WO2013045308A1 - Laser soldering of silicon carbide-based materials - Google Patents

Laser soldering of silicon carbide-based materials Download PDF

Info

Publication number
WO2013045308A1
WO2013045308A1 PCT/EP2012/068302 EP2012068302W WO2013045308A1 WO 2013045308 A1 WO2013045308 A1 WO 2013045308A1 EP 2012068302 W EP2012068302 W EP 2012068302W WO 2013045308 A1 WO2013045308 A1 WO 2013045308A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
based materials
sic
laser
critical defects
Prior art date
Application number
PCT/EP2012/068302
Other languages
German (de)
French (fr)
Inventor
Andreas Kienzle
Tanja Damjanovic
Albin Von Ganski
Blasius Hell
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Publication of WO2013045308A1 publication Critical patent/WO2013045308A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • path energy should be varied depending on the gap size to get the best possible soldering result.
  • the laser beam soldering is preferably carried out at a temperature of 1200 ° C to 1850 ° C.
  • pretreatment for example, metallization
  • mechanical tools for example degreasing or dedusting.
  • Lotzusannnnener one with the constituents contained in the ceramic base material of compounds or elements SiC and / or Si and / or C is used.
  • a powder of a solder composition is formed, worked up this powder with an organic binder in pasty form or as a suspension and the sections or parts or joining gaps of the molded body to be soldered coated over the entire surface with the resulting paste or suspension or inserted into the joint gap.
  • the powder of a solder composition is processed into compacts and the compacts are locally melted on the portions or parts or joining gaps of the parts to be soldered by the action of a laser or lasers.
  • a temperature of at least 1200 ° C. is preferably achieved by the laser light at the section edges and in the joint gap.
  • the silicon carbide-based materials whose critical defects are to be corrected by laser beam soldering are preferably selected from silicon carbide ("PLS-SiC”) silicon-infiltrated silicon carbide (“SiSiC” or “RBSC”), porous recrystallized silicon carbide (“RSiC”). ); Graphite silicon (“C-SiC”), which consists of graphite and is coated with a layer of SiC; the SiC / SiC composites, for example with fibers or whiskers, the C / SiC composites, for example with fibers or Carbon and SiC whiskers, the SiC single crystals, the SiC composites with another ceramic, for example SiC / Si3N and SiC / TiN composites. It is preferable that the silicon carbide based materials have a
  • the crack is milled along the crack course with a hand mill to a depth, depending on crack depth and size, from 1 -2 mm. In this milling groove, the solder is carefully filled to avoid blistering.
  • the component is placed in an evacuated chamber and the solder pressed by briefly applying vacuum and pressure in the gap. Then the crack course is filled up to 1 mm supernatant with the solder.
  • 2 laser of wavelength 10.6 ⁇ is under a protective gas atmosphere, and a maximum power of 700 W the crack path traced by means of a CO.
  • the laser light reaches a temperature> 1420 ° C in the plate edges and in the gap and it comes to the melting of the silicon, the simultaneous onset of reaction of silicon with carbon in an exothermic reaction to form SiC. Due to the additional heat that is formed by the reaction, a heating also takes place in the depth of the gap and the plate edges.
  • the crack is then

Abstract

Disclosed is a method for repairing critical flaws in silicon carbide-based materials, wherein a laser or two combined laser sources are used for reactively soldering in a bonding manner by feeding silicon carbide powder or a mixture of silicon, carbon and silicon carbide powder.

Description

Laserstrah Nöten von Materialien auf Siliciumkarbidbasis  Laser beam needs of silicon carbide based materials
Gegenstand der Erfindung ist ein Verfahren zum Laserstrahllöten zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis. The invention relates to a method for laser beam soldering for the correction of critical defects of silicon carbide based materials.
Das technische Gebiet der Erfindung kann als Reaktivlöten bezeichnet werden, das heißt dass Temperaturen von mehr als 1200°C zur Anwendung kommen, was ermöglicht, den hergestellten Verbund dort einsetzen zu können, wo die The technical field of the invention can be referred to as reactive soldering, that is to say that temperatures of more than 1200 ° C. are used, which makes it possible to use the composite produced where the
Temperaturen zum Beispiel 900°C überschreiten und bis 1600°C oder sogar darüber hinaus gehen. Temperatures, for example, exceed 900 ° C and go up to 1600 ° C or even beyond.
Aufgrund der hohen Temperaturen - zum Beispiel um 1000°C - denen Keramiken wie beispielsweise das SiSiC ausgesetzt sein können, ist die Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis durch Klebung mit organischen Produkten ausgeschlossen. Due to the high temperatures - for example around 1000 ° C - which may be exposed to ceramics such as SiSiC, the elimination of critical defects of silicon carbide based materials by adhesion with organic products is excluded.
Stand der Technik ist es, SiSiC Keramiken mittels Laserschneiden zu bearbeiten. Thermisches Abtragen mit Laserstrahlen wird als Abtrennen von Werkstoffteilchen durch Wärmevorgänge definiert, wobei Wärme durch Energieumsetzung beim The state of the art is to process SiSiC ceramics by means of laser cutting. Thermal ablation with laser beams is defined as separation of material particles by heat processes, whereby heat is converted by energy conversion during the heat treatment
Auftreten eines Laserstrahls am Werkstück entsteht. Mit Lasern ist eine Bearbeitung unabhängig von der Werkstoffhärte möglich, wobei kein Verschleiß am Werkstoff entsteht. Der Schwerpunkt von Laseranwendungen bei der Bearbeitung von Occurrence of a laser beam on the workpiece arises. With lasers, a treatment is possible regardless of the material hardness, with no wear on the material. The focus of laser applications in the machining of
Keramiken liegt in der trennenden Bearbeitung von plattenformigen oder dünnwandig gekrümmten Werkstücken. Neben dieser trennenden Bearbeitung bietet die Ceramics is in the separating processing of plate-shaped or thin-walled curved workpieces. In addition to this separating processing, the
Laserbehandlung die Möglichkeit eines Materialabtrags von der Oberfläche ohne völliges Durchtrennen des Werkstückes. Laser treatment the possibility of material removal from the surface without complete cutting of the workpiece.
Da Siliciumkarbid keine eigene Schmelzphase bildet, sind die klassischen Since silicon carbide does not form its own melting phase, the classic
Verbindungstechniken, die mit oder ohne Schweißzusatzwerkstoff (WIG-, Elektronenoder Laserschweißen) arbeiten und ein partielles Schmelzen der zu verbindenden Teile implizieren, nicht benutzbar für die Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis, da man ein Substrat oder ein Teil aus Keramik nicht schmelzen lassen kann und insbesondere das SiC sich vor dem Schmelzen zersetzt. Daher ist ein stoffschlüssiges Fügeverfahren wie bei den oxidischen Keramiken, bei denen die zu verbindenden Teile im Nahtbereich lokal aufgeschmolzen werden, nicht möglich. Bonding techniques that work with or without welding consumables (TIG, electron or laser welding) and imply a partial melting of the parts to be joined, not usable for the removal of critical defects of silicon carbide based materials because a ceramic substrate or part can not be melted can and in particular the SiC decomposes before melting. Therefore, a cohesive joining method as in the oxide ceramics, in which the parts to be joined are locally melted in the seam area, not possible.
Infolgedessen sind gegenwärtig das Diffusionsschweißen in der Feststoff Phase, die Sinterverbindungstechnik und das reaktive Löten die häufigsten Techniken zur feuerfesten Verbindung von Keramiken. As a result, solid-phase diffusion bonding, sintered bonding, and reactive soldering are currently the most common techniques for refractory bonding of ceramics.
Das Diffusionsschweißen in der Feststoff Phase sowie die Sinterverbindungstechnik haben den Nachteil, problematisch zu sein in Bezug auf ihre Durchführung. Diffusion bonding in the solid phase as well as the sintered joining technique have the disadvantage of being problematic in terms of their performance.
Im Laufe der Herstellung von beispielsweise Si-SiC Keramik mittels LSI-Prozess (Liquid Silicon Infiltration) entstehen in Folge von thermischen Spannungen in der Abkühlphase der thermischen Behandlung Risse im Bauteil. Andererseits zeichnet sich beispielsweise der LSI-Prozess durch kurze Prozesszeiten und niedrige In the course of the production of, for example, Si-SiC ceramics by means of the LSI process (liquid silicon infiltration), cracks in the component arise as a result of thermal stresses in the cooling phase of the thermal treatment. On the other hand, for example, the LSI process is characterized by short process times and low
Herstellungskosten aus. Production costs.
Es ist daher bei der Realisierung einer Verbindung zwischen Keramiken besonders wichtig, die Restspannungen zu begrenzen, die sich bei der Abkühlung aufgrund unterschiedlicher Wärmeausdehnungskoeffizienten der zu verbindenden Teile entwickeln, wenn sie von unterschiedlicher Art sind, aber auch zwischen der Keramik und dem Lot, wenn die beiden Keramiken von derselben Art sind. Aus diesem Grund muss der Wärmeausdehnungskoeffizient des Lots sehr genau dem der zu It is therefore particularly important in the realization of a connection between ceramics to limit the residual stresses that develop in the cooling due to different thermal expansion coefficients of the parts to be joined, if they are of different types, but also between the ceramic and the solder, if the both ceramics are of the same type. For this reason, the thermal expansion coefficient of the solder must be very close to that of
verbindenden Keramikteile entsprechen. Corresponding ceramic parts correspond.
Es stellt sich daher die Aufgabe, ein neues Verfahren zum stoffschlüssigen Löten von Rissen in Bauteilen zu finden. Dabei sollte eine mechanisch feste, korrosions- und hochtemperaturbeständige Verbindung aus ähnlichem oder identischem Material vom Lot zu dem umgebenden Gefüge bei lokal begrenztem Energieeintrag It is therefore the task of finding a new method for cohesive soldering of cracks in components. It should have a mechanically strong, corrosion and high temperature resistant compound of similar or identical material from the solder to the surrounding structure with a localized energy input
gewährleistet werden. Gelöst wird diese Aufgabe durch reaktives Löten mit einem Laser oder zwei kombinierten Laserquellen stoffschlüssig unter Zufuhr von Siliciumkarbidpulver oder einer Mischung aus Silicium, Kohlenstoff und Siliciumkarbidpulver. be guaranteed. This object is achieved by reactive soldering with a laser or two combined laser sources cohesively with supply of silicon carbide powder or a mixture of silicon, carbon and silicon carbide powder.
Damit der Wärmeausdehnungskoeffizient des Lots fast gleich aber etwas höher als der des Materials auf Siliciumkarbidbasis ist, darf der Siliciumgehalt den Wert von 97%, angegeben als Atomprozentgehalt, möglichst nicht überschreiten. Ein In order for the coefficient of thermal expansion of the solder to be almost equal to but slightly higher than that of the silicon carbide-based material, the content of silicon should as far as possible not exceed 97%, expressed as atomic percentage. One
Verfahren, das Lote verwendet, deren Atomprozentgehalte innerhalb des oben genannten Bereichs liegen, ist einfach anzuwenden, denn diese Method using solders whose atomic percentages are within the above range is easy to use because these
Zusammensetzungen besitzen sehr gute Benetzungs- und Hafteigenschaften gegenüber SiC. Die Lotzusammensetzung selbst ist nicht teuer, da keine teuren Elemente enthalten sind. Bevorzugt wird beim reaktiven Löten als Spülgas Stickstoff, Druckluft oder als Schutzgas ein Edelgas wie beispielsweise Argon oder Helium eingesetzt. Compositions have very good wetting and adhesion properties towards SiC. The solder composition itself is not expensive, since no expensive elements are included. In the case of reactive brazing, preference is given to using nitrogen, compressed air or a protective gas as inert gas, for example argon or helium.
Es ist besonders bevorzugt, dass als Laser Nd:YAG-Laser, CO2-Laser oder eine Kombination der beiden Laserquellen eingesetzt werden. Vorzugsweise wird als Laser zur Beinflussung des zu lötenden Bereiches ein kurzgepulster Laser mit einer Pulszeit kleiner 10 ps und einem Fokusdurchmesser von 20 μιτι verwendet oder ein kontinuierlicher Laser oder eine Kombination aus kurzgepulsten und kontinuierlichen Lasern unterschiedlicher Wellenlänge. It is particularly preferred that the laser employed are Nd: YAG lasers, CO2 lasers or a combination of the two laser sources. Preferably, a short-pulse laser with a pulse duration of less than 10 ps and a focus diameter of 20 μm is used as the laser for influencing the area to be soldered, or a continuous laser or a combination of short-pulse and continuous lasers of different wavelengths.
Desweiteren sollte auch die Streckenenergie abhängig vom Spaltmaß variiert werden, um ein möglichst optimales Lötergebnis zu bekommen. Furthermore, the path energy should be varied depending on the gap size to get the best possible soldering result.
Das Laserstrahllöten erfolgt bevorzugt bei einer Temperatur von 1200°C bis 1850°C. The laser beam soldering is preferably carried out at a temperature of 1200 ° C to 1850 ° C.
Es ist bevorzugt, dass eine Vorbehandlung (beispielsweise Metallisierung) des Materials auf Siliciumkarbidbasis nicht erfolgt. Dies soll aber eine mechanische Vorbehandlung der Risse mit mechanischen Werkzeugen nicht ausschließen, zum Beispiel Entfetten oder Entstauben. Als bevorzugte Lotzusannnnensetzung wird eine mit den im keramischen Grundmaterial enthaltenen Bestandteilen aus Verbindungen beziehungsweise Elementen SiC und/oder Si und/oder C eingesetzt. It is preferable that pretreatment (for example, metallization) of the silicon carbide-based material does not occur. However, this should not preclude mechanical pretreatment of the cracks with mechanical tools, for example degreasing or dedusting. As preferred Lotzusannnnensetzung one with the constituents contained in the ceramic base material of compounds or elements SiC and / or Si and / or C is used.
Die Lotzusammensetzung besteht aus SiC und/oder C und/oder Si in einer Menge von 5 bis 95 Gew.-% SiC und/oder C und/oder Si, bezogen auf das Gewicht der Lotzusammensetzung und liegt in einer Form vor, die aus einem Pulver The solder composition consists of SiC and / or C and / or Si in an amount of 5 to 95 wt .-% SiC and / or C and / or Si, based on the weight of the solder composition and is in a form consisting of a powder
verschiedener Korngrößen, textilen Flächengebilden oder einem Schaum bestehen kann. different grain sizes, textile fabrics or a foam can exist.
Bevorzugt wird ein Pulver einer Lotzusammensetzung gebildet, dieses Pulver mit einem organischen Bindemittel in pastöser Form oder als Suspension aufgearbeitet und die Abschnitte oder Teile oder Fügespalte der zu lötenden Formkörper vollflächig mit der erhaltenen Paste oder Suspension überzogen beziehungsweise in den Fügespalt eingefügt. Preferably, a powder of a solder composition is formed, worked up this powder with an organic binder in pasty form or as a suspension and the sections or parts or joining gaps of the molded body to be soldered coated over the entire surface with the resulting paste or suspension or inserted into the joint gap.
Vorzugsweise wird das Pulver einer Lotzusammensetzung zu Presslingen verarbeitet und die Presslinge werden auf die Abschnitte oder Teile oder Fügespalte der zu lötenden Teile durch Einwirkung von einem Laser oder Lasern lokal aufgeschmolzen. Preferably, the powder of a solder composition is processed into compacts and the compacts are locally melted on the portions or parts or joining gaps of the parts to be soldered by the action of a laser or lasers.
Beim reaktiven Löten wird bevorzugt eine Temperatur von mindestens 1200°C durch das Laserlicht an den Abschnittskanten und im Fügespalt erreicht. In reactive soldering, a temperature of at least 1200 ° C. is preferably achieved by the laser light at the section edges and in the joint gap.
Die Materialien auf Siliciumkarbidbasis, deren kritische Fehler durch Laserstrahllöten behoben werden sollen, werden vorzugsweise ausgewählt aus drucklos gesintertem Siliciumkarbid („PLS-SiC");silicium-infiltriertem Siliciumkarbid („SiSiC" oder„RBSC"); porösem rekristallisiertem Siliciumkarbid („RSiC"); Graphit-Silicium („C-SiC"), das aus Graphit besteht und mit einer Schicht aus SiC überzogen ist; den SiC/SiC- Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern; den C/SiC- Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern aus Kohlenstoff und mit einer SiC-Matrix; den SiC-Einkristallen; den Verbundwerkstoffen aus SiC mit einer anderen Keramik, zum Beispiel SiC/Si3N und SiC/TiN-Verbundwerkstoffen. Es ist bevorzugt, dass die Materialien auf Siliciumkarbidbasis einen The silicon carbide-based materials whose critical defects are to be corrected by laser beam soldering are preferably selected from silicon carbide ("PLS-SiC") silicon-infiltrated silicon carbide ("SiSiC" or "RBSC"), porous recrystallized silicon carbide ("RSiC"). ); Graphite silicon ("C-SiC"), which consists of graphite and is coated with a layer of SiC; the SiC / SiC composites, for example with fibers or whiskers, the C / SiC composites, for example with fibers or Carbon and SiC whiskers, the SiC single crystals, the SiC composites with another ceramic, for example SiC / Si3N and SiC / TiN composites. It is preferable that the silicon carbide based materials have a
Siliciumkarbidgehalt größer oder gleich 80 Gew.-% aufweisen. Have silicon carbide content greater than or equal to 80 wt .-%.
Das erfindungsgemäße Verfahren wird bevorzugt verwendet zur Herstellung von keramischen Formkörpern für den Automobilbau, den Bau von Luft- und The inventive method is preferably used for the production of ceramic moldings for the automotive industry, the construction of air and
Raumfahrzeugen sowie für den Ofenbau. Spacecraft as well as for furnace construction.
Beispiel example
SiSiC Bauteil mit einem Riss SiSiC component with a crack
Der Riss wird entlang dem Rissverlauf mit einem Handfräser bis in eine Tiefe, abhängig von Risstiefe und Größe, von 1 -2 mm aufgefräßt. In diese Fräsnut wird das Lot vorsichtig eingefüllt um Blasenbildung zu vermeiden. Das Bauteil wird in eine evakuierbare Kammer gegeben und das Lot durch kurzes anlegen von Vakuum und Druck in den Spalt eingedrückt. Anschließend wird der Rissverlauf bis zu 1 mm Überstand mit dem Lot aufgefüllt. Nach dem Trocknen wird mittels eines CO2-Lasers der Wellenlänge 10,6 μιτι unter einer Schutzgasatmosphäre und einer maximalen Leistung von 700 W dem Rissverlauf nachgefahren. Durch das Laserlicht wird eine Temperatur >1420°C in den Plattenkanten und im Spalt erreicht und es kommt zum Aufschmelzen des Siliciums, die gleichzeitig einsetzende Reaktion des Siliciums mit Kohlenstoff führt in einer exothermen Reaktion zur Bildung von SiC. Durch die zusätzliche Wärme, die durch die Reaktion gebildet wird, erfolgt ein Aufheizen auch in die Tiefe des Spaltes und die Plattenkanten. Der Riss ist anschließend The crack is milled along the crack course with a hand mill to a depth, depending on crack depth and size, from 1 -2 mm. In this milling groove, the solder is carefully filled to avoid blistering. The component is placed in an evacuated chamber and the solder pressed by briefly applying vacuum and pressure in the gap. Then the crack course is filled up to 1 mm supernatant with the solder. After drying, 2 laser of wavelength 10.6 μιτι is under a protective gas atmosphere, and a maximum power of 700 W the crack path traced by means of a CO. The laser light reaches a temperature> 1420 ° C in the plate edges and in the gap and it comes to the melting of the silicon, the simultaneous onset of reaction of silicon with carbon in an exothermic reaction to form SiC. Due to the additional heat that is formed by the reaction, a heating also takes place in the depth of the gap and the plate edges. The crack is then
verschlossen und die Bauteilfestigkeit ist wieder hergestellt. closed and the component strength is restored.

Claims

Patentansprüche claims
1 . Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciunnkarbidbasis, dadurch gekennzeichnet, dass mit einem Laser oder zwei kombinierten Laserquellen stoffschlüssig unter Zufuhr von Siliciumkarbidpulver oder einer Mischung aus Silicium, Kohlenstoff und Siliciumkarbidpulver reaktiv gelötet wird. 1 . Method for eliminating critical defects of silicon carbide-based materials, characterized in that it is reactively soldered with one laser or two combined laser sources in a materially bonded manner with supply of silicon carbide powder or a mixture of silicon, carbon and silicon carbide powder.
2. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach Anspruch 1 , dadurch gekennzeichnet, dass beim reaktiven Löten als Spülgas Stickstoff, Druckluft oder als Schutzgas ein Edelgas eingesetzt wird. 2. A method for the removal of critical defects of silicon carbide based materials according to claim 1, characterized in that in the reactive soldering as purge nitrogen, compressed air or inert gas as a noble gas is used.
3. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Laser Nd:YAG-Laser, CO2-Laser oder eine Kombination der beiden Laserquellen eingesetzt werden. 3. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that are used as the laser Nd: YAG laser, CO 2 laser or a combination of the two laser sources.
4. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Laser zur Beinflussung des zu lötenden Bereiches ein kurzgepulster Laser mit einer Pulszeit kleiner 10 ps und einem 4. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that as a laser for influencing the area to be soldered a short-pulse laser with a pulse time less than 10 ps and a
Fokusdurchmesser von 20 μιτι verwendet wird oder ein kontinuierlicher Laser, oder eine Kombination von kurzgepulsten und kontinuierlichen Lasern unterschiedlicher Wellenlänge eingesetzt wird. Focusing diameter of 20 μιτι is used or a continuous laser, or a combination of short-pulse and continuous lasers of different wavelengths is used.
5. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Laserstrahllöten bei einer Temperatur von 1200°C bis 1850°C erfolgt. 5. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that the laser beam soldering takes place at a temperature of 1200 ° C to 1850 ° C.
6. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass keine Vorbehandlung des Materials auf Siliciunnkarbidbasis erfolgt, abgesehen von einer mechanischen Vorbehandlung der Risse. 6. A method for the removal of critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that no pretreatment of the material Silicicarbarbidbasis takes place, apart from a mechanical pretreatment of the cracks.
7. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Lotzusammensetzung mit im keramischen Grundmaterial enthaltenen Bestandteile aus Verbindungen beziehungsweise Elementen SiC und/oder Si und/oder C eingesetzt wird. 7. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that a solder composition is used with components contained in the ceramic base material of compounds or elements SiC and / or Si and / or C.
8. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Lotzusammensetzung aus SiC und/oder C und/oder Si in einer Menge von 5 bis 95 Gew.-% SiC und/oder C und/oder Si, bezogen auf das Gewicht der Lotzusammensetzung besteht und in einer Form vorliegt, die aus einem Pulver verschiedener Korngrößen, textilen Flächengebilden oder einem Schaum bestehen kann. 8. A method for eliminating critical defects of silicon carbide-based materials according to one or more of the preceding claims, characterized in that the solder composition of SiC and / or C and / or Si in an amount of 5 to 95 wt .-% SiC and / or C and / or Si, based on the weight of the solder composition and in a form which may consist of a powder of different particle sizes, textile fabrics or a foam.
9. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Pulver einer Lotzusammensetzung gebildet wird, dieses Pulver mit einem organischen Bindemittel in pastöser Form oder als 9. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that a powder of a solder composition is formed, this powder with an organic binder in pasty form or as
Suspension aufgearbeitet und die Abschnitte oder Teile oder Fügespalte der zu lötenden Formkörper vollflächig mit der erhaltenen Paste oder Suspension überzogen beziehungsweise in den Fügespalt eingefügt werden. Worked up the suspension and the sections or parts or joining gaps of the molded body to be soldered coated over the entire surface with the resulting paste or suspension or inserted into the joint gap.
10. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis, dadurch gekennzeichnet, dass das Pulver einer 10. A method for eliminating critical defects of silicon carbide-based materials, characterized in that the powder of a
Lotzusammensetzung zu Presslingen verarbeitet wird und die Presslinge auf die Abschnitte oder Teile oder Fügespalte der zu lötenden Teile durch Einwirkung von einem Laser oder Lasern lokal aufgeschmolzen werden. Solder composition is processed into compacts and the compacts are locally melted on the sections or parts or joining gaps of the parts to be soldered by the action of a laser or lasers.
1 1 . Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass beim reaktiven Löten eine Temperatur von mindestens 1200°C durch das Laserlicht an den Abschhnittskanten und im Fügespalt erreicht wird. 1 1. Method for eliminating critical defects of silicon carbide-based materials according to one or more of the preceding claims, characterized in that during reactive soldering a temperature of at least 1200 ° C is achieved by the laser light at Abschhnittskanten and in the joint gap.
12. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Materialien auf Siliciumkarbidbasis, deren kritische Fehler durch Laserstrahllöten behoben werden sollen, ausgewählt werden aus drucklos gesintertem Siliciumkarbid („PLS-SiC");silicium-infiltriertem 12. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that the silicon carbide based materials whose critical defects are to be corrected by laser beam soldering are selected from unpressurised silicon carbide ("PLS-SiC"). ); silicon-infiltrated
Siliciumkarbid („SiSiC" oder„RBSC"); porösem rekristallisiertem Siliciumkarbid („RSiC"); Graphit-Silicium („C-SiC"), das aus Graphit besteht und mit einer Schicht aus SiC überzogen ist; den SiC/SiC-Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern; den C/SiC-Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern aus Kohlenstoff und mit einer SiC-Matrix; den SiC-Einkristallen; den Verbundwerkstoffen aus SiC mit einer anderen Keramik, zum Beispiel SiC/Si3N und SiC/TiN-Verbundwerkstoffen. Silicon carbide ("SiSiC" or "RBSC"); porous recrystallized silicon carbide ("RSiC"), graphite silicon ("C-SiC"), which consists of graphite and is coated with a layer of SiC; the SiC / SiC composites, for example with fibers or whiskers; the C / SiC composites, for example with fibers or whiskers of carbon and with a SiC matrix; the SiC single crystals; SiC composites with another ceramic, such as SiC / Si3N and SiC / TiN composites.
13. Verfahren zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach einem oder mehrerer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Materialien auf Siliciumkarbidbasis einen 13. A method for eliminating critical defects of silicon carbide based materials according to one or more of the preceding claims, characterized in that the silicon carbide based materials
Siliciumkarbidgehalt größer oder gleich 80 Gew.-% aufweisen. Have silicon carbide content greater than or equal to 80 wt .-%.
14. Verwendung des Verfahrens zur Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis nach Anspruch 1 zur Herstellung von 14. Use of the method for the removal of critical defects of silicon carbide based materials according to claim 1 for the production of
keramischen Formkörpern für den Automobilbau, den Bau von Luft- und Ceramic moldings for the automotive industry, the construction of air and
Raumfahrzeugen sowie für den Ofenbau. Spacecraft as well as for furnace construction.
PCT/EP2012/068302 2011-09-30 2012-09-18 Laser soldering of silicon carbide-based materials WO2013045308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083864A DE102011083864A1 (en) 2011-09-30 2011-09-30 Laser beam brazing of silicon carbide based materials
DE102011083864.3 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013045308A1 true WO2013045308A1 (en) 2013-04-04

Family

ID=46880712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068302 WO2013045308A1 (en) 2011-09-30 2012-09-18 Laser soldering of silicon carbide-based materials

Country Status (2)

Country Link
DE (1) DE102011083864A1 (en)
WO (1) WO2013045308A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018507A3 (en) * 2014-07-28 2016-03-03 The Curators Of The University Of Missouri Ceramic-ceramic welds
CN106825999A (en) * 2017-03-14 2017-06-13 武汉理工大学 A kind of preparation method of foam metal Combined Welding tablet
CN106884159A (en) * 2017-01-16 2017-06-23 哈尔滨工业大学 The preparation method and its assistant brazing C/C composites of carbon-coating cladding foam carbon/carbon-copper composite material and the method for metal
CN115368141A (en) * 2022-09-15 2022-11-22 湖南博云新材料股份有限公司 alpha-SiC and amorphous silicon nitride complex phase ceramic brake material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412332A1 (en) * 1983-04-12 1984-10-18 United Kingdom Atomic Energy Authority, London Method for joining silicon carbide bodies
JPH01148761A (en) * 1987-12-04 1989-06-12 Isamu Miyamoto Method for bonding ceramics
EP0356800A1 (en) * 1988-08-15 1990-03-07 Shin-Etsu Chemical Co., Ltd. Silicon carbide ceramics bonding compositions
JPH02149476A (en) * 1988-08-15 1990-06-08 Shin Etsu Chem Co Ltd Binder for silicon carbide ceramics
DD300645A5 (en) * 1989-07-21 1992-06-25 Friedrich-Schiller-Universitaet Jena,De PROCESS FOR CONNECTING COMPONENTS FROM SI C CERAMICS
JPH07187836A (en) * 1993-12-24 1995-07-25 Toshiba Ceramics Co Ltd Method for joining si-containing ceramics with laser light
US5503703A (en) * 1994-01-10 1996-04-02 Dahotre; Narendra B. Laser bonding process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412332A1 (en) * 1983-04-12 1984-10-18 United Kingdom Atomic Energy Authority, London Method for joining silicon carbide bodies
JPH01148761A (en) * 1987-12-04 1989-06-12 Isamu Miyamoto Method for bonding ceramics
EP0356800A1 (en) * 1988-08-15 1990-03-07 Shin-Etsu Chemical Co., Ltd. Silicon carbide ceramics bonding compositions
JPH02149476A (en) * 1988-08-15 1990-06-08 Shin Etsu Chem Co Ltd Binder for silicon carbide ceramics
DD300645A5 (en) * 1989-07-21 1992-06-25 Friedrich-Schiller-Universitaet Jena,De PROCESS FOR CONNECTING COMPONENTS FROM SI C CERAMICS
JPH07187836A (en) * 1993-12-24 1995-07-25 Toshiba Ceramics Co Ltd Method for joining si-containing ceramics with laser light
US5503703A (en) * 1994-01-10 1996-04-02 Dahotre; Narendra B. Laser bonding process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018507A3 (en) * 2014-07-28 2016-03-03 The Curators Of The University Of Missouri Ceramic-ceramic welds
CN106884159A (en) * 2017-01-16 2017-06-23 哈尔滨工业大学 The preparation method and its assistant brazing C/C composites of carbon-coating cladding foam carbon/carbon-copper composite material and the method for metal
CN106825999A (en) * 2017-03-14 2017-06-13 武汉理工大学 A kind of preparation method of foam metal Combined Welding tablet
CN115368141A (en) * 2022-09-15 2022-11-22 湖南博云新材料股份有限公司 alpha-SiC and amorphous silicon nitride complex phase ceramic brake material and preparation method thereof
CN115368141B (en) * 2022-09-15 2023-07-14 湖南博云新材料股份有限公司 alpha-SiC and amorphous silicon nitride composite ceramic brake material and preparation method thereof

Also Published As

Publication number Publication date
DE102011083864A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP0236856B1 (en) Process for the bonding of moulded sic articles to ceramics or metal
Blugan et al. Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy
US20080035707A1 (en) Transient-liquid-phase joining of ceramics at low temperatures
DE60206382T2 (en) REACTION BRAZING A TUNGSTEN OR MOLYBDEN BODY ON A CARBON-BASED CARRIER
DE60103378T2 (en) METHOD FOR CONNECTING COMPONENTS BASED ON SILICON CARBIDE MATERIAL BY MEANS OF NON REACTIVE FIRE-RESISTANT HARDENING, HARD LOT COMPOSITION, FIRE-RESISTANT CONNECTION AND COMPOUND
KR20130060174A (en) Method of joining parts made of sic-based materials by non-reactive brazing with addition of a reinforcement, brazing compositions and joint and assembly that are obtained by such method
EP2794169B1 (en) Method of assembling parts made of sic materials by means of non-reactive brazing in an oxidizing atmosphere, brazing composition
FR2957542A1 (en) METHOD FOR ASSEMBLING NON-REACTIVE BRAZING SIC-BASED MATERIAL PARTS, BRAZING COMPOSITIONS, AND JOINT AND ASSEMBLY OBTAINED THEREBY
FR2957543A1 (en) METHOD FOR ASSEMBLING NON-REACTIVE BRAZING SIC-BASED MATERIAL PARTS, BRAZING COMPOSITIONS, AND JOINT AND ASSEMBLY OBTAINED THEREBY
US20080087710A1 (en) RAPID, REDUCED TEMPERATURE JOINING OF ALUMINA CERAMICS WITH Ni/Nb/Ni INTERLAYERS
WO2013045308A1 (en) Laser soldering of silicon carbide-based materials
JP2010077019A (en) PROCESS FOR MODERATELY REFRACTORY ASSEMBLING OF ARTICLE MADE OF SiC-BASED MATERIAL BY NON-REACTIVE BRAZING, BRAZING COMPOSITION, AND JOINT AND ASSEMBLY OBTAINED BY THE PROCESS
EP1513782A1 (en) Method for producing gas-tight and high-temperature resistant unions of shaped parts, which are made of a non-oxidic ceramic material, by using a laser
Jarvis et al. The bonding of nickel foam to Ti–6Al–4V using Ti–Cu–Ni braze alloy
Liu et al. Microstructure and mechanical properties of BN-Si3N4 and AlON joints brazed with Ag-Cu-Ti filler alloy
US10093582B2 (en) Process for the moderately refractory assembling of articles made of SiC-based materials by non-reactive brazing in an oxidizing atmosphere, brazing compositions, and joint and assembly obtained by this process
CN115476012B (en) Application of high Cu atomic ratio Cu-Ti brazing filler metal in brazing of ceramic and metal
Guo et al. Effect of Ni foam on the microstructure and properties of AlN ceramic/Cu brazed joint
KR101039361B1 (en) Low temperature joining method between Ti/Ti-based alloys having a bonding strength higher than those of base metals
WO2013045306A1 (en) Laser soldering of silicon carbide-based materials for the production of ceramic parts
JPWO2007052743A1 (en) Sputtering target and manufacturing method thereof
Nagatsuka et al. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing
Ramsheh et al. Microstructure and mechanical properties of MoSi2–MoSi2 joints brazed by Ag–Cu–Zr interlayer
US8715803B2 (en) Ceramic welds, and a method for producing the same
Südmeyer et al. Compound characterization of laser brazed SiC-steel joints using tungsten reinforced SnAgTi-alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761609

Country of ref document: EP

Kind code of ref document: A1