WO2013022126A1 - Heterogeneous phase reaction accelerating apparatus and method for a fluid - Google Patents

Heterogeneous phase reaction accelerating apparatus and method for a fluid Download PDF

Info

Publication number
WO2013022126A1
WO2013022126A1 PCT/KR2011/005757 KR2011005757W WO2013022126A1 WO 2013022126 A1 WO2013022126 A1 WO 2013022126A1 KR 2011005757 W KR2011005757 W KR 2011005757W WO 2013022126 A1 WO2013022126 A1 WO 2013022126A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
reaction tube
reaction
mixed
discharge pipe
Prior art date
Application number
PCT/KR2011/005757
Other languages
French (fr)
Korean (ko)
Inventor
문광순
윤승규
Original Assignee
재단법인 한국계면공학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국계면공학연구소 filed Critical 재단법인 한국계면공학연구소
Priority to KR1020147006169A priority Critical patent/KR101580583B1/en
Priority to PCT/KR2011/005757 priority patent/WO2013022126A1/en
Publication of WO2013022126A1 publication Critical patent/WO2013022126A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the present invention relates to a reaction promoting device for non-homogeneous fluids and a method for promoting a reaction of non-homogeneous fluids that promote the reaction of non-homogeneous fluids that do not dissolve together.
  • a phase is a critical phase such as a solid phase, a liquid phase, a gas phase, or a plasma, depending on the state of a substance, and is divided into a homogeneous phase and a heterogeneous phase according to whether two phases have the same phase.
  • a critical phase such as a solid phase, a liquid phase, a gas phase, or a plasma, depending on the state of a substance, and is divided into a homogeneous phase and a heterogeneous phase according to whether two phases have the same phase.
  • hydrophilicity liquids that mix well with water and hydrophobisity liquids that do not mix well with water can be regarded as non-homogeneous fluids.
  • the present invention is to provide a reaction promoting device and a reaction promoting method for promoting the reaction rate of a non-homogeneous liquid having very low reactivity since they are not dissolved in each other. To this end, the present invention focuses on the interface of the non-homogeneous fluid and provides a means for greatly accelerating the reaction rate of the non-homogeneous fluid.
  • the reaction promotion apparatus of the non-homogeneous fluid of the present invention includes a reaction tube in which the first fluid is accommodated to produce a mixed fluid by ester reaction of a first fluid and a second fluid, and the reaction. And a spraying unit provided with a nozzle extending the interface of the second fluid by injecting the second fluid into fine particles inside the tube.
  • the mixed fluid production method by driving the pump to supply a first fluid to the supply, the heater to heat the first fluid, the reaction tube with the first fluid supplied through the supply And spraying the second fluid into the reaction tube with fine particles through a nozzle installed inside the reaction tube, and interfacial expansion effect due to an increase in the specific surface area of the fine particles, and suppresses the occurrence of fatty acid metal salts in the reaction tube.
  • the mixed fluid production method by driving the pump to supply a first fluid to the supply, the heater to heat the first fluid, the reaction tube with the first fluid supplied through the supply Of the fine particles to spray the second fluid into the reaction tube through the nozzles installed inside the reaction tube, and to suppress the interface expansion effect by the fine particles and the generation of fatty acid metal salts in the reaction tube.
  • At least one of an effect, a chemical effect by heating the first fluid, and a physical mixing effect by turbulent flow inside the reaction tube causes a transesterification reaction inside the reaction tube at a desired reaction rate, and a mixed fluid is produced.
  • the mixed fluid inside the reaction tube is supplied to the inline mixer of the mixer unit, and the inline mixer is rotated by external power.
  • a mixed reaction product of a hydrophobic substance and a hydrophilic substance can be produced in a short time and with high efficiency by injecting a second fluid into the first fluid supplied into the reaction tube with a nozzle.
  • the interfacial expansion effect due to the increase of the specific surface area of the fine particles, the effect of the fine particles to suppress the generation of fatty acid metal salt in the reaction tube, the chemical effect by the first fluid heating, the turbulent flow inside the reaction tube or physical mixing by the mixer unit At least one of the effects has the advantage that the transesterification reaction proceeds at the desired optimum reaction rate.
  • FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying.
  • FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production.
  • FIG. 4 to 6 are photographs taken inside the reaction tube.
  • FIG. 4 shows before injection
  • FIG. 5 immediately after injection
  • FIG. 6 shows a maximum injection state.
  • Representative non-homogeneous fluids for the purposes of the present invention include oil and methoxide.
  • Oil and methoxide are transesterified to biodiesel, and the mixed fluid of oil and methoxide becomes biodiesel.
  • a mixed fluid is prepared through a transesterification reaction in which glycerol is separated using methanol from triglycerides in which glycerol is bound to trivalent fatty acids, and then produced fatty acid esters.
  • factors affecting the reaction rate of a chemical reaction include, for example, the physicochemical properties of the reactants, concentration, temperature, pressure, catalyst, and the ability of the reactants to contact each other. Maximizing the contact area between the reactants among the factors affecting the chemical reaction rate is a common requirement in all chemical reactions, and maximizes the contact area at the interface between the reactants and the retention time through the contact. Is an important factor in determining reaction rate and reaction yield.
  • a phase is a critical phase such as a solid phase, a liquid phase, a gas phase, or a plasma depending on the state of a substance.
  • a phase has the same properties as a polar fluid such as water and ethanol, it can be regarded as a homogeneous phase fluid. Since they do not mix with each other like methanol, they can be regarded as heterogeneous phase fluids if they have different properties.
  • Homogeneous fluids are easily dissolved or mixed with each other so that no interface exists. For example, if a container is filled with water and ethanol is added to it, water and ethanol are easily mixed with the same polarity so that no distinct interface is formed.
  • non-homogeneous fluids do not dissolve or mix with each other, so there is a distinct interface due to the difference in density.
  • filling the vessel with oil and adding methanol to it does not easily mix the oil and the methanol with different polarities, so that the distinction between the bottom and the top of the vessel results in distinct densities, depending on the density difference.
  • non-homogeneous fluids can occur only at the interface, and if no interface exists or two non-homogeneous fluids are isolated from each other at the interface location, the chemical reaction of the non-homogeneous fluid cannot occur.
  • Reactions generally called two-phase reactions, refer to the reaction of two reactants with different phases of matter, such as solid-liquid and gas-liquid reactions.
  • a reactant having a hydrophobisity group and a reactant having a hydrophilicity group do not mix well with each other, as in the transesterification reaction, they are reactions between the same liquid state but a heterogeneous phase fluid, so it is like a two-phase reaction. It can be seen that the reaction proceeds. In this case, the reaction rate drops significantly.
  • Biodiesel is a mixed fluid by alcohol decomposition in which alcohol is added to triglyceride which is a main component of fats and oils. Biodiesel is prepared through transesterfication of alcohols and fats and oils using base or acid catalysts.
  • the main raw material of the biodiesel animal or vegetable oils and oils and fats and oils maintain the hydrophobic group of the triglyceride (triglyceride) and the alcohol in general has a hydrophilic group, the oil and alcohol are not easily dissolved at room temperature, atmospheric pressure.
  • the present invention is to increase the reaction rate and the reaction yield by injecting triglyceride or methanol as fine particles having a size of several to several tens of micrometers as a non-homogeneous fluid, thereby increasing the reaction area of the interface formed by the non-homogeneous fluid. It features.
  • reaction rate of the transesterification reaction by spraying a non-homogeneous fluid including triglyceride corresponding to the first fluid or methanol or methoxide corresponding to the second fluid in a mist state using the nozzle 120 inside the reaction tube and
  • the reaction yield can be increased.
  • reaction promoting device for a non-homogeneous fluid will be described taking a biodiesel production device as an example.
  • one of the 'mixed fluids' is biodiesel
  • one of the 'first fluids' is triglyceride
  • one of the 'second fluids' is methanol or methoxide.
  • Methoxide refers to a mixture of methanol and a catalyst (eg caustic soda).
  • FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying.
  • FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production. 2 and 3 are the same in their fundamental operating principle, so they will be described together.
  • the apparatus for promoting reaction of a non-homogeneous fluid of the present invention includes a reaction tube 110 for increasing a transesterification reaction rate by interfacial expansion by spraying fine particles of a nozzle 120. It may further include a mixer unit 200 for increasing the rate of transesterification by physical mixing.
  • the reaction unit 100 includes a reaction tube 110, a fixing plate 111, a fixing rod 112, a nozzle 120, a first discharge pipe 190, and a first valve 195. .
  • the second fluid supplied through the second fluid supply part 320 is injected into the fine particles by the nozzle 120.
  • the nozzle 120 injects the second fluid into the reaction tube 110 at a predetermined injection angle ⁇ .
  • the length L and the diameter D of the reaction tube 110 are constant levels depending on the injection angle ⁇ of the nozzle 120, the injection pressure, the size of the fine particles, and the diameter of the reaction tube 110 inlet and outlet. It is optimized to obtain the above transesterification rate.
  • both ends of the reaction tube 110 may be fixed to a plate to stably support the reaction tube 110. 111) is sandwiched between and supported.
  • the fixing plate 111 is coupled by the fixing rod 112 and the fixing plate 111 and the reaction tube 110 are firmly coupled by the tensile force of the fixing rod 112.
  • the first fluid is accommodated in the reaction tube 110.
  • the reaction rate is accelerated by the interface expansion effect because the second fluid is injected in the atomized or automized phase state.
  • fine particles of methanol or methoxide which is a second fluid
  • oil which is the first fluid
  • esterification reaction rate is dramatically increased according to the interfacial engineering physicochemical effect by the fine particle injection, the physical effect by the injection force of the nozzle 120, and the chemical effect by the temperature heating of the heater 390.
  • a supply part 310 for supplying a first fluid is connected to an inlet side of the reaction tube 110, and the first fluid is supplied with a supply pressure by the pump 380.
  • the outlet side of the reaction tube 110 is connected to the first discharge pipe 190 for discharging the mixed fluid inside the reaction tube 110.
  • the diameter of the reaction tube 110 is preferably larger than the diameter of the supply unit 310 and the first discharge tube 190.
  • the rate of transesterification reaction is increased. Due to the nature of the incompressible continuous fluid, the flow rate per unit time of the fluid is the same at the inlet and outlet of the reaction tube 110. Therefore, the reaction rate is increased when the fluid stays inside the large reaction tube 110 longer than the fluid stays in the small diameter supply unit 310 or the first discharge pipe 190. Since the second fluid injection angle of the nozzle 120, the diameter and the length of the reaction tube 110 are optimally designed, the transesterification reaction rate is enhanced.
  • the mixer unit 200 physically remixes the mixed fluid discharged from the reaction unit 100 to double the transesterification reaction rate, and includes an inline mixer 210.
  • the inline mixer 210 may have a blade that rotates by external power therein.
  • a zigzag static blade 212 is provided which triggers turbulent flow of the fluid by the shape feature in a fixed state, and another embodiment of the inline mixer 210 is provided. Yes.
  • a wing that is rotated by external power.
  • the first bypass pipe 201 is connected to the inlet side of the inline mixer 210 and the second discharge pipe 290 is connected to the outlet side.
  • the first bypass pipe 201 is connected to the first discharge pipe 190 corresponding to the outlet of the reaction unit 100.
  • the first valve 195 When the first valve 195 is opened, the mixed fluid supplied through the first discharge pipe 190 flows into the inlet side of the inline mixer 210 through the first bypass pipe 201.
  • the first valve 195 is closed, the mixed fluid is produced by the ester reaction by the reaction unit 100 alone without the action of the mixer unit 200.
  • the supply pressure of the first fluid, the supply flow rate of the first fluid, the supply temperature of the first fluid, the injection pressure of the second fluid, the injection flow rate of the second fluid, the injection angle of the second fluid, the fine particles of the second fluid The size, the length of the reaction tube 110, the diameter of the reaction tube 110 is determined according to the optimum response value according to various variables.
  • the method is not limited to one cycle of the reaction unit 100 and the mixer unit 200, and according to the method of repeatedly circulating the reaction unit 100 and the mixer unit 200 several times, the amount of mixed fluid decreases but the mixing is performed. The purity of the fluid can be improved.
  • the outlet side of the mixer unit 200 and the inlet side of the reaction unit 100 are connected. That is, the second discharge pipe 290 corresponding to the outlet side of the mixer unit 200 is connected to the second bypass pipe 301 corresponding to the inlet side of the reaction unit 100.
  • the second bypass pipe 301 is connected to the supply unit 310 via the tank 330.
  • the tank 330 is a storage space for accommodating the mixed fluid and the first fluid, and serves as a buffer. In addition, the tank 330 becomes a space for providing a time for the first fluid to be heated by the heater 390.
  • reaction promoting device 3 is a reaction promoting device for a non-homogeneous fluid in a continuous production mode suitable for mass production.
  • a batch reaction promoting device injects a second fluid into a large container containing the first fluid, while rotating the stirring blade inside the container to mix the first fluid and the second fluid, and then discharge the mixed fluid in the container when the reaction is completed. And a batch manner of filling a new first fluid inside the vessel.
  • this arrangement method has a fixed supply and discharge timing of the fluid, so that continuous operation is impossible and intermittent operation, and the reaction speed is much slower than the reaction promoting device of the present invention.
  • the first fluid is continuously supplied to the reaction tube, and the nozzle installed inside the reaction tube continuously supplies the second fluid, and the reaction tube is capable of sufficiently reacting these non-homogeneous fluids. It extends with a sufficient length so that the injection angle of the nozzle, the injection pressure and the size of the nozzle hole cause sufficient turbulent flow inside the reaction tube, and the area of the interface of the second fluid by the nozzle injection can be maximized. It is optimized to ensure fast and consistent reactivity.
  • the mixer unit 200 may have a rotary blade or a fixed blade installed therein to add mechanical stirring, but may be used as a setler without installing the blade or blade.
  • the settler functions as a separating funnel.
  • triglyceride triglyceride
  • methanol, methoxide as a reactant of a large specific gravity glycerol and a small specific gravity methyl ester is obtained.
  • the glycerol and methyl ester are separated from each other by the difference in specific gravity in the stopped state if left still without any stirring action inside the mixer unit 200 that functions as a settler.
  • the methyl ester separated at the top of the mixer unit 200 is discharged as biodiesel, and the glycerol separated at the bottom is discharged separately.
  • the production method for various reaction modes for the reaction promotion apparatus of the non-homogeneous fluid illustrated in FIGS. 2 and 3 is as follows.
  • the pump 380 is driven to supply the first fluid to the supply unit 310.
  • the first fluid is heated by the heater 390 to adjust the temperature of the first fluid that is optimal for increasing the reaction rate.
  • a tank 390 is installed between the pump 380 and the supply part 310 to be used as a temporary storage space and a heating space of the heater 390.
  • the first fluid supplied through the supply unit 310 fills the reaction tube 110.
  • the second fluid is injected into the fine particles through the nozzle 120 installed inside the reaction tube 110.
  • the desired reaction rate by the interfacial expansion effect by the fine particles, the effect of the fine particles to suppress the generation of fatty acid metal salts on the foam, the chemical effect by the first fluid heating, the physical mixing effect by the turbulent flow inside the reaction tube 110 The transesterification reaction takes place inside the reaction tube (110).
  • the mixed fluid inside the reaction tube 110 is discharged to the outside via the first discharge pipe 190 and the first valve 195.
  • the first valve 195 is in an open state
  • the second valve 295 connecting the reaction unit 100 and the mixer unit 200 is in a closed state.
  • the pump 380 is driven to supply the first fluid into the tank 330, and the first fluid is heated by the heater 390.
  • the second fluid When the first fluid is filled in the reaction tube 110, the second fluid is injected through the nozzle 120.
  • the mixed fluid having the first transesterification reaction is supplied to the mixer unit 200 via the first discharge pipe 190 and the first bypass pipe 201.
  • the first valve 195 since the first valve 195 is in a closed state, the mixed fluid cannot be discharged to the outside.
  • the mixed fluid flows inside the in-line mixer 210 due to the continuity of the fluid, and the transesterification reaction is secondarily performed by the physical mixing force caused by friction and collision with the static blade 212.
  • the mixed fluid passing through the in-line mixer 210 is discharged to the outside via the second discharge pipe 290 and the second valve 295.
  • the third valve 395 located between the mixer unit 200 and the tank 330 is in a closed state.
  • the operation of the pump 380, the heating of the heater 390, the spraying of the nozzle 120, and the operation of the inline mixer 210 are the same as described above.
  • the mixed fluid that has passed through the inline mixer 210 is resupplied to the tank 330 and the reaction unit 100 through the second discharge pipe 290 and the second bypass pipe 301.
  • the transesterification reaction proceeds repeatedly while repeatedly cycling the reaction unit 100 and the mixer unit 200.
  • the driving of the pump 380 is stopped and the mixed fluid contained in the tank 330 is discharged to the outside.
  • the first valve 195 and the second valve 295 are in a closed state, and the third valve 395 connecting the second discharge pipe 290 and the second bypass pipe 301 is in an open state.
  • FIG. 4 to 6 are photographs taken inside the reaction unit 100.
  • FIG. 4 shows before the injection
  • FIG. 5 immediately after the injection
  • FIG. 6 shows the maximum injection state.
  • reaction unit 110 reaction tube
  • fixing plate 112 fixing rod
  • first bypass pipe 210 inline mixer
  • supply part 320 second fluid supply part
  • FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying.
  • FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production.
  • FIG. 4 to 6 are photographs taken inside the reaction tube.
  • FIG. 4 shows before injection
  • FIG. 5 immediately after injection
  • FIG. 6 shows a maximum injection state.

Abstract

The present invention relates to a heterogeneous phase reaction accelerating apparatus, and to a method using same to produce a mixed fluid, the apparatus comprising: a reaction tube containing a first fluid to produce a mixed fluid using an ester interchange reaction of the first fluid and a second fluid; and a spraying unit having a nozzle for spraying the second fluid into the reaction tube in the form of fine particles to expand the interface of the second fluid. According to the present invention, by spraying the second fluid into the first fluid in the reaction tube by means of the nozzle, a mixed reaction product of a hydrophobic material and a hydrophilic material can be highly efficiently produced in a short time. Here, an ester interchange reaction is performed at a desired optimal reaction speed using at least one of: an interface expansion effect due to an increase in the specific surface area of the fine particles; an effect of the fine particles preventing the occurrence of fatty acid metal salts inside the reaction tube; a chemical effect caused by heating the first fluid; or a physical mixing effect caused by a turbulent flow within the reaction tube or by a mixer unit.

Description

비동종상 유체의 반응 촉진 장치 및 반응 촉진 방법Reaction promoting device and reaction promoting method of non-homogeneous fluid
본 발명은 서로 용해되지 않는 비동종상 유체의 반응을 촉진하는 비동종상 유체의 반응 촉진 장치 및 비동종상 유체의 반응 촉진 방법에 관한 것이다.The present invention relates to a reaction promoting device for non-homogeneous fluids and a method for promoting a reaction of non-homogeneous fluids that promote the reaction of non-homogeneous fluids that do not dissolve together.
일반적으로 상(phase)이란 물질의 상태에 따라 고상, 액상, 기상 또는 플라즈마와 같은 임계상이 있으며, 2가지 물질이 갖는 상의 동일 여부에 따라 동종상(homogeneous phase)과 비동종상(heterogeneous phase)으로 구분될 수 있다. 예를 들어 물에 잘 섞이는 친수성(hydrophilicity) 액체와 물에 잘 섞이지 않는 소수성(hydrophobisity) 액체는 비동종상 유체로 볼 수 있다.Generally, a phase is a critical phase such as a solid phase, a liquid phase, a gas phase, or a plasma, depending on the state of a substance, and is divided into a homogeneous phase and a heterogeneous phase according to whether two phases have the same phase. Can be. For example, hydrophilicity liquids that mix well with water and hydrophobisity liquids that do not mix well with water can be regarded as non-homogeneous fluids.
많은 화학 반응에서 두 성분이 이루는 상이 동일한 액상상태라 할지라도, 서로 혼합되지 않는 비동종상이라고 한다면 반응이 진행되지 않거나 반응이 진행되더라도 반응 속도가 느려 반응 수율 역시 크게 저하된다.  In many chemical reactions, even if the phases of the two components are in the same liquid state, if the non-homogeneous phases are not mixed with each other, even if the reaction does not proceed or the reaction proceeds, the reaction rate is slow and the reaction yield is greatly reduced.
본 발명은 서로 용해가 되지 않아 반응성이 매우 낮은 비동종상 액체의 반응 속도를 촉진시키는 반응촉진장치 및 반응촉진방법을 제공하기 위한 것이다. 본 발명에서는 이를 위하여 비동종상 유체의 경계면에 주목하여 계면 공학적인 관점에서 접근하여 비동종상 유체의 반응 속도를 크게 촉진할 수 있는 수단을 제공한다.The present invention is to provide a reaction promoting device and a reaction promoting method for promoting the reaction rate of a non-homogeneous liquid having very low reactivity since they are not dissolved in each other. To this end, the present invention focuses on the interface of the non-homogeneous fluid and provides a means for greatly accelerating the reaction rate of the non-homogeneous fluid.
상술한 목적을 달성하기 위하여 본 발명의 비동종상 유체의 반응 촉진 장치는, 제1 유체 및 제2 유체의 에스테르 반응에 의하여 혼합 유체를 생산하도록, 상기 제1 유체가 수용되는 반응관과, 상기 반응관 내부에 상기 제2 유체를 미세 입자로 분사함으로써 상기 제2 유체의 계면을 확장시키는 노즐이 마련되는 분사 유니트를 포함한다.In order to achieve the above object, the reaction promotion apparatus of the non-homogeneous fluid of the present invention includes a reaction tube in which the first fluid is accommodated to produce a mixed fluid by ester reaction of a first fluid and a second fluid, and the reaction. And a spraying unit provided with a nozzle extending the interface of the second fluid by injecting the second fluid into fine particles inside the tube.
일 실시예로서, 본 발명에 따른 혼합 유체 생산 방법은, 펌프를 구동하여 공급부에 제1 유체를 공급하고, 히터로 상기 제1 유체를 가열하며, 상기 공급부를 통하여 공급된 제1 유체로 반응관을 채우고, 상기 반응관 내부에 설치된 노즐을 통하여 제2 유체를 미세 입자로 상기 반응관 내부에 분사하며, 상기 미세 입자의 비표면적 증가로 인한 계면 확장 효과, 상기 반응관 내부의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 상기 제1 유체 가열에 의한 화학적 효과, 상기 반응관 내부의 난류 유동에 의한 물리적 혼합 효과 중 적어도 하나에 의하여 원하는 반응 속도로 상기 반응관 내부에서 에스테르교환반응을 유발하며 혼합 유체가 생성되고, 상기 반응관 내부의 상기 혼합 유체는 상기 반응관 출구 측의 제1 배출관을 거쳐 외부로 배출된다.  In one embodiment, the mixed fluid production method according to the present invention, by driving the pump to supply a first fluid to the supply, the heater to heat the first fluid, the reaction tube with the first fluid supplied through the supply And spraying the second fluid into the reaction tube with fine particles through a nozzle installed inside the reaction tube, and interfacial expansion effect due to an increase in the specific surface area of the fine particles, and suppresses the occurrence of fatty acid metal salts in the reaction tube. At least one of the effect of the fine particles, the chemical effect of the first fluid heating, the physical mixing effect of the turbulent flow inside the reaction tube to cause a transesterification reaction inside the reaction tube at a desired reaction rate and the mixed fluid Is generated, and the mixed fluid inside the reaction tube is discharged to the outside via the first discharge pipe at the outlet side of the reaction tube.
다른 실시예로서, 본 발명에 따른 혼합 유체 생산 방법은, 펌프를 구동하여 공급부에 제1 유체를 공급하고, 히터로 상기 제1 유체를 가열하며, 상기 공급부를 통하여 공급된 제1 유체로 반응관을 채우고, 상기 반응관 내부에 설치된 노즐을 통하여 제2 유체를 미세 입자로 상기 반응관 내부에 분사하며, 상기 미세 입자에 의한 계면 확장 효과, 상기 반응관 내부의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 상기 제1 유체 가열에 의한 화학적 효과, 상기 반응관 내부의 난류 유동에 의한 물리적 혼합 효과 중 적어도 하나에 의하여 원하는 반응 속도로 상기 반응관 내부에서 에스테르교환반응을 유발하며 혼합 유체가 생성되고, 상기 반응관 내부의 상기 혼합 유체는 믹서 유니트의 인라인 믹서로 공급되며, 상기 인라인 믹서는 외부 동력에 의하여 회전하는 날개 또는 고정된 상태에서 지그재그 형상에 의하여 상기 혼합 유체를 믹싱하고, 상기 반응관 내부 또는 상기 믹서 유니트를 통과한 상기 혼합 유체는 상기 반응관 출구 측에 배치된 제1 배출관 또는 상기 믹서 유니트 출구 측에 배치된 제2 배출관을 통하여 외부로 배출된다.  In another embodiment, the mixed fluid production method according to the present invention, by driving the pump to supply a first fluid to the supply, the heater to heat the first fluid, the reaction tube with the first fluid supplied through the supply Of the fine particles to spray the second fluid into the reaction tube through the nozzles installed inside the reaction tube, and to suppress the interface expansion effect by the fine particles and the generation of fatty acid metal salts in the reaction tube. At least one of an effect, a chemical effect by heating the first fluid, and a physical mixing effect by turbulent flow inside the reaction tube, causes a transesterification reaction inside the reaction tube at a desired reaction rate, and a mixed fluid is produced. The mixed fluid inside the reaction tube is supplied to the inline mixer of the mixer unit, and the inline mixer is rotated by external power. Mixing the mixed fluid by a zigzag shape in a wing or fixed state, and the mixed fluid passing through the reaction tube or through the mixer unit is disposed in the first discharge pipe or the mixer unit outlet side disposed at the outlet of the reaction tube. It is discharged to the outside through the second discharge pipe disposed in the.
* 본 발명에 의하면, 반응관 내부에 공급된 제1 유체에 제2 유체를 노즐로 분사함으로써 소수성 물질 및 친수성 물질의 혼합 반응 생성물을 단시간에 고효율로 생산할 수 있다. 이때 미세 입자의 비표면적 증가로 인한 계면 확장 효과, 반응관 내부의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 제1 유체 가열에 의한 화학적 효과, 반응관 내부의 난류 유동 또는 믹서 유니트에 의한 물리적 혼합 효과 중 적어도 하나에 의하여 원하는 최적 반응 속도로 에스테르교환반응이 진행되는 장점이 있다. According to the present invention, a mixed reaction product of a hydrophobic substance and a hydrophilic substance can be produced in a short time and with high efficiency by injecting a second fluid into the first fluid supplied into the reaction tube with a nozzle. At this time, the interfacial expansion effect due to the increase of the specific surface area of the fine particles, the effect of the fine particles to suppress the generation of fatty acid metal salt in the reaction tube, the chemical effect by the first fluid heating, the turbulent flow inside the reaction tube or physical mixing by the mixer unit At least one of the effects has the advantage that the transesterification reaction proceeds at the desired optimum reaction rate.
[도면의 간단한 설명][Brief Description of Drawings]
도 1은 에스테르 교환 반응을 표현한 반응식이다.     1 is a scheme representing a transesterification reaction.
도 2는 미세 입자 분무에 의하여 계면의 표면적을 확장시킴으로써 반응 속도 및 반응 수율을 향상시키는 본 발명의 비동종상 유체의 반응 촉진 장치의 일 실시예를 도시한다.      FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying.
도 3은 도 2의 실시예를 대량 생산에 적합하도록 최적화한 실시예를 도시한다.     FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production.
도 4 내지 도 6은 반응관 내부를 촬영한 사진으로서, 도 4는 분사 전, 도 5는 분사 직후, 도 6은 최대 분사 상태를 나타낸다.     4 to 6 are photographs taken inside the reaction tube. FIG. 4 shows before injection, FIG. 5 immediately after injection, and FIG. 6 shows a maximum injection state.
도 7은 노즐 유무에 따른 혼합 유체의 생산성을 비교한 그래프이다.      7 is a graph comparing productivity of mixed fluids with and without nozzles.
[기술적 과제][Technical Challenges]
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 설명을 위하여 비동종상 유체의 대표적인 예로서 오일과 메톡사이드(Methoxide)를 들 수 있다. 오일 및 메톡사이드(Methoxide)는 에스테르 교환 반응을 하여 바이오 디젤이 되며, 오일 및 메톡사이드(Methoxide)의 혼합 유체가 바이오 디젤이 된다.     Representative non-homogeneous fluids for the purposes of the present invention include oil and methoxide. Oil and methoxide are transesterified to biodiesel, and the mixed fluid of oil and methoxide becomes biodiesel.
도 1은 에스테르 교환 반응을 표현한 반응식이다. 이를 참조하면 혼합 유체는 3가의 지방산에 글리세롤이 결합한 트라이글리세리드로부터 메탄올을 이용해 글리세롤을 분리한 다음, 지방산 에스테르를 만들어 내는 에스테르 교환 반응을 통하여 제조된다.     1 is a scheme representing a transesterification reaction. Referring to this, a mixed fluid is prepared through a transesterification reaction in which glycerol is separated using methanol from triglycerides in which glycerol is bound to trivalent fatty acids, and then produced fatty acid esters.
일반적으로 화학반응의 반응 속도에 영향을 미치는 요인들은, 예를 들면 반응물의 물리화학적 특성, 농도, 온도, 압력, 촉매, 그리고 서로 접촉할 수 있는 반응물의 능력을 들 수 있다. 이와 같이 화학반응 속도에 영향을 미치는 인자 중에서 반응물들 사이의 접촉면적을 극대화하는 것은 모든 화학반응에 있어서 공통적으로 요구되는 사항으로, 접촉을 통한 반응물 간 계면에서의 접촉 면적의 극대화와 체류 시간의 확보는 반응 속도와 반응 수율을 결정하는 중요한 인자이다.      In general, factors affecting the reaction rate of a chemical reaction include, for example, the physicochemical properties of the reactants, concentration, temperature, pressure, catalyst, and the ability of the reactants to contact each other. Maximizing the contact area between the reactants among the factors affecting the chemical reaction rate is a common requirement in all chemical reactions, and maximizes the contact area at the interface between the reactants and the retention time through the contact. Is an important factor in determining reaction rate and reaction yield.
그리고 반응 혼합물 사이에 수 마이크로미터 단위의 미립화된 무화상(automized) 입자의 물질이 반응 혼합물 사이에 반응 개시 직전에 제공될 수 있다면 반응의 양상은 단순한 물리적 혼합특성의 영역을 넘어서 화학 반응 특성의 양상까지도 변화가 가능하다.     And if a substance of atomized automized particles in the order of several micrometers between the reaction mixture can be provided just before the initiation of the reaction between the reaction mixtures, the aspect of the reaction goes beyond the range of simple physical mixing properties. Even change is possible.
반응 혼합물 사이에 접촉 면적의 극대화를 위한 중요한 인자 중의 하나가 바로 반응 혼합물들이 이루는 상(phase)과 상평형(phase equilibrium)이라 할 수 있다.      One of the important factors for maximizing the contact area between the reaction mixtures is the phase and phase equilibrium of the reaction mixtures.
일반적으로 상이란 물질의 상태에 따라 고상, 액상, 기상 또는 플라즈마와 같은 임계상이 있으며, 물과 에탄올과 같이 극성 유체로서 서로 동일한 성질을 갖는 경우 동종상(homogeneous phase) 유체라 볼 수 있고, 오일과 메탄올과 같이 서로 혼합되지 않으므로 상이한 성질을 갖는 경우 비동종상(heterogeneous phase) 유체라 볼 수 있다.      Generally, a phase is a critical phase such as a solid phase, a liquid phase, a gas phase, or a plasma depending on the state of a substance. When a phase has the same properties as a polar fluid such as water and ethanol, it can be regarded as a homogeneous phase fluid. Since they do not mix with each other like methanol, they can be regarded as heterogeneous phase fluids if they have different properties.
동종상 유체는 서로 쉽게 용해되거나 혼합되므로 경계면이 특별히 존재하지 않는다. 예를 들면 용기에 물을 채우고 여기에 에탄올을 추가하면 물과 에탄올은 같은 극성으로서 쉽게 혼합되므로 뚜렷한 경계면이 형성되지 않는다.      Homogeneous fluids are easily dissolved or mixed with each other so that no interface exists. For example, if a container is filled with water and ethanol is added to it, water and ethanol are easily mixed with the same polarity so that no distinct interface is formed.
반면에 비동종상 유체는 서로 용해되거나 혼합되지 않으므로 밀도 차이에 따라 뚜렷한 경계면이 존재한다. 예를 들면 용기에 오일을 채우고 여기에 메탄올을 추가하면 오일과 메탄올을 서로 다른 극성으로서 쉽게 혼합되지 않으므로 밀도 차이에 따라 용기의 하측 및 상측으로 서로 분리되어 뚜렷한 경계면이 형성된다.     On the other hand, non-homogeneous fluids do not dissolve or mix with each other, so there is a distinct interface due to the difference in density. For example, filling the vessel with oil and adding methanol to it does not easily mix the oil and the methanol with different polarities, so that the distinction between the bottom and the top of the vessel results in distinct densities, depending on the density difference.
따라서, 비동종상 유체끼리의 화학 반응은 오로지 경계면에서만 일어날 수 있는데, 경계면이 존재하지 않거나 경계면 위치에서 2 개의 비동종상 유체가 서로 격리되어 있다면 비동종상 유체의 화학 반응은 일어날 수 없다. 따라서, 비동종상      Thus, chemical reactions between non-homogeneous fluids can occur only at the interface, and if no interface exists or two non-homogeneous fluids are isolated from each other at the interface location, the chemical reaction of the non-homogeneous fluid cannot occur. Thus, non-homologous
유체의 화학적, 물리적 반응을 촉진하려면 경계면의 면적을 증가시키는 것이 중요하게 된다.Increasing the area of the interface becomes important to facilitate the chemical and physical reactions of the fluid.
이하에서 예를 드는 것과 같이, 비동종상 유체의 대표적인 예로서 소수성의 오일과 친수성의 메탄올을 반응시켜 혼합 유체인 바이오 디젤을 만드는 경우, 오일과 메탄올의 경계면을 확장시킴으로써 에스테르교환반응 속도를 증가시킬 수 있고, 결과적으로 바이오 디젤의 생성 속도를 촉진할 수 있다.     As exemplified below, when a biofluid of a mixed fluid is prepared by reacting hydrophobic oil with hydrophilic methanol as a representative example of a non-homogeneous fluid, the rate of transesterification can be increased by expanding the interface between oil and methanol. As a result, it is possible to accelerate the production rate of biodiesel.
일반적으로 2상(two phase) 반응이라고 불리우는 반응들은 고액 반응, 기액 반응과 같이 물질의 상이 다른 두 가지 반응물의 반응을 나타내는 말이다. 그런데, 에스테르교환반응에서처럼 소수성(hydrophobisity)기를 갖는 반응물과 친수성(hydrophilicity)기를 가지는 반응물들이 혼재하여 서로 잘 혼합되지 않는 경우 이들은 서로 동일한 액체 상태이지만 비동종상(heterogeneous phase) 유체 사이의 반응이므로 마치 2상 반응이 진행되는 것으로 볼 수 있다. 이러한 경우에는 반응 속도가 현저하게 떨어진다.      Reactions, generally called two-phase reactions, refer to the reaction of two reactants with different phases of matter, such as solid-liquid and gas-liquid reactions. However, when a reactant having a hydrophobisity group and a reactant having a hydrophilicity group do not mix well with each other, as in the transesterification reaction, they are reactions between the same liquid state but a heterogeneous phase fluid, so it is like a two-phase reaction. It can be seen that the reaction proceeds. In this case, the reaction rate drops significantly.
바이오 디젤은 유지의 주성분인 트리글레세라이드(triglyceride)에 알코올을 첨가시켜 반응하는 알코올 분해 반응(alcholysis)에 의한 혼합 유체이다. 바이오 디젤은 염기 또는 산 촉매를 이용하여 알코올과 유지의 에스테르 교환(transesterfication) 반응을 통하여 제조된다.      Biodiesel is a mixed fluid by alcohol decomposition in which alcohol is added to triglyceride which is a main component of fats and oils. Biodiesel is prepared through transesterfication of alcohols and fats and oils using base or acid catalysts.
그러나 바이오 디젤의 주원료인 동물성 또는 식물성 유지 및 재생유지는 주 성분이 트리글리세라이드(triglyceride)의 소수성기를 띄고 있고 일반적으로 알코올은 친수성기를 띄고 있어, 유지와 알코올은 상온, 상압에서는 서로 쉽게 용해되지 않는다.     However, the main raw material of the biodiesel animal or vegetable oils and oils and fats and oils maintain the hydrophobic group of the triglyceride (triglyceride) and the alcohol in general has a hydrophilic group, the oil and alcohol are not easily dissolved at room temperature, atmospheric pressure.
본 발명은 비동종성 유체로서 예를 들면 트리글리세라이드 또는 메탄올을 수 내지 수십 마이크로미터의 크기를 갖는 미세 입자로 분사시켜, 비동종성 유체가 이루는 경계면의 반응 면적을 증가시킴으로써 반응속도 및 반응 수율을 높이는 것을 특징으로 한다.      The present invention is to increase the reaction rate and the reaction yield by injecting triglyceride or methanol as fine particles having a size of several to several tens of micrometers as a non-homogeneous fluid, thereby increasing the reaction area of the interface formed by the non-homogeneous fluid. It features.
즉, 제1 유체에 해당하는 트리글리세라이드이나 제2 유체에 해당하는 메탄올 또는 메톡사이드를 포함한 비동종성 유체를 반응관 내부에 노즐(120)을 이용하여 안개 상태로 분사함으로써 에스테르교환반응의 반응 속도 및 반응 수율을 높일 수 있다.     That is, the reaction rate of the transesterification reaction by spraying a non-homogeneous fluid including triglyceride corresponding to the first fluid or methanol or methoxide corresponding to the second fluid in a mist state using the nozzle 120 inside the reaction tube and The reaction yield can be increased.
비동종상 유체의 반응 촉진 장치의 구체적 실시예를 바이오 디젤 생산 장치를 예로 들어 설명한다.      A specific embodiment of the reaction promoting device for a non-homogeneous fluid will be described taking a biodiesel production device as an example.
대표적인 예로서, '혼합 유체'의 하나가 바이오 디젤이고, '제1 유체'의 하나가 트리글레세라이드(triglyceride)이며, '제2 유체'의 하나가 메탄올 또는 메톡사이드(Methoxide)가 된다. 메톡사이드는 메탄올과 촉매(예를 들어 가성 소다)의 혼합물을 지칭한다.     As a representative example, one of the 'mixed fluids' is biodiesel, one of the 'first fluids' is triglyceride, and one of the 'second fluids' is methanol or methoxide. Methoxide refers to a mixture of methanol and a catalyst (eg caustic soda).
도 2는 미세 입자 분무에 의하여 계면의 표면적을 확장시킴으로써 반응 속도 및 반응 수율을 향상시키는 본 발명의 비동종상 유체의 반응 촉진 장치의 일 실시예를 도시한다. 도 3은 도 2의 실시예를 대량 생산에 적합하도록 최적화한 실시예를 도시한다. 도 2 및 도 3은 근본 작동 원리에 있어서 동일하므로 이를 함께 설명하기로 한다.     FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying. FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production. 2 and 3 are the same in their fundamental operating principle, so they will be described together.
도 2를 참조하면, 본 발명의 비동종상 유체의 반응 촉진 장치는, 노즐(120)의 미세 입자 분사에 의한 계면 확장에 의하여 에스테르교환반응 속도를 증가시키는 반응관(110)을 포함하며, 믹서의 물리적 혼합력에 의하여 에스테르교환반응 속도를 증가시키는 믹서 유니트(200)를 더 포함할 수 있다.     Referring to FIG. 2, the apparatus for promoting reaction of a non-homogeneous fluid of the present invention includes a reaction tube 110 for increasing a transesterification reaction rate by interfacial expansion by spraying fine particles of a nozzle 120. It may further include a mixer unit 200 for increasing the rate of transesterification by physical mixing.
일 실시예로서, 반응 유니트(100)는 반응관(110), 고정 플레이트(111), 고정봉(112), 노즐(120), 제1 배출관(190), 제1 밸브(195)를 구비한다.      In one embodiment, the reaction unit 100 includes a reaction tube 110, a fixing plate 111, a fixing rod 112, a nozzle 120, a first discharge pipe 190, and a first valve 195. .
제2 유체 공급부(320)를 통하여 공급된 제2 유체는 노즐(120)에 의하여 미세 입자로 분사된다. 노즐(120)은 제2 유체를 소정 분사 각도(θ)로 반응관(110) 내부에 분사한다. 반응관(110)의 길이(L) 및 직경(D)은, 노즐(120)의 분사 각도(θ), 분사 압력, 미세 입자의 크기, 반응관(110) 입구 및 출구의 직경에 따라 일정 수준 이상의 에스테르교환반응 속도를 얻을 수 있도록 최적화된다.     The second fluid supplied through the second fluid supply part 320 is injected into the fine particles by the nozzle 120. The nozzle 120 injects the second fluid into the reaction tube 110 at a predetermined injection angle θ. The length L and the diameter D of the reaction tube 110 are constant levels depending on the injection angle θ of the nozzle 120, the injection pressure, the size of the fine particles, and the diameter of the reaction tube 110 inlet and outlet. It is optimized to obtain the above transesterification rate.
반응관(110) 내부에는 노즐(120)에서 분사된 제2 유체가 제1 유체와 함께 높은 압력으로 혼합되므로 반응관(110)을 안정적으로 지지하기 위하여 반응관(110)의 양단부는 고정 플레이트(111) 사이에 끼어서 지지된다. 고정 플레이트(111)는 고정봉(112)에 의하여 결합되며 고정봉(112)의 인장력에 의하여 고정 플레이트(111) 및 반응관(110)이 단단히 결합된다.      In the reaction tube 110, since the second fluid injected from the nozzle 120 is mixed with the first fluid at a high pressure, both ends of the reaction tube 110 may be fixed to a plate to stably support the reaction tube 110. 111) is sandwiched between and supported. The fixing plate 111 is coupled by the fixing rod 112 and the fixing plate 111 and the reaction tube 110 are firmly coupled by the tensile force of the fixing rod 112.
반응관(110) 내부에는 제1 유체가 수용된다. 반응관(110) 내부에 설치되는 노즐(120)에 의하여 제2 유체가 미세 입자 상태로 분사되면 미립화 또는 무화상(automized phase) 상태에서 분사되기 때문에 계면 확장 효과에 의한 반응 속도가 촉진된다.      The first fluid is accommodated in the reaction tube 110. When the second fluid is injected into the fine particle state by the nozzle 120 installed inside the reaction tube 110, the reaction rate is accelerated by the interface expansion effect because the second fluid is injected in the atomized or automized phase state.
한편, 에스테르교환반응에 의해 발생하는 거품 상의 지방산 금속염이 고속 및 고압으로 분사되는 미세 입자에 의해 파쇄되기 때문에 반응 수율 및 반응 속도가 향상된다.      On the other hand, since the foamed fatty acid metal salt generated by the transesterification reaction is crushed by fine particles sprayed at high speed and high pressure, the reaction yield and reaction rate are improved.
또한, 노즐(120) 분사에 의한 운동 에너지 공급에 의하여 제2 유체인 메탄올 또는 메톡사이드의 미세 입자가 제1 유체인 오일과 에멀전 상태로 균일 혼합된다. 즉, 미세 입자 분사에 의한 계면 공학적인 물리 화학적 효과와, 노즐(120) 분사력에 의한 물리적 효과, 히터(390)의 온도 가열에 의한 화학적 효과에 따라 에스테르화 반응 속도가 획기적으로 증가한다.     In addition, fine particles of methanol or methoxide, which is a second fluid, are uniformly mixed in an emulsion state with oil, which is the first fluid, by kinetic energy supply by injection of the nozzle 120. That is, the esterification reaction rate is dramatically increased according to the interfacial engineering physicochemical effect by the fine particle injection, the physical effect by the injection force of the nozzle 120, and the chemical effect by the temperature heating of the heater 390.
반응관(110)의 입구 측에는 제1 유체를 공급하는 공급부(310)가 연결되고, 제1 유체는 펌프(380)에 의하여 공급 압력을 제공받는다. 반응관(110)의 출구 측에는 반응관(110) 내부의 혼합 유체를 배출하는 제1 배출관(190)이 연결된다.      A supply part 310 for supplying a first fluid is connected to an inlet side of the reaction tube 110, and the first fluid is supplied with a supply pressure by the pump 380. The outlet side of the reaction tube 110 is connected to the first discharge pipe 190 for discharging the mixed fluid inside the reaction tube 110.
반응관(110)의 직경은 공급부(310) 및 제1 배출관(190)의 직경보다 더 큰 것이 바람직하다.      The diameter of the reaction tube 110 is preferably larger than the diameter of the supply unit 310 and the first discharge tube 190.
노즐(120)의 분사 압력에 의하여 반응관(110) 내부의 유체가 반응관(110) 내부에서 불규칙한 난류 유동을 일으키면 에스테르교환반응 속도가 증가된다. 비압축성 연속 유체의 특성상 유체의 단위 시간당 유량은 반응관(110) 입구 및 출구에서 동일하다. 따라서 직경이 작은 공급부(310) 또는 제1 배출관(190)에 유체가 머무는 시간보다 직경이 큰 반응관(110) 내부에서 유체가 머무는 시간이 더 길면 반응 속도가 증가된다. 노즐(120) 단부의 제2 유체 분사 각도, 반응관(110)의 직경 및 길이가 상호 최적 설계되어 있으므로 에스테르교환반응 속도가 증진된다.     When the fluid inside the reaction tube 110 causes irregular turbulent flow in the reaction tube 110 due to the injection pressure of the nozzle 120, the rate of transesterification reaction is increased. Due to the nature of the incompressible continuous fluid, the flow rate per unit time of the fluid is the same at the inlet and outlet of the reaction tube 110. Therefore, the reaction rate is increased when the fluid stays inside the large reaction tube 110 longer than the fluid stays in the small diameter supply unit 310 or the first discharge pipe 190. Since the second fluid injection angle of the nozzle 120, the diameter and the length of the reaction tube 110 are optimally designed, the transesterification reaction rate is enhanced.
믹서 유니트(200)는 반응 유니트(100)에서 배출된 혼합 유체를 물리적으로 재혼합하여 에스테르교환반응 속도를 배가시키는 것으로, 인라인 믹서(210)를 구비한다.     The mixer unit 200 physically remixes the mixed fluid discharged from the reaction unit 100 to double the transesterification reaction rate, and includes an inline mixer 210.
인라인 믹서(210)는 외부 동력에 의하여 회전하는 날개를 그 내부에 구비할 수 있다. 그밖에, 도 2에 도시된 실시예에서는 고정된 상태에서 형상 특징에 의하여 유체의 난류 유동을 촉발하는 지그재그 형상의 스태틱 블레이드(static blade)(212)가 마련되며, 인라인 믹서(210)의 또 다른 실시예가 된다. 도 3에 도시된 실시예에서는 외부 동력에 의하여 회전되는 날개가 도시되어 있다.     The inline mixer 210 may have a blade that rotates by external power therein. In addition, in the embodiment shown in FIG. 2, a zigzag static blade 212 is provided which triggers turbulent flow of the fluid by the shape feature in a fixed state, and another embodiment of the inline mixer 210 is provided. Yes. In the embodiment shown in Figure 3 is shown a wing that is rotated by external power.
인라인 믹서(210)의 입구 측에는 제1 바이패스관(201)이 연결되며 출구 측에는 제2 배출관(290)이 연결된다. 제1 바이패스관(201)은 반응 유니트(100)의 출구에 해당하는 제1 배출관(190)이 연결된다. 제1 밸브(195)가 개방되면 제1 배출관(190)을 통하여 공급된 혼합 유체가 제1 바이패스관(201)을 거쳐 인라인 믹서(210)의 입구 측에 유입된다. 제1 밸브(195)가 폐쇄되는 경우는 믹서 유니트(200)의 작용없이 반응 유니트(100)만에 의한 에스테르 반응으로 혼합 유체를 생산한다.      The first bypass pipe 201 is connected to the inlet side of the inline mixer 210 and the second discharge pipe 290 is connected to the outlet side. The first bypass pipe 201 is connected to the first discharge pipe 190 corresponding to the outlet of the reaction unit 100. When the first valve 195 is opened, the mixed fluid supplied through the first discharge pipe 190 flows into the inlet side of the inline mixer 210 through the first bypass pipe 201. When the first valve 195 is closed, the mixed fluid is produced by the ester reaction by the reaction unit 100 alone without the action of the mixer unit 200.
제1 밸브(195)를 폐쇄하여 반응 유니트(100)만으로 혼합 유체를 생산할 것인지, 제1 밸브(195)를 개방하여 반응 유니트(100) 및 믹서 유니트(200)의 조합 작용에 의하여 혼합 유체를 생산할 것인지 여부는 다음에 열거하는 여러가지 요인들에 의하여 결정된다.      Whether to close the first valve 195 to produce a mixed fluid with the reaction unit 100 alone, or to open the first valve 195 to produce the mixed fluid by the combined action of the reaction unit 100 and the mixer unit 200. Whether or not is determined by several factors listed below.
즉, 제1 유체의 공급 압력, 제1 유체의 공급 유량, 제1 유체의 공급 온도, 제2 유체의 분사 압력, 제2 유체의 분사 유량, 제2 유체의 분사 각도, 제2 유체의 미세 입자 크기, 반응관(110)의 길이, 반응관(110)의 직경 등 다양한 변수에 따라 최적의 반응값에 따라 결정된다.      That is, the supply pressure of the first fluid, the supply flow rate of the first fluid, the supply temperature of the first fluid, the injection pressure of the second fluid, the injection flow rate of the second fluid, the injection angle of the second fluid, the fine particles of the second fluid The size, the length of the reaction tube 110, the diameter of the reaction tube 110 is determined according to the optimum response value according to various variables.
한편, 반응 유니트(100) 및 믹서 유니트(200)의 1회 순환에 한정되지 않고, 반응 유니트(100) 및 믹서 유니트(200)를 여러 번 반복 순환시키는 방법에 의하면 혼합 유체의 생산량은 저하되지만 혼합 유체의 순도를 향상시킬 수 있다. 반복 순환의 경우에는 믹서 유니트(200)의 출구 측과 반응 유니트(100)의 입구 측을 연결한다. 즉, 믹서 유니트(200)의 출구 측에 해당하는 제2 배출관(290)을 반응 유니트(100)의 입구 측에 해당하는 제2 바이패스관(301)에 연결한다. 제2 바이패스관(301)은 탱크(330)를 거쳐 공급부(310)와 연결된다.      On the other hand, the method is not limited to one cycle of the reaction unit 100 and the mixer unit 200, and according to the method of repeatedly circulating the reaction unit 100 and the mixer unit 200 several times, the amount of mixed fluid decreases but the mixing is performed. The purity of the fluid can be improved. In the case of repetitive circulation, the outlet side of the mixer unit 200 and the inlet side of the reaction unit 100 are connected. That is, the second discharge pipe 290 corresponding to the outlet side of the mixer unit 200 is connected to the second bypass pipe 301 corresponding to the inlet side of the reaction unit 100. The second bypass pipe 301 is connected to the supply unit 310 via the tank 330.
탱크(330)는 혼합 유체와 제1 유체가 함께 수용되는 저장 공간으로서, 버퍼 (buffer) 역할을 한다. 뿐만 아니라 탱크(330)는 히터(390)에 의하여 제1 유체가 가열되는 시간을 제공하는 공간이 된다.     The tank 330 is a storage space for accommodating the mixed fluid and the first fluid, and serves as a buffer. In addition, the tank 330 becomes a space for providing a time for the first fluid to be heated by the heater 390.
도 3은 대량 생산에 적합한 연속 생산 방식의 비동종상 유체의 반응 촉진 장치이다. 본 발명과 대비되는 비교 실시예로서 배치(batch) 방식의 반응 촉진 장치가 있다. 배치 방식의 반응 촉진 장치는 제1 유체가 수용된 커다란 용기에 제2 유체를 주입하면서 용기 내부에서 교반 날개를 회전시켜 제1 유체 및 제2 유체를 섞이게 한 다음 반응이 완료되면 용기 내의 혼합 유체를 배출하고 용기 내부에 새로운 제1 유체를 채우는 배치 방식으로 동작한다.     3 is a reaction promoting device for a non-homogeneous fluid in a continuous production mode suitable for mass production. As a comparative example, in contrast to the present invention, there is a batch reaction promoting device. The batch reaction promoting device injects a second fluid into a large container containing the first fluid, while rotating the stirring blade inside the container to mix the first fluid and the second fluid, and then discharge the mixed fluid in the container when the reaction is completed. And a batch manner of filling a new first fluid inside the vessel.
그러나 이러한 배치 방식은 유체의 공급 및 배출 타이밍이 정해져 있으므로 연속적인 동작이 불가능하고 간헐적으로 동작하며 반응 속도 또한 본 발명의 반응 촉진 장치에 비하여 훨씬 느리다.      However, this arrangement method has a fixed supply and discharge timing of the fluid, so that continuous operation is impossible and intermittent operation, and the reaction speed is much slower than the reaction promoting device of the present invention.
도 3의 연속 동작식 반응 촉진 장치는 반응관에 제1 유체가 연속적으로 공급되고 반응관 내부에 설치된 노즐이 연속적으로 제2 유체를 공급하며, 반응관은 이들 비동종성 유체의 반응이 충분히 일어날 수 있을 만큼의 충분한 길이를 갖고 연장되고, 노즐의 분사 각도와 분사 압력 및 노즐 구멍의 크기는 반응관 내부에 충분한 난류 유동이 일으키게 되어 있으며, 노즐 분사에 의한 제2 유체의 경계면의 면적이 최대화될 수 있도록 최적화되어 있으므로 신속하고 일정한 반응성을 얻을 수 있다.     In the continuous operation reaction promoter of FIG. 3, the first fluid is continuously supplied to the reaction tube, and the nozzle installed inside the reaction tube continuously supplies the second fluid, and the reaction tube is capable of sufficiently reacting these non-homogeneous fluids. It extends with a sufficient length so that the injection angle of the nozzle, the injection pressure and the size of the nozzle hole cause sufficient turbulent flow inside the reaction tube, and the area of the interface of the second fluid by the nozzle injection can be maximized. It is optimized to ensure fast and consistent reactivity.
도 3에서 믹서 유니트(200)는 그 내부에 회전식 날개나 고정식 블레이드가 설치되어 기계적인 교반 작용을 추가할 수 있지만, 날개나 블레이드를 설치하지 않고 세틀러(settler)로 사용할 수 있다. 여기서 세틀러는 분리 깔때기의 기능을 한다.      In FIG. 3, the mixer unit 200 may have a rotary blade or a fixed blade installed therein to add mechanical stirring, but may be used as a setler without installing the blade or blade. Here the settler functions as a separating funnel.
도 2에 도시된 바와 같이 트리글레세라이드(triglyceride)와 메탄올, 메톡사이드의 반응물로서 비중이 큰 글리세롤과 비중이 작은 메틸에스테르가 얻어진다. 이때, 글리세롤과 메틸에스테르는 세틀러 기능을 하는 믹서 유니트(200) 내부에서 아무런 교반 작용없이 가만히 놓아두면 정지된 상태에서 비중 차이에 의하여 서로 분리된다. 믹서 유니트(200)의 상부에 분리된 메틸에스테르는 바이오 디젤로서 배출되고, 하부에 분리된 글리세롤은 별도로 배출된다.      As shown in Figure 2 triglyceride (triglyceride), methanol, methoxide as a reactant of a large specific gravity glycerol and a small specific gravity methyl ester is obtained. At this time, the glycerol and methyl ester are separated from each other by the difference in specific gravity in the stopped state if left still without any stirring action inside the mixer unit 200 that functions as a settler. The methyl ester separated at the top of the mixer unit 200 is discharged as biodiesel, and the glycerol separated at the bottom is discharged separately.
도 2 및 도 3에 도시된 비동종상 유체의 반응 촉진 장치에 대하여 다양한 운전 모드 별로 생산 방법을 요약하면 다음과 같다.     The production method for various reaction modes for the reaction promotion apparatus of the non-homogeneous fluid illustrated in FIGS. 2 and 3 is as follows.
(1) 반응 유니트(100)만에 의한 생산 방법(제1 모드) :      (1) Production method by the reaction unit 100 only (first mode):
펌프(380)를 구동하여 공급부(310)에 제1 유체를 공급한다. 여기서 히터(390)로 제1 유체를 가열하여 반응 속도 증가에 최적인 제1 유체 온도로 맞추어 준다. 펌프(380) 및 공급부(310) 사이에는 탱크(390)가 설치되어 임시 저장 공간 및 히터(390)의 가열 공간으로서 사용된다.      The pump 380 is driven to supply the first fluid to the supply unit 310. Here, the first fluid is heated by the heater 390 to adjust the temperature of the first fluid that is optimal for increasing the reaction rate. A tank 390 is installed between the pump 380 and the supply part 310 to be used as a temporary storage space and a heating space of the heater 390.
공급부(310)를 통하여 공급된 제1 유체는 반응관(110)을 채운다. 반응관(110) 내부에 설치된 노즐(120)을 통하여 제2 유체를 미세 입자로 분사한다. 미세 입자에 의한 계면 확장 효과, 거품 상의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 제1 유체 가열에 의한 화학적 효과, 반응관(110) 내부의 난류 유동에 의한 물리적 혼합 효과에 의하여 원하는 반응 속도로 반응관(110) 내부에서 에스테르교환반응이 일어난다.     The first fluid supplied through the supply unit 310 fills the reaction tube 110. The second fluid is injected into the fine particles through the nozzle 120 installed inside the reaction tube 110. At the desired reaction rate by the interfacial expansion effect by the fine particles, the effect of the fine particles to suppress the generation of fatty acid metal salts on the foam, the chemical effect by the first fluid heating, the physical mixing effect by the turbulent flow inside the reaction tube 110 The transesterification reaction takes place inside the reaction tube (110).
반응관(110) 내부의 혼합 유체는 제1 배출관(190) 및 제1 밸브(195)를 거쳐 외부로 배출된다. 이때, 제1 밸브(195)는 개방 상태이고, 반응 유니트(100) 및 믹서 유니트(200)를 연결하는 제2 밸브(295)는 폐쇄 상태이다.     The mixed fluid inside the reaction tube 110 is discharged to the outside via the first discharge pipe 190 and the first valve 195. At this time, the first valve 195 is in an open state, and the second valve 295 connecting the reaction unit 100 and the mixer unit 200 is in a closed state.
(2) 반응 유니트(100) 및 믹서 유니트(200) 1 순환에 의한 생산 방법(제2 모드) :      (2) Production method by the circulation of reaction unit 100 and mixer unit 200 (second mode):
펌프(380)를 구동하여 탱크(330) 내부에 제1 유체를 공급하고, 히터(390)로 제1 유체를 가열한다.      The pump 380 is driven to supply the first fluid into the tank 330, and the first fluid is heated by the heater 390.
반응관(110)에 제1 유체가 채워지면 노즐(120)을 통하여 제2 유체가 분사된다. 에스테르교환반응이 1차 진행된 혼합 유체는 제1 배출관(190), 제1 바이패스관(201)을 거쳐 믹서 유니트(200)로 공급된다. 여기서, 제1 밸브(195)는 폐쇄 상태이므로 혼합 유체가 외부로 배출되지 못한다.     When the first fluid is filled in the reaction tube 110, the second fluid is injected through the nozzle 120. The mixed fluid having the first transesterification reaction is supplied to the mixer unit 200 via the first discharge pipe 190 and the first bypass pipe 201. Here, since the first valve 195 is in a closed state, the mixed fluid cannot be discharged to the outside.
상기 혼합 유체는 유체의 연속성에 의하여 인라인 믹서(210) 내부를 유동하며 스태틱 블레이드(212)와 마찰 및 충돌에 의한 물리적 혼합력에 의하여 에스테르 교환반응이 2차 진행된다.     The mixed fluid flows inside the in-line mixer 210 due to the continuity of the fluid, and the transesterification reaction is secondarily performed by the physical mixing force caused by friction and collision with the static blade 212.
인라인 믹서(210)를 통과한 혼합 유체는 제2 배출관(290) 및 제2 밸브(295)를 거쳐 외부로 배출된다. 이때, 믹서 유니트(200) 및 탱크(330) 사이에 위치한 제3 밸브(395)는 폐쇄 상태이다.     The mixed fluid passing through the in-line mixer 210 is discharged to the outside via the second discharge pipe 290 and the second valve 295. At this time, the third valve 395 located between the mixer unit 200 and the tank 330 is in a closed state.
(3) 반응 유니트(100) 및 믹서 유니트(200)의 반복 순환에 의한 생산 방법(제3 모드) :      (3) Production method by repeated circulation of reaction unit 100 and mixer unit 200 (third mode):
펌프(380) 구동, 히터(390) 가열, 노즐(120) 분사, 인라인 믹서(210)의 동작은 상술한 것과 동일하다.      The operation of the pump 380, the heating of the heater 390, the spraying of the nozzle 120, and the operation of the inline mixer 210 are the same as described above.
인라인 믹서(210)를 통과한 혼합 유체는 제2 배출관(290) 및 제2 바이패스관(301)을 통하여 탱크(330) 및 반응 유니트(100)로 재공급된다. 반응 유니트(100) 및 믹서 유니트(200)를 반복 순환하면서 에스테르교환반응이 반복적으로 진행된다. 반응이 완료되면 펌프(380)의 구동을 중지하고 탱크(330) 내부에 수용된 혼합 유체를 외부로 배출한다.     The mixed fluid that has passed through the inline mixer 210 is resupplied to the tank 330 and the reaction unit 100 through the second discharge pipe 290 and the second bypass pipe 301. The transesterification reaction proceeds repeatedly while repeatedly cycling the reaction unit 100 and the mixer unit 200. When the reaction is completed, the driving of the pump 380 is stopped and the mixed fluid contained in the tank 330 is discharged to the outside.
반응 중에, 제1 밸브(195) 및 제2 밸브(295)는 폐쇄 상태이며, 제2 배출관(290) 및 제2 바이패스관(301)을 연결하는 제3 밸브(395)는 개방 상태이다.     During the reaction, the first valve 195 and the second valve 295 are in a closed state, and the third valve 395 connecting the second discharge pipe 290 and the second bypass pipe 301 is in an open state.
도 4 내지 도 6은 반응 유니트(100) 내부를 촬영한 사진으로서, 도 4는 분사 전, 도 5는 분사 직후, 도 6은 최대 분사 상태를 나타낸다. 분사 정도에 따라 반응관(110) 내부의 난류 유동 상태 및 미세 입자의 계면 확장 효과에 따른 획기적인 반응성 증대를 가시적으로 볼 수 있다.      4 to 6 are photographs taken inside the reaction unit 100. FIG. 4 shows before the injection, FIG. 5 immediately after the injection, and FIG. 6 shows the maximum injection state. Depending on the degree of injection, it is possible to visually see a dramatic increase in reactivity due to the turbulent flow state inside the reaction tube 110 and the effect of interfacial expansion of the fine particles.
도 7은 노즐(120) 유무에 따른 혼합 유체의 생산성을 비교한 그래프이다.     7 is a graph comparing the productivity of the mixed fluid with or without the nozzle 120.
이를 참조하면, 노즐(120)을 이용한 반응의 경우 메틸에스테르(Methylester)의 함량이 노즐(120)이 마련되지 않은 경우보다 더 짧은 시간 내에 최대값에 도달하였음을 알 수 있고, 이는 계면 확장 효과를 확인해 주는 결과로서 노즐(120)을 사용한 반응의 수율은 그렇지 않은 경우보다 휠씬 높은 것을 알 수 있다.      Referring to this, in the case of the reaction using the nozzle 120, it can be seen that the methylester content reached a maximum value in a shorter time than when the nozzle 120 was not provided. As a result of confirming, it can be seen that the yield of the reaction using the nozzle 120 is much higher than otherwise.
[부호의 설명][Description of the code]
100 : 반응 유니트 110 : 반응관     100: reaction unit 110: reaction tube
111 : 고정 플레이트 112 : 고정봉     111: fixing plate 112: fixing rod
120 : 노즐 190 : 제1 배출관     120: nozzle 190: first discharge pipe
195 : 제1 밸브 200 : 믹서 유니트     195: first valve 200: mixer unit
201 : 제1 바이패스관 210 : 인라인 믹서     201: first bypass pipe 210: inline mixer
212 : 스태틱 블레이드 290 : 제2 배출관     212: static blade 290: second discharge pipe
295 : 제2 밸브 301 : 제2 바이패스관     295: 2nd valve 301: 2nd bypass pipe
310 : 공급부 320 : 제2 유체 공급부     310: supply part 320: second fluid supply part
330 : 탱크 380 : 펌프     330 tank 380 pump
381 : 펌프 연결관 390 : 히터     381: pump connector 390: heater
395 : 제3 밸브     395: third valve
도 1은 에스테르 교환 반응을 표현한 반응식이다.1 is a scheme representing a transesterification reaction.
도 2는 미세 입자 분무에 의하여 계면의 표면적을 확장시킴으로써 반응 속도 및 반응 수율을 향상시키는 본 발명의 비동종상 유체의 반응 촉진 장치의 일 실시예를 도시한다. FIG. 2 shows one embodiment of the reaction promotion apparatus of the non-homogeneous fluid of the present invention which improves the reaction rate and the reaction yield by expanding the surface area of the interface by fine particle spraying.
도 3은 도 2의 실시예를 대량 생산에 적합하도록 최적화한 실시예를 도시한다.FIG. 3 shows an embodiment in which the embodiment of FIG. 2 is optimized for mass production.
도 4 내지 도 6은 반응관 내부를 촬영한 사진으로서, 도 4는 분사 전, 도 5는 분사 직후, 도 6은 최대 분사 상태를 나타낸다.4 to 6 are photographs taken inside the reaction tube. FIG. 4 shows before injection, FIG. 5 immediately after injection, and FIG. 6 shows a maximum injection state.
도 7은 노즐 유무에 따른 혼합 유체의 생산성을 비교한 그래프이다.7 is a graph comparing productivity of mixed fluids with and without nozzles.

Claims (7)

  1. 서로 용해되지 않는 제1 유체 및 제2 유체를 포함한 비동종상(heterogeneous phase) 유체의 반응 촉진을 위하여, 상기 제1 유체가 수용되는 반응관과, 상기 반응관 내부에 상기 제2 유체를 미세 입자로 분사하는 노즐을 포함하는 비동종상 유체의 반응 촉진 장치에 있어서, In order to promote the reaction of a heterogeneous phase fluid including a first fluid and a second fluid that do not dissolve together, a reaction tube in which the first fluid is accommodated, and the second fluid in the reaction tube as fine particles. In the reaction promoting device for a non-homogeneous fluid comprising a nozzle for injecting,
    상기 반응관은 상기 노즐의 분사 방향을 따라 연장되며,The reaction tube extends along the spray direction of the nozzle,
    상기 반응관의 입구 측에는 상기 제1 유체를 공급하는 공급부가 연결되고,A supply unit for supplying the first fluid is connected to the inlet side of the reaction tube,
    상기 제1 유체는 펌프에 의하여 공급 압력을 제공받으며, The first fluid is supplied with a supply pressure by a pump,
    상기 반응관의 출구 측에는 상기 반응관 내부의 혼합 유체가 배출되는 제1 배출관이 연결되고,A first discharge pipe for discharging the mixed fluid inside the reaction tube is connected to the outlet side of the reaction tube,
    상기 반응관의 직경은 상기 공급부 및 상기 제1 배출관의 직경보다 더 큰 것을 특징으로 하는 비동종상 유체의 반응 촉진 장치.The diameter of the reaction tube is greater than the diameter of the supply portion and the first discharge tube, the reaction promoter of the non-homogeneous fluid, characterized in that.
  2. 제1항에 있어서,The method of claim 1,
    상기 노즐 분사에 따른 상기 제2 유체의 계면 확장 효과에 의하여 상기 제1 유체 및 상기 제2 유체의 반응이 촉진되고,Reaction of the first fluid and the second fluid is promoted by the interface expansion effect of the second fluid according to the nozzle injection,
    상기 노즐이 분사되는 동안 상기 제1 유체 및 상기 제2 유체가 연속적으로 반응되는 것을 특징으로 하는 비동종상 유체의 반응 촉진 장치.Wherein said first fluid and said second fluid are continuously reacted while said nozzle is being injected.
  3. 제1항에 있어서, The method of claim 1,
    상기 반응관에서 배출되는 상기 제1 유체 및 상기 제2 유체의 혼합 유체를 물리적으로 혼합하여 반응 속도를 증가시키는 믹서 유니트를 더 포함하는 것을 특징으로 하는 비동종상 유체의 반응 촉진 장치And a mixer unit for physically mixing the mixed fluid of the first fluid and the second fluid discharged from the reaction tube to increase the reaction rate.
  4. 제3항에 있어서,The method of claim 3,
    상기 믹서 유니트는 상기 제1 유체 및 상기 제2 유체의 혼합 유체를 믹싱하는 인라인 믹서를 포함하며, The mixer unit includes an inline mixer for mixing the mixed fluid of the first fluid and the second fluid,
    상기 인라인 믹서는 유체를 혼합하는 지그재그 형상의 스태틱 블레이드를 구비하고,The in-line mixer has a zigzag static blade for mixing the fluid,
    상기 제1 유체를 상기 반응관에 1회 통과시킨 다음 상기 반응관의 출구 측에서 상기 혼합 유체를 입수하는 제1 모드, 상기 제1 유체를 상기 반응관 및 상기 믹서 유니트에 각각 1회 통과시킨 다음 상기 믹서 유니트의 출구 측에서 상기 혼합 유체를 입수하는 제2 모드, 상기 제1 유체를 상기 반응관 및 상기 믹서 유니트에 복수로 반복 통과시킨 다음 상기 반응관의 출구 측 또는 상기 믹서 유니트의 출구 측에서 상기 혼합 유체를 입수하는 제3 모드 중 어느 하나의 모드에서 상기 혼합 유체를 생산하는 것을 특징으로 하는 비동종상 유체의 반응 촉진 장치. The first fluid is passed through the reaction tube once, and then in a first mode of obtaining the mixed fluid at the outlet side of the reaction tube, and the first fluid is passed through the reaction tube and the mixer unit once, respectively. A second mode of receiving the mixed fluid at the outlet side of the mixer unit, repeatedly passing the first fluid through the reaction tube and the mixer unit a plurality of times, and then at the outlet side of the reaction tube or at the outlet side of the mixer unit And / or to produce the mixed fluid in any one of the third modes of obtaining the mixed fluid.
  5. 제3항에 있어서, The method of claim 3,
    상기 제1 유체를 가압하는 펌프,A pump for pressurizing the first fluid,
    상기 펌프 및 상기 반응관 사이에 배치되어 상기 제1 유체의 임시 수용 공간이 되는 탱크,A tank disposed between the pump and the reaction tube to become a temporary receiving space of the first fluid,
    상기 반응관의 입구 측에서 상기 제1 유체를 공급하는 공급부,Supply unit for supplying the first fluid at the inlet side of the reaction tube,
    상기 반응관 내부의 혼합 유체가 배출되는 상기 반응관 출구측의 제1 배출관, A first discharge pipe on the reaction tube outlet side through which the mixed fluid inside the reaction pipe is discharged;
    상기 제1 배출관 및 상기 믹서 유니트의 입구 측을 연결하는 제1 바이패스관, A first bypass pipe connecting the first discharge pipe and the inlet side of the mixer unit,
    상기 제1 바이패스관 및 상기 제1 배출관의 연결 상태를 개폐하는 제1 밸브,A first valve for opening and closing a connection state between the first bypass pipe and the first discharge pipe,
    상기 믹서 유니트의 출구 측에 연결되는 제2 배출관,A second discharge pipe connected to an outlet side of the mixer unit,
    상기 제2 배출관을 상기 반응 유니트의 입구 측에 연결시키는 제2 바이패스관,A second bypass pipe connecting the second discharge pipe to an inlet side of the reaction unit,
    상기 제2 배출관 및 상기 제2 바이패스관의 연결 상태를 개폐하는 제2 밸브,A second valve for opening and closing a connection state between the second discharge pipe and the second bypass pipe,
    상기 제2 바이패스관을 상기 펌프에 연결하는 펌프 연결관을 포함하고,A pump connecting pipe connecting the second bypass pipe to the pump;
    상기 제1 유체를 상기 반응관에 1회 통과시킴으로써 상기 혼합 유체를 생산하는 경우 상기 제2 밸브는 폐쇄되고 상기 제1 밸브가 개방되어 상기 제1 배출관을 통하여 상기 혼합 유체를 입수하고,When producing the mixed fluid by passing the first fluid through the reaction tube once, the second valve is closed and the first valve is opened to obtain the mixed fluid through the first discharge pipe,
    상기 제1 유체를 상기 반응관 및 상기 믹서 유니트에 1회 통과시킴으로써 상기 혼합 유체를 생산하는 경우 상기 제1 밸브는 폐쇄되고 상기 제2 밸브가 개방되어 상기 제2 배출관을 통하여 상기 혼합 유체를 입수하며,When the mixed fluid is produced by passing the first fluid through the reaction tube and the mixer unit once, the first valve is closed and the second valve is opened to obtain the mixed fluid through the second discharge pipe. ,
    상기 제1 유체를 상기 반응관 및 상기 믹서 유니트에 복수로 반복 통과시킴으로써 상기 혼합 유체를 생산하는 경우 상기 제2 밸브를 폐쇄하고 상기 제1 밸브를 개방한 상태에서 상기 제1 배출관을 통하여 상기 혼합 유체를 입수하거나 상기 제1 밸브를 폐쇄하고 상기 제2 밸브를 개방한 상태에서 상기 제2 배출관을 통하여 상기 혼합 유체를 입수하는 것을 특징으로 하는 비동종상 유체의 반응 촉진 장치. When the mixed fluid is produced by repeatedly passing the first fluid through the reaction tube and the mixer unit a plurality of the mixed fluid through the first discharge pipe with the second valve closed and the first valve opened. The apparatus for accelerating the reaction of a non-homogeneous fluid, wherein the mixed fluid is obtained through the second discharge pipe in a state of obtaining or closing the first valve and opening the second valve.
  6. 펌프를 구동하여 공급부에 제1 유체를 공급하고, Driving the pump to supply the first fluid to the supply,
    히터로 상기 제1 유체를 가열하며, Heating the first fluid with a heater,
    상기 공급부를 통하여 공급된 제1 유체로 반응관을 채우고,Filling the reaction tube with the first fluid supplied through the supply,
    상기 반응관 내부에 설치된 노즐을 통하여 제2 유체를 미세 입자로 상기 반응관 내부에 분사하며,The second fluid is injected into the reaction tube with fine particles through a nozzle installed inside the reaction tube,
    상기 미세 입자에 의한 계면 확장 효과, 상기 반응관 내부의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 상기 제1 유체의 가열에 의한 화학적 효과, 상기 반응관 내부의 난류 유동에 의한 물리적 혼합 효과 중 적어도 하나에 의하여 원하는 반응 속도로 상기 반응관 내부에서 혼합 유체가 생성되고,At least one of an interfacial expansion effect by the fine particles, an effect of the fine particles suppressing the generation of fatty acid metal salts in the reaction tube, a chemical effect by heating the first fluid, and a physical mixing effect by the turbulent flow inside the reaction tube By one, a mixed fluid is produced inside the reaction tube at a desired reaction rate,
    상기 반응관 내부의 상기 혼합 유체는 상기 반응관 출구 측의 제1 배출관을 거쳐 외부로 배출되는 것을 특징으로 하는 비동종상 유체의 반응 촉진 방법.The mixed fluid inside the reaction tube is discharged to the outside via the first discharge pipe of the reaction tube outlet side, characterized in that for promoting the reaction of the homogeneous fluid.
  7. 펌프를 구동하여 공급부에 제1 유체를 공급하고, Driving the pump to supply the first fluid to the supply,
    히터로 상기 제1 유체를 가열하며, Heating the first fluid with a heater,
    상기 공급부를 통하여 공급된 제1 유체로 반응관을 채우고,Filling the reaction tube with the first fluid supplied through the supply,
    상기 반응관 내부에 설치된 노즐을 통하여 제2 유체를 미세 입자로 상기 반응관 내부에 분사하며,The second fluid is injected into the reaction tube with fine particles through a nozzle installed inside the reaction tube,
    상기 미세 입자에 의한 계면 확장 효과, 상기 반응관 내부의 지방산 금속염 발생을 억제하는 미세 입자의 효과, 상기 제1 유체의 가열에 의한 화학적 효과, 상기 반응관 내부의 난류 유동에 의한 물리적 혼합 효과 중 적어도 하나에 의하여 원하는 반응 속도로 상기 반응관 내부에서 혼합 유체가 생성되고,At least one of an interfacial expansion effect by the fine particles, an effect of the fine particles suppressing the generation of fatty acid metal salts in the reaction tube, a chemical effect by heating the first fluid, and a physical mixing effect by the turbulent flow inside the reaction tube By one, a mixed fluid is produced inside the reaction tube at a desired reaction rate,
    상기 반응관 내부의 상기 혼합 유체는 믹서 유니트의 인라인 믹서로 공급되며, The mixed fluid inside the reaction tube is supplied to the in-line mixer of the mixer unit,
    상기 인라인 믹서는 외부 동력에 의하여 회전하는 날개 또는 고정된 상태에서 지그재그 형상에 의하여 상기 혼합 유체를 믹싱하고,The in-line mixer mixes the mixed fluid by a blade rotating in the external power or in a fixed state in a zigzag shape,
    상기 반응관 내부 또는 상기 믹서 유니트를 통과한 상기 혼합 유체는 상기 반응관 출구 측에 배치된 제1 배출관 또는 상기 믹서 유니트 출구 측에 배치된 제2 배출관을 통하여 외부로 배출되는 것을 특징으로 하는 비동종상 유체의 반응 촉진 방법.The mixed fluid passing through the reaction tube inside or through the mixer unit is discharged to the outside through a first discharge pipe disposed at the reaction tube outlet side or a second discharge pipe disposed at the mixer unit outlet side. Method of promoting the reaction of a fluid.
PCT/KR2011/005757 2011-08-08 2011-08-08 Heterogeneous phase reaction accelerating apparatus and method for a fluid WO2013022126A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147006169A KR101580583B1 (en) 2011-08-08 2011-08-08 Device and methods for accelerating reaction of liquids having heterogeneous phase
PCT/KR2011/005757 WO2013022126A1 (en) 2011-08-08 2011-08-08 Heterogeneous phase reaction accelerating apparatus and method for a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005757 WO2013022126A1 (en) 2011-08-08 2011-08-08 Heterogeneous phase reaction accelerating apparatus and method for a fluid

Publications (1)

Publication Number Publication Date
WO2013022126A1 true WO2013022126A1 (en) 2013-02-14

Family

ID=47668620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005757 WO2013022126A1 (en) 2011-08-08 2011-08-08 Heterogeneous phase reaction accelerating apparatus and method for a fluid

Country Status (2)

Country Link
KR (1) KR101580583B1 (en)
WO (1) WO2013022126A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111097360B (en) * 2018-10-25 2021-10-01 中国石油化工股份有限公司 Heterogeneous reactor with micro-porous nozzle structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502638A2 (en) * 1991-03-04 1992-09-09 Ciba Corning Diagnostics Corp. Automated analyzer
US5977251A (en) * 1996-04-01 1999-11-02 The Dow Chemical Company Non-adiabatic olefin solution polymerization
US6159442A (en) * 1997-08-05 2000-12-12 Mfic Corporation Use of multiple stream high pressure mixer/reactor
US20020068836A1 (en) * 2000-05-22 2002-06-06 Monsanto Company Reaction systems for making N- (phosphonomethyl) glycine compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110011092A (en) * 2009-07-27 2011-02-08 정민아 Emulsion mixing device
JP2011178977A (en) * 2010-03-01 2011-09-15 Kanso:Kk Apparatus and method for producing emulsion fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502638A2 (en) * 1991-03-04 1992-09-09 Ciba Corning Diagnostics Corp. Automated analyzer
US5977251A (en) * 1996-04-01 1999-11-02 The Dow Chemical Company Non-adiabatic olefin solution polymerization
US6159442A (en) * 1997-08-05 2000-12-12 Mfic Corporation Use of multiple stream high pressure mixer/reactor
US20020068836A1 (en) * 2000-05-22 2002-06-06 Monsanto Company Reaction systems for making N- (phosphonomethyl) glycine compounds

Also Published As

Publication number Publication date
KR101580583B1 (en) 2015-12-29
KR20140088856A (en) 2014-07-11

Similar Documents

Publication Publication Date Title
JP4418432B2 (en) Production method of biodiesel oil
Choedkiatsakul et al. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production
CA3012648A1 (en) A liquid plasma discharge device and method for biodiesel synthesis using same
WO2013022126A1 (en) Heterogeneous phase reaction accelerating apparatus and method for a fluid
US20100163402A1 (en) System for alternative fuel with high efficiency of loop reactor and method thereof
US20090293346A1 (en) Integrated reactor and centrifugal separator and uses thereof
CN106732309B (en) A kind of injecting type shell-and-tube reactor and its reaction method for alkylated reaction
CN111359539A (en) Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance
Boffito et al. Transesterification of triglycerides in a new ultrasonic-assisted mixing device
EP0057659A2 (en) Draft tube type reactor with centrally arranged auxiliary agitator
CN107586622A (en) The method that aliphatic acid is prepared by ester hydrolysis
CN210385872U (en) Rapid mixing and reaction device
KR100927858B1 (en) Reverse reaction prevention reactor
CN105642217A (en) Transportation-reinforced external circulation type alkylation reactor and alkylation reaction method
CN101947428B (en) Stirring type reaction kettle
RU166697U1 (en) DEVICE FOR PRODUCTION OF HIGH-OCTANE COMPONENTS OF MOTOR FUELS IN THE PRESENCE OF HYDROGEN HYDROGEN, POSSIBLE OPERATION WITH A HIGH REAGENT FLOW RATE
CN206173356U (en) Meal kitchen waste oil system biodiesel's transesterification ware
CN1952048A (en) Production process of biological diesel oil
CN206109357U (en) High adaptability serialization biodiesel processingequipment
CN210675127U (en) Circulating injection gas-liquid reaction device
KR102153430B1 (en) Biodiesel separation tank that detects layer separation using electrical conductivity and acceleration of layer separation using high voltage and low current when manufacturing bio heavy oil and bio diesel
CN217068859U (en) Heterogeneous reaction kettle
CN214159590U (en) Ethanolamine production equipment with mixing reactor
Boffito et al. Batch and continuous ultrasonic reactors for the production of methyl esters from vegetable oils
WO2022102871A1 (en) Cavitation generator having impeller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147006169

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11870726

Country of ref document: EP

Kind code of ref document: A1