present invention, FIGS. 5 to 7 show a gripper structure according to a second embodiment of the present invention, and FIG. A gripper structure according to a third embodiment is shown, and FIG. 9 is a cross-sectional view of FIG. 3-9, the handle member 10, the grip 20, the grip elements 22, 24, 26, and the reference point 28 are shown.
도 3 내지 도 8는 다양한 그립부 구조의 실시예를 예시한 것이다.3 through 8 illustrate embodiments of various grip portion structures.
도 3은 그립부(20)가 이른바 '우산 구조'로 이루어진 경우이다. 그립부(20)는 여러 개의 그립 요소(22)로 구성될 수 있으며, 각 그립 요소(22)는 사용자의 그립 조작에 의해 눌려지거나 펼쳐지게 된다. 도 3에서 복수의 그립 요소(22)는 핸들부재(10)의 외주면의 둘레에 방사상으로 배열되며 각각 핸들부재(10)의 일단부에 결합되어 있어, 전체적으로 보면 핸들부재(10)의 일단부를 꼭지점으로 하는 고깔 형상 또는 원뿔 형상을 이루게 된다.3 is a case where the grip portion 20 is made of a so-called 'umbrella structure'. The grip portion 20 may consist of several grip elements 22, each grip element 22 being pressed or unfolded by a user's grip manipulation. In FIG. 3, the plurality of grip elements 22 are radially arranged around the outer circumferential surface of the handle member 10 and are respectively coupled to one end of the handle member 10, so that one end of the handle member 10 is viewed as a vertex. A solid shape or a cone shape is achieved.
여기에서는, 이러한 구조를 '우산 구조'라 명명하며, 도 3에는 핸들부재(10)의 일단부를 꼭지점으로 하는 우산 구조의 그립부(20)가 예시되어 있다.Here, such a structure is referred to as an 'umbrella structure', and the grip portion 20 of the umbrella structure having one end of the handle member 10 as a vertex is illustrated in FIG. 3.
도 5는 그립부(20)가 이른바 '우산살 구조'로 이루어진 경우이다. 그립부(20)는 여러 개의 그립 요소(24)로 구성될 수 있으며, 각 그립 요소(24)는 사용자의 그립 조작에 의해 눌려지거나 펼쳐지게 된다. 도 5에서 복수의 그립 요소(24)는 핸들부재(10)의 외주면의 둘레에 방사상으로 배열되며 각각 핸들부재(10)의 일단부에 방사상으로 힌지결합되어 있어, 전체적으로 보면 핸들부재(10)가 '우산대'가 되고 그립 요소(24)는 핸들부재(10)의 일단부를 꼭지점으로 하는 '우산살'과 같은 형상을 이루게 된다.5 is a case where the grip portion 20 is made of a so-called 'umbrella structure'. The grip portion 20 may consist of several grip elements 24, each grip element 24 being pressed or unfolded by a user's grip manipulation. In FIG. 5, the plurality of grip elements 24 are arranged radially around the outer circumferential surface of the handle member 10, and are radially hinged to one end of the handle member 10, respectively. 'Umbrella stand' and grip element 24 is shaped like 'umbrella' with one end of handle member 10 as a vertex.
여기에서는, 이러한 구조를 '우산살 구조'라 명명하며, 도 5에는 핸들부재(10)의 일단부를 꼭지점으로 하는 우산살 구조의 그립부(20)가 예시되어 있다.Herein, such a structure is referred to as an 'umbrella structure', and FIG. 5 illustrates an grip portion 20 of an umbrella structure having one end of the handle member 10 as a vertex.
도 3에 도시된 우산 구조의 경우 그립부(20)가 우산포에 해당하는 면재로 이루어지며 그립부(20)가 전체적으로 수축되거나 단위 그립 요소(22)별로 주름이 생기면서 수축되는 방식으로 작동되나, 도 5에 도시된 우산살 구조의 경우 그립 요소(24)가 각각 핸들부재(10) 쪽으로 접근하도록 회전하면서 수축되고(도 6의 (a) 참조), 각각 핸들부재(10)로부터 멀어지도록 회전하면서 확장되는(도 6의 (b) 참조) 방식으로 작동될 수 있다.In the case of the umbrella structure illustrated in FIG. 3, the grip part 20 is made of a face material corresponding to the umbrella cloth, and the grip part 20 is operated in such a way that the grip part 20 shrinks as a whole or wrinkles are generated for each unit grip element 22. In the case of the umbrella structure shown in Fig. 5, the grip elements 24 are respectively retracted while rotating to approach the handle member 10 (see FIG. 6 (a)), and are respectively extended to rotate away from the handle member 10. Can be operated (see FIG. 6 (b)).
도 8는 그립부(20)가 이른바 '찜기 구조'로 이루어진 경우이다. 도 9는 도 8에 대하여 핸들부재의 길이방향에 수직한 방향에서의 단면을 도시한 것이다. 도 8 및 도 9에 예시되어 있듯이, 그립부(20)는 여러 개의 그립 요소(26)로 구성될 수 있으며, 각 그립 요소(26)는 사용자의 그립 조작에 의해 눌려지거나 펼쳐지게 된다. 도 8 및 도 9에서 복수의 그립 요소(26)는 핸들부재(10)의 외주면의 둘레에 방사상으로 배열되며 각각 핸들부재(10)의 일단부에 방사상으로 힌지결합되고 상호 간의 순차적인 일부 중첩 관계가 방사상으로 연쇄되어 있어, 전체적으로 보면 핸들부재(10)의 일단부를 베이스로 하는 '찜기'와 같은 형상을 이루게 된다.8 is a case where the grip portion 20 is made of a so-called 'steamer structure'. FIG. 9 shows a cross section in a direction perpendicular to the longitudinal direction of the handle member with respect to FIG. 8. As illustrated in FIGS. 8 and 9, the grip portion 20 may consist of several grip elements 26, each grip element 26 being pressed or unfolded by a user's grip manipulation. 8 and 9, the plurality of grip elements 26 are arranged radially around the outer circumferential surface of the handle member 10, each of which is radially hinged to one end of the handle member 10, and partially sequentially overlaps each other. Is radially chained, so as to look at the overall shape to form a 'steamer' based on one end of the handle member (10).
여기에서는, 이러한 구조를 '찜기 구조'라 명명하며, 도 8 및 도 9에는 핸들부재(10)의 일단부를 베이스로 하는 찜기 구조의 그립부(20)가 예시되어 있다.Here, such a structure is referred to as a 'steamer structure', and the grip part 20 of the steamer structure based on one end of the handle member 10 is illustrated in FIGS. 8 and 9.
도 5에 도시된 우산살 구조의 경우 각 그립 요소(24)가 (서로 연동하여 회전할 수 있음은 물론이고) 독립적으로 회전할 수 있는 구조로 이루어지는 반면, 도 8 및 도 9에 도시된 찜기 구조의 경우 각 그립 요소(26)가 서로 연쇄적으로 중첩되어 있어 어느 하나의 그립 요소(26)를 조작하여 수축(또는 확장)시키면 그에 연동하여 나머지 그립 요소(26)들도 수축(또는 확장)되는 방식으로 작동될 수 있다.In the case of the umbrella structure illustrated in FIG. 5, each grip element 24 is configured to rotate independently (as well as to rotate in conjunction with each other), while the steamer structure illustrated in FIGS. 8 and 9 is illustrated. In this case, the grip elements 26 are sequentially overlapped with each other, so that when one grip element 26 is manipulated to contract (or expand), the rest of the grip elements 26 also contract (or expand). Can be operated in a manner.
도 3 내지 도 8에 도시된 그립부(20)는 핸들부재(10)의 길이방향에서 볼 때, 원형(우산 구조의 경우), 정육각형(우산살 구조의 경우) 등의 형상을 이루도록 각 그립 요소(22, 24, 26)가 배치되어 있다. 다만, 본 실시예에 따른 각 그립 요소(22, 24, 26)가 반드시 원형이나 정육각형, 나아가 정다각형의 형상을 이루도록 배치되어야만 하는 것은 아니며, 핸들부재(10)의 길이방향에서 볼 때 타원형이나 어느 한 쪽으로 길쭉한 육각형, 다각형 등의 형상을 이루도록 배치될 수도 있다.3 to 8, each grip element 20 forms a shape of a circle (for umbrella structure), a regular hexagon (for umbrella structure), or the like, when viewed in the longitudinal direction of the handle member 10. 22, 24 and 26 are arrange | positioned. However, the grip elements 22, 24, and 26 according to the present exemplary embodiment are not necessarily arranged to form a circle, a regular hexagon, and a regular polygon, but are elliptical or any one when viewed in the longitudinal direction of the handle member 10. It may be arranged to form an elongated hexagon, polygon, and the like.
특히, 후술하는 바와 같이 각 그립 요소(22, 24, 26)에 대한 그립 조작에 따라 그 조작된 그립 요소만이 변형되거나 각 그립 요소별로 그립 조작에 따른 센싱신호를 다르게 생성하는 경우에는 각 그립 요소를 타원형이나 비대칭 다각형의 형상으로 배치할 필요성이 높아질 수 있다.In particular, as described later, only the manipulated grip element is deformed according to the grip operation on each grip element 22, 24, or 26, or each grip element when the sensing signal is generated differently for each grip element. The necessity of arranging in the shape of an oval or an asymmetric polygon may be increased.
한편, 전술한 바와 같이 복수의 그립 요소(22, 24, 26)를 방사상으로(우산 구조, 우산살 구조, 찜기 구조 등) 배치하여 그립퍼 구조를 구현함에 있어서, 그립 요소(22, 24, 26) 중 일부에 손가락으로 감지할 있는 기준점(28)을 형성하여, 사용자가 그립 조작 과정에서 특정 그립 요소가 잡혀졌는지 여부를 확인할 수 있도록 할 수 있다.Meanwhile, as described above, the grip elements 22, 24, and 26 are disposed to implement the gripper structure by arranging the plurality of grip elements 22, 24, and 26 radially (an umbrella structure, an umbrella structure, a steamer structure, and the like). A reference point 28 which can be sensed by a finger may be formed on some of the fingers to allow the user to check whether a specific grip element is caught in the grip manipulation process.
예를 들어, 로봇 수술 과정에서 사용자가 내시경 화면을 보면서 손가락으로 그립퍼를 조작한다고 할 때, 특정 그립 요소에 사용자의 엄지손가락이 닿는 부분에 작은 돌기 등의 기준점(28)을 형성함으로써, 사용자가 눈으로 보지 않고도 자신이 특정 그립 요소를 잡았는지 여부를 확인할 수 있도록 할 수 있다.For example, when the user manipulates the gripper with his finger while looking at the endoscope screen during the robotic surgery, the user forms the reference point 28 such as a small protrusion on the part where the user's thumb touches a specific grip element. You can also check whether you have a particular grip element without looking at it.
즉, 본 실시예에 따른 그립부(20)는 임의의 손가락으로 아무렇게나 잡아도 그립 조작이 가능한 구조일 뿐만 아니라, 기준이 되는 그립 요소를 손가락 감촉만으로 식별할 수 있도록 함으로써, 사용자가 현재 어떤 그립 요소를 잡았는지(기준이 되는 그립 요소를 잡았는지 아닌지)를 촉각으로 알 수 있도록 할 수 있으며, 이에 따라, 사용자가 수술 과정에서 손과 눈의 동작이 일치되도록 하는 'hand-eye coordination'을 쉽게 구현할 수 있다.That is, the grip part 20 according to the present embodiment is not only a structure in which the grip operation can be performed by any finger, but also allows the user to grasp a certain grip element by allowing the user to identify the grip element as a reference using only a finger touch. It is possible to know tactilely whether or not (to grab a reference grip element), so that the user can easily implement 'hand-eye coordination' to match the motion of the hand and the eye during the surgical procedure. .
한편, 본 실시예에서 기준점은 반드시 그립 요소 중의 하나에만 형성해야 하는 것은 아니며, 그립 요소 중의 복수의 일부에 형성할 수도 있고, 전체 그립 요소에 대해 각각 서로 다른 형태의 기준점을 형성할 수도 있다.On the other hand, in the present embodiment, the reference point is not necessarily formed only on one of the grip elements, may be formed on a plurality of parts of the grip elements, or may form different reference points for the entire grip element.
예를 들어, 도 5에 예시된 그립 요소를 핸들부재(10)의 길이방향에서 본 형태로 도시한 도 7에 예시되어 있듯이, 그립 요소 중 엄지와 중지가 닿는 그립 요소에는 기준점으로서 1개의 돌기를 형성하고, 검지가 닿는 그립 요소에는 기준점으로서 2개의 돌기를 형성하며, 약지가 닿는 그립 요소에는 기준점으로서 3개의 돌기를 형성하는 등의 방식으로 기준점을 형성함으로써, 사용자가 그립부를 잡는 과정에서 어느 손가락에 어느 그립 요소가 잡혔는지를 촉각으로 안내받을 수 있도록 할 수 있다.For example, as illustrated in FIG. 7 in which the grip element illustrated in FIG. 5 is seen in the form seen in the longitudinal direction of the handle member 10, one grip is used as a reference point for the grip element that the thumb and the middle of the grip elements touch. And a reference point is formed on the grip element that the index finger touches, and two projections are formed as reference points on the grip element that the index finger touches, and a finger is formed in the process of grasping the grip part by the user. It can be tactilely guided by which grip element was captured.
도 10 및 도 11은 본 발명의 실시예에 따른 그립퍼의 작동 상태를 나타낸 도면이다. 도 10 및 도 11을 참조하면, 핸들부재(10), 그립부(20), 그립 요소(24, 24a, 24b, 24c), 센싱부(30), 제어부(50)가 도시되어 있다.10 and 11 are views showing an operating state of the gripper according to an embodiment of the present invention. 10 and 11, the handle member 10, the grip 20, the grip elements 24, 24a, 24b, 24c, the sensing unit 30, and the controller 50 are shown.
도 3 내지 도 8에 예시된 실시예에 있어서, 사용자는 복수의 그립 요소(22, 24, 26) 중 일부에 대해서 그립 조작을 하게 되는데, 이 경우 사용자의 그립 조작에 따라 복수의 그립 요소(22, 24, 26) 전체가 한꺼번에 수축(또는 확장)되도록 그립부 구조를 구현할 수 있으며, 또는 사용자에 의해 조작된 일부의 그립 요소만(손가락으로 눌려진 서로 대향하는 그립 요소끼리만)이 수축(또는 확장)되도록 그립부 구조를 구현할 수도 있다. 도 10는 도 5에 도시된 그립부 구조를 예로 들어 설명한 것이나, 도 3 및 도 8에 도시된 그립부 구조에 대해서도 도 10에 도시된 그립부 작동 방식이 적용될 수 있다.In the embodiment illustrated in FIGS. 3 to 8, the user performs a grip operation on some of the plurality of grip elements 22, 24, and 26, in which case the plurality of grip elements 22 according to the user's grip operation. , 24, 26) can implement a grip structure such that the whole can be shrunk (or expanded) all at once, or only some of the grip elements manipulated by the user (only between the opposing grip elements pressed by fingers) can be shrunk (or expanded) It is also possible to implement a grip structure. FIG. 10 illustrates the grip part structure shown in FIG. 5 as an example, but the grip part operating method shown in FIG. 10 may also be applied to the grip part structures shown in FIGS. 3 and 8.
예를 들어, 우산살 구조의 각 우산살에 해당하는 그립 요소(24)가 핸들부재(10)의 일단부에 힌지결합되어 있다고 할 때, 각 우산살의 힌지축을 기어 결합 등에 의해 서로 연결하여 놓음으로써, 도 10의 (a)와 같이, 어느 하나의 그립 요소(24)에 대한 조작에 따라 나머지 그립 요소(24)가 전체적으로 움직이도록 할 수도 있고, 각 우산살의 힌지축이 각각 독립적으로 움직이도록 함으로써(서로 연결되지 않도록 함으로써), 도 10의 (b)와 같이, 일부의 그립 요소(24)에 대한 조작에 따라 그 일부의 그립 요소(24)만 움직이도록 할 수도 있다.For example, when the grip element 24 corresponding to each umbrella of the umbrella structure is hinged to one end of the handle member 10, the hinge shafts of the umbrellas are connected to each other by gear coupling or the like. As shown in FIG. 10 (a), the rest of the grip elements 24 may be moved as a whole according to an operation on one of the grip elements 24, and the hinge axes of the umbrellas may move independently of each other ( By not connecting to each other), as shown in FIG. 10 (b), only a part of the grip element 24 may be moved according to an operation on the part of the grip element 24.
도 10에 예시된 그립 요소를 핸들부재(10)의 길이방향에서 본 형태로 도시한 도 11을 참조하여 다시 설명하면, 도 11의 (a)와 같이, 어느 하나의 그립 요소(24a)에 대한 조작에 따라 나머지 그립 요소(24b, 24c)가 전체적으로 움직이도록 할 수도 있고, 도 11의 (b)와 같이, 일부의 그립 요소(24b)에 대한 조작에 따라 그 일부의 그립 요소(24b)만 움직이도록 할 수도 있다.The grip element illustrated in FIG. 10 is described again with reference to FIG. 11, which is shown in the form seen in the longitudinal direction of the handle member 10, as shown in FIG. 11A, for any one grip element 24a. Depending on the operation, the remaining grip elements 24b and 24c may be moved as a whole, and as shown in FIG. 11 (b), only a part of the grip elements 24b moves in accordance with an operation on a part of the grip elements 24b. You can also
나아가, 조작된 그립 요소(24)만 독립적으로 움직이도록 할 경우, 그립 요소(24)별로 조작 결과에 대해 서로 다른 출력을 내도록 할 수도 있다. 즉, 본 실시예에 따른 센싱부(30)에서는 일부의 그립 요소(제1 그립 요소)에 대한 그립 조작과, 다른 일부의 그립 요소(제2 그립 요소)에 대한 그립 조작에 대하여, 각각 서로 다른 센싱신호가 출력되도록 할 수 있다. 예를 들어, 도 11에 도시된 것처럼 그립부(20)가 총 3쌍(6개)의 그립 요소(24a, 24b, 24c)로 이루어진 경우, 각 그립 요소(24a, 24b, 24c) 쌍별로 사용자의 그립 조작에 따라 서로 다른 3가지의 센싱신호가 출력되도록 할 수 있는 것이다.Furthermore, when only the manipulated grip element 24 is to be moved independently, it may be possible to give different outputs to the operation result for each grip element 24. That is, in the sensing unit 30 according to the present embodiment, the grip operation on some grip elements (first grip elements) and the grip operation on some other grip elements (second grip elements) are different from each other. The sensing signal may be output. For example, as shown in FIG. 11, when the grip part 20 includes three pairs (six) of grip elements 24a, 24b, and 24c in total, each pair of grip elements 24a, 24b, and 24c may be used. According to the grip operation, three different sensing signals may be output.
즉, 도 11의 (a) 및 (b)에 도시된 것처럼, 제1 그립 요소 쌍(24a)에 대한 그립 조작의 경우 제1 센싱신호가 출력되고, 제2 그립 요소 쌍(24b)에 대한 그립 조작의 경우 제2 센싱신호가 출력되고, 제3 그립 요소 쌍(24c)에 대한 그립 조작의 경우 제3 센싱신호가 출력되도록 할 수 있다.That is, as shown in FIGS. 11A and 11B, in the case of a grip operation on the first grip element pair 24a, a first sensing signal is output and a grip on the second grip element pair 24b is output. In the case of the manipulation, the second sensing signal may be output, and in the case of the grip manipulation with respect to the third grip element pair 24c, the third sensing signal may be output.
이는 센싱부(30)의 구성 방식에 따라 다양하게 구현할 수 있는데, 예를 들어 전술한 바와 같이 모터에 연결된 인코더의 형태로 센싱부(30)가 구현될 경우 인코더는 모터를 구동시킨(그립 조작에 의해 작동된) 그립 요소(24)를 식별하여 그립 요소(24)별로 다른 신호가 출력되도록 할 수 있다.This can be variously implemented according to the configuration of the sensing unit 30. For example, when the sensing unit 30 is implemented in the form of an encoder connected to the motor as described above, the encoder drives the motor (in the grip operation). The grip element 24 (actuated by) may be identified such that a different signal is output for each grip element 24.
이 경우에도, 전술한 바와 같이 그립 요소(24)가 얼마나 조작되었는지 센싱만 하고 그립 요소(24)에 반력을 제공할 필요가 없는 경우라면 모터는 생략(인코더만 설치)될 수도 있고, 그립 요소(24)가 얼마나 눌렸는지 센싱하기 위해 홀 센서 등 다른 방식의 센서가 설치될 수도 있음은 물론이다.Even in this case, if only the sensing of the grip element 24 is operated as described above and there is no need to provide reaction force to the grip element 24, the motor may be omitted (encoder only) and the grip element ( Of course, other sensors, such as a hall sensor, may be installed to sense how much 24 is pressed.
또한, 각 그립 요소(24)에 설치된 포스 센서의 형태로 센싱부(30)가 구현될 경우 포스 센서별로 독립적으로 센싱신호가 출력되도록 할 수 있다.In addition, when the sensing unit 30 is implemented in the form of a force sensor installed on each grip element 24, the sensing signal may be independently output for each force sensor.
이처럼, 그립 요소(24)별로 독립적인 센싱신호가 출력되도록 할 경우, 각각 서로 다른 센싱신호는 각각 서로 다른 제어를 위해 사용될 수 있다. 즉, 본 실시예에 따른 수술용 로봇의 제어부(50)는, 그립 요소(24)별로 독립적으로 출력된 센싱신호를 수신하고 각 센싱신호에 상응하도록 독립적으로 제어신호를 생성할 수 있다.As such, when independent sensing signals are output for each grip element 24, different sensing signals may be used for different control. That is, the control unit 50 of the surgical robot according to the present embodiment may receive the sensing signal independently output for each grip element 24 and generate the control signal independently to correspond to each sensing signal.
수술용 로봇에 장착되는 수술용 인스트루먼트가 복수의 작동 자유도로 움직인다고 할 때, 독립적으로 생성된 서로 다른 제어신호가 인스트루먼트의 각 작동 자유도에 매칭되도록 할 수 있는 것이다.When a surgical instrument mounted on a surgical robot moves with a plurality of operating degrees of freedom, different control signals generated independently can be matched to respective degrees of freedom of operation of the instrument.
예를 들어, 인스트루먼트가 일반적인 2개의 죠(jaw)를 가지는 경우뿐만 아니라, 3개 이상의 죠를 가지는 이른바 '복합 인스트루먼트'인 경우에도 전술한 복수의 제어신호는 각각의 죠의 작동 자유도에 매칭될 수 있다.For example, not only when an instrument has two jaws in general, but also a so-called 'compound instrument' having three or more jaws, the above-described plurality of control signals may be matched to the freedom of operation of each jaw. have.
전술한 예와 같이 그립부(20)가 총 3쌍(6개)의 그립 요소(24)로 이루어지고 각 그립 요소(24) 쌍별로 3가지의 센싱신호가 출력되며 이에 따라 제어부(50)에서 3가지 제어신호가 생성되는 경우, 수술용 인스트루먼트는 회전(rotation), 틸팅(tilting), 그립핑(gripping)의 3가지 작동 자유도로 움직인다고 할 때, 3가지 제어신호가 3가지 자유도에 각각 매칭되도록 함으로써, 사용자가 어느 한 쌍의 그립 요소(24)를 조작하여 인스트루먼트의 회전을 제어하고, 다른 한 쌍의 그립 요소(24)를 조작하여 인스트루먼트의 틸팅을 제어하며, 또 다른 한 쌍의 그립 요소(24)를 조작하여 인스트루먼트의 그립핑을 제어하도록 할 수 있다.As described above, the grip unit 20 includes a total of three pairs (6) of grip elements 24, and three sensing signals are output for each pair of grip elements 24. When the branch control signal is generated, the surgical instrument moves with three degrees of freedom of rotation, tilting, and gripping, so that the three control signals match each of the three degrees of freedom. A user manipulates any pair of grip elements 24 to control the rotation of the instrument, another pair of grip elements 24 controls the tilting of the instrument, and another pair of grip elements 24 ) To control the gripping of the instrument.
또는, 수술용 로봇에 여러 개의 인스트루먼트가 장착된다고 할 때, 독립적으로 생성된 서로 다른 제어신호가 각 인스트루먼트에 매칭되도록 할 수도 있다.Alternatively, when a plurality of instruments are mounted on the surgical robot, different control signals generated independently may be matched to each instrument.
예를 들어, 그립부(20)가 총 3쌍(6개)의 그립 요소(24)로 이루어지고 각 그립 요소(24) 쌍별로 3가지의 센싱신호가 출력되며 이에 따라 제어부(50)에서 3가지 제어신호가 생성되는 경우, 수술용 로봇에는 3개의 인스트루먼트가 장착된다고 할 때, 3가지 제어신호가 3개의 인스트루먼트에 각각 매칭되도록 함으로써, 사용자가 어느 한 쌍의 그립 요소(24)를 조작하여 제1 인스트루먼트를 제어하고, 다른 한 쌍의 그립 요소(24)를 조작하여 제2 인스트루먼트를 제어하며, 또 다른 한 쌍의 그립 요소(24)를 조작하여 제3 인스트루먼트를 제어하도록 할 수도 있다.For example, the grip part 20 is composed of a total of three pairs (6) of grip elements 24, and three sensing signals are output for each pair of grip elements 24. When a control signal is generated, when three instruments are mounted on the surgical robot, the three control signals are matched to each of the three instruments, so that the user manipulates any one pair of grip elements 24 to control the first robot. It is also possible to control the instrument, manipulate the other pair of grip elements 24 to control the second instrument, and manipulate another pair of grip elements 24 to control the third instrument.
한편, 그립 요소(24)별로 독립적으로 센싱신호가 출력되도록 할 경우, 각각 서로 다른 센싱신호가 반드시 각각 서로 다른 제어를 위해 사용되어야만 하는 것은 아니며, 독립적인 센싱신호가 통합되어 하나의 제어를 위해 사용될 수도 있다.On the other hand, when the sensing signal is to be output independently for each grip element 24, different sensing signals are not necessarily used for different control, each independent sensing signal is to be used for one control It may be.
즉, 본 실시예에 따른 수술용 로봇의 제어부(50)에서는 서로 다른 센싱신호를 수신하되, 각 센싱신호를 통합하여 대푯값을 산출하고(예를 들면, 최대값이나 평균값을 산출하고), 산출된 대푯값에 상응하도록 제어신호를 생성함으로써 복수의 그립 요소(24) 중 어느 것을 조작하든지 하나의 제어 대상(예를 들면, 인스트루먼트의 복수의 작동 자유도 중 특정 자유도, 또는 복수의 인스트루먼트 중 특정 인스트루먼트 등)이 제어되도록 할 수도 있다.That is, the control unit 50 of the surgical robot according to the present embodiment receives different sensing signals, calculates the representative value by integrating the sensing signals (for example, calculate the maximum value or the average value), and calculated By generating a control signal corresponding to the representative value, any one of the plurality of grip elements 24 may be manipulated so as to control one of the control objects (for example, a specific degree of freedom among a plurality of operating degrees of the instrument, or a specific instrument among the plurality of instruments, etc.). ) May be controlled.
도 12는 본 발명의 제4 실시예에 따른 그립퍼 구조를 나타낸 도면이다. 도 12를 참조하면, 핸들부재(10), 기준점(28), 센싱부(30), 포스 센서(32, 34), 제어부(50)가 도시되어 있다.12 is a view showing a gripper structure according to a fourth embodiment of the present invention. Referring to FIG. 12, the handle member 10, the reference point 28, the sensing unit 30, the force sensors 32 and 34, and the controller 50 are illustrated.
본 실시예는 마스터 그립퍼 구조에 있어서, 사용자의 그립 조작에 의해 움직이는 별도의 그립부(20)를 생략하고, 핸들부재(10)의 외주면을 따라 포스 센서(32, 34)를 포설함으로써, 핸들부재(10) 자체가 사용자의 그립 조작을 센싱하고, 사용자가 잡는 힘의 크기로 그립 조작의 정도를 감지하도록 한 것이다.In this embodiment, in the master gripper structure, the grip member 20 which is moved by the user's grip operation is omitted, and the force sensors 32 and 34 are disposed along the outer circumferential surface of the handle member 10, thereby providing a handle member ( 10) It senses the grip operation of the user and senses the degree of grip operation by the magnitude of the user's grip.
본 실시예에 따른 마스터 그립퍼(gripper) 또한 도 2에 도시된 것처럼 수술용 로봇의 마스터 핸들(3)에 구비되는 구조물로서, 마스터 핸들(3)에 결합되는 핸들부재(10)와, 핸들부재(10)에 대한 사용자의 그립 조작을 감지하는 센싱부(30)로 이루어진다.The master gripper according to the present embodiment is also a structure provided in the master handle 3 of the surgical robot as shown in FIG. 2, the handle member 10 coupled to the master handle 3, and the handle member ( And a sensing unit 30 for detecting a user's grip manipulation with respect to 10).
핸들부재(10)는 전술한 실시예와 마찬가지로 그립퍼 구조의 기본 골격을 이루는 부재로서, 길이방향으로 연장된 막대 형상으로 이루어지며, 그 길이방향을 축으로 회전할 수 있도록 마스터 핸들(3)에 결합된다.The handle member 10 is a member constituting the basic skeleton of the gripper structure as in the above-described embodiment, and has a rod shape extending in the longitudinal direction, and is coupled to the master handle 3 so as to rotate in the longitudinal direction thereof. do.
본 실시예에서는 그립부(20) 대신에 핸들부재(10)의 외주부를 따라 센싱부(30)가 방사상으로 포설되어 있다. 즉, 본 실시예에 따른 센싱부(30)는 핸들부재(10)의 회전 정도에 무관하게 사용자가 잡는 조작을 할 수 있도록 하기 위해, 도 12에 도시된 것처럼, 핸들부재(10)의 외주부를 따라 방사상으로 배치되어 있다.In the present embodiment, instead of the grip 20, the sensing unit 30 is disposed radially along the outer circumference of the handle member 10. That is, the sensing unit 30 according to the present embodiment, so that the user can operate the grip regardless of the degree of rotation of the handle member 10, as shown in Figure 12, the outer peripheral portion of the handle member 10 Along the radial direction.
이처럼, 센싱부(30)가 핸들부재(10)의 특정 부분에만 설치되는 것이 아니라, 핸들부재(10)의 외주부를 따라 고르게 분포되도록 함으로써, 사용자는 핸들부재(10)의 회전 상태와 상관없이 균일한 상황에서 핸들부재(10)를 잡는 조작을 할 수 있다. 즉, 본 실시예에 따른 센싱부(30)는 핸들부재(10)의 회전에 무관하게 사용자로부터 그립 조작을 입력받을 수 있는 상태를 일정하게 유지하도록 한다.As such, the sensing unit 30 is not only installed at a specific portion of the handle member 10, but is evenly distributed along the outer circumferential portion of the handle member 10, so that the user may be uniform regardless of the rotation state of the handle member 10. In one situation, the operation of holding the handle member 10 can be performed. That is, the sensing unit 30 according to the present exemplary embodiment maintains the state in which the grip operation can be input from the user regardless of the rotation of the handle member 10.
이에 따라, 사용자가 핸들부재(10)를 잡는 조작을 하고 그 과정에서 사용자가 센싱부(30)(포스 센서(32, 34))를 가압하면, 센싱부(30)는 사용자의 그립 조작에 의한 힘을 감지하여 센싱신호를 출력하게 된다.Accordingly, when the user manipulates the handle member 10 and the user presses the sensing unit 30 (force sensors 32 and 34) in the process, the sensing unit 30 is controlled by the user's grip operation. It senses the force and outputs the sensing signal.
한편, 전술한 실시예와 마찬가지로, 센싱부(30) 중 일부에 손가락으로 감지할 수 있는 기준점(28)을 형성하여, 사용자가 그립 조작 과정에서 특정 그립 요소가 잡혀졌는지 여부를 확인할 수 있도록 함으로써, 'hand-eye coordination'을 쉽게 구현할 수 있음은 물론이다.On the other hand, as in the above-described embodiment, by forming a reference point 28 that can be detected with a finger on some of the sensing unit 30, by allowing the user to check whether a particular grip element is caught in the grip operation process, Of course, 'hand-eye coordination' is easy to implement.
본 실시예에 따른 센싱부(30)는 도 12의 (a)와 같이 핸들부재(10)의 외주면을 감싸는 띠모양의 포스 센서(32)로 구성하거나, 도 12의 (b)와 같이 핸들부재(10)의 외주면을 따라 소정 간격으로 포설되는 복수의 포스 센서(34)로 구성할 수도 있다.The sensing unit 30 according to the present exemplary embodiment includes a belt-shaped force sensor 32 surrounding the outer circumferential surface of the handle member 10 as illustrated in FIG. 12A, or the handle member as illustrated in FIG. 12B. It is also possible to comprise a plurality of force sensors 34 arranged at predetermined intervals along the outer circumferential surface of (10).
띠모양의 포스 센서(32)로 핸들부재(10)의 외주면을 감싸는 방식의 경우(즉, 복수 개의 포스 센서를 띠모양으로 둘러서 설치하는 경우), 사용자가 손가락으로 잡는 부위에 따라 각각 서로 다른 센싱값이 감지될 수 있는데, 이 경우 서로 다른 센싱값 중 대푯값(예를 들면, 최대값, 최소값, 평균값 등)을 읽어 센싱신호로서 출력되도록 할 수 있다.In the case of enclosing the outer circumferential surface of the handle member 10 by the band-shaped force sensor 32 (that is, when a plurality of force sensors are installed in a band-like manner), the sensing is different from each other according to the user's finger holding area. The value may be sensed. In this case, a representative value (for example, a maximum value, a minimum value, an average value, etc.) among different sensing values may be read and output as a sensing signal.
한편, 여러 개의 포스 센서(34)를 핸들부재(10)의 외주면에 포설하는 방식의 경우, 각 센서로부터 독립적으로 센싱신호가 출력될 수 있는데, 이 경우 수술용 로봇의 제어부(50)에서는 서로 다른 각각의 센싱신호를 통합하여 대푯값(예를 들면, 최대값, 최소값, 평균값 등)을 산출하고, 산출된 대푯값에 상응하도록 수술용 로봇을 제어하기 위한 제어신호가 생성되도록 할 수 있다.On the other hand, in the case of installing a plurality of force sensors 34 on the outer peripheral surface of the handle member 10, the sensing signal can be output independently from each sensor, in this case, the control unit 50 of the surgical robot different Each sensing signal may be integrated to calculate a representative value (eg, a maximum value, a minimum value, an average value, etc.), and a control signal for controlling the surgical robot may be generated to correspond to the calculated representative value.
나아가, 복수의 포스 센서(34)를 설치하는 경우, 각 포스 센서(34)별로 조작 결과에 대해 서로 다른 출력을 내도록 할 수도 있다. 즉, 본 실시예에 따른 센싱부(30)에서는 일부의 포스 센서(제1 포스 센서)에 대한 그립 조작과, 다른 일부의 포스 센서(제2 포스 센서)에 대한 그립 조작에 대하여, 각각 서로 다른 센싱신호가 출력되도록 할 수 있다. 예를 들어, 도 12에 도시된 것처럼 센싱부(30)가 총 3쌍(6개)의 포스 센서(34)로 이루어진 경우, 각 포스 센서(34) 쌍별로 사용자의 그립 조작에 따라 서로 다른 3가지의 센싱신호가 출력되도록 할 수 있는 것이다.Furthermore, when installing a plurality of force sensors 34, it is possible to output different output for the operation results for each force sensor 34. That is, in the sensing unit 30 according to the present embodiment, the grip operation on some force sensors (first force sensor) and the grip operation on some other force sensors (second force sensor) are different from each other. The sensing signal may be output. For example, as illustrated in FIG. 12, when the sensing unit 30 includes three pairs (six) of force sensors 34, three pairs of force sensors 34 differ from each other according to the grip operation of the user for each pair of force sensors 34. The sensing signal of the branch can be output.
이처럼, 포스 센서(34)별로 독립적인 센싱신호가 출력되도록 할 경우, 각각 서로 다른 센싱신호는 각각 서로 다른 제어를 위해 사용될 수 있다. 즉, 본 실시예에 따른 수술용 로봇의 제어부(50)는, 포스 센서(34)별로 독립적으로 출력된 센싱신호를 수신하고 각 센싱신호에 상응하도록 독립적으로 제어신호를 생성할 수 있다.As such, when an independent sensing signal is output for each force sensor 34, different sensing signals may be used for different control. That is, the control unit 50 of the surgical robot according to the present embodiment may receive the sensing signal independently output for each force sensor 34 and generate the control signal independently to correspond to each sensing signal.
이에 따라, 전술한 실시예와 마찬가지로, 수술용 로봇에 장착되는 수술용 인스트루먼트가 복수의 작동 자유도로 움직인다고 할 때, 독립적으로 생성된 서로 다른 제어신호가 인스트루먼트의 각 작동 자유도에 매칭되도록 할 수 있으며, 또는, 수술용 로봇에 여러 개의 인스트루먼트가 장착된다고 할 때, 독립적으로 생성된 서로 다른 제어신호가 각 인스트루먼트에 매칭되도록 할 수 있다.Accordingly, as in the above-described embodiment, when the surgical instrument mounted on the surgical robot moves with a plurality of operating degrees of freedom, different independently generated control signals can be matched to respective degrees of freedom of operation of the instrument. Alternatively, when a plurality of instruments are mounted on the surgical robot, different control signals generated independently may be matched to each instrument.
이 경우, 사용자의 그립 조작에 의해 핸들부재(10)에 힘이 가해지는 위치(각도)에 따라 수술용 로봇이나 수술용 인스트루먼트가 서로 다른 방식으로 작동되도록 제어할 수 있다. 예를 들어, 수술용 로봇에 그립 동작을 수행하는 인스트루먼트와 전기 수술기가 장착되어 있다고 가정하고, 사용자의 엄지손가락이 핸들부재(10)에 닿는 위치를 0도라고 할 때, 사용자가 핸들부재(10)의 0도와 180도 부근을 잡고 누르면 인스트루먼트가 그립 동작을 수행하고, 사용자가 핸들부재(10)의 -30도와 120도 부근을 잡고 누르면 전기 수술기가 작동되도록 제어할 수 있다.In this case, the surgical robot or the surgical instrument may be controlled to be operated in different ways according to the position (angle) of the force applied to the handle member 10 by the grip operation of the user. For example, assuming that the surgical robot is equipped with an instrument for performing a grip operation and an electrosurgical device, and a position where the thumb of the user touches the handle member 10 is 0 degrees, the user handle member 10 Holding the 0 degree and near 180 degrees of the instrument performs the grip operation, the user can hold the -30 degrees and 120 degrees of the handle member 10 can be controlled to operate the electrosurgery.
한편, 도 3 내지 도 8에 예시된 '날개가 움직이는' 방식의 그립부 구조와, 도 12에 예시된 포스 센서가 포설된 구조를 혼합하여 마스터 그립퍼 구조를 구현할 수도 있다.Meanwhile, the master gripper structure may be implemented by mixing the grip part structure of the 'wing moving' type illustrated in FIGS. 3 to 8 and the structure in which the force sensor illustrated in FIG. 12 is installed.
즉, 도 13에 도시된 것처럼, 핸들부재(10)의 일부에는 날개 형태의 그립부(20)를 설치하고 다른 일부에는 포스 센서(34)를 포설함으로써, 예를 들어 엄지와 중지로는 그립부(20)를 잡고 조작하고 검지로는 포스 센서(34)를 가압하여 (그에 대응되도록 설정된) 사용자 명령을 내릴 수 있는 마스터 그립퍼 구조를 구현할 수 있다.That is, as shown in Figure 13, by installing a grip portion 20 in the form of a wing in the handle member 10 and the force sensor 34 in the other part, for example, the thumb and middle finger grip 20 ), And the master gripper structure can be implemented with the index finger to press the force sensor 34 to issue a user command (set to correspond thereto).
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art that various modifications of the present invention without departing from the spirit and scope of the present invention described in the claims below And can be changed.

Claims (10)

  1. 수술용 로봇의 마스터 핸들에 구비되며, 사용자로부터 그립 조작을 입력받기 위한 그립퍼(gripper) 구조로서,It is provided on the master handle of the surgical robot, as a gripper (gripper) structure for receiving a grip operation from the user,
    상기 마스터 핸들에, 그 길이방향을 축으로 회전가능하게 결합되는 막대 형상의 핸들부재와;A rod-shaped handle member rotatably coupled to the master handle in an axial direction thereof;
    사용자의 그립 조작에 따라 상기 핸들부재의 외주면을 향해 수축되며, 상기 핸들부재의 외주부를 따라 방사상으로 배치됨으로써, 상기 핸들부재의 회전 정도에 무관하게 사용자로부터 그립 조작을 입력받을 수 있는 상태를 일정하게 유지하는 그립부와;It is contracted toward the outer circumferential surface of the handle member according to the user's grip operation, and is disposed radially along the outer circumferential portion of the handle member, so that a state in which the grip operation can be input by the user regardless of the degree of rotation of the handle member is constant. A grip portion to hold;
    사용자의 그립 조작에 의한 상기 그립부의 수축 정도에 상응하는 정보를 감지하여 센싱신호를 출력하는 센싱부를 포함하는 수술용 로봇의 마스터 그립퍼 구조.A master gripper structure of a surgical robot comprising a sensing unit for outputting a sensing signal by detecting information corresponding to the degree of contraction of the grip unit by a user's grip operation.
  2. 제1항에 있어서,The method of claim 1,
    상기 그립부는, 상기 핸들부재의 외주면의 둘레에 방사상으로 배열되며 그 꼭지점이 상기 핸들부재의 일단부에 결합되는 고깔 형상을 이루는 복수의 그립 요소를 포함하여, 상기 핸들부재의 일단부를 꼭지점으로 하는 우산 구조를 이루는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The grip part includes a plurality of grip elements that are arranged radially around the outer circumferential surface of the handle member and have a vertex shape in which a vertex thereof is coupled to one end of the handle member, and an umbrella having one end of the handle member as a vertex. Master gripper structure of the surgical robot, characterized in that the structure.
  3. 제1항에 있어서,The method of claim 1,
    상기 그립부는, 상기 핸들부재의 일단부에 방사상으로 힌지결합되어 상기 핸들부재의 외주면의 둘레에 방사상으로 배열되는 복수의 그립 요소를 포함하여, 상기 핸들부재의 일단부를 꼭지점으로 하는 우산살 구조를 이루는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The grip part includes a plurality of grip elements radially hinged to one end of the handle member and arranged radially around the outer circumferential surface of the handle member, thereby forming an umbrella structure having one end of the handle member as a vertex. Master gripper structure of the surgical robot, characterized in that.
  4. 제1항에 있어서,The method of claim 1,
    상기 그립부는, 상기 핸들부재의 일단부에 방사상으로 힌지결합되고 상호 간의 순차적인 일부 중첩 관계가 방사상으로 연쇄되어 상기 핸들부재의 외주면의 둘레에 방사상으로 배열되는 복수의 그립 요소를 포함하여, 상기 핸들부재의 일단부를 베이스로 하는 찜기 구조를 이루는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The grip part includes a plurality of grip elements radially hinged to one end of the handle member, the sequential partial overlapping relationship of which is radially concatenated, and arranged radially around the outer circumferential surface of the handle member. A master gripper structure for a surgical robot, comprising a steamer structure based on one end of the member.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 복수의 그립 요소 중 일부의 그립 요소에는, 사용자가 그립 조작 과정에서 손가락으로 감지할 수 있도록 기준점이 형성되는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The grip element of the plurality of grip elements, the master gripper structure of the surgical robot, characterized in that the reference point is formed so that the user can sense with a finger in the grip operation process.
  6. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 복수의 그립 요소에는, 사용자의 손가락에 대응하여 복수의 형태의 기준점이 각각 형성되는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The grip elements, the master gripper structure of the surgical robot, characterized in that each of the plurality of reference points are formed corresponding to the user's finger.
  7. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 복수의 그립 요소 중 일부에 대한 사용자의 그립 조작에 상응하여, 상기 복수의 그립 요소 전체가 상기 핸들부재의 외주면 쪽으로 수축되는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.And corresponding to the grip operation of the user with respect to a part of the plurality of grip elements, the entire grip element is retracted toward the outer circumferential surface of the handle member.
  8. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 복수의 그립 요소 중 일부에 대한 사용자의 그립 조작에 상응하여, 조작된 일부의 그립 요소만이 상기 핸들부재의 외주면 쪽으로 수축되는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.Corresponding to a user's grip manipulation of a portion of the plurality of grip elements, only the manipulated portion of the grip element contracts toward the outer circumferential surface of the handle member.
  9. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 센싱부는, 상기 복수의 그립 요소 중 제1 그립 요소에 대한 사용자의 그립 조작과, 상기 복수의 그립 요소 중 제2 그립 요소에 대한 사용자의 그립 조작에 대하여, 각각 서로 다른 센싱신호를 출력하는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The sensing unit may output different sensing signals with respect to a user's grip operation on a first grip element among the plurality of grip elements and a user's grip operation on a second grip element among the plurality of grip elements, respectively. Master gripper structure of a surgical robot characterized in that.
  10. 제9항에 있어서,The method of claim 9,
    상기 센싱신호를 수신하고 제어신호를 생성하여 상기 수술용 로봇에 전달하는 제어부를 더 포함하되,Receiving the sensing signal and generates a control signal further comprising a control unit for transmitting to the surgical robot,
    상기 제어부는 상기 서로 다른 센싱신호로부터 대푯값을 산출하고, 상기 대푯값에 상응하여 상기 제어신호를 생성하는 것을 특징으로 하는 수술용 로봇의 마스터 그립퍼 구조.The control unit calculates a representative value from the different sensing signals, and the master gripper structure of the surgical robot, characterized in that for generating the control signal corresponding to the representative value.
PCT/KR2012/004093 2011-08-03 2012-05-24 Master gripper structure for surgical robot WO2013018984A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0077433 2011-08-03
KR1020110077433A KR20130015440A (en) 2011-08-03 2011-08-03 Master gripper of surgical robot

Publications (2)

Publication Number Publication Date
WO2013018984A2 true WO2013018984A2 (en) 2013-02-07
WO2013018984A3 WO2013018984A3 (en) 2013-04-04

Family

ID=47629754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004093 WO2013018984A2 (en) 2011-08-03 2012-05-24 Master gripper structure for surgical robot

Country Status (2)

Country Link
KR (1) KR20130015440A (en)
WO (1) WO2013018984A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106264733A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of suspension type operating theater instruments
CN106264734A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of operating theater instruments being provided with roller seat
CN106264735A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of removable operating robot that can stand
WO2017210501A1 (en) * 2016-06-03 2017-12-07 Covidien Lp Control arm assemblies for robotic surgical systems
KR20200145390A (en) * 2019-06-21 2020-12-30 한국과학기술원 Gripper and master device for surgery comprising thereof
CN112423693A (en) * 2018-05-17 2021-02-26 医疗显微器具股份公司 Master controller assembly and method for robotic surgical system
DE102021119624A1 (en) 2021-07-28 2023-02-02 Karl Storz Se & Co. Kg Input unit for a medical instrument and medical system with an input unit
CN117400228A (en) * 2023-12-04 2024-01-16 广东东软学院 Wearable mechanical arm for rapid assembly of industrial assembly line

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175937B (en) * 2016-09-21 2018-12-21 新昌县普达环保科技有限公司 A kind of operating robot equipped with rotary cutter clamping disk
DE102017103199A1 (en) * 2017-02-16 2018-08-16 avateramedical GmBH HMI device for a robot-assisted surgical system
WO2019240824A1 (en) * 2018-06-15 2019-12-19 Verb Surgical Inc. User interface device having grip linkages
US11135031B2 (en) 2018-06-15 2021-10-05 Verb Surgical Inc. User interface device having grip linkages
KR102116119B1 (en) * 2018-10-22 2020-05-27 (주)미래컴퍼니 Master robot and control method thereof
KR102221090B1 (en) * 2018-12-18 2021-02-26 (주)미래컴퍼니 User interface device, master console for surgical robot apparatus and operating method of master console
KR102283670B1 (en) 2019-06-21 2021-07-30 한국과학기술원 Master device for surgery to control slave device
WO2020256502A2 (en) * 2019-06-21 2020-12-24 한국과학기술원 Gripper and surgical master device comprising same
KR102220526B1 (en) * 2019-07-18 2021-02-25 주식회사 우리제어기술 Gripper Device of Robot Hand

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669693B2 (en) * 2001-11-13 2003-12-30 Mayo Foundation For Medical Education And Research Tissue ablation device and methods of using
US6714839B2 (en) * 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US6879880B2 (en) * 1999-04-07 2005-04-12 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
KR20050110123A (en) * 2004-05-18 2005-11-23 고등기술연구원연구조합 Handle for measuring the grip and feed force

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714839B2 (en) * 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US6879880B2 (en) * 1999-04-07 2005-04-12 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6669693B2 (en) * 2001-11-13 2003-12-30 Mayo Foundation For Medical Education And Research Tissue ablation device and methods of using
KR20050110123A (en) * 2004-05-18 2005-11-23 고등기술연구원연구조합 Handle for measuring the grip and feed force

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210501A1 (en) * 2016-06-03 2017-12-07 Covidien Lp Control arm assemblies for robotic surgical systems
US11058504B2 (en) 2016-06-03 2021-07-13 Covidien Lp Control arm assemblies for robotic surgical systems
US11653991B2 (en) 2016-06-03 2023-05-23 Covidien Lp Control arm assemblies for robotic surgical systems
CN106264733A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of suspension type operating theater instruments
CN106264734A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of operating theater instruments being provided with roller seat
CN106264735A (en) * 2016-09-21 2017-01-04 东莞市联洲知识产权运营管理有限公司 A kind of removable operating robot that can stand
CN112423693A (en) * 2018-05-17 2021-02-26 医疗显微器具股份公司 Master controller assembly and method for robotic surgical system
KR20200145390A (en) * 2019-06-21 2020-12-30 한국과학기술원 Gripper and master device for surgery comprising thereof
KR102285586B1 (en) 2019-06-21 2021-08-04 한국과학기술원 Gripper used in master device for surgery
DE102021119624A1 (en) 2021-07-28 2023-02-02 Karl Storz Se & Co. Kg Input unit for a medical instrument and medical system with an input unit
CN117400228A (en) * 2023-12-04 2024-01-16 广东东软学院 Wearable mechanical arm for rapid assembly of industrial assembly line
CN117400228B (en) * 2023-12-04 2024-04-02 广东东软学院 Wearable mechanical arm for rapid assembly of industrial assembly line

Also Published As

Publication number Publication date
KR20130015440A (en) 2013-02-14
WO2013018984A3 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013018984A2 (en) Master gripper structure for surgical robot
US20240033026A1 (en) Translational instrument interface for surgical robot and surgical robot systems comprising the same
AU2017203633C1 (en) Robotic systems, robotic system user interfaces, human interface devices for controlling robotic systems and methods of controlling robotic systems
WO2012096464A2 (en) Minimally invasive surgical instrument
US6197017B1 (en) Articulated apparatus for telemanipulator system
US8007511B2 (en) Surgical instrument design
US6432112B2 (en) Articulated apparatus for telemanipulator system
WO2013018983A1 (en) Master arm structure for surgical robot, and control method for master surgical robot
JP2016120277A (en) Device for robot-assisted surgery
JP7085400B2 (en) Surgical system
WO2007111571A1 (en) Surgical robotic system for flexible endoscopy
JP2001276091A (en) Medical manipulator
WO2002051329A1 (en) Tendon actuated articulated members for a telemanipulator system
WO2018203675A1 (en) Microsurgical instrument capable of joint motion and rotational motion
US9974620B2 (en) Manipulator system, and medical system
EP2881048A1 (en) Medical manipulator
US20170086933A1 (en) Surgical-manipulator operating device and surgical-manipulator system
WO2011115387A2 (en) Coupler for robot arm for single port surgery, and surgical robot comprising same
WO2011149260A2 (en) Rcm structure for a surgical robot arm
WO2015012670A1 (en) Photodynamic therapy apparatus for irradiation to bent part
WO2010140844A2 (en) Surgical instrument
WO2020085624A1 (en) Wearable surgical robot arm
JP6246093B2 (en) Treatment instrument and treatment instrument system
WO2012144875A2 (en) Minimally invasive surgical instrument implementing a motor
WO2021090979A1 (en) Thumb and index finger-based hand motion control system of myoelectric hand, and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819287

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819287

Country of ref document: EP

Kind code of ref document: A2