WO2013059813A1 - Corneal implant storage and delivery devices - Google Patents

Corneal implant storage and delivery devices Download PDF

Info

Publication number
WO2013059813A1
WO2013059813A1 PCT/US2012/061366 US2012061366W WO2013059813A1 WO 2013059813 A1 WO2013059813 A1 WO 2013059813A1 US 2012061366 W US2012061366 W US 2012061366W WO 2013059813 A1 WO2013059813 A1 WO 2013059813A1
Authority
WO
WIPO (PCT)
Prior art keywords
applicator
implant
openings
support
corneal
Prior art date
Application number
PCT/US2012/061366
Other languages
French (fr)
Inventor
Gregg Edmond PLAMBECK
Ned Schneider
Adam ARIELY
David Matsuura
Philip Simpson
Original Assignee
Revision Optics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Revision Optics, Inc. filed Critical Revision Optics, Inc.
Priority to CA2853116A priority Critical patent/CA2853116A1/en
Priority to EP12841027.1A priority patent/EP2768430A4/en
Priority to AU2012325705A priority patent/AU2012325705B2/en
Priority to KR1020147013664A priority patent/KR101762932B1/en
Priority to RU2013102261A priority patent/RU2619654C2/en
Priority to JP2014537365A priority patent/JP5944005B2/en
Priority to US14/352,628 priority patent/US9345569B2/en
Publication of WO2013059813A1 publication Critical patent/WO2013059813A1/en
Priority to US15/163,610 priority patent/US9987124B2/en
Priority to AU2017248529A priority patent/AU2017248529A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/20Holders specially adapted for surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B50/33Trays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0095Packages or dispensers for prostheses or other implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/142Cornea, e.g. artificial corneae, keratoprostheses or corneal implants for repair of defective corneal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/145Corneal inlays, onlays, or lenses for refractive correction
    • A61F2/1451Inlays or onlays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/264Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B2050/3006Nested casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/145Corneal inlays, onlays, or lenses for refractive correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/148Implantation instruments specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1662Instruments for inserting intraocular lenses into the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1662Instruments for inserting intraocular lenses into the eye
    • A61F2/1678Instruments for inserting intraocular lenses into the eye with a separate cartridge or other lens setting part for storage of a lens, e.g. preloadable for shipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0061Devices for putting-in contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/06Packaging groups of articles, the groups being treated as single articles

Definitions

  • Corneal implants such as corneal onlays and corneal inlays
  • corneal implants can be small, delicate medical devices, the storage and/or handling of which should be carefully performed to prevent damage to the implants. Additionally, corneal implants can also be transparent, which, in addition to their small size, can make them difficult to see with the unaided eye.
  • the packaging tools and assemblies described herein generally provide one or more of three functions: to surround and protect the applicator apparatus, including the corneal implant retained therein, from damage; to act as a fluid reservoir and provide fluid to the corneal implant to keep the corneal implant hydrated during storage; and to remove, or wick away, excess fluid when removing the corneal implant applicator from the packaging materials.
  • a corneal implant applicator apparatus comprising an implant applicator with one or more applicator openings therethrough, and an implant support with one or more support openings therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest, and wherein the implant nest is adapted to house a corneal implant, wherein a ratio of the sum of the perimeters of the one or more applicator openings to the sum of the areas of the one or more applicator openings is greater than a ratio of the sum of the perimeters of the one or more support openings to the sum of the areas of the one or more support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support.
  • the implant applicator is adapted such that corneal tissue has a greater affinity for the corneal implant that the implant applicator.
  • the implant applicator has a plurality of applicator openings therethrough.
  • the plurality of applicator openings can have the same greatest linear dimension spanning the plurality of applicator openings.
  • the implant support has a plurality of support openings therethrough.
  • the plurality of support openings can have the same second greatest linear dimension spanning the support openings.
  • the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough.
  • the plurality of applicator openings can have the same greatest linear dimension spanning the plurality of applicator openings and the plurality of support openings have the same second greatest linear dimension spanning the support openings.
  • a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest can be greater than a number of the plurality of support openings that overlap the corneal implant.
  • Fluid can be retained in the corneal implant nest, and wherein the fluid is disposed within a number of the plurality of applicator openings that overlap the corneal implant due to surface tension, and wherein the fluid is disposed within a number of the plurality of support openings that overlap the corneal implant due to surface tension, wherein a volume of fluid disposed in the applicator openings that overlap the corneal implant is greater than a volume of fluid disposed in the support openings that overlap the corneal implant. At least one of the support openings that overlaps the corneal implant does not need to have fluid extending across the entirety of the opening.
  • the corneal implant applicator has a first greatest linear dimension spanning the corneal implant applicator and the implant support has a second greatest linear dimension spanning the implant support, wherein the second greatest linear dimension is greater than the first greatest linear dimension.
  • a periphery of the implant support extends further radially than a periphery of the implant applicator.
  • the implant support has a flat implant support surface that forms a portion of the nest.
  • the implant support can comprise a recess formed therein adapted to accommodate the corneal implant.
  • the implant applicator has a flat surface that forms a portion of the nest.
  • the implant applicator has a first greatest thickness and the implant support has a second greatest thickness, wherein the second thickness is greater than the first thickness.
  • the second thickness can be about two times the first thickness.
  • the one or more applicator openings have hexagonal configurations.
  • the one or more support openings have hexagonal configurations.
  • the corneal implant is made from a hydrophilic material.
  • One aspect of the disclosure is a corneal implant applicator apparatus, comprising an implant applicator with a plurality of applicator openings therethrough; and an implant support with a plurality of support openings therethrough, wherein the number of the plurality of applicator openings is greater than the number of the plurality of support openings, wherein the implant applicator and implant support are disposed relative to one another to form a corneal implant nest, and wherein the corneal implant nest is adapted to house a corneal implant such that the corneal implant is disposed adjacent the plurality of applicator openings and the plurality of support opening.
  • the greater number of applicator openings provides the applicator with a greater affinity for the corneal implant than the support.
  • the applicator is adapted such that corneal tissue has a greater affinity for the corneal implant than the applicator.
  • a number of the plurality of applicator openings that overlap the corneal implant when positioned in the nest is greater than a number of the plurality of support openings that overlap the corneal implant when the implant is positioned in the nest.
  • the plurality of applicator openings have hexagonal configurations.
  • the plurality of support openings have hexagonal configurations.
  • the corneal implant is made from a hydrophilic material.
  • One aspect of the disclosure is a corneal implant applicator apparatus, comprising a corneal implant applicator with a plurality of applicator openings therethrough, wherein the plurality of applicator openings have hexagonal configurations; and a corneal implant support with a plurality of support openings therethrough, wherein the plurality of support openings have hexagonal configurations,wherein the corneal implant support disposed relative to the corneal implant applicator to form a corneal implant nest therebetween.
  • the plurality of applicator openings are sized to provide the applicator with a greater affinity for the corneal implant than the support.
  • the applicator openings are sized such that corneal tissue has a greater affinity for the corneal implant than the applicator.
  • the apparatus further comprises a corneal implant disposed within the nest adjacent the plurality of applicator openings and the plurality of support openings.
  • a linear dimension between opposing sides of the plurality of hexagonal applicator openings is less than a linear dimension between opposing sides of the plurality of hexagonal support openings.
  • the corneal implant is made from a hydrophilic material.
  • a corneal implant applicator appartus comprising an implant applicator with at least one applicator opening therethrough; and an implant support with at least one support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant; wherein the at least applicator opening and the at least one support opening are adapted such that forces between the corneal implant and a liquid disposed in the at least one applicator opening are greater than forces between the corneal implant and a liquid disposed in the at least one support opening, wherein the greater forces provide the applicator with a greater affinity for the corneal implant than the support.
  • the at least one applicator opening are adapted to provide the applicator with less of an affinity for the corneal implant than a corneal surface.
  • the number of applicator openings is greater than the number of support openings.
  • the number of applicator openings that overlap the corneal implant when positioned in the implant nest can be greater than the number of support openings that overlap the corneal implant.
  • the size of the at least one applicator opening is smaller than the size of the at least one support opening.
  • the implant applicator has a first surface through which the at least one applicator opening passes, wherein the first surface is flat.
  • the implant support has a first surface through which the at least one support opening passes, wherein the first surface is flat.
  • a ratio of the sum of the perimeters of the at least one applicator openings to the sum of the areas of the at least one applicator openings is greater than a ratio of the sum of the perimeters of the at least one support openings to the sum of the areas of the at least one support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than the support.
  • the at least one applicator opening and the at least one support opening have hexagonal configurations.
  • the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, wherein the plurality of applicator openings are smaller than the plurality of support openings.
  • the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, and wherein a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
  • the corneal implant is made from a hydrophilic material.
  • One aspect of the disclosure is a corneal implant applicator apparatus, comprising an implant applicator with a plurality of applicator openings therethrough; and an implant support with a plurality of support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant, and wherein the arrangement of the plurality of applicator openings provides the applicator with a higher affinity for the corneal implant than the support.
  • the arrangement of the plurality of applicator openings provides the applicator with less of an affinity for the corneal implant than a corneal surface.
  • the number of applicator openings is greater than the number of support openings.
  • the number of applicator openings that overlap the corneal implant when positioned in the implant nest can be greater than the number of support openings that overlap the corneal implant.
  • the size of the plurality of applicator openings is smaller than the size of the plurality of support openings.
  • the implant applicator has a first surface through which the plurality of applicator openings pass, and wherein the first surface is flat.
  • the implant support has a first surface through which the plurality of support openings pass, wherein the first surface is flat.
  • a ratio of the sum of the perimeters of the plurality of applicator openings to the sum of the areas of the plurality of applicator openings is greater than a ratio of the sum of the perimeters of the plurality of support openings to the sum of the areas of the plurality of support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support.
  • the plurality of applicator openings and the plurality of support openings have hexagonal configurations.
  • the plurality of applicator openings are smaller than the plurality of support openings.
  • a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
  • the corneal implant is made from a hydrophilic material.
  • One aspect of the disclosure is a corneal implant hydration control apparatus, comprising a body forming a pocket configured to receive and stabilize a corneal implant delivery apparatus therein.
  • the body comprises a first hydration control element and a second hydration control element disposed relative to the first hydration control element to form the pocket.
  • the first and second hydration control elements can comprise sections of rolled up material.
  • the first and second hydration control elements can comprise sections of rolled up material from an integral section of material. A section of the integral section of material can form a backstop.
  • the first and second hydration control elements can be generally cylindrically-shaped. The first and second hydration control elements can engage one another.
  • the apparatus further comprises a first deformable base secured to the body, wherein the first deformable base is adapted to deform to adjust a distance between a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket.
  • the apparatus can further comprise a first core disposed within the first hydration control element and a second core disposed within the second hydration element, wherein the first deformable base is secured to the first and second cores to secure the base to the first and second hydration control elements.
  • the apparatus can further comprise a second deformable base second to the first and second cores.
  • the first deformable base can be secured to a first end of each of the first and second cores, and the second deformable base is secured to a second end of each of the first and second cores.
  • the first deformable base can include a living hinge that allows the deformable base to deform to adjust the distance between the first and second hydration control elements.
  • the pocket has a general wedge shape formed by a first and second hydration control elements.
  • the body is formed of a polyester material.
  • the body is adapted to wick away fluid from an apparatus disposed within the pocket as the apparatus is removed from the pocket.
  • One aspect of the disclosure is a packaging assembly for a corneal implant applicator, comprising a corneal implant applicator apparatus comprising an implant portion in which a corneal implant is retained; a hydration control member comprising a pocket that is adapted to receive and stabilize the implant portion therein.
  • the implant portion in which the corneal implant is retained is substantially flat.
  • the corneal implant is retained in the implant portion of the corneal implant applicator apparatus in a substantially unstressed configuration.
  • the hydration control member comprises a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket.
  • the first and second hydration control elements are generally cylindrically shaped.
  • the hydration control member further comprises a backstop adapted to prevent the corneal implant applicator apparatus from being advanced too far within the pocket.
  • first and second hydration control elements are adapted to be moved apart from one another to accommodate the corneal implant applicator apparatus.
  • One aspect of the disclosure is a method of removing excess storage liquid from a corneal implant applicator apparatus, comprising providing a corneal implant applicator apparatus, wherein a corneal implant is disposed within a portion of the apparatus; and stripping excess fluid from the portion of the apparatus by engaging the portion of the apparatus in which the implant is disposed with a hydration control member while moving the portion of the apparatus with respect to the hydration control member.
  • the portion of the apparatus includes first and second surfaces each with at least one opening formed therein, the first and second surfaces forming a corneal nest, wherein the stripping step comprises removing excess fluid away from the first and second surfaces.
  • the stripping step comprises engaging the portion of the apparatus with first and second hydration control elements while moving the portion of the apparatus with respect to the first and second hydration control elements.
  • One aspect of the disclosure is a method of storing a corneal implant applicator apparatus, comprising providing a corneal implant applicator apparatus with a first portion in which a corneal implant is positioned; positioning the first portion of the apparatus into a pocket formed by a hydration control member until the first portion engages the hydration control member.
  • the positioning step creates a fluid communication between the hydration control member and the corneal implant.
  • the positioning step comprises advancing the first portion into a pocket formed by two hydration control elements until the first portion engages the two hydration control elements.
  • the positioning step can comprise positioning a first apparatus surface into engagement with a first hydration control element and positioning a second apparatus surface into engagement with a second hydration control element.
  • Fig. 1 illustrates exemplary cohesive forces.
  • Fig. 2 illustrates exemplary adhesive forces.
  • Fig. 3 illustrates a liquid suspended within a loop
  • FIGs. 4-10 illustrate an exemplary corneal implant applicator apparatus.
  • Figs. 1 1 A-l 5 illustrate exemplary moderate and minimal bodies.
  • FIGs. 16-19 illustrate an exemplary corneal implant applicator apparatus.
  • FIGs. 20A-32B illustrate components of an exemplary corneal implant applicator apparatus.
  • FIGs. 33A-33B illustrate a portion of an exemplary corneal implant applicator apparatus positioned within a pocket of a hydration control member and within a packaging tray.
  • Figs. 34-36B illustrate exemplary hydration control members.
  • FIGs. 37A-37B illustrate a portion of an exemplary corneal implant applicator apparatus positioned within a pocket of a hydration control member and within a packaging tray.
  • FIGs. 38A-40B illustrate an exemplary hydration control member.
  • FIGs. 41 A-41 E illustrate an exemplary packaging apparatus.
  • Fig. 42 illustrates an exemplary corneal implant positioning loop.
  • Fig. 43 illustrates an exemplary corneal implant.
  • Figs. 44A-44D illustrate exemplary loops.
  • Figs. 45-54 illustrate exemplary corneal implant positioning members that include loop structures.
  • the disclosure relates to devices for one or more of packaging, storing, positioning, and delivering corneal implants such as corneal inlays.
  • the devices herein can be used in the movement and positioning of, for example without limitation, corneal onlays, corneal inlays, corneal replacements, and contact lenses.
  • the disclosure includes devices and methods of use that rely at least partially on surface tension of liquids to control the positioning and/or movement of a corneal implant.
  • the devices can be used in the storage, packaging, movement, or delivering of the corneal implants. These approaches can be used when the corneal implant is made at least partially of hydrophilic material, such as a hydrogel.
  • Adhesive forces are those seen between unlike molecules. For some material combinations, these forces can be greater than the cohesive forces of a liquid's molecules. These strong adhesive forces are the cause of an upward 'bowing,' called the meniscus (as shown in Figure 2), in a liquid's surface where the liquid around the edge of a container is pulled higher than the rest of the surface by the adhesive forces between the liquid and the container. The adhesive forces pull up on the surface of the water and are in equilibrium with the gravitational forces pulling down on the body of liquid.
  • corneal implants that can be stored and used in the following embodiments are corneal inlays described in U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S
  • a "small diameter" (i.e., between about 1 mm and about 3 mm) corneal inlay is made from a hydrogel, that may be primarily fluid. This, as well as the inlay's small size, causes it to behave in somewhat the same way as a fluid.
  • the disclosure below makes use of these characteristics of the corneal implant and the adhesion forces between a fluid and various surface geometries. While the disclosure herein focuses on corneal inlays, any corneal implant that exhibits similar properties can be used as described herein. For example, corneal onlays, at least a portion of which have hydrophilic properties, can be used as described herein.
  • a body's "affinity" for a fluid or an object with fluid-like properties e.g., a hydrophilic corneal implant.
  • a body's "affinity" for the fluid or fluid- like object is influenced by the difference between the strength of the net adhesive forces between the body and the fluid or fluid-like object and the strength of the net cohesive forces within the fluid or fluid- like object.
  • the relative affinities of two bodies for the fluid or fluid-like object is at least partially determined by the relative strengths of the net adhesive forces between the bodies and the fluid or fluid-like object.
  • a first body can have a greater affinity for the implant than a second body when the net adhesive forces between the first body and the implant are greater than the net adhesive forces between the second body and the implant.
  • the corneal implant will remain adhered to the body with the highest net force (the sum of the adhesive and cohesive forces).
  • a first body referred to herein as a "moderate body” has a greater affinity for the fluid or fluid-like object than a second body, referred to herein as a "minimal body.”
  • body may be used interchangeably with device, component, structure, or other similar term to indicate anything with structure.
  • the eye however, has a greater affinity for the fluid or fluid-like object than the moderate body.
  • the different relative affinities can be used to handle the inlay and control the movement of the inlay as it is moved from one surface to another without a user needing to touch it with a hand or other tool. Factors that influence the relative affinities include one or more of: the type of material, the type of fluid, and the surface geometry including surface area.
  • a corneal inlay e.g., the fluid-like object
  • the eye can be described as having a greater affinity for the inlay than both the moderate body and the minimal body.
  • the moderate body can be described as having a greater affinity for the inlay than the minjmal body. That is, the affinity between two bodies can be described relative to either body. That is, for example, the moderate body has a greater affinity for the inlay than does the minimal body, and thus the inlay will preferentially adhere to the moderate body over the minimal body.
  • the storage fluid is water or saline, for example.
  • Water molecules are highly polarized, which provides for attractive forces with other materials.
  • a relative comparison of the affinity between each body and the inlay can be represented by: corneal tissue > moderate body > minimal body.
  • the moderate and minimal bodies may take on many forms, including, without limitation, meshes, membranes, and/or material with different surface finishes or contours.
  • the inlay preferentially remains adhered to the moderate body. It continues to adhere to the moderate body until exposed to a stronger adhesive force.
  • the minimal and moderate bodies can therefore be any suitable material as long as the adhesive forces between the moderate body and the inlay are greater than the adhesive forces between the minimal body and the inlay.
  • the moderate body has a greater affinity for the inlay than does the minimal body, and the adhesive properties of the materials is a factor influencing those affinities.
  • Figures 4-1 1 D illustrate an exemplary embodiment of an apparatus that comprises a moderate body and a minimal body, wherein the apparatus also includes an actuation mechanism that is used to separate the minimal body from the corneal implant and the moderate body.
  • the apparatus can be used to store the corneal implant, prepare the corneal implant for delivery, and/or deliver the corneal implant onto or into the eye.
  • Figures 4 and 5 (side view and sectional side view, respectively) illustrate device 100 including handle 1 12 secured to distal portion 1 14.
  • Actuator 116 is disposed in both handle 1 12 and distal portion 1 14, both of which are adapted to allow actuator 116 to pass therethrough.
  • Spring 126 maintains actuator 1 16 in the at-rest, or non-actuated, configuration shown in Figures 4 and 5.
  • Actuator 1 16 has a distal section 128 with a reduced size that is disposed in a smaller sized distal channel in distal portion 1 14.
  • the distal end of apparatus 100 includes first portion 118 secured to moderate body 122.
  • a second portion 120 is secured to minimal body 124 and is also detachably secured to first portion 1 18 around pin 134.
  • the corneal implant (not shown in figures 4 and 5 for clarity) is disposed between the moderate body and the minimal body in a nest formed by the moderate and minimal bodies.
  • Second portion 120 is adapted to rotate with respect to first portion 1 18 around pin 134.
  • Figure 6 (sectional side view) illustrates the device after actuator 1 16 has been pressed down. When actuator 1 16 is pressed, spring 126 is compressed, and distal section 128 moves forward, or distally, through the channel in distal portion 1 14.
  • distal section 128 makes contact with second portion 120, forcing it downward as it rotates around pin 134. Because the corneal implant has a higher affinity for moderate body 122 than minimal body 124, the corneal implant will remain adhered to moderate body 122 as second portion 120 and minimal body 124 are rotated away from first portion 1 18 and moderate body 122. Once the curved portion of second portion 120 clears pin 134, second portion 120 is detached from first portion 118 and therefore from device 100, preparing the corneal implant for delivery (or, in some embodiments the corneal implant is delivered using a separate delivery device).
  • Figure 7 illustrates a perspective view of the distal region of device 100.
  • First portion 1 18 is secured to second portion 120 with clip 132, which is biased to the closed configuration shown in Figure 7.
  • clip 132 is forced into an open configuration, allowing second portion 120 and minimal body 124 to be rotated away from first portion 1 18.
  • Figure 8 illustrates a sectional side view of the distal portion of the device.
  • Figure 9 shows the sectional side view from Figure 8 after actuator 116 has been actuated and second portion 120 is rotating away from first portion 1 18.
  • Corneal implant 140 remains adhered to moderate body 122 due to the higher affinity of the moderate body.
  • Figure 10 illustrates a side view after second portion 120 has been completely disengaged from first portion 1 18. Actuator 1 16 is then released to cause distal section 128 to retract back into distal portion 1 14.
  • Corneal implant 140 is now ready for delivery and can be delivered as described above.
  • the corneal implant is positioned against stromal corneal tissue, and because the inlay has a higher affinity to the corneal tissue than to the moderate body, the inlay will disassociate from the moderate body and adhere to the corneal tissue.
  • Figures 11 A-l ID illustrate an exemplary embodiment of minimal and moderate bodies, which can be incorporated into the assembly from figures 4-10.
  • Minimal body 224 includes recess 225 formed therein such that when moderate body and minimal body are moved towards one another, they form a nest in which the inlay is retained (see figure 1 1 D).
  • the recess has a generally circular configuration (similar to the general configuration of minimal body 224), but other configurations may be suitable.
  • Recess 225 is adapted to accommodate the corneal implant within the recess.
  • Recess 225 is also sized to prevent inlay 140 (see Figures 1 IB- 1 ID) from being compressed between the minimal and moderate bodies while being shipped or stored (see Figure 1 1 D).
  • the corneal implant is therefore maintained in substantially unstressed, or non-deformed, configuration.
  • the inlay has a defined curvature, it may be preferred to not allow the inlay to be distorted during shipping and/or storage, and the recess (and thus the nest) can be sized to help prevent it from being distorted.
  • the recess formed in the minimal body allows for easy containment without excess force being applied to the inlay.
  • the nest formed by the moderate and minimal bodies prevents compression and/or damage to the inlay while acting as a storage compartment.
  • the recess size is larger than the inlay size.
  • the diameter of the recess (“dr") is greater than the diameter of the inlay ("di”).
  • the diameter of the moderate body (“dM”) is greater than the diameter of the recess ("dr") formed in the minimal body (see Figures 1 1 D).
  • the diameter of the minimal body (“dm”) is greater than the diameter of the moderate body (“dM”).
  • the depth of the recess is greater than the material thickness of the inlay, but is preferably slightly less than the height of the corneal implant in a non-stressed configuration. This ensures that at least a portion of the corneal implant is maintained in contact with both the moderate body and the minimal body. If at least a portion of the corneal implant is not in contact with the moderate body, the corneal implant can remain adhered to the minimal body rather than the moderate body when the moderate and minimal bodies are moved away from one another.
  • the material thickness of the corneal implant is about 38.1 microns
  • the overall height of the implant in a non- stressed configuration is about 152.4 microns
  • the depth of the recess is between about 63.5 microns and about 114.3 microns.
  • moderate body 222 is secured to first portion 218, while minimal body 224 is secured to second portion 220.
  • the system is used in the same manner as the embodiment in Figures 4- 10.
  • the moderate body is stainless steel. In some embodiments it can be about 0.1 mm thick. As shown in the figures, the plurality of openings in the moderate body have general hexagon configurations. In some exemplary embodiments the dimension from a first side of the hexagon to a second side that is parallel to the first side (i.e., double the hexagon's apothem) of at least a substantial number of the hexagon shapes is about 0.35 mm. In some embodiments that dimension could be between about 0.02 mm to about 0.12 mm.
  • the distance between hexagons is about 0.05 mm, although this distance could be between about 0.01 mm and about 0.25 mm.
  • the diameter of the moderate body can be about 3 mm, but in some embodiments it is between about 0.25 mm and about 13 mm.
  • the minimal body is stainless steel, and is about 0.2 mm thick, except in the recess section.
  • the openings in the minimal body each have general hexagon configurations.
  • the dimension from a first side of the hexagon to a second side that is parallel to the first side (i.e., double the hexagon's apothem) of at least a substantial number of the hexagon shapes is about 1 mm. In some embodiments that dimension could be between about 0.1 mm to about 3 mm.
  • the distance between hexagons (i.e., the distance from a first side of a first hexagon to a first side of a second hexagon, wherein the sides are parallel to one another and the hexagons are directly adjacent to one another) can be about 0.2 mm, although this distance could be between about 0.02 mm to about 0.12 mm.
  • the diameter of the minimal body can be about 6.5 mm, but in some embodiments it is between about 3 mm and about 13 mm.
  • the diameter of the minimal body is at least about 2 times the diameter of the moderate body. In some embodiments the diameter of the minimal body is at least about 1.5 times the diameter of the moderate body. In some embodiments the size of the plurality of hexagons in the minimal body is at least about 2 times the size of the plurality of hexagons in the moderate body. In some embodiments they could be at least about 3 times, or at least about 4 times.
  • Figures 12-15 illustrate additional views illustrating the relative sizes and dimensions of the mesh bodies and a corneal inlay. In this embodiment the inlay has a diameter of about 2 mm.
  • Figure 12 is a top view illustrating minimal mesh body 224, recess 225 formed in minimal mesh body, periphery of inlay 140, and the surface area 240 (shown in hash lines) of minimal body 224 that overlaps with the inlay when the inlay is positioned in recess 225.
  • surface area 240 of minimal body 224 that overlaps with the inlay is about 0.9 mm 2 .
  • the perimeter of the inlay that overlaps the minimal body is about 9 mm.
  • Figure 13 illustrates minimal mesh body 224 and periphery of inlay 140, and the surface area 242 (shown in hash lines) of openings 244 (only three openings 244 labeled) that overlaps the inlay when the inlay is in the recess.
  • the surface area 242 is about 2 mm 2 .
  • Figure 14 illustrates moderate mesh body 222 and the periphery of inlay 140 disposed thereon.
  • Surface area 250 of moderate body 222 is the surface area of the moderate body that overlaps the inlay, at least a portion of which is in contact with the inlay, when the inlay is positioned in the nest. In this particular embodiment surface area is about 0.75 mm 2 .
  • the perimeter of the inlay is about 26 mm.
  • Figure 15 illustrates moderate body 222, periphery of inlay 140, and the surface area 254 (shown in hash lines) of openings 252 (only three openings 252 are labeled) that overlap the inlay.
  • Surface area 254 is about 2.3 mm 2 .
  • the moderate body and the minimal body each have one or more openings, or apertures, extending through the bodies.
  • the ratio of the moderate aperture perimeter (or sum of the aperture perimeters if more than one aperture) to the moderate aperture area (or sum of the apertures areas if more than one aperture) is greater than the ratio of the minimal aperture perimeter (or sum of the aperture perimeters if more than one aperture) to the minimal aperture area (or sum of the aperture areas if more than one aperture).
  • the greater ratio results in greater forces being applied to the corneal implant from the moderate body than the minimal body, and thus provides the moderate body with a higher affinity for the corneal implant than the minimal body. When the moderate and minimal bodies are moved apart relative to one another, the greater forces applied to the implant will cause the implant to remain adhered to the moderate body rather than the minimal body.
  • the sum of the perimeters of the apertures in the moderate body that overlap the implant were determined to be about 1.03 in, while the sum of the aperture areas that overlap the implant were determined to be about .0012 in 2 .
  • the ratio of perimeter to area for this particular moderate body was about 858 in "1 .
  • the sum of the perimeters of the apertures in the minimal body that overlap the implant were determined to be about .365 in, while the sum of the aperture areas that overlap the implant were determined to be about .0014 in 2 .
  • the ratio of perimeter to area for this particular moderate body was about 260 in "1 . The ratio is therefore greater for the moderate body than for the minimal body.
  • FIG 16 is a partial exploded view of an exemplary corneal implant storage and positioning device.
  • Positioning device 310 generally includes a handle assembly 312 that includes the moderate body, support assembly 314 that includes the minimal body, and actuator assembly 316 that is adapted to actuate, or move, support assembly 314 with respect to handle assembly 312. Due to the inlay's greater affinity for the moderate body, the inlay will adhere to the moderate body when the support assembly 314 is actuated.
  • Actuator assembly 316 includes push rod 320 coupled to button 321, and spring 322.
  • Handle assembly 312 includes handle 324 coupled to distal portion 326, which includes the moderate body.
  • the distal end of spring 322 is secured within the internal channel within handle 312, and the proximal end of spring 322 is secured to the distal end of button 321.
  • Push rod 320 is configured to be disposed within the internal lumen of spring 322. As shown in more detail in Figures 17A-17C, the distal end of push rod 320 includes bore 328 therethrough, adapted to receive dowel 318 therein.
  • dowel 318 is advanced through bore 328.
  • Dowel 318 both prevents push rod 320 from retracting proximally within handle assembly 312, but it also provides base assembly 314 with a surface to engage in order to secure support assembly 314 in place relative to handle assembly 312, as shown in Figure 17C.
  • the device also includes rod 330, which helps secure support assembly 314 in place relative to handle assembly 312 (see Figure 17C), but allows support assembly 314 to rotate around rod 330 when the actuator is actuated.
  • Dowel 318 is also involved in the actuation of the support assembly.
  • Actuating button 321 causes push rod 320, and thus dowel 318, to be advanced distally within handle assembly 312. This causes dowel 318 to apply a generally distally directed force to support assembly 314, which causes dowel 318 to push down on support assembly 314.
  • support assembly 314 will begin to rotate around rod 330, causing minimal body mesh 338 to move away from moderate mesh body 334. Further rotation of support assembly 314 will free support assembly 314 from rod 330, allowing support assembly 314 to be completely disengaged from handle assembly 312. Once disengaged, the corneal implant will remain adhered to moderate body 334 and is ready for use, such as delivery into or onto corneal tissue.
  • the user can release button 321, and spring 322 causes actuator 316 to return to an at-rest, or non-actuated, position relative to handle assembly 312.
  • support assembly 314 rotates with respect to handle assembly 312 in only one direction, which prevents torqueing.
  • Figure 18 is a partial exploded view of handle assembly 312 shown in Figure 14 (actuator and base assembly not shown).
  • Assembly 312 includes handle 324, distal tip portion 342, dowel 318, applicator base 336, and applicator 334.
  • Handle 324 is secured to distal tip portion 342, and the distal end of distal tip portion 342 is disposed within a bore in applicator base 336.
  • Applicator 334 is secured to applicator base 336.
  • Figure 19 shows the assembled view from Figure 18.
  • Figures 20A-20D illustrate alternative views of the assembly of applicator base 336, applicator 334, and rod 330.
  • Figure 20A is an exploded perspective bottom view.
  • Figure 20B is a perspective top view illustrating how rod 330 is disposed within applicator base 336.
  • Figure 20C is a bottom view showing applicator 334 secured to applicator base 336 and a plurality of attachment points 350 for securing applicator 334 to applicator base 336.
  • Figure 20D is a front view showing applicator 34 secured to applicator base 336, and rod 330 disposed within applicator base 336.
  • Applicator 334 and applicator base 336 can be secured together by any suitable technique.
  • applicator 334 is welded to base 336, such as by resistance welding or laser welding.
  • Applicator 334 includes the moderate mesh body.
  • Figures 21 A-211 illustrate a variety of views of a particular embodiment of applicator base
  • Figures 22A-22C illustrate exemplary dimensions for applicator 334, including the mesh dimensions, described above. For example, dimensions of the mesh that contribute to implant preference to adhere to the moderate body over the minimal body are shown.
  • Figure 22A is a top view.
  • Figure 22B is a side view.
  • Figure 22C is a detailed view of section A from Figure 22A.
  • Figures 23A-23D illustrate support assembly 314 from Figure 17, which includes support base 340 secured to implant support 338. Support base 340 and implant support 338 are secured to one another similarly to the applicator base and the applicator described above.
  • Figure 23A is an exploded view
  • Figure 23B is an assembled view.
  • Figure 23C is a top view.
  • Figure 23D is a detailed view C from Figure 23A of applicator 338 showing recess 360 defined by recess sidewalls 356 and recess base surface 358.
  • the implant is configured and sized to be disposed within the recess such that it is positioned between the minimal and moderate meshes prior to removal of the minimal body.
  • Figures 24A-24E illustrate front, sectional side, side, and top views of support base 340.
  • FIGS 25A-25D illustrate views of the support 338.
  • Figure 25B illustrates section A-A shown in Figure 25A.
  • Figure 25C shows detail B from Figure 25B, and
  • Figure 25D shows detail C from Figure 25A.
  • Recess 360 is formed in a top portion of the support 338.
  • Mesh apertures 364 are defined by body 362, illustrated in Figures 25B and 25C. The dimensions shown are exemplary and not intended to be limiting.
  • the mesh apertures of the minimal body are larger than the mesh apertures of the moderate body, which is one of the contributing factors for why in this particular embodiment the implant preferentially adheres to the moderate body.
  • the recess in the minimal mesh body should be sized to prevent forces, or a substantial amount of forces, from being applied to the corneal implant while it is positioned in the nest between the moderate and minimal bodies prior to use.
  • the mesh apertures and the recess can be created by any suitable technique, such as chemical etching, laser cutting, micro water jet cutting, etc. In some instances chemical etching provides for a cleaner cut and does not require as much post-manufacture processing of the body.
  • the mesh apertures can be created from only one side, or in some embodiments half of the thickness of the aperture is created from one side, while the other half of the aperture is created from the other side.
  • the recess is etched from one side, while the mesh apertures are created in the other side. Any combination or variation on these techniques can be used.
  • the recess is created by plunge electrical discharge machining ("EDM").
  • the net forces acting on the corneal implant are greater from the moderate mesh body than from the minimal mesh body.
  • the polarity of water is an important factor when the corneal implant is formed of a hydrophilic material because in these instances the implant has properties like water and as such behaves like water.
  • the dimensions of the mesh, configuration of the mesh, mesh body, and other factors can be modified to alter the relative affinities.
  • the minimal mesh body diameter is larger than the moderate mesh body diameter (both are shown to have a generally circular configuration).
  • the minimal body diameter due to its larger size, acts like a bumper, protecting the entire distal region of the apparatus during storage and use prior to actuation of the actuator.
  • the minimal body thickness is about twice as thick as the moderate body.
  • the moderate body diameter is larger than the recess, while the minimal body diameter is larger than the moderate body diameter.
  • the moderate mesh body can be sized such that it does not interfere with the visualization of the pupil.
  • the moderate mesh body portion is sized to allow the physician to be able to see the pupil during the delivery of the implant on corneal tissue. Starting with this constraint, the size of the other components can then be determined.
  • the implant's affinity for the moderate body is described as largely due to the size and configuration of the moderate mesh body relative to the minimal body, there are many ways to establish and control the implant's affinity for a given body. In some embodiments this can be accomplished by using a moderate body that is different than the minimal body. In some embodiments a finish could be applied to one or more of the surfaces of the moderate and minimal bodies. The finish can be different on the moderate and the minimal body to control the preferential adhesion. In some embodiments the moderate body has a better finish than the minimal body. In some embodiments the minimal body has a matte finish on it.
  • One or more components of the devices described herein can be a stainless steel or titanium.
  • applicator base 36 and applicator 34 can both be stainless steel, one can be titanium while the other is stainless steel, or both can be titanium.
  • Figures 26A-26D illustrate views of distal tip 342 from the handle assembly described above.
  • Figure 26A is a view looking from the proximal end to the distal end
  • Figure 26B is a view from the distal end to the proximal end
  • Figure 26C is a sectional side view
  • Figure 26D is a front view.
  • the distal tip is secured to the handle, and the distal end of it is disposed in the applicator base 336.
  • Figures 27A-27E illustrate in detail actuator assembly 316 from Figure 16.
  • the actuator includes button 321, push rod 320, and bore 328 at the distal end of push rod 320.
  • Figure 27A is an exploded view
  • Figure 27B is an assembly view
  • Figure 27C is a side sectional view of section A-A shown in Figure 27E
  • Figure 27D is a detail view of section B shown in Figure 27C.
  • Figures 28A-28D illustrate detailed views of button 321.
  • Figures 29A-29D illustrate detailed views of push rod 320, including bore 328.
  • Figures 30A-30D illustrate detailed views of handle 324.
  • Figures 31A and 31B illustrate detailed views of spring 322.
  • Figures 32A and 32B illustrate detailed viewed of dowel 18.
  • the implant can be used right away or it can be stored in packaging for any suitable period of time.
  • the corneal implant is made of a hydrogel material, it is important to keep the implant adequately hydrated during storage.
  • the following disclosure describes packaging tools and assemblies that are adapted to keep the corneal implant adequately hydrated during storage.
  • the following embodiments can also remove excess fluid from the portion of the implant applicator apparatus in which the implant is disposed. Removing excess fluid helps ensure that when the minimal body is removed, the corneal implant will adhere to the moderate body.
  • the packaging tools and assemblies described herein generally provide one or more of three important functions: 1) to surround and protect the applicator apparatus, including the corneal implant retained therein, from damage; 2) to act as a fluid reservoir and provide fluid to the corneal implant to keep the corneal implant hydrated during storage; and 3) to remove, or wick away, excess fluid when removing the corneal implant applicator from the packaging materials.
  • FIGS 33A (side view) and 33B (top view) illustrate an exemplary packaging assembly 400 with corneal implant applicator apparatus 402 disposed therein.
  • Assembly 400 includes housing, or tray, 404, and lid 406.
  • Housing 404 includes a distal reservoir, or well, 420, which is adapted to accommodate the distal end of applicator apparatus 402 (in which the corneal implant is disposed) and hydration control member 408.
  • Hydration control member 408 is disposed within reservoir 420, and is positioned within reservoir 420 such that it interacts with the portion of the apparatus 402 in which the corneal implant is disposed.
  • hydration control member 420 is a porous bag filled with a hydrogel material.
  • the hydrogel material acts like a liquid reservoir, and the pores are sized to allow fluid molecules to pass through the pores.
  • the bag is folded upon itself at folds 414, forming three bag sections 412. Two of the sections form a passage, or pocket, that is adapted to receive the portion of apparatus 402 in which the corneal implant is disposed.
  • the apparatus 402 is the apparatus from figure 16.
  • the moderate mesh and minimal mesh (with implant therein) are positioned within the passage formed between two of the sections of bag, as shown in the figure.
  • the moderate mesh and minimal mesh engage the two sections of the bag.
  • the two sections form a passage into which the relatively thin moderate/minimal body assembly can be disposed.
  • the corneal implant When the distal end of apparatus 402 is positioned within the passage of hydration control member 420, the corneal implant, due to the openings in the moderate and minimal mesh bodies and the pores in the bag, is in fluid communication with the hydrogel material in the bag.
  • the hydrogel material (or other hydrophilic material) within the bag keeps the corneal implant hydrated during storage in the packaging.
  • apparatus 402 is removed from the passage formed by the two sections of the porous bag, the sections of the bag wick away excess storage fluid that adheres to the moderate body and minimal body. This prevents too much storage fluid from remaining adhered to the moderate and minimal bodies when prepping the implant to be deposited onto corneal tissue.
  • the hydration control element helps keep the corneal implant hydrated during storage. This is of particular relevance when the implant is made at least partially from a hydrophilic material such as a hydrogel.
  • the hydration control element generally acts like a fluid reservoir that is in fluid communication with the corneal implant via the openings in the moderate and minimal mesh bodies.
  • Figure 34 illustrates a hydration control member in the form of a porous bag filled with a hydrogel material.
  • Figure 35 illustrates a hydration control member in the form of a porous bag filled with glass beads. The glass beads within porous bag provide the same hydration to the implant as does the hydrogel material within the bag from figure 34.
  • the porous bag is adapted to maintain an equilibrium, or substantial equilibrium, with the nest within the moderate and minimal bodies. This provides enough fluid to the implant to keep the implant hydrated during storage.
  • the bag can be a polyester material or any other suitable material.
  • the bag is polyether ether-ketone ("PEEK").
  • PEEK polyether ether-ketone
  • the bag pore size is sized to prevent particulates from leaking out of the bag and to control the hydration of the corneal implant.
  • the bag mesh size is between about 10 microns and about 50 microns. In some embodiments the pore size is about 30 microns. If hydrogel is used within the bag, the hydrogel material can be medical grade or non-medical grade.
  • the hydration control member comprises two hydration control elements that are rolls of material that form a pocket, or passage, therebetween.
  • Figures 36A and 36B illustrate an exemplary hydration control member that comprises two rolls of a polyester mesh material that form a pocket therebetween. The two rolls are first and second hydration control elements. The pocket formed by the two rolls is adapted to receive the portion corneal implant applicator apparatus that houses the corneal implant.
  • the two rolls are formed from a single piece of material that is rolled up like a scroll to form first and second hydration control elements.
  • FIGs 37A and 37B illustrate packaging assembly 440 wherein the hydration control member 448 comprises the two rolls of material (e.g., a polyester material) from Figures 36A and 36B.
  • Corneal implant applicator apparatus 442 is the apparatus shown in Figure 16.
  • the packaging 440 includes tray 444 and lid 446.
  • Tray 444 includes reservoir 454 in which the distal end of apparatus 442 is positioned.
  • the two rolled hydration control elements of hydration control member 448 form a pocket, or passage, therebetween.
  • the pocket is adapted to receive and stabilize the moderate and minimal bodies therein.
  • the two rolls of material are in contact with each other, and the pocket is the general wedge configuration defined by the outer surfaces of the two rolled sections.
  • the distal end of the apparatus is advanced to a position in which the two rolls are disposed on either side of the corneal implant (which is disposed within the nest) and are in contact with the minimal body and the moderate body, respectively.
  • the rolled elements are therefore in fluid communication with the corneal implant via the openings in the moderate and minimal bodies.
  • the hydration control member also stabilizes the moderate and minimal bodies (and the implant disposed in the nest) when the distal end of the apparatus is disposed in the pocket.
  • the hydration control member engages with and stabilizes the moderate and minimal bodies in the packaging. This prevents the distal end from jostling around and possibly being damaged while in the packaging.
  • "Stabilize" as used herein means that the distal end of the apparatus is more stable than it would be without the presence of the hydration control member.
  • the distal end need not be completely immobilized to be stabilized, but it is generally preferred that the distal end doesn't move relative to the hydration control member.
  • first and second hydration control elements are not material that is rolled up, but are rather cylindrically-shaped solid material. The two elements would either be secured within the tray, or they could be secured to a base member.
  • the hydration control member is adapted to wick away, or strip, excess fluid from the moderate and minimal bodies when the apparatus is removed from the pocket. This is in part because the two hydration control elements are in contact with the moderate and minimal bodies as they are removed from the pocket.
  • the hydration control elements act in some ways like two squeegees to strip away excess fluid as the distal end is removed from the pocket. When stripping away the excess fluid the hydration control elements do not necessary absorb the excess fluid, but rather simply strip it away from the moderate and minimal bodies. This can be advantageous because even if the hydration control elements are substantially saturated with fluid, they can still remove the excess fluid from the moderate and minimal bodies.
  • the hydration device need not be folded or formed in any specific configuration.
  • a bag could simply be deformed in such a way that the distal end of the apparatus will maintain substantial contact with the hydration control member.
  • the hydration control member could be engaged with only one side of the distal end of the apparatus and the apparatus could still be stable and the excess fluid could still be removed.
  • Figures 38A-40B illustrate an alternative embodiment of a hydration control member.
  • Hydration control member 500 includes first hydration control element 502 and second hydration control element 504, cores 506, and two deformable bases 508.
  • Figure 38A shows an exploded view while figure 38B shows the assembled view.
  • Hydration control elements 502 and 504 are formed by rolling up a single piece of material 503 around cores 506 to form two rolled sections, similar to a scroll. To form the scrolls, ends 501 of material 503 are passed through slits in cores 506, as shown in figure 40A, and then rolled back around core 506 as shown in figure 40B. Cores 506 are then rolled up over material 503, which rolls material around cores 506. The two cores 506 are rolled up in opposite directions until they engage. They are rolled up so that hydration elements 502 and 504 have substantially the same amount of material 503 in them. The material and cores after being rolled up are shown in the central exploded illustration in figure 38A. Pocket 505 is formed by the surfaces of hydration control elements 502 and 504.
  • the cores are PEEK, but can be any other suitable material, such as a polyester material.
  • the material forming the hydration control elements preferably has water wicking properties. These properties help remove the excess fluid from the apparatus. Exemplary suitable materials include woven fabric polyester materials.
  • the wicking properties of the hydration control elements also help ensure hydration of the inlay when in the packaging. Any loose water (i.e., condensate) in the packaging that comes into contact with the hydration control elements will be wicked up and made available to the corneal implant due to the fluid communication with the implant via the openings in the moderate and/or minimal bodies. This can be highly advantageous if the packaging assembly goes through a steam sterilization cycle, for example, as there will likely be condensate present in the packaging at the end of the cycle.
  • Hydration control member 500 also includes two deformable bases 508 which are secured to the ends of cores 506.
  • Bases 508 each have two bores through them that are adapted to receive an end of cores 506.
  • Bases 508 have spring-like properties so that they can be slightly deformed when the distal end of the applicator is advanced through the pocket.
  • bases 508 include living hinges 510, which allow for the slight deformation of bases 508.
  • the hydration control elements 502 and 504 are each pressing on the moderate and minimal mesh bodies, helping stabilize the applicator apparatus in the pocket.
  • bases 508 can be modified to provide a greater degree of deformation.
  • the bases 508 could include a hinge formed of two materials, which may provide a greater degree of movement than living hinges 510.
  • Bases 508 could also be formed of a material with superelastic properties such as nitinol.
  • backstop 512 is formed that is substantially in the center along the length of material 503.
  • the backstop is situated at the back of the pocket and prevents the distal end of the apparatus from being advanced too far into the pocket.
  • the applicator is advanced into the pocket such that the inlay is positioned just distal to where the hydration control elements engage each other, so that when the apparatus is removed from the pocket, the excess fluid can be properly wicked away from the distal end of the applicator apparatus.
  • the corneal implant can also be disposed where the two hydration control elements meet, or it can be disposed closer to the backstop.
  • hydration control member 500 can simply be used as a temporary hydration device and need not be positioned within a packaging container. For example, a user could simply keep the distal end of the implant applicator apparatus disposed within the hydration control member pocket to keep the implant hydrated.
  • the tray includes snap features adapted to engage and stabilize the implant applicator apparatus during storage to prevent or minimize movement in the tray.
  • the snap features can be disposed on a distal portion of the tray, a proximal portion of the tray, or both. In the distal portion they grab onto and secure a distal portion of the apparatus. If in a proximal region the snap features are adapted to secure a proximal region of the apparatus.
  • Exemplary distal snap features that are formed into the tray and are adapted to securingly engage with a distal portion of the apparatus are shown in Figure 33B as elements 418 and 419.
  • Exemplary proximal snap feature 413 is adapted to stabilize the proximal portion of the apparatus.
  • the tray can include proximal snap features 413 but does not include the distal snap features.
  • the snap features can provide a location around which the apparatus pivots as the apparatus is removed from the packaging.
  • FIGs 41 A-41 E illustrate an embodiment of an exemplary packaging tray 552 (lid not shown) including a lock 556 and a method of removing corneal implant applicator 554 from the packaging tray.
  • Lock 556 helps stabilize apparatus 554 within tray 552, in particular the handle portion of the apparatus.
  • the lid has already been removed.
  • Figure 4 IB the sides of lock 556 are depressed in the direction of the two arrows and the lock is lifted up away from apparatus 554. After the lock has cleared locking elements in the tray, lock 556 is fully disengaged from the tray, as shown in figures 41C and 41D.
  • a hydration control member is not shown in figures 41 A-41E, but any of the hydration control members described herein can be included in the well, or reservoir, in the tray.
  • the lock and the tray can also be made to be an integral structure rather than being separate components.
  • the tray lid and housing preferably do not include any leachable materials, as the implant may be stored in the packaging for any length of time, including several years. Additionally, the packaging material, including the tray, should be autoclavable for sterilization.
  • the tray can be thermoformed, injection molded, or formed by other suitable methods. In one particular embodiment the tray is a TOP AS® COC material, such as COC6015.
  • the tray can also be formed from polypropylene or other plastic materials.
  • one or more components of the device can be made from a variety of materials.
  • one or more components can be stainless steel, and one or more components can be titanium. Titanium is more corrosion resistant than stainless steel and thus may be a better material when the materials are exposed to water.
  • one or more treatments can be applied to the stainless steel, such as to make them more resistant to corrosion.
  • the parts are passivated, while in some embodiments the parts are coated with a zirconium nitride coating. In some embodiments the parts are both passivated and coated with zirconium nitride.
  • one or more components are 316L stainless steel.
  • a zirconium nitride coating can also be used to make the components harder to make them stiffer and more protective.
  • a zirconium nitride coating can be applied even if titanium were to be used as the material.
  • the moderate and/or minimal mesh bodies, or any other component of the apparatus could be a plastic material. This could make the apparatus cheaper if it or portions of it are intended to be disposable.
  • the assembled packaging (tray, lid, and applicator apparatus disposed therein) needs to be sterilized. In some embodiments it is sterilized by autoclaving. Due to the water in the corneal implant, the water associated with the hydration control member, autoclaving creates steam within the sealed tray. The internal pressure after autoclaving can get as high as 350 kPa or higher. The tray should be able to withstand the internal pressure increase, and the seal between the lid and the tray needs to be able to withstand the internal pressure increase. If the seal between the lid and tray breaks, the inside of the packaging is no longer a sterile environment.
  • the relative size of the minimal mesh body provides protection for the moderate mesh body during packaging and removal. This is because the diameter of the minimal mesh is greater than the diameter of the moderate body, and because the minimal mesh body has a greater thickness than the moderate body. In some of the embodiments herein, the minimal body is about twice as thick as the moderate body (except for the portion in which the recess is created).
  • the handle such as handle 324 in Figure 16 is an injection molded plastic handle. It can be desirable to have a knurl pattern on it to improve the physician's tactile feel. Some knurl patterns are, however, difficult to clean. Additionally, the pattern can wear away on the packaging materials during storage. In some embodiments the handle has one or more spiral patterns that make it smoother, which makes it wear less on the packaging material.
  • the storage and/or positioning devices described herein can be used to store and/or position corneal inlays such as those exemplary inlays described in U.S. Patent No. 6,102,946, filed December 23, 1998, Application. No. 1 1/106,983, filed April 15, 2005, Application No. 10/837,402, filed April 30, 2004, Application No. 1 1/554,544, filed October 30, 2006, Provisional Application No. 60/776,458, filed February 24, 2006, Application No. 12/418,325, filed April 3, 2009, Application No. 1 1/738,349, filed April 20, 2007, Application No. 12/877,799, filed September 8, 2010.
  • an amount of fluid remains adhered to the corneal implant and the moderate body due to adhesive forces between the fluid and the implant, and between the fluid and the moderate body. This is generally referred to as the amount of fluid that is left behind after separation of the moderate and minimal bodies. In some particular embodiments it has been found that between about .5 and about 1.5 microliters is an optimal amount of fluid that is left behind. This amount is not intended to be limiting. As set forth above, the pivoting motion of the minimal body relative to the moderate body helps ensure that the amount of fluid that remains is desirable.
  • the disclosure that follows generally describes devices and methods for moving a corneal implant, or other hydrophilic implant, from one location to another location.
  • the devices and methods utilize the property of surface tension to control the inlay.
  • the devices can be used to pick up the implant from one surface or material and deposit it onto a second surface or material.
  • the corneal implant is positioned in a recess in the minimal mesh body.
  • the disclosure that follows describes exemplary devices and methods of depositing the corneal implant into the recess of the minimal mesh body of the devices above.
  • FIG. 42 illustrates handling tool 602 in the form of a loop in which fluid 604 and corneal implant 600 are constrained within the loop.
  • implant 600 When implant 600 is constrained in this manner within the loop, the implant can be moved from one location to another by grasping the handle connected to the loop.
  • the implant is first picked up with a loop and is then deposited from within the loop into the recess in the minimal body.
  • the corneal implant is a corneal inlay with a diameter of about 2 mm and an edge thickness of about 14 microns. In this specific embodiment the dimensions of this particular inlay dictate that the radial surface area is about 1/13 th of the bottom surface area.
  • Figures 44A-44D illustrate alternative configurations of loops.
  • the loop is offset at an angle relative to the handle.
  • Figure 44B illustrates a loop in which the loop is a double loop of material.
  • Figure 44C illustrate the loop with a square configuration (but could be rectangular).
  • Figure 44D illustrates a loop in which the material forming the loop extends proximally to form the handle.
  • Figure 45 illustrates an embodiment of a handle designed to control loop 614 that is adapted to handle a corneal implant.
  • the corneal implant may be controlled with a volume of fluid held within loop 614.
  • This handle allows the user to easily control the volume of fluid within the loop.
  • buttons 610 and 612. One of the buttons will cock a spring connected to a plunger, and the other button will release the spring. Both buttons will hold their position after release, preventing the user from having to hold a button in place while attempting to position the corneal implant.
  • Figures 46a and 46b illustrate an exemplary embodiment of this dual actuator design, but other configurations of buttons can be used without departing from the scope of the present disclosure.
  • button 616 When button 616 is depressed, spring 618 is cocked and spring 620 causes button 622 to engage latch 624.
  • Button 616 is connected to plunger 617 such that it is pushed toward loop 626 when cocked. The device is now ready to pick up a corneal implant.
  • button 622 is pressed, latch 624 releases spring 618, which forces plunger 621 back away from loop 626. This causes air to move over the loop, sucking off excess fluid surrounding the corneal implant.
  • plunger 621 is adapted to suck up an excess of fluid that is more than is be required to hold the implant within the loop.
  • the loop may be attached to any number of handle configurations to better allow for control of the corneal implant.
  • a handle that is adapted for precise control of the amount of fluid held within the loop is beneficial for several reasons.
  • the amount of fluid within the loop will provide the user control of the corneal implant.
  • the user can hold a larger drop close to the surface and allow the fluid, along with the implant, to wick onto the surface, or the user can pull the fluid away from the loop until there is no longer enough fluid to create the needed surface tension, causing the implant to preferentially bind itself onto the corneal surface.
  • the implant can be picked up by flooding the area with fluid, causing the implant to float to the top where it can be recaptured within the loop. Being able to remove excess fluid during the procedure is beneficial in that it takes less time for the surface of the cornea to dry.
  • Figure 47 illustrates an additional exemplary handle 630 coupled to loop 632.
  • Loop 632 with fluid therein, is adapted to maintain a corneal implant therein.
  • the control of the fluid within the loop may be achieved in a variety of suitable ways.
  • the loop is placed at the end of a luer dispensing needle.
  • any configuration placing the loop within a controlled fluid pathway may be used.
  • Figure 48 shows an example of system that makes use of a compressible tubular element that forms control neck 636.
  • the handle also includes luer 638.
  • the reservoir is prefilled with fluid using syringe 634.
  • control neck 636 When the user presses down on control neck 636, the volume inside of the handle decreases, forcing fluid out through the tip and into loop 640.
  • control neck 636 When control neck 636 is released, a vacuum is created that sucks the fluid back into the reservoir.
  • Figure 49 shows a variation that works in much the same way as the embodiment in Figure 48.
  • slide 644 is set at an intermediate position. This allows the user to release pressure on the internal tubing, resulting in a pressure differential to pull fluid in, or increase pressure to displace fluid, forcing it out of the tip.
  • the spring forces the slide to return to the intermediary position upon release.
  • the device includes syringe 642, luer 646, and loop 648.
  • Figure 50 is an embodiment in which lighting element 652 is added to the general handle design, which includes loop 650.
  • the lighting element can be a LED at the distal end of the device, or it can be a fiber optic extending along the length of the device.
  • corneal implant may also be beneficial to be able to store a corneal implant within a loop.
  • Some corneal implants are preferably placed on the cornea in a specific orientation and must be kept hydrated throughout shipment and storage.
  • the implant can be packaged preloaded in the loop to preserve orientation, and within a package that preserves hydration.
  • Figure 51 shows an example of vial 654 that would house the packaged luer tip 658 while preserving hydration.
  • Fluid 656 is also within vial 654.
  • the implant is protected within protection package 660 within vial 654.
  • the preloaded loop is packaged within a small holder that allows fluid to flow therethrough to the implant to keep it hydrated.
  • Figure 52 shows an embodiment where cover 667 is slid back in the direction of the arrow to reveal loop 668 in which a preloaded inlay is disposed in its proper orientation.
  • Mesh 672 on top and mesh 670 on bottom of implant 664 are adapted such that the implant preferentially adheres to the loop despite the larger surface area exposed to the mesh.
  • the meshes with openings therethrough also allow for the implant to stay hydrated while packaged, and help excess fluid to drain off when the implant is removed from the hydration package.
  • This embodiment also includes luer 665.
  • Figure 53 shows a system in which the implant can be stored separately from the loop.
  • Implant 676 can be easily removed from between meshes 674, which is the same mesh configuration shown in figure 52.
  • Figure 54 illustrates a system in which preloaded loop 682 with implant 680 therein is placed within clamp 684, which is adapted to hold the implant in place during shipping and storage.
  • a fluid control handle (not shown) is attached to luer 678. The entire assembly is then swiftly removed from the clamp with the implant retained in place within the loop.
  • any of the loop devices described herein can also be used to position or move the corneal implant onto or from any type of surface.
  • the loops can facilitate any kind of positioning or handling that might be needed.
  • the loop is used to position a corneal implant onto a corneal surface.
  • the loop is used to position a corneal implant onto a delivery device surface, wherein the delivery device is used to position the corneal implant into or onto the cornea.
  • the loop can be used to handle a corneal implant and position it into the recess of the minimal body described above.
  • the loop is used to move the corneal implant from a storage or delivery device surface and onto another surface.
  • Embodiments herein describe both a moderate body and a minimal body.
  • the apparatus or its method of use need not include the minimal body.
  • the corneal implant is not positioned within a corneal nest defined by the moderate and minimal bodies.
  • the implant therefore need not be packaged with the moderate body.
  • it can be packaged in a separate packaging.
  • the moderate body can utilize its preferential adhesion for the implant as set forth above to retrieve, or pick up, the corneal implant from its packaging. This can eliminate restrictions on how the cornel implant needs to be packaged.
  • the implant can be stored in a vial, free-floating in a storage medium.
  • the moderate body which can be coupled to a handle, is positioned adjacent the implant in its storage medium, such as by scooping up the corneal implant into a position adjacent the apertures therein. Due to its preferential adhesion adaptation, the corneal implant will preferentially adhere to the moderate body. Once it has adhered to the moderate body, the implant is ready to be deposited onto the cornea as set forth above by relying on the moderate body's adaptation to allow the implant to preferentially adhere to the corneal tissue rather than the moderate body.

Abstract

Devices and methods for handling and depositing corneal implants onto corneal tissue. Devices and methods for packaging and storing corneal implants.

Description

CORNEAL IMPLANT STORAGE AND DELIVERY DEVICES
CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to the following provisional applications: U.S. 61/550,185, filed October 21, 2011 ; U.S. 61/679,482, filed August 3, 2012; and U.S. 61/606,674, filed March 5, 2012; all disclosures of which are incorporated herein by reference.
INCORPORATION BY REFERENCE
[0002] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application specifically and individually indicated to be incorporated by reference.
BACKGROUND
[0003] Corneal implants, such as corneal onlays and corneal inlays, can be small, delicate medical devices, the storage and/or handling of which should be carefully performed to prevent damage to the implants. Additionally, corneal implants can also be transparent, which, in addition to their small size, can make them difficult to see with the unaided eye.
[0004] Devices and methods are needed that allow for easy handling and positioning of small, delicate corneal implants without damaging the implant.
[0005] Additionally, the packaging tools and assemblies described herein generally provide one or more of three functions: to surround and protect the applicator apparatus, including the corneal implant retained therein, from damage; to act as a fluid reservoir and provide fluid to the corneal implant to keep the corneal implant hydrated during storage; and to remove, or wick away, excess fluid when removing the corneal implant applicator from the packaging materials.
SUMMARY OF THE DISCLOSURE
[0006] One aspect of the disclosure is a corneal implant applicator apparatus, comprising an implant applicator with one or more applicator openings therethrough, and an implant support with one or more support openings therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest, and wherein the implant nest is adapted to house a corneal implant, wherein a ratio of the sum of the perimeters of the one or more applicator openings to the sum of the areas of the one or more applicator openings is greater than a ratio of the sum of the perimeters of the one or more support openings to the sum of the areas of the one or more support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support. [0007] In some embodiments the implant applicator is adapted such that corneal tissue has a greater affinity for the corneal implant that the implant applicator.
[0008] In some embodiments the implant applicator has a plurality of applicator openings therethrough. The plurality of applicator openings can have the same greatest linear dimension spanning the plurality of applicator openings.
[0009] In some embodiments the implant support has a plurality of support openings therethrough. The plurality of support openings can have the same second greatest linear dimension spanning the support openings.
[00010] In some embodiments the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough. The plurality of applicator openings can have the same greatest linear dimension spanning the plurality of applicator openings and the plurality of support openings have the same second greatest linear dimension spanning the support openings. A number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest can be greater than a number of the plurality of support openings that overlap the corneal implant. Fluid can be retained in the corneal implant nest, and wherein the fluid is disposed within a number of the plurality of applicator openings that overlap the corneal implant due to surface tension, and wherein the fluid is disposed within a number of the plurality of support openings that overlap the corneal implant due to surface tension, wherein a volume of fluid disposed in the applicator openings that overlap the corneal implant is greater than a volume of fluid disposed in the support openings that overlap the corneal implant. At least one of the support openings that overlaps the corneal implant does not need to have fluid extending across the entirety of the opening.
[00011] In some embodiments the corneal implant applicator has a first greatest linear dimension spanning the corneal implant applicator and the implant support has a second greatest linear dimension spanning the implant support, wherein the second greatest linear dimension is greater than the first greatest linear dimension.
[00012] In some embodiments a periphery of the implant support extends further radially than a periphery of the implant applicator.
[00013] In some embodiments the implant support has a flat implant support surface that forms a portion of the nest. The implant support can comprise a recess formed therein adapted to accommodate the corneal implant.
[00014] In some embodiments the implant applicator has a flat surface that forms a portion of the nest.
[00015] In some embodiments the implant applicator has a first greatest thickness and the implant support has a second greatest thickness, wherein the second thickness is greater than the first thickness. The second thickness can be about two times the first thickness.
[00016] In some embodiments the one or more applicator openings have hexagonal configurations.
[00017] In some embodiments the one or more support openings have hexagonal configurations. [00018] In some embodiments the corneal implant is made from a hydrophilic material.
[00019] One aspect of the disclosure is a corneal implant applicator apparatus, comprising an implant applicator with a plurality of applicator openings therethrough; and an implant support with a plurality of support openings therethrough, wherein the number of the plurality of applicator openings is greater than the number of the plurality of support openings, wherein the implant applicator and implant support are disposed relative to one another to form a corneal implant nest, and wherein the corneal implant nest is adapted to house a corneal implant such that the corneal implant is disposed adjacent the plurality of applicator openings and the plurality of support opening.
[00020] In some embodiments the greater number of applicator openings provides the applicator with a greater affinity for the corneal implant than the support.
[00021] In some embodiments the applicator is adapted such that corneal tissue has a greater affinity for the corneal implant than the applicator.
[00022] In some embodiments a number of the plurality of applicator openings that overlap the corneal implant when positioned in the nest is greater than a number of the plurality of support openings that overlap the corneal implant when the implant is positioned in the nest.
[00023] In some embodiments the plurality of applicator openings have hexagonal configurations.
[00024] In some embodiments the plurality of support openings have hexagonal configurations.
[00025] In some embodiments the corneal implant is made from a hydrophilic material.
[00026] One aspect of the disclosure is a corneal implant applicator apparatus, comprising a corneal implant applicator with a plurality of applicator openings therethrough, wherein the plurality of applicator openings have hexagonal configurations; and a corneal implant support with a plurality of support openings therethrough, wherein the plurality of support openings have hexagonal configurations,wherein the corneal implant support disposed relative to the corneal implant applicator to form a corneal implant nest therebetween.
[00027] In some embodiments the plurality of applicator openings are sized to provide the applicator with a greater affinity for the corneal implant than the support.
[00028] In some embodiments the applicator openings are sized such that corneal tissue has a greater affinity for the corneal implant than the applicator.
[00029] In some embodiments the apparatus further comprises a corneal implant disposed within the nest adjacent the plurality of applicator openings and the plurality of support openings.
[00030] In some embodiments a linear dimension between opposing sides of the plurality of hexagonal applicator openings is less than a linear dimension between opposing sides of the plurality of hexagonal support openings.
[00031] In some embodiments the corneal implant is made from a hydrophilic material.
[00032] One aspect of the disclosure is a corneal implant applicator appartus, comprising an implant applicator with at least one applicator opening therethrough; and an implant support with at least one support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant; wherein the at least applicator opening and the at least one support opening are adapted such that forces between the corneal implant and a liquid disposed in the at least one applicator opening are greater than forces between the corneal implant and a liquid disposed in the at least one support opening, wherein the greater forces provide the applicator with a greater affinity for the corneal implant than the support.
[00033] In some embodiments the at least one applicator opening are adapted to provide the applicator with less of an affinity for the corneal implant than a corneal surface.
[00034] In some embodiments the number of applicator openings is greater than the number of support openings. The number of applicator openings that overlap the corneal implant when positioned in the implant nest can be greater than the number of support openings that overlap the corneal implant.
[00035] In some embodiments the size of the at least one applicator opening is smaller than the size of the at least one support opening.
[00036] In some embodiments the implant applicator has a first surface through which the at least one applicator opening passes, wherein the first surface is flat.
[00037] In some embodiments the implant support has a first surface through which the at least one support opening passes, wherein the first surface is flat.
[00038] In some embodiments a ratio of the sum of the perimeters of the at least one applicator openings to the sum of the areas of the at least one applicator openings is greater than a ratio of the sum of the perimeters of the at least one support openings to the sum of the areas of the at least one support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than the support.
[00039] In some embodiments the at least one applicator opening and the at least one support opening have hexagonal configurations.
[00040] In some embodiments the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, wherein the plurality of applicator openings are smaller than the plurality of support openings.
[00041] In some embodiments the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, and wherein a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
[00042] In some embodiments the corneal implant is made from a hydrophilic material.
[00043] One aspect of the disclosure is a corneal implant applicator apparatus, comprising an implant applicator with a plurality of applicator openings therethrough; and an implant support with a plurality of support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant, and wherein the arrangement of the plurality of applicator openings provides the applicator with a higher affinity for the corneal implant than the support.
[00044] In some embodiments the arrangement of the plurality of applicator openings provides the applicator with less of an affinity for the corneal implant than a corneal surface.
[00045] In some embodiments the number of applicator openings is greater than the number of support openings. The number of applicator openings that overlap the corneal implant when positioned in the implant nest can be greater than the number of support openings that overlap the corneal implant.
[00046] In some embodiments the size of the plurality of applicator openings is smaller than the size of the plurality of support openings.
[00047] In some embodiments the implant applicator has a first surface through which the plurality of applicator openings pass, and wherein the first surface is flat.
[00048] In some embodiments the implant support has a first surface through which the plurality of support openings pass, wherein the first surface is flat.
[00049] In some embodiments a ratio of the sum of the perimeters of the plurality of applicator openings to the sum of the areas of the plurality of applicator openings is greater than a ratio of the sum of the perimeters of the plurality of support openings to the sum of the areas of the plurality of support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support.
[00050] In some embodiments the plurality of applicator openings and the plurality of support openings have hexagonal configurations.
[00051] In some embodiments the plurality of applicator openings are smaller than the plurality of support openings.
[00052] In some embodiments a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
[00053] In some embodiments the corneal implant is made from a hydrophilic material.
[00054] One aspect of the disclosure is a corneal implant hydration control apparatus, comprising a body forming a pocket configured to receive and stabilize a corneal implant delivery apparatus therein.
[00055] In some embodiments the body comprises a first hydration control element and a second hydration control element disposed relative to the first hydration control element to form the pocket. The first and second hydration control elements can comprise sections of rolled up material. The first and second hydration control elements can comprise sections of rolled up material from an integral section of material. A section of the integral section of material can form a backstop. The first and second hydration control elements can be generally cylindrically-shaped. The first and second hydration control elements can engage one another.
[00056] In some embodiments the apparatus further comprises a first deformable base secured to the body, wherein the first deformable base is adapted to deform to adjust a distance between a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket. The apparatus can further comprise a first core disposed within the first hydration control element and a second core disposed within the second hydration element, wherein the first deformable base is secured to the first and second cores to secure the base to the first and second hydration control elements. The apparatus can further comprise a second deformable base second to the first and second cores. The first deformable base can be secured to a first end of each of the first and second cores, and the second deformable base is secured to a second end of each of the first and second cores. The first deformable base can include a living hinge that allows the deformable base to deform to adjust the distance between the first and second hydration control elements.
[00057] In some embodiments the pocket has a general wedge shape formed by a first and second hydration control elements.
[00058] In some embodiments the body is formed of a polyester material.
[00059] In some embodiments the body is adapted to wick away fluid from an apparatus disposed within the pocket as the apparatus is removed from the pocket.
[00060] One aspect of the disclosure is a packaging assembly for a corneal implant applicator, comprising a corneal implant applicator apparatus comprising an implant portion in which a corneal implant is retained; a hydration control member comprising a pocket that is adapted to receive and stabilize the implant portion therein.
[00061] In some embodiments the implant portion in which the corneal implant is retained is substantially flat.
[00062] In some embodiments the corneal implant is retained in the implant portion of the corneal implant applicator apparatus in a substantially unstressed configuration.
[00063] In some embodiments the hydration control member comprises a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket. The first and second hydration control elements are generally cylindrically shaped.
[00064] In some embodiments the hydration control member further comprises a backstop adapted to prevent the corneal implant applicator apparatus from being advanced too far within the pocket.
[00065] In some embodiments the first and second hydration control elements are adapted to be moved apart from one another to accommodate the corneal implant applicator apparatus.
[00066] One aspect of the disclosure is a method of removing excess storage liquid from a corneal implant applicator apparatus, comprising providing a corneal implant applicator apparatus, wherein a corneal implant is disposed within a portion of the apparatus; and stripping excess fluid from the portion of the apparatus by engaging the portion of the apparatus in which the implant is disposed with a hydration control member while moving the portion of the apparatus with respect to the hydration control member. [00067] In some embodiments the portion of the apparatus includes first and second surfaces each with at least one opening formed therein, the first and second surfaces forming a corneal nest, wherein the stripping step comprises removing excess fluid away from the first and second surfaces.
[00068] In some embodiments the stripping step comprises engaging the portion of the apparatus with first and second hydration control elements while moving the portion of the apparatus with respect to the first and second hydration control elements.
[00069] One aspect of the disclosure is a method of storing a corneal implant applicator apparatus, comprising providing a corneal implant applicator apparatus with a first portion in which a corneal implant is positioned; positioning the first portion of the apparatus into a pocket formed by a hydration control member until the first portion engages the hydration control member.
[00070] In some embodiments the positioning step creates a fluid communication between the hydration control member and the corneal implant.
[00071] In some embodiments the positioning step comprises advancing the first portion into a pocket formed by two hydration control elements until the first portion engages the two hydration control elements. The positioning step can comprise positioning a first apparatus surface into engagement with a first hydration control element and positioning a second apparatus surface into engagement with a second hydration control element.
BRIEF DESCRIPTION OF THE DRAWINGS
[00072] Fig. 1 illustrates exemplary cohesive forces.
[00073] Fig. 2 illustrates exemplary adhesive forces.
[00074] Fig. 3 illustrates a liquid suspended within a loop
[00075] Figs. 4-10 illustrate an exemplary corneal implant applicator apparatus.
[00076] Figs. 1 1 A-l 5 illustrate exemplary moderate and minimal bodies.
[00077] Figs. 16-19 illustrate an exemplary corneal implant applicator apparatus.
[00078] Figs. 20A-32B illustrate components of an exemplary corneal implant applicator apparatus.
[00079] Figs. 33A-33B illustrate a portion of an exemplary corneal implant applicator apparatus positioned within a pocket of a hydration control member and within a packaging tray.
[00080] Figs. 34-36B illustrate exemplary hydration control members.
[00081] Figs. 37A-37B illustrate a portion of an exemplary corneal implant applicator apparatus positioned within a pocket of a hydration control member and within a packaging tray.
[00082] Figs. 38A-40B illustrate an exemplary hydration control member.
[00083] Figs. 41 A-41 E illustrate an exemplary packaging apparatus.
[00084] Fig. 42 illustrates an exemplary corneal implant positioning loop.
[00085] Fig. 43 illustrates an exemplary corneal implant.
[00086] Figs. 44A-44D illustrate exemplary loops. [00087] Figs. 45-54 illustrate exemplary corneal implant positioning members that include loop structures.
DETAILED DESCRIPTION
[00088] The disclosure relates to devices for one or more of packaging, storing, positioning, and delivering corneal implants such as corneal inlays. The devices herein can be used in the movement and positioning of, for example without limitation, corneal onlays, corneal inlays, corneal replacements, and contact lenses.
[00089] The disclosure includes devices and methods of use that rely at least partially on surface tension of liquids to control the positioning and/or movement of a corneal implant. The devices can be used in the storage, packaging, movement, or delivering of the corneal implants. These approaches can be used when the corneal implant is made at least partially of hydrophilic material, such as a hydrogel.
[00090] Surface tension is the property of liquids that allows the surface of a body of liquid to resist external forces. It is what allows objects denser then water, such as small pins and certain insects, to float on a liquid's surface. Surface tension is caused by the cohesive forces of a liquid's molecules. Cohesive forces are the attractive forces between two like molecules. As shown in Figure 1 , an average molecule within a body of liquid has no overall cohesive force acting upon it because it sees cohesive forces from neighboring molecules acting upon it in every direction. A molecule on the surface, however, only sees cohesive forces pulling it inwards. For very small droplets, the inward force on all surface molecules causes the droplet to be generally spherical in shape.
[00091] Adhesive forces, on the other hand, are those seen between unlike molecules. For some material combinations, these forces can be greater than the cohesive forces of a liquid's molecules. These strong adhesive forces are the cause of an upward 'bowing,' called the meniscus (as shown in Figure 2), in a liquid's surface where the liquid around the edge of a container is pulled higher than the rest of the surface by the adhesive forces between the liquid and the container. The adhesive forces pull up on the surface of the water and are in equilibrium with the gravitational forces pulling down on the body of liquid.
[00092] In the case of liquid suspended within a loop, as shown in figure 3, adhesion forces from the loop act on both the top and bottom surfaces of the liquid and cohesive forces act across both upper and lower surfaces. These forces are sufficient to hold a liquid within a loop up until the liquid's volume is so great that the gravitational forces overcome the cohesive and adhesive forces.
[00093] In the case of a solid, mesh, or other such surface, the adhesive and cohesive forces act in a similar fashion. Many factors, including the type of material, the type of fluid, and the surface geometry will affect the strength of the adhesive and cohesive forces. [00094] Exemplary corneal implants that can be stored and used in the following embodiments are corneal inlays described in U.S. Pub. No. US 2007/0203577, filed 10/30/06, U.S. Pub. No. US
2008/0262610, filed 4/20/07, and U.S. Pub. No. 201 1/0218623, filed 9/8/10, the disclosures of which are incorporated herein by reference. In some embodiments, a "small diameter" (i.e., between about 1 mm and about 3 mm) corneal inlay is made from a hydrogel, that may be primarily fluid. This, as well as the inlay's small size, causes it to behave in somewhat the same way as a fluid. The disclosure below makes use of these characteristics of the corneal implant and the adhesion forces between a fluid and various surface geometries. While the disclosure herein focuses on corneal inlays, any corneal implant that exhibits similar properties can be used as described herein. For example, corneal onlays, at least a portion of which have hydrophilic properties, can be used as described herein.
[00095] The devices herein rely on a body's "affinity" for a fluid or an object with fluid-like properties (e.g., a hydrophilic corneal implant). As used herein, a body's "affinity" for the fluid or fluid- like object is influenced by the difference between the strength of the net adhesive forces between the body and the fluid or fluid-like object and the strength of the net cohesive forces within the fluid or fluid- like object. In embodiments herein where there is a substantially constant fluid or fluid-like object (e.g., a hydrophilic corneal inlay), the relative affinities of two bodies for the fluid or fluid-like object is at least partially determined by the relative strengths of the net adhesive forces between the bodies and the fluid or fluid-like object. For example, in an embodiment in which the fluid-like object is a hydrophilic corneal implant, a first body can have a greater affinity for the implant than a second body when the net adhesive forces between the first body and the implant are greater than the net adhesive forces between the second body and the implant.
[00096] The corneal implant will remain adhered to the body with the highest net force (the sum of the adhesive and cohesive forces).
[00097] A first body, referred to herein as a "moderate body," has a greater affinity for the fluid or fluid-like object than a second body, referred to herein as a "minimal body." As used herein in this context, "body" may be used interchangeably with device, component, structure, or other similar term to indicate anything with structure. The eye, however, has a greater affinity for the fluid or fluid-like object than the moderate body. The different relative affinities can be used to handle the inlay and control the movement of the inlay as it is moved from one surface to another without a user needing to touch it with a hand or other tool. Factors that influence the relative affinities include one or more of: the type of material, the type of fluid, and the surface geometry including surface area.
[00098] As used herein, a corneal inlay (e.g., the fluid-like object) has a greater "affinity" for the corneal bed of the eye than it does the moderate body, and at the same time the inlay has a greater affinity for the moderate body than it does the minimal body. The eye can be described as having a greater affinity for the inlay than both the moderate body and the minimal body. Similarly, the moderate body can be described as having a greater affinity for the inlay than the minjmal body. That is, the affinity between two bodies can be described relative to either body. That is, for example, the moderate body has a greater affinity for the inlay than does the minimal body, and thus the inlay will preferentially adhere to the moderate body over the minimal body.
[00099] In some embodiments the storage fluid is water or saline, for example. Water molecules are highly polarized, which provides for attractive forces with other materials.
[000100] A relative comparison of the affinity between each body and the inlay can be represented by: corneal tissue > moderate body > minimal body. The moderate and minimal bodies may take on many forms, including, without limitation, meshes, membranes, and/or material with different surface finishes or contours.
[000101] Due to the differences in affinity between the minimal body and the moderate body, the inlay preferentially remains adhered to the moderate body. It continues to adhere to the moderate body until exposed to a stronger adhesive force. The minimal and moderate bodies can therefore be any suitable material as long as the adhesive forces between the moderate body and the inlay are greater than the adhesive forces between the minimal body and the inlay. The moderate body has a greater affinity for the inlay than does the minimal body, and the adhesive properties of the materials is a factor influencing those affinities.
[000102] Figures 4-1 1 D illustrate an exemplary embodiment of an apparatus that comprises a moderate body and a minimal body, wherein the apparatus also includes an actuation mechanism that is used to separate the minimal body from the corneal implant and the moderate body. The apparatus can be used to store the corneal implant, prepare the corneal implant for delivery, and/or deliver the corneal implant onto or into the eye. Figures 4 and 5 (side view and sectional side view, respectively) illustrate device 100 including handle 1 12 secured to distal portion 1 14. Actuator 116 is disposed in both handle 1 12 and distal portion 1 14, both of which are adapted to allow actuator 116 to pass therethrough. Spring 126 maintains actuator 1 16 in the at-rest, or non-actuated, configuration shown in Figures 4 and 5. Actuator 1 16 has a distal section 128 with a reduced size that is disposed in a smaller sized distal channel in distal portion 1 14.
[000103] The distal end of apparatus 100 includes first portion 118 secured to moderate body 122. A second portion 120 is secured to minimal body 124 and is also detachably secured to first portion 1 18 around pin 134. The corneal implant (not shown in figures 4 and 5 for clarity) is disposed between the moderate body and the minimal body in a nest formed by the moderate and minimal bodies. Second portion 120 is adapted to rotate with respect to first portion 1 18 around pin 134. Figure 6 (sectional side view) illustrates the device after actuator 1 16 has been pressed down. When actuator 1 16 is pressed, spring 126 is compressed, and distal section 128 moves forward, or distally, through the channel in distal portion 1 14. The distal end of distal section 128 makes contact with second portion 120, forcing it downward as it rotates around pin 134. Because the corneal implant has a higher affinity for moderate body 122 than minimal body 124, the corneal implant will remain adhered to moderate body 122 as second portion 120 and minimal body 124 are rotated away from first portion 1 18 and moderate body 122. Once the curved portion of second portion 120 clears pin 134, second portion 120 is detached from first portion 118 and therefore from device 100, preparing the corneal implant for delivery (or, in some embodiments the corneal implant is delivered using a separate delivery device).
[000104] Figure 7 illustrates a perspective view of the distal region of device 100. First portion 1 18 is secured to second portion 120 with clip 132, which is biased to the closed configuration shown in Figure 7. Upon the application of the actuation force from actuator 1 16, clip 132 is forced into an open configuration, allowing second portion 120 and minimal body 124 to be rotated away from first portion 1 18.
[000105] Figure 8 illustrates a sectional side view of the distal portion of the device. Figure 9 shows the sectional side view from Figure 8 after actuator 116 has been actuated and second portion 120 is rotating away from first portion 1 18. Corneal implant 140 remains adhered to moderate body 122 due to the higher affinity of the moderate body. Figure 10 illustrates a side view after second portion 120 has been completely disengaged from first portion 1 18. Actuator 1 16 is then released to cause distal section 128 to retract back into distal portion 1 14. Corneal implant 140 is now ready for delivery and can be delivered as described above. In some embodiments the corneal implant is positioned against stromal corneal tissue, and because the inlay has a higher affinity to the corneal tissue than to the moderate body, the inlay will disassociate from the moderate body and adhere to the corneal tissue.
[000106] Figures 11 A-l ID illustrate an exemplary embodiment of minimal and moderate bodies, which can be incorporated into the assembly from figures 4-10. Minimal body 224 includes recess 225 formed therein such that when moderate body and minimal body are moved towards one another, they form a nest in which the inlay is retained (see figure 1 1 D). The recess has a generally circular configuration (similar to the general configuration of minimal body 224), but other configurations may be suitable. Recess 225 is adapted to accommodate the corneal implant within the recess. Recess 225 is also sized to prevent inlay 140 (see Figures 1 IB- 1 ID) from being compressed between the minimal and moderate bodies while being shipped or stored (see Figure 1 1 D). The corneal implant is therefore maintained in substantially unstressed, or non-deformed, configuration. Because the inlay has a defined curvature, it may be preferred to not allow the inlay to be distorted during shipping and/or storage, and the recess (and thus the nest) can be sized to help prevent it from being distorted. Additionally, because of the fluidic nature of some inlays, it can be difficult to constrain the inlay laterally between two parallel surfaces without the presence of a recess. The recess formed in the minimal body allows for easy containment without excess force being applied to the inlay. The nest formed by the moderate and minimal bodies prevents compression and/or damage to the inlay while acting as a storage compartment.
[000107] As can be seen in Figures 1 lB-1 ID, the recess size is larger than the inlay size. Particularly, in this embodiment, the diameter of the recess ("dr") is greater than the diameter of the inlay ("di"). Additionally, the diameter of the moderate body ("dM") is greater than the diameter of the recess ("dr") formed in the minimal body (see Figures 1 1 D). The diameter of the minimal body ("dm") is greater than the diameter of the moderate body ("dM").
[000108] The depth of the recess is greater than the material thickness of the inlay, but is preferably slightly less than the height of the corneal implant in a non-stressed configuration. This ensures that at least a portion of the corneal implant is maintained in contact with both the moderate body and the minimal body. If at least a portion of the corneal implant is not in contact with the moderate body, the corneal implant can remain adhered to the minimal body rather than the moderate body when the moderate and minimal bodies are moved away from one another. In an exemplary embodiment the material thickness of the corneal implant is about 38.1 microns, the overall height of the implant in a non- stressed configuration is about 152.4 microns, and the depth of the recess is between about 63.5 microns and about 114.3 microns.
[000109] Similar to the embodiment in Figures 4-10, moderate body 222 is secured to first portion 218, while minimal body 224 is secured to second portion 220. The system is used in the same manner as the embodiment in Figures 4- 10.
[000110] In some exemplary embodiments of the systems shown herein (e.g., those in Figures 4-1 ID), the moderate body is stainless steel. In some embodiments it can be about 0.1 mm thick. As shown in the figures, the plurality of openings in the moderate body have general hexagon configurations. In some exemplary embodiments the dimension from a first side of the hexagon to a second side that is parallel to the first side (i.e., double the hexagon's apothem) of at least a substantial number of the hexagon shapes is about 0.35 mm. In some embodiments that dimension could be between about 0.02 mm to about 0.12 mm. The distance between hexagons (i.e., the distance from a first side of a first hexagon to a first side of a second hexagon, wherein the sides are parallel to one another and the hexagons are directly adjacent to one another) is about 0.05 mm, although this distance could be between about 0.01 mm and about 0.25 mm. The diameter of the moderate body can be about 3 mm, but in some embodiments it is between about 0.25 mm and about 13 mm. The above numerical limitations are merely exemplary and not intended to be limiting.
[000111] In some exemplary embodiments of the systems shown herein (e.g., those shown in Figures 4-1 1 D), the minimal body is stainless steel, and is about 0.2 mm thick, except in the recess section. As shown in the figures, the openings in the minimal body each have general hexagon configurations. In some exemplary embodiments the dimension from a first side of the hexagon to a second side that is parallel to the first side (i.e., double the hexagon's apothem) of at least a substantial number of the hexagon shapes is about 1 mm. In some embodiments that dimension could be between about 0.1 mm to about 3 mm. The distance between hexagons (i.e., the distance from a first side of a first hexagon to a first side of a second hexagon, wherein the sides are parallel to one another and the hexagons are directly adjacent to one another) can be about 0.2 mm, although this distance could be between about 0.02 mm to about 0.12 mm. The diameter of the minimal body can be about 6.5 mm, but in some embodiments it is between about 3 mm and about 13 mm. The above numerical limitations are not intended to be limiting.
[000112] In some embodiments the diameter of the minimal body is at least about 2 times the diameter of the moderate body. In some embodiments the diameter of the minimal body is at least about 1.5 times the diameter of the moderate body. In some embodiments the size of the plurality of hexagons in the minimal body is at least about 2 times the size of the plurality of hexagons in the moderate body. In some embodiments they could be at least about 3 times, or at least about 4 times. [000113] Figures 12-15 illustrate additional views illustrating the relative sizes and dimensions of the mesh bodies and a corneal inlay. In this embodiment the inlay has a diameter of about 2 mm. Figure 12 is a top view illustrating minimal mesh body 224, recess 225 formed in minimal mesh body, periphery of inlay 140, and the surface area 240 (shown in hash lines) of minimal body 224 that overlaps with the inlay when the inlay is positioned in recess 225. In this particular embodiment surface area 240 of minimal body 224 that overlaps with the inlay is about 0.9 mm2. The perimeter of the inlay that overlaps the minimal body is about 9 mm. Figure 13 illustrates minimal mesh body 224 and periphery of inlay 140, and the surface area 242 (shown in hash lines) of openings 244 (only three openings 244 labeled) that overlaps the inlay when the inlay is in the recess. In this particular embodiment the surface area 242 is about 2 mm2.
[000114] Figure 14 illustrates moderate mesh body 222 and the periphery of inlay 140 disposed thereon. Surface area 250 of moderate body 222 is the surface area of the moderate body that overlaps the inlay, at least a portion of which is in contact with the inlay, when the inlay is positioned in the nest. In this particular embodiment surface area is about 0.75 mm2. The perimeter of the inlay is about 26 mm. Figure 15 illustrates moderate body 222, periphery of inlay 140, and the surface area 254 (shown in hash lines) of openings 252 (only three openings 252 are labeled) that overlap the inlay. Surface area 254 is about 2.3 mm2.
[000115] In some embodiments the moderate body and the minimal body each have one or more openings, or apertures, extending through the bodies. The ratio of the moderate aperture perimeter (or sum of the aperture perimeters if more than one aperture) to the moderate aperture area (or sum of the apertures areas if more than one aperture) is greater than the ratio of the minimal aperture perimeter (or sum of the aperture perimeters if more than one aperture) to the minimal aperture area (or sum of the aperture areas if more than one aperture). Without necessarily wishing to be bound by a particular theory, the greater ratio results in greater forces being applied to the corneal implant from the moderate body than the minimal body, and thus provides the moderate body with a higher affinity for the corneal implant than the minimal body. When the moderate and minimal bodies are moved apart relative to one another, the greater forces applied to the implant will cause the implant to remain adhered to the moderate body rather than the minimal body.
[000116] By way of illustration only, in the embodiments shown in figures 12-15, the sum of the perimeters of the apertures in the moderate body that overlap the implant were determined to be about 1.03 in, while the sum of the aperture areas that overlap the implant were determined to be about .0012 in2. The ratio of perimeter to area for this particular moderate body was about 858 in"1. The sum of the perimeters of the apertures in the minimal body that overlap the implant were determined to be about .365 in, while the sum of the aperture areas that overlap the implant were determined to be about .0014 in2. The ratio of perimeter to area for this particular moderate body was about 260 in"1. The ratio is therefore greater for the moderate body than for the minimal body.
[000117] Figure 16 is a partial exploded view of an exemplary corneal implant storage and positioning device. Positioning device 310 generally includes a handle assembly 312 that includes the moderate body, support assembly 314 that includes the minimal body, and actuator assembly 316 that is adapted to actuate, or move, support assembly 314 with respect to handle assembly 312. Due to the inlay's greater affinity for the moderate body, the inlay will adhere to the moderate body when the support assembly 314 is actuated.
[000118] Actuator assembly 316 includes push rod 320 coupled to button 321, and spring 322. Handle assembly 312 includes handle 324 coupled to distal portion 326, which includes the moderate body. The distal end of spring 322 is secured within the internal channel within handle 312, and the proximal end of spring 322 is secured to the distal end of button 321. Push rod 320 is configured to be disposed within the internal lumen of spring 322. As shown in more detail in Figures 17A-17C, the distal end of push rod 320 includes bore 328 therethrough, adapted to receive dowel 318 therein. When push rod 320 has been advanced distally within handle assembly 312 and extends just out of the distal end of handle assembly 312, as shown in Figure 17A, dowel 318 is advanced through bore 328. Dowel 318 both prevents push rod 320 from retracting proximally within handle assembly 312, but it also provides base assembly 314 with a surface to engage in order to secure support assembly 314 in place relative to handle assembly 312, as shown in Figure 17C. The device also includes rod 330, which helps secure support assembly 314 in place relative to handle assembly 312 (see Figure 17C), but allows support assembly 314 to rotate around rod 330 when the actuator is actuated. Dowel 318 is also involved in the actuation of the support assembly. Actuating button 321 causes push rod 320, and thus dowel 318, to be advanced distally within handle assembly 312. This causes dowel 318 to apply a generally distally directed force to support assembly 314, which causes dowel 318 to push down on support assembly 314. Upon the application of this force support assembly 314 will begin to rotate around rod 330, causing minimal body mesh 338 to move away from moderate mesh body 334. Further rotation of support assembly 314 will free support assembly 314 from rod 330, allowing support assembly 314 to be completely disengaged from handle assembly 312. Once disengaged, the corneal implant will remain adhered to moderate body 334 and is ready for use, such as delivery into or onto corneal tissue. Once the minimal mesh body is moved, the user can release button 321, and spring 322 causes actuator 316 to return to an at-rest, or non-actuated, position relative to handle assembly 312.
[000119] By incorporating rod 330, support assembly 314 rotates with respect to handle assembly 312 in only one direction, which prevents torqueing.
[000120] Figure 18 is a partial exploded view of handle assembly 312 shown in Figure 14 (actuator and base assembly not shown). Assembly 312 includes handle 324, distal tip portion 342, dowel 318, applicator base 336, and applicator 334. Handle 324 is secured to distal tip portion 342, and the distal end of distal tip portion 342 is disposed within a bore in applicator base 336. Applicator 334 is secured to applicator base 336. Figure 19 shows the assembled view from Figure 18.
[000121] Figures 20A-20D illustrate alternative views of the assembly of applicator base 336, applicator 334, and rod 330. Figure 20A is an exploded perspective bottom view. Figure 20B is a perspective top view illustrating how rod 330 is disposed within applicator base 336. Figure 20C is a bottom view showing applicator 334 secured to applicator base 336 and a plurality of attachment points 350 for securing applicator 334 to applicator base 336. Figure 20D is a front view showing applicator 34 secured to applicator base 336, and rod 330 disposed within applicator base 336. Applicator 334 and applicator base 336 can be secured together by any suitable technique. In one embodiment applicator 334 is welded to base 336, such as by resistance welding or laser welding. Applicator 334 includes the moderate mesh body.
[000122] Figures 21 A-211 illustrate a variety of views of a particular embodiment of applicator base
336 described above. The internal bore through which the actuator extends can be seen in the sectional side view of Figure 2 ID. The dimensions indicated in the figures are merely exemplary to this particular embodiment and are not limiting.
[000123] Figures 22A-22C illustrate exemplary dimensions for applicator 334, including the mesh dimensions, described above. For example, dimensions of the mesh that contribute to implant preference to adhere to the moderate body over the minimal body are shown. Figure 22A is a top view. Figure 22B is a side view. Figure 22C is a detailed view of section A from Figure 22A.
[000124] Figures 23A-23D illustrate support assembly 314 from Figure 17, which includes support base 340 secured to implant support 338. Support base 340 and implant support 338 are secured to one another similarly to the applicator base and the applicator described above. Figure 23A is an exploded view, while Figure 23B is an assembled view. Figure 23C is a top view. Figure 23D is a detailed view C from Figure 23A of applicator 338 showing recess 360 defined by recess sidewalls 356 and recess base surface 358. The implant is configured and sized to be disposed within the recess such that it is positioned between the minimal and moderate meshes prior to removal of the minimal body.
[000125] Figures 24A-24E illustrate front, sectional side, side, and top views of support base 340.
[000126] Figures 25A-25D illustrate views of the support 338. Figure 25B illustrates section A-A shown in Figure 25A. Figure 25C shows detail B from Figure 25B, and Figure 25D shows detail C from Figure 25A. Recess 360 is formed in a top portion of the support 338. Mesh apertures 364 are defined by body 362, illustrated in Figures 25B and 25C. The dimensions shown are exemplary and not intended to be limiting. The mesh apertures of the minimal body are larger than the mesh apertures of the moderate body, which is one of the contributing factors for why in this particular embodiment the implant preferentially adheres to the moderate body.
[000127] In general, the recess in the minimal mesh body should be sized to prevent forces, or a substantial amount of forces, from being applied to the corneal implant while it is positioned in the nest between the moderate and minimal bodies prior to use.
[000128] The mesh apertures and the recess can be created by any suitable technique, such as chemical etching, laser cutting, micro water jet cutting, etc. In some instances chemical etching provides for a cleaner cut and does not require as much post-manufacture processing of the body. The mesh apertures can be created from only one side, or in some embodiments half of the thickness of the aperture is created from one side, while the other half of the aperture is created from the other side. In some embodiments the recess is etched from one side, while the mesh apertures are created in the other side. Any combination or variation on these techniques can be used. In some embodiments the recess is created by plunge electrical discharge machining ("EDM").
[000129] In general, the net forces acting on the corneal implant are greater from the moderate mesh body than from the minimal mesh body. The polarity of water is an important factor when the corneal implant is formed of a hydrophilic material because in these instances the implant has properties like water and as such behaves like water. The dimensions of the mesh, configuration of the mesh, mesh body, and other factors can be modified to alter the relative affinities.
[000130] As described above, the minimal mesh body diameter is larger than the moderate mesh body diameter (both are shown to have a generally circular configuration). The minimal body diameter, due to its larger size, acts like a bumper, protecting the entire distal region of the apparatus during storage and use prior to actuation of the actuator. In the specific example shown above, the minimal body thickness is about twice as thick as the moderate body.
[000131] The moderate body diameter is larger than the recess, while the minimal body diameter is larger than the moderate body diameter. In some embodiments it may be helpful for the physician to be able to visualize the pupil when the corneal implant is being positioned in the cornea. For example, this may be desirable when implanting an inlay into the cornea wherein the inlay has a diameter less than the diameter of the pupil, such as a 1 -3 mm diameter corneal inlay. For these applications the moderate mesh body can be sized such that it does not interfere with the visualization of the pupil. Specifically, the moderate mesh body portion is sized to allow the physician to be able to see the pupil during the delivery of the implant on corneal tissue. Starting with this constraint, the size of the other components can then be determined.
[000132] The use of "diameter" herein is not to suggest that the mesh body outer surfaces are perfectly circular or are circular at all. The two mesh portions could be square or rectangular-shaped, with the width and length of the minimal mesh portion larger than the width and length of the moderate mesh portion.
[000133] While in the embodiments above the implant's affinity for the moderate body is described as largely due to the size and configuration of the moderate mesh body relative to the minimal body, there are many ways to establish and control the implant's affinity for a given body. In some embodiments this can be accomplished by using a moderate body that is different than the minimal body. In some embodiments a finish could be applied to one or more of the surfaces of the moderate and minimal bodies. The finish can be different on the moderate and the minimal body to control the preferential adhesion. In some embodiments the moderate body has a better finish than the minimal body. In some embodiments the minimal body has a matte finish on it.
[000134] One or more components of the devices described herein can be a stainless steel or titanium. For example, applicator base 36 and applicator 34 can both be stainless steel, one can be titanium while the other is stainless steel, or both can be titanium.
[000135] Figures 26A-26D illustrate views of distal tip 342 from the handle assembly described above. Figure 26A is a view looking from the proximal end to the distal end, Figure 26B is a view from the distal end to the proximal end, Figure 26C is a sectional side view, and Figure 26D is a front view. The distal tip is secured to the handle, and the distal end of it is disposed in the applicator base 336.
[000136] Figures 27A-27E illustrate in detail actuator assembly 316 from Figure 16. The actuator includes button 321, push rod 320, and bore 328 at the distal end of push rod 320. Figure 27A is an exploded view, Figure 27B is an assembly view, Figure 27C is a side sectional view of section A-A shown in Figure 27E, and Figure 27D is a detail view of section B shown in Figure 27C.
[000137] Figures 28A-28D illustrate detailed views of button 321. Figures 29A-29D illustrate detailed views of push rod 320, including bore 328.
[000138] Figures 30A-30D illustrate detailed views of handle 324. Figures 31A and 31B illustrate detailed views of spring 322. Figures 32A and 32B illustrate detailed viewed of dowel 18.
[000139] Once the corneal implant is loaded in the apparatus between the moderate and minimal bodies, the implant can be used right away or it can be stored in packaging for any suitable period of time. When the corneal implant is made of a hydrogel material, it is important to keep the implant adequately hydrated during storage.
[000140] The following disclosure describes packaging tools and assemblies that are adapted to keep the corneal implant adequately hydrated during storage. As set forth in more detail below, the following embodiments can also remove excess fluid from the portion of the implant applicator apparatus in which the implant is disposed. Removing excess fluid helps ensure that when the minimal body is removed, the corneal implant will adhere to the moderate body.
[000141] The packaging tools and assemblies described herein generally provide one or more of three important functions: 1) to surround and protect the applicator apparatus, including the corneal implant retained therein, from damage; 2) to act as a fluid reservoir and provide fluid to the corneal implant to keep the corneal implant hydrated during storage; and 3) to remove, or wick away, excess fluid when removing the corneal implant applicator from the packaging materials.
[000142] Figures 33A (side view) and 33B (top view) illustrate an exemplary packaging assembly 400 with corneal implant applicator apparatus 402 disposed therein. Assembly 400 includes housing, or tray, 404, and lid 406. Housing 404 includes a distal reservoir, or well, 420, which is adapted to accommodate the distal end of applicator apparatus 402 (in which the corneal implant is disposed) and hydration control member 408. Hydration control member 408 is disposed within reservoir 420, and is positioned within reservoir 420 such that it interacts with the portion of the apparatus 402 in which the corneal implant is disposed. In this embodiment hydration control member 420 is a porous bag filled with a hydrogel material. The hydrogel material acts like a liquid reservoir, and the pores are sized to allow fluid molecules to pass through the pores. The bag is folded upon itself at folds 414, forming three bag sections 412. Two of the sections form a passage, or pocket, that is adapted to receive the portion of apparatus 402 in which the corneal implant is disposed. In particular, in this embodiment, the apparatus 402 is the apparatus from figure 16. The moderate mesh and minimal mesh (with implant therein) are positioned within the passage formed between two of the sections of bag, as shown in the figure. The moderate mesh and minimal mesh engage the two sections of the bag. The two sections form a passage into which the relatively thin moderate/minimal body assembly can be disposed. When the distal end of apparatus 402 is positioned within the passage of hydration control member 420, the corneal implant, due to the openings in the moderate and minimal mesh bodies and the pores in the bag, is in fluid communication with the hydrogel material in the bag. The hydrogel material (or other hydrophilic material) within the bag keeps the corneal implant hydrated during storage in the packaging. In use, when apparatus 402 is removed from the passage formed by the two sections of the porous bag, the sections of the bag wick away excess storage fluid that adheres to the moderate body and minimal body. This prevents too much storage fluid from remaining adhered to the moderate and minimal bodies when prepping the implant to be deposited onto corneal tissue.
[000143] In general, the hydration control element helps keep the corneal implant hydrated during storage. This is of particular relevance when the implant is made at least partially from a hydrophilic material such as a hydrogel. The hydration control element generally acts like a fluid reservoir that is in fluid communication with the corneal implant via the openings in the moderate and minimal mesh bodies.
[000144] Figure 34 illustrates a hydration control member in the form of a porous bag filled with a hydrogel material. Figure 35 illustrates a hydration control member in the form of a porous bag filled with glass beads. The glass beads within porous bag provide the same hydration to the implant as does the hydrogel material within the bag from figure 34.
[000145] The porous bag is adapted to maintain an equilibrium, or substantial equilibrium, with the nest within the moderate and minimal bodies. This provides enough fluid to the implant to keep the implant hydrated during storage. The bag can be a polyester material or any other suitable material. In some embodiments the bag is polyether ether-ketone ("PEEK"). The bag pore size is sized to prevent particulates from leaking out of the bag and to control the hydration of the corneal implant. In some embodiments the bag mesh size is between about 10 microns and about 50 microns. In some embodiments the pore size is about 30 microns. If hydrogel is used within the bag, the hydrogel material can be medical grade or non-medical grade.
[000146] In an alternative embodiment the hydration control member comprises two hydration control elements that are rolls of material that form a pocket, or passage, therebetween. Figures 36A and 36B illustrate an exemplary hydration control member that comprises two rolls of a polyester mesh material that form a pocket therebetween. The two rolls are first and second hydration control elements. The pocket formed by the two rolls is adapted to receive the portion corneal implant applicator apparatus that houses the corneal implant. In this embodiment the two rolls are formed from a single piece of material that is rolled up like a scroll to form first and second hydration control elements.
[000147] Figures 37A and 37B illustrate packaging assembly 440 wherein the hydration control member 448 comprises the two rolls of material (e.g., a polyester material) from Figures 36A and 36B. Corneal implant applicator apparatus 442 is the apparatus shown in Figure 16. The packaging 440 includes tray 444 and lid 446. Tray 444 includes reservoir 454 in which the distal end of apparatus 442 is positioned. The two rolled hydration control elements of hydration control member 448 form a pocket, or passage, therebetween. The pocket is adapted to receive and stabilize the moderate and minimal bodies therein. In this embodiment the two rolls of material are in contact with each other, and the pocket is the general wedge configuration defined by the outer surfaces of the two rolled sections. When the distal end of apparatus 442 is advanced into the pocket, the distal end of the apparatus pushes the rolls apart slightly.
The distal end of the apparatus is advanced to a position in which the two rolls are disposed on either side of the corneal implant (which is disposed within the nest) and are in contact with the minimal body and the moderate body, respectively. The rolled elements are therefore in fluid communication with the corneal implant via the openings in the moderate and minimal bodies.
[000148] The hydration control member also stabilizes the moderate and minimal bodies (and the implant disposed in the nest) when the distal end of the apparatus is disposed in the pocket. When the apparatus is advanced into the pocket, the hydration control member engages with and stabilizes the moderate and minimal bodies in the packaging. This prevents the distal end from jostling around and possibly being damaged while in the packaging. "Stabilize" as used herein means that the distal end of the apparatus is more stable than it would be without the presence of the hydration control member. The distal end need not be completely immobilized to be stabilized, but it is generally preferred that the distal end doesn't move relative to the hydration control member.
[000149] In alternative embodiments the first and second hydration control elements are not material that is rolled up, but are rather cylindrically-shaped solid material. The two elements would either be secured within the tray, or they could be secured to a base member.
[000150] One of the advantages of the hydration control member is that it is adapted to wick away, or strip, excess fluid from the moderate and minimal bodies when the apparatus is removed from the pocket. This is in part because the two hydration control elements are in contact with the moderate and minimal bodies as they are removed from the pocket. The hydration control elements act in some ways like two squeegees to strip away excess fluid as the distal end is removed from the pocket. When stripping away the excess fluid the hydration control elements do not necessary absorb the excess fluid, but rather simply strip it away from the moderate and minimal bodies. This can be advantageous because even if the hydration control elements are substantially saturated with fluid, they can still remove the excess fluid from the moderate and minimal bodies. In some particular embodiments it has been found that between about 0.5 and about 1.5 microliters is an optimal amount of fluid associated with the moderate body and minimal body after the wicking step. That amount of fluid is partially controlled by the wicking away of the fluid during the removal process. The amount of fluid that remains with the inlay is also a function of the moderate mesh body thickness (about 0.1 mm nominal) and the opening pattern of the mesh.
[000151] In embodiments in which a bag is part of the hydration control member, the hydration device need not be folded or formed in any specific configuration. For example, a bag could simply be deformed in such a way that the distal end of the apparatus will maintain substantial contact with the hydration control member. Additionally, the hydration control member could be engaged with only one side of the distal end of the apparatus and the apparatus could still be stable and the excess fluid could still be removed. [000152] Figures 38A-40B illustrate an alternative embodiment of a hydration control member.
Hydration control member 500 includes first hydration control element 502 and second hydration control element 504, cores 506, and two deformable bases 508. Figure 38A shows an exploded view while figure 38B shows the assembled view.
[000153] Hydration control elements 502 and 504 are formed by rolling up a single piece of material 503 around cores 506 to form two rolled sections, similar to a scroll. To form the scrolls, ends 501 of material 503 are passed through slits in cores 506, as shown in figure 40A, and then rolled back around core 506 as shown in figure 40B. Cores 506 are then rolled up over material 503, which rolls material around cores 506. The two cores 506 are rolled up in opposite directions until they engage. They are rolled up so that hydration elements 502 and 504 have substantially the same amount of material 503 in them. The material and cores after being rolled up are shown in the central exploded illustration in figure 38A. Pocket 505 is formed by the surfaces of hydration control elements 502 and 504.
[000154] In some embodiments the cores are PEEK, but can be any other suitable material, such as a polyester material.
[000155] The material forming the hydration control elements preferably has water wicking properties. These properties help remove the excess fluid from the apparatus. Exemplary suitable materials include woven fabric polyester materials. The wicking properties of the hydration control elements also help ensure hydration of the inlay when in the packaging. Any loose water (i.e., condensate) in the packaging that comes into contact with the hydration control elements will be wicked up and made available to the corneal implant due to the fluid communication with the implant via the openings in the moderate and/or minimal bodies. This can be highly advantageous if the packaging assembly goes through a steam sterilization cycle, for example, as there will likely be condensate present in the packaging at the end of the cycle.
[000156] Hydration control member 500 also includes two deformable bases 508 which are secured to the ends of cores 506. Bases 508 each have two bores through them that are adapted to receive an end of cores 506. Bases 508 have spring-like properties so that they can be slightly deformed when the distal end of the applicator is advanced through the pocket. In this embodiment bases 508 include living hinges 510, which allow for the slight deformation of bases 508. When the applicator is advanced into pocket 505, the general C-shaped bases 508 are opened slightly, due to the living hinge, to accommodate the implant applicator apparatus. In this slightly deformed configuration, the hydration control elements 502 and 504 are each pressing on the moderate and minimal mesh bodies, helping stabilize the applicator apparatus in the pocket.
[000157] If the bases 508 are intended to be able to accommodate a greater degree of separation of cores 506, bases 508 can be modified to provide a greater degree of deformation. For example, the bases 508 could include a hinge formed of two materials, which may provide a greater degree of movement than living hinges 510. Bases 508 could also be formed of a material with superelastic properties such as nitinol. [000158] Once the cores 506 are secured to bases 508, hydration control member 500 can be placed within the packaging, and the distal end of the apparatus can be advanced into the pocket.
[000159] When the hydration control elements 502 and 504 are formed from a single piece of material in this manner, backstop 512 is formed that is substantially in the center along the length of material 503. The backstop is situated at the back of the pocket and prevents the distal end of the apparatus from being advanced too far into the pocket. In this embodiment the applicator is advanced into the pocket such that the inlay is positioned just distal to where the hydration control elements engage each other, so that when the apparatus is removed from the pocket, the excess fluid can be properly wicked away from the distal end of the applicator apparatus. The corneal implant can also be disposed where the two hydration control elements meet, or it can be disposed closer to the backstop.
[000160] Alternatively, hydration control member 500 can simply be used as a temporary hydration device and need not be positioned within a packaging container. For example, a user could simply keep the distal end of the implant applicator apparatus disposed within the hydration control member pocket to keep the implant hydrated.
[000161] In some embodiments the tray includes snap features adapted to engage and stabilize the implant applicator apparatus during storage to prevent or minimize movement in the tray. The snap features can be disposed on a distal portion of the tray, a proximal portion of the tray, or both. In the distal portion they grab onto and secure a distal portion of the apparatus. If in a proximal region the snap features are adapted to secure a proximal region of the apparatus. Exemplary distal snap features that are formed into the tray and are adapted to securingly engage with a distal portion of the apparatus are shown in Figure 33B as elements 418 and 419. Exemplary proximal snap feature 413 is adapted to stabilize the proximal portion of the apparatus. In the distal portion they may face less resistance than they would face if they were disposed in the proximal portion and grab onto the proximal portion of the device. In this embodiment the tray can include proximal snap features 413 but does not include the distal snap features. In embodiments in which the packaging only includes proximal snap features, the snap features can provide a location around which the apparatus pivots as the apparatus is removed from the packaging. An exemplary benefit of this type of motion when proximal snap features are included rather than distal snap features is that the distal end of the apparatus, which includes the implant nest, can be removed from the pocket with less risk of disassociation of the moderate and minimal bodies, and provides for better wicking of excess fluid as the corneal nest is removed from the pocket. This type of relative motion also reduces the likelihood of any damage to either the moderate or minimal bodies during the removal step.
[000162] Figures 41 A-41 E illustrate an embodiment of an exemplary packaging tray 552 (lid not shown) including a lock 556 and a method of removing corneal implant applicator 554 from the packaging tray. Lock 556 helps stabilize apparatus 554 within tray 552, in particular the handle portion of the apparatus. In Figure 41 A, the lid has already been removed. In Figure 4 IB, the sides of lock 556 are depressed in the direction of the two arrows and the lock is lifted up away from apparatus 554. After the lock has cleared locking elements in the tray, lock 556 is fully disengaged from the tray, as shown in figures 41C and 41D. Once the lock is removed apparatus 554 is removed from tray 552, as shown in figure 4 IE. A hydration control member is not shown in figures 41 A-41E, but any of the hydration control members described herein can be included in the well, or reservoir, in the tray. The lock and the tray can also be made to be an integral structure rather than being separate components.
[000163] The tray lid and housing preferably do not include any leachable materials, as the implant may be stored in the packaging for any length of time, including several years. Additionally, the packaging material, including the tray, should be autoclavable for sterilization. The tray can be thermoformed, injection molded, or formed by other suitable methods. In one particular embodiment the tray is a TOP AS® COC material, such as COC6015. The tray can also be formed from polypropylene or other plastic materials.
[000164] As set forth above one or more components of the device can be made from a variety of materials. For example, one or more components can be stainless steel, and one or more components can be titanium. Titanium is more corrosion resistant than stainless steel and thus may be a better material when the materials are exposed to water. When stainless steel components are used, one or more treatments can be applied to the stainless steel, such as to make them more resistant to corrosion. In some embodiments the parts are passivated, while in some embodiments the parts are coated with a zirconium nitride coating. In some embodiments the parts are both passivated and coated with zirconium nitride. In a particular embodiment one or more components are 316L stainless steel. A zirconium nitride coating can also be used to make the components harder to make them stiffer and more protective. For example, a zirconium nitride coating can be applied even if titanium were to be used as the material. In some embodiments the moderate and/or minimal mesh bodies, or any other component of the apparatus, could be a plastic material. This could make the apparatus cheaper if it or portions of it are intended to be disposable.
[000165] In some embodiments the assembled packaging (tray, lid, and applicator apparatus disposed therein) needs to be sterilized. In some embodiments it is sterilized by autoclaving. Due to the water in the corneal implant, the water associated with the hydration control member, autoclaving creates steam within the sealed tray. The internal pressure after autoclaving can get as high as 350 kPa or higher. The tray should be able to withstand the internal pressure increase, and the seal between the lid and the tray needs to be able to withstand the internal pressure increase. If the seal between the lid and tray breaks, the inside of the packaging is no longer a sterile environment.
[000166] Additionally, as set forth above, the relative size of the minimal mesh body provides protection for the moderate mesh body during packaging and removal. This is because the diameter of the minimal mesh is greater than the diameter of the moderate body, and because the minimal mesh body has a greater thickness than the moderate body. In some of the embodiments herein, the minimal body is about twice as thick as the moderate body (except for the portion in which the recess is created).
[000167] In some embodiments the handle, such as handle 324 in Figure 16 is an injection molded plastic handle. It can be desirable to have a knurl pattern on it to improve the physician's tactile feel. Some knurl patterns are, however, difficult to clean. Additionally, the pattern can wear away on the packaging materials during storage. In some embodiments the handle has one or more spiral patterns that make it smoother, which makes it wear less on the packaging material.
[000168] The storage and/or positioning devices described herein can be used to store and/or position corneal inlays such as those exemplary inlays described in U.S. Patent No. 6,102,946, filed December 23, 1998, Application. No. 1 1/106,983, filed April 15, 2005, Application No. 10/837,402, filed April 30, 2004, Application No. 1 1/554,544, filed October 30, 2006, Provisional Application No. 60/776,458, filed February 24, 2006, Application No. 12/418,325, filed April 3, 2009, Application No. 1 1/738,349, filed April 20, 2007, Application No. 12/877,799, filed September 8, 2010.
[000169] When the minimal body is moved relative to the moderate body, an amount of fluid remains adhered to the corneal implant and the moderate body due to adhesive forces between the fluid and the implant, and between the fluid and the moderate body. This is generally referred to as the amount of fluid that is left behind after separation of the moderate and minimal bodies. In some particular embodiments it has been found that between about .5 and about 1.5 microliters is an optimal amount of fluid that is left behind. This amount is not intended to be limiting. As set forth above, the pivoting motion of the minimal body relative to the moderate body helps ensure that the amount of fluid that remains is desirable.
[000170] The disclosure that follows generally describes devices and methods for moving a corneal implant, or other hydrophilic implant, from one location to another location. The devices and methods utilize the property of surface tension to control the inlay. The devices can be used to pick up the implant from one surface or material and deposit it onto a second surface or material. In some embodiments above, the corneal implant is positioned in a recess in the minimal mesh body. The disclosure that follows describes exemplary devices and methods of depositing the corneal implant into the recess of the minimal mesh body of the devices above.
[000171] As is shown above with respect to figure 42, in the case of liquid suspended within a loop, adhesion forces act on both the top and bottom surfaces and cohesive forces throughout both surfaces. These forces are sufficient to hold a liquid within a loop up until the liquid's volume is such that the gravitational forces overcome the adhesion forces.
[000172] When the corneal implant is made from a hydrogel it is primarily liquid, and thus behaves in much the same way as a liquid. Figure 42 illustrates handling tool 602 in the form of a loop in which fluid 604 and corneal implant 600 are constrained within the loop. When implant 600 is constrained in this manner within the loop, the implant can be moved from one location to another by grasping the handle connected to the loop. In some embodiments the implant is first picked up with a loop and is then deposited from within the loop into the recess in the minimal body.
[000173] There are several benefits for constraining the corneal implant within a droplet of fluid as is done in the embodiment in figure 42. First, forces acting on the implant are radial and maintain the implant in a substantially non-deformed configuration. Second, as shown in figure 43, for some corneal implants the radial surface area 606 is sufficiently less than a bottom surface (e.g., posterior surface) area 608 of the implant so that the bottom surface will preferentially adhere to another surface (e.g., corneal tissue) when the bottom surface is placed against the other surface. In some specific embodiments the corneal implant is a corneal inlay with a diameter of about 2 mm and an edge thickness of about 14 microns. In this specific embodiment the dimensions of this particular inlay dictate that the radial surface area is about 1/13th of the bottom surface area.
[000174] While a round loop (as is shown in figure 42) may be preferential for drop formation, it is not necessary. Any number of wraps, angles, shapes, wires, sizes, or configurations may be used without departing from the scope of the present disclosure. Figures 44A-44D illustrate alternative configurations of loops. In Figure 44A the loop is offset at an angle relative to the handle. Figure 44B illustrates a loop in which the loop is a double loop of material. Figure 44C illustrate the loop with a square configuration (but could be rectangular). Figure 44D illustrates a loop in which the material forming the loop extends proximally to form the handle.
[000175] Figure 45 illustrates an embodiment of a handle designed to control loop 614 that is adapted to handle a corneal implant. The corneal implant may be controlled with a volume of fluid held within loop 614. This handle allows the user to easily control the volume of fluid within the loop. In the embodiment shown in Figure 45, there are two separate buttons 610 and 612. One of the buttons will cock a spring connected to a plunger, and the other button will release the spring. Both buttons will hold their position after release, preventing the user from having to hold a button in place while attempting to position the corneal implant.
[000176] Figures 46a and 46b illustrate an exemplary embodiment of this dual actuator design, but other configurations of buttons can be used without departing from the scope of the present disclosure. When button 616 is depressed, spring 618 is cocked and spring 620 causes button 622 to engage latch 624. Button 616 is connected to plunger 617 such that it is pushed toward loop 626 when cocked. The device is now ready to pick up a corneal implant.
[000177] Once the loop is positioned on the cornea (with an implant within the loop), button 622 is pressed, latch 624 releases spring 618, which forces plunger 621 back away from loop 626. This causes air to move over the loop, sucking off excess fluid surrounding the corneal implant. To ensure the implant is released from the loop, plunger 621 is adapted to suck up an excess of fluid that is more than is be required to hold the implant within the loop.
[000178] The loop may be attached to any number of handle configurations to better allow for control of the corneal implant. For example, a handle that is adapted for precise control of the amount of fluid held within the loop is beneficial for several reasons. The amount of fluid within the loop will provide the user control of the corneal implant. To place the corneal implant onto a surface, such as the cornea, the user can hold a larger drop close to the surface and allow the fluid, along with the implant, to wick onto the surface, or the user can pull the fluid away from the loop until there is no longer enough fluid to create the needed surface tension, causing the implant to preferentially bind itself onto the corneal surface. If desired, the implant can be picked up by flooding the area with fluid, causing the implant to float to the top where it can be recaptured within the loop. Being able to remove excess fluid during the procedure is beneficial in that it takes less time for the surface of the cornea to dry. Once the implant has been placed onto the cornea, it is desirable to dry out the surface of the cornea to prevent the implant from moving for the duration of the procedure. The eye is particularly sensitive, and it is desirable to perform this procedure as quickly as possible. If excess fluid is minimized, the surface will dry quicker, and the procedure time will be minimized.
[000179] Figure 47 illustrates an additional exemplary handle 630 coupled to loop 632. Loop 632, with fluid therein, is adapted to maintain a corneal implant therein. The control of the fluid within the loop may be achieved in a variety of suitable ways. In several of the following examples, the loop is placed at the end of a luer dispensing needle. However, any configuration placing the loop within a controlled fluid pathway may be used.
[000180] Figure 48 shows an example of system that makes use of a compressible tubular element that forms control neck 636. The handle also includes luer 638. The reservoir is prefilled with fluid using syringe 634. When the user presses down on control neck 636, the volume inside of the handle decreases, forcing fluid out through the tip and into loop 640. When control neck 636 is released, a vacuum is created that sucks the fluid back into the reservoir.
[000181] Figure 49 shows a variation that works in much the same way as the embodiment in Figure 48. Instead of the user pressing on a control neck manually, slide 644 is set at an intermediate position. This allows the user to release pressure on the internal tubing, resulting in a pressure differential to pull fluid in, or increase pressure to displace fluid, forcing it out of the tip. The spring forces the slide to return to the intermediary position upon release. The device includes syringe 642, luer 646, and loop 648.
[000182] Figure 50 is an embodiment in which lighting element 652 is added to the general handle design, which includes loop 650. The lighting element can be a LED at the distal end of the device, or it can be a fiber optic extending along the length of the device.
[000183] It may also be beneficial to be able to store a corneal implant within a loop. Some corneal implants are preferably placed on the cornea in a specific orientation and must be kept hydrated throughout shipment and storage. In these embodiments the implant can be packaged preloaded in the loop to preserve orientation, and within a package that preserves hydration. Figure 51 shows an example of vial 654 that would house the packaged luer tip 658 while preserving hydration. Fluid 656 is also within vial 654. The implant is protected within protection package 660 within vial 654.
[000184] In some embodiments the preloaded loop is packaged within a small holder that allows fluid to flow therethrough to the implant to keep it hydrated. Figure 52 shows an embodiment where cover 667 is slid back in the direction of the arrow to reveal loop 668 in which a preloaded inlay is disposed in its proper orientation. Mesh 672 on top and mesh 670 on bottom of implant 664 are adapted such that the implant preferentially adheres to the loop despite the larger surface area exposed to the mesh. The meshes with openings therethrough also allow for the implant to stay hydrated while packaged, and help excess fluid to drain off when the implant is removed from the hydration package. This embodiment also includes luer 665. [000185] Figure 53 shows a system in which the implant can be stored separately from the loop.
Implant 676 can be easily removed from between meshes 674, which is the same mesh configuration shown in figure 52.
[000186] Figure 54 illustrates a system in which preloaded loop 682 with implant 680 therein is placed within clamp 684, which is adapted to hold the implant in place during shipping and storage. At the time of use, a fluid control handle (not shown) is attached to luer 678. The entire assembly is then swiftly removed from the clamp with the implant retained in place within the loop.
[000187] Any of the loop devices described herein can also be used to position or move the corneal implant onto or from any type of surface. The loops can facilitate any kind of positioning or handling that might be needed. In some embodiments the loop is used to position a corneal implant onto a corneal surface. In some embodiments the loop is used to position a corneal implant onto a delivery device surface, wherein the delivery device is used to position the corneal implant into or onto the cornea. For example, the loop can be used to handle a corneal implant and position it into the recess of the minimal body described above. In some embodiments the loop is used to move the corneal implant from a storage or delivery device surface and onto another surface.
[000188] Embodiments herein describe both a moderate body and a minimal body. In some embodiments, however, the apparatus or its method of use need not include the minimal body. Without the minimal body, the corneal implant is not positioned within a corneal nest defined by the moderate and minimal bodies. The implant therefore need not be packaged with the moderate body. For example, it can be packaged in a separate packaging. In these embodiments the moderate body can utilize its preferential adhesion for the implant as set forth above to retrieve, or pick up, the corneal implant from its packaging. This can eliminate restrictions on how the cornel implant needs to be packaged. For example, the implant can be stored in a vial, free-floating in a storage medium. When the implant is ready to be positioned on the corneal tissue, the moderate body, which can be coupled to a handle, is positioned adjacent the implant in its storage medium, such as by scooping up the corneal implant into a position adjacent the apertures therein. Due to its preferential adhesion adaptation, the corneal implant will preferentially adhere to the moderate body. Once it has adhered to the moderate body, the implant is ready to be deposited onto the cornea as set forth above by relying on the moderate body's adaptation to allow the implant to preferentially adhere to the corneal tissue rather than the moderate body.

Claims

1. A corneal implant applicator apparatus, comprising
an implant applicator with one or more applicator openings therethrough; and
an implant support with one or more support openings therethrough,
wherein the implant applicator and implant support are disposed relative to one another to form an implant nest, and wherein the implant nest is adapted to house a corneal implant,
wherein a ratio of the sum of the perimeters of the one or more applicator openings to the sum of the areas of the one or more applicator openings is greater than a ratio of the sum of the perimeters of the one or more support openings to the sum of the areas of the one or more support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support.
2. The apparatus of claim 1 wherein the implant applicator is adapted such that corneal tissue has a greater affinity for the corneal implant that the implant applicator.
3. The apparatus of claim 1 wherein the implant applicator has a plurality of applicator openings therethrough.
4. The apparatus of claim 3 wherein the plurality of applicator openings have the same greatest linear dimension spanning the plurality of applicator openings.
5. The apparatus of claim 1 wherein the implant support has a plurality of support openings therethrough.
6. The apparatus of claim 5 wherein the plurality of support openings have the same second greatest linear dimension spanning the support openings.
7. The apparatus of claim 1 wherein the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough.
8. The apparatus of claim 7 wherein the plurality of applicator openings have the same greatest linear dimension spanning the plurality of applicator openings and the plurality of support openings have the same second greatest linear dimension spanning the support openings.
9. The apparatus of claim 7 wherein a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
10. The applicator of claim 7 wherein fluid is retained in the corneal implant nest, and wherein the fluid is disposed within a number of the plurality of applicator openings that overlap the corneal implant due to surface tension, and wherein the fluid is disposed within a number of the plurality of support openings that overlap the corneal implant due to surface tension, wherein a volume of fluid disposed in the applicator openings that overlap the corneal implant is greater than a volume of fluid disposed in the support openings that overlap the corneal implant.
1 1. The applicator of claim 10 wherein at least one of the support openings that overlaps the corneal implant does not have fluid extending across the entirety of the opening.
12. The apparatus of claim 1 wherein the corneal implant applicator has a first greatest linear dimension spanning the corneal implant applicator and the implant support has a second greatest linear dimension spanning the implant support, wherein the second greatest linear dimension is greater than the first greatest linear dimension.
13. The apparatus of claim 1 wherein a periphery of the implant support extends further radially than a periphery of the implant applicator.
14. The apparatus of claim 1 wherein the implant support has a flat implant support surface that forms a portion of the nest.
15. The apparatus of claim 14 wherein the implant support comprises a recess formed therein adapted to accommodate the corneal implant.
16. The apparatus of claim 1 wherein the implant applicator has a flat surface that forms a portion of the nest.
17. The apparatus of claim 1 wherein the implant applicator has a first greatest thickness and the implant support has a second greatest thickness, wherein the second thickness is greater than the first thickness.
18. The apparatus of claim 17 wherein the second thickness is about two times the first thickness.
19. The apparatus of claim 1 wherein the one or more applicator openings have hexagonal configurations.
20. The apparatus of claim 1 wherein the one or more support openings have hexagonal configurations.
21. The apparatus of claim 1 wherein the corneal implant is made from a hydrophilic material.
22. A corneal implant applicator apparatus, comprising
an implant applicator with a plurality of applicator openings therethrough; and
an implant support with a plurality of support openings therethrough, wherein the number of the plurality of applicator openings is greater than the number of the plurality of support openings,
wherein the implant applicator and implant support are disposed relative to one another to form a corneal implant nest, and wherein the corneal implant nest is adapted to house a corneal implant such that the corneal implant is disposed adjacent to the plurality of applicator openings and to the plurality of support openings.
23. The apparatus of claim 22 wherein the greater number of applicator openings provides the applicator with a greater affinity for the corneal implant than the support.
24. The apparatus of claim 22 wherein the applicator is adapted such that corneal tissue has a greater affinity for the corneal implant than the applicator.
25. The apparatus of claim 22 wherein a number of the plurality of applicator openings that overlap the corneal implant when positioned in the nest is greater than a number of the plurality of support openings that overlap the corneal implant when the implant is positioned in the nest.
26. The apparatus of claim 22 wherein the plurality of applicator openings have hexagonal configurations.
27. The apparatus of claim 22 wherein the plurality of support openings have hexagonal configurations.
28. The apparatus of claim 22 wherein the corneal implant is made from a hydrophilic material.
29. A corneal implant applicator apparatus, comprising
a corneal implant applicator with a plurality of applicator openings therethrough, wherein the plurality of applicator openings have hexagonal configurations; and
a corneal implant support with a plurality of support openings therethrough, wherein the plurality of support openings have hexagonal configurations,
wherein the corneal implant support disposed relative to the corneal implant applicator to form a corneal implant nest therebetween.
30. The apparatus of claim 29 wherein the plurality of applicator openings are sized to provide the applicator with a greater affinity for the corneal implant than the support.
31. The apparatus of claim 29 wherein the applicator openings are sized such that corneal tissue has a greater affinity for the corneal implant than the applicator.
32. The apparatus of claim 29 further comprising a corneal implant disposed within the nest adjacent the plurality of applicator openings and the plurality of support openings.
33. The apparatus of claim 29 wherein a linear dimension between opposing sides of the plurality of hexagonal applicator openings is less than a linear dimension between opposing sides of the plurality of hexagonal support openings.
34. The apparatus of claim 29 wherein the corneal implant is made from a hydrophilic material. 35. A corneal implant applicator appartus, comprising
an implant applicator with at least one applicator opening therethrough; and
an implant support with at least one support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant;
wherein the at least applicator opening and the at least one support opening are adapted such that forces between the corneal implant and a liquid disposed in the at least one applicator opening are greater than forces between the corneal implant and a liquid disposed in the at least one support opening, wherein the greater forces provide the applicator with a greater affinity for the corneal implant than the support. 36. The apparatus of claim 35 wherein the at least one applicator opening are adapted to provide the applicator with less of an affinity for the corneal implant than a corneal surface.
37. The apparatus of claim 35 wherein the number of applicator openings is greater than the number of support openings.
38. The apparatus of claim 37 wherein the number of applicator openings that overlap the corneal implant when positioned in the implant nest is greater than the number of support openings that overlap the corneal implant.
39. The apparatus of claim 35 wherein the size of the at least one applicator opening is smaller than the size of the at least one support opening.
40. The apparatus of claim 35 wherein the implant applicator has a first surface through which the at least one applicator opening passes, wherein the first surface is flat.
41. The apparatus of claim 35 wherein the implant support has a first surface through which the at least one support opening passes, wherein the first surface is flat.
42. The apparatus of claim 35 wherein a ratio of the sum of the perimeters of the at least one applicator openings to the sum of the areas of the at least one applicator openings is greater than a ratio of the sum of the perimeters of the at least one support openings to the sum of the areas of the at least one support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than the support.
43. The apparatus of claim 35 wherein the at least one applicator opening and the at least one support opening have hexagonal configurations.
44. The apparatus of claim 35 wherein the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, wherein the plurality of applicator openings are smaller than the plurality of support openings.
45. The apparatus of claim 35 wherein the implant applicator has a plurality of applicator openings therethrough and the implant support has a plurality of support openings therethrough, and wherein a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
46. The apparatus of claim 35 wherein the corneal implant is made from a hydrophilic material.
47. A corneal implant applicator apparatus, comprising
an implant applicator with a plurality of applicator openings therethrough; and
an implant support with a plurality of support opening therethrough, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant, and
wherein the arrangement of the plurality of applicator openings provides the applicator with a higher affinity for the corneal implant than the support.
48. The apparatus of claim 47 wherein the arrangement of the plurality of applicator openings provides the applicator with less of an affinity for the corneal implant than a corneal surface.
49. The apparatus of claim 47 wherein the number of applicator openings is greater than the number of support openings.
50. The apparatus of claim 49 wherein the number of applicator openings that overlap the corneal implant when positioned in the implant nest is greater than the number of support openings that overlap the corneal implant.
51. The apparatus of claim 47 wherein the size of the plurality of applicator openings is smaller than the size of the plurality of support openings.
52. The apparatus of claim 47 wherein the implant applicator has a first surface through which the plurality of applicator openings pass, and wherein the first surface is flat.
53. The apparatus of claim 47 wherein the implant support has a first surface through which the plurality of support openings pass, wherein the first surface is flat.
54. The apparatus of claim 47 wherein a ratio of the sum of the perimeters of the plurality of applicator openings to the sum of the areas of the plurality of applicator openings is greater than a ratio of the sum of the perimeters of the plurality of support openings to the sum of the areas of the plurality of support openings, and wherein the greater ratio provides the applicator with a higher affinity for a corneal implant than support.
55. The apparatus of claim 47 wherein the plurality of applicator openings and the plurality of support openings have hexagonal configurations.
56. The apparatus of claim 47 wherein the plurality of applicator openings are smaller than the plurality of support openings.
57. The apparatus of claim 47 wherein a number of the plurality of applicator openings that overlap the corneal implant when the corneal implant is disposed in the nest is greater than a number of the plurality of support openings that overlap the corneal implant.
58. The apparatus of claim 47 wherein the corneal implant is made from a hydrophilic material.
59. A corneal implant hydration control apparatus, comprising
a body forming a pocket configured to receive and stabilize a corneal implant delivery apparatus therein.
60. The apparatus of claim 59 wherein the body comprises a first hydration control element and a second hydration control element disposed relative to the first hydration control element to form the pocket.
61. The apparatus of claim 60 wherein the first and second hydration control elements comprise sections of rolled up material.
62. The apparatus of claim 60 wherein the first and second hydration control elements comprise sections of rolled up material from an integral section of material.
63. The apparatus of claim 62 wherein a section of the integral section of material forms a backstop.
64. The apparatus of claim 60 wherein the first and second hydration control elements are generally cylindrically-shaped.
65. The apparatus of claim 60 wherein the first and second hydration control elements engage one another.
66. The apparatus of claim 59 further comprising a first deformable base secured to the body, wherein the first deformable base is adapted to deform to adjust a distance between a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket.
67. The apparatus of claim 66 further comprising a first core disposed within the first hydration control element and a second core disposed within the second hydration element, wherein the first deformable base is secured to the first and second cores to secure the base to the first and second hydration control elements.
68. The apparatus of claim 67 further comprising a second deformable base second to the first and second cores.
69. The apparatus of claim 68 wherein the first deformable base is secured to a first end of each of the first and second cores, and the second deformable base is secured to a second end of each of the first and second cores.
70. The apparatus of claim 66 wherein the first deformable base includes a living hinge that allows the deformable base to deform to adjust the distance between the first and second hydration control elements.
71. The apparatus of claim 59 wherein the pocket has a general wedge shape formed by a first and second hydration control elements.
72. The apparatus of claim 59 wherein the body is formed of a polyester material.
73. The apparatus of claim 59 wherein the body is adapted to wick away fluid from an apparatus disposed within the pocket as the apparatus is removed from the pocket.
74. A packaging assembly for a corneal implant applicator, comprising
a corneal implant applicator apparatus comprising an implant portion in which a corneal implant is retained; and
a hydration control member comprising a pocket that is adapted to receive and stabilize the implant portion therein.
75. The assembly of claim 74 wherein the implant portion in which the corneal implant is retained is substantially flat.
76. The assembly of claim 74 wherein the corneal implant is retained in the implant portion of the corneal implant applicator apparatus in a substantially unstressed configuration.
78. The assembly of claim 74 wherein the hydration control member comprises a first hydration control element and a second hydration control element, wherein the first and second hydration control elements form at least a portion of the pocket.
79. The assembly of claim 78 wherein the first and second hydration control elements are generally cylindrically shaped.
80. The assembly of claim 78 wherein the hydration control member further comprises a backstop adapted to prevent the corneal implant applicator apparatus from being advanced too far within the pocket.
81. The assembly of claim 78 wherein the first and second hydration control elements are adapted to be moved apart from one another to accommodate the corneal implant applicator apparatus.
82. A method of removing excess storage liquid from a corneal implant applicator apparatus, comprising
providing a corneal implant applicator apparatus, wherein a corneal implant is disposed within a portion of the apparatus; and stripping excess fluid from the portion of the apparatus by engaging the portion of the apparatus in which the implant is disposed with a hydration control member while moving the portion of the apparatus with respect to the hydration control member.
83. The method of claim 82 wherein the portion of the apparatus includes first and second surfaces each with at least one opening formed therein, the first and second surfaces forming a corneal nest, wherein the stripping step comprises removing excess fluid away from the first and second surfaces.
84. The method of claim 82 wherein the stripping step comprises engaging the portion of the apparatus with first and second hydration control elements while moving the portion of the apparatus with respect to the first and second hydration control elements.
85. A method of storing a corneal implant applicator apparatus, comprising
providing a corneal implant applicator apparatus with a first portion in which a corneal implant is positioned; and
positioning the first portion of the apparatus into a pocket formed by a hydration control member until the first portion engages the hydration control member.
86. The method of claim 85 wherein the positioning step creates a fluid communication between the hydration control member and the corneal implant.
87. The method of claim 85 wherein the positioning step comprises advancing the first portion into a pocket formed by two hydration control elements until the first portion engages the two hydration control elements.
88. The method of claim 87 wherein the positioning step comprises positioning a first apparatus surface into engagement with a first hydration control element and positioning a second apparatus surface into engagement with a second hydration control element.
PCT/US2012/061366 2011-10-21 2012-10-22 Corneal implant storage and delivery devices WO2013059813A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2853116A CA2853116A1 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
EP12841027.1A EP2768430A4 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
AU2012325705A AU2012325705B2 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
KR1020147013664A KR101762932B1 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
RU2013102261A RU2619654C2 (en) 2011-10-21 2012-10-22 Device for cornea implants storage and delivery
JP2014537365A JP5944005B2 (en) 2011-10-21 2012-10-22 Corneal graft storage and delivery device
US14/352,628 US9345569B2 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
US15/163,610 US9987124B2 (en) 2011-10-21 2016-05-24 Corneal implant storage and delivery devices
AU2017248529A AU2017248529A1 (en) 2011-10-21 2017-10-20 Corneal implant storage and delivery devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161550185P 2011-10-21 2011-10-21
US61/550,185 2011-10-21
US201261606674P 2012-03-05 2012-03-05
US61/606,674 2012-03-05
US201261679482P 2012-08-03 2012-08-03
US61/679,482 2012-08-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/352,628 A-371-Of-International US9345569B2 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices
US15/163,610 Continuation US9987124B2 (en) 2011-10-21 2016-05-24 Corneal implant storage and delivery devices

Publications (1)

Publication Number Publication Date
WO2013059813A1 true WO2013059813A1 (en) 2013-04-25

Family

ID=48141471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/061366 WO2013059813A1 (en) 2011-10-21 2012-10-22 Corneal implant storage and delivery devices

Country Status (8)

Country Link
US (3) US9345569B2 (en)
EP (1) EP2768430A4 (en)
JP (2) JP5944005B2 (en)
KR (1) KR101762932B1 (en)
AU (2) AU2012325705B2 (en)
CA (1) CA2853116A1 (en)
RU (1) RU2619654C2 (en)
WO (1) WO2013059813A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028275A1 (en) * 2014-08-19 2016-02-25 Revision Optics, Inc. Corneal implant storage, packaging, and delivery devices
US20230060227A1 (en) * 2021-09-01 2023-03-02 Tissuecor, Llc Device and system for injecting biological tissue
US11957569B2 (en) 2020-02-28 2024-04-16 Tissuecor, Llc Graft tissue injector

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
RU2619654C2 (en) 2011-10-21 2017-05-17 Ревижн Оптикс, Инк. Device for cornea implants storage and delivery
US10092393B2 (en) 2013-03-14 2018-10-09 Allotex, Inc. Corneal implant systems and methods
WO2016144404A1 (en) 2015-03-12 2016-09-15 Revision Optics, Inc. Methods of correcting vision
US10449090B2 (en) 2015-07-31 2019-10-22 Allotex, Inc. Corneal implant systems and methods
DE102016106097B3 (en) * 2016-04-04 2017-05-18 Leibniz-Institut Für Polymerforschung Dresden E.V. Tissue and organ transport device
US20170354492A1 (en) * 2016-06-09 2017-12-14 Presbibio, Llc Ophthalmic lens inserter apparatus and method
KR102043647B1 (en) 2018-03-05 2019-11-12 인하대학교 산학협력단 N doped titanium dioxide nanoparticles for pemfc having high durability and preparing method for the same
US10806558B1 (en) 2019-04-23 2020-10-20 The North Carolina Eye Bank, Inc Corneal graft assemblies for improved surgical operations
US11654048B2 (en) 2019-04-23 2023-05-23 Miracles In Sight DSAEK corneal graft assemblies for optimized surgical operations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008423A1 (en) * 1989-01-23 1992-05-29 Cumming J Stuart Intraocular lens insertion device
US20050113844A1 (en) 2000-09-12 2005-05-26 Alok Nigam System for packaging and handling an implant and method of use
US20060173539A1 (en) * 2005-01-31 2006-08-03 Yichieh Shiuey Corneal implants and methods and systems for placement
US20080243138A1 (en) * 2007-03-28 2008-10-02 Jon Dishler Insertion system for corneal implants
US20100241060A1 (en) * 2009-03-18 2010-09-23 Roizman Keith Surgical devices and methods

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521161A (en) 1948-08-07 1950-09-05 Harle B Grover Surgical cutting instrument
US2714721A (en) 1953-01-23 1955-08-09 Jr William Stone Artificial corneal implants
US3091328A (en) 1961-03-02 1963-05-28 Priscilla A Leonardos Contact lens remover and carrier
US3168100A (en) 1962-12-07 1965-02-02 Alvido R Rich Contact lens dipper assembly
US3305235A (en) * 1965-07-28 1967-02-21 Jr Albert J Williams Longitudinally adjustable golf club including head with high moment of inertia abouttwo axes
US3482906A (en) 1965-10-04 1969-12-09 David Volk Aspheric corneal contact lens series
US3379200A (en) 1965-10-24 1968-04-23 Ruth M. Pennell Lens containtr
US3343657A (en) 1966-09-02 1967-09-26 Reuben F Speshyock Contact lens conditioning facility
US3950315A (en) 1971-06-11 1976-04-13 E. I. Du Pont De Nemours And Company Contact lens having an optimum combination of properties
US3743337A (en) 1971-07-26 1973-07-03 E Crary Contact lens inserter
US3770113A (en) 1972-03-03 1973-11-06 Mcd Corp Contact lens holder
US3879076A (en) 1973-12-27 1975-04-22 Robert O Barnett Method and apparatus for applying and removing a soft contact lens
US4065816A (en) 1975-05-22 1978-01-03 Philip Nicholas Sawyer Surgical method of using a sterile packaged prosthesis
US3996627A (en) 1975-09-22 1976-12-14 American Optical Corporation Artificial intraocular lens
US4037604A (en) 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4030480A (en) 1976-05-13 1977-06-21 Ernst Jochen Meyer Ocular decompression process
US4037866A (en) 1976-07-26 1977-07-26 Price Edward E Contact lens applicator
US4039827A (en) 1976-08-26 1977-08-02 American Optical Corporation Method for marking intraocular lenses
US4071272A (en) 1976-09-27 1978-01-31 Drdlik Frank J Contact lens applicator
US4136406A (en) 1977-07-20 1979-01-30 Norris John W Intraocular lens with attached disposable instrument
US4093291A (en) 1977-08-17 1978-06-06 Schurgin Herbert L Contact lens application and removal instrument
US4157718A (en) 1977-08-31 1979-06-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Intra-ocular pressure normalization technique and equipment
US4184491A (en) 1977-08-31 1980-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Intra-ocular pressure normalization technique and equipment
US4194814A (en) 1977-11-10 1980-03-25 Bausch & Lomb Incorporated Transparent opthalmic lens having engraved surface indicia
US4238524A (en) 1978-03-06 1980-12-09 American Optical Corporation Process for identification marking clear plastic articles
US4268133A (en) 1978-07-14 1981-05-19 Bausch & Lomb Incorporated Preferential orientation of contact lenses
US4263054A (en) 1979-02-23 1981-04-21 George D. Weaver Contact lens cleaning and rinsing method
US4392569A (en) 1979-06-06 1983-07-12 Shoup Leo E Soft contact lens asepticizing case
US4418991A (en) 1979-09-24 1983-12-06 Breger Joseph L Presbyopic contact lens
US4257521A (en) 1979-11-16 1981-03-24 Stanley Poler Packaging means for an intraocular lens
US4709697A (en) 1980-12-09 1987-12-01 Joseph J. Berke Tissue pneumatic separator structure and method
US5022414A (en) 1979-12-13 1991-06-11 Joseph J. Berke Tissue separator method
US4357940A (en) 1979-12-13 1982-11-09 Detroit Neurosurgical Foundation Tissue pneumatic separator structure
EP0046338B1 (en) 1980-08-05 1985-04-10 David Peter Choyce Intraocular lens
US4326306A (en) 1980-12-16 1982-04-27 Lynell Medical Technology, Inc. Intraocular lens and manipulating tool therefor
US4428746A (en) 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US5188125A (en) 1982-01-04 1993-02-23 Keravision, Inc. Method for corneal curvature adjustment
US4452235A (en) 1982-01-04 1984-06-05 Reynolds Alvin E Method for corneal curvature adjustment
US4766895A (en) 1982-01-04 1988-08-30 Kera Corneal Devices, Inc. Apparatus for corneal curvature adjustment
US4671276A (en) 1982-01-04 1987-06-09 Kera Associates Apparatus for corneal curvature adjustment
US4490860A (en) 1982-01-18 1985-01-01 Ioptex Inc. Intraocular lens apparatus and method for implantation of same
US4423809A (en) 1982-02-05 1984-01-03 Staar Surgical Company, Inc. Packaging system for intraocular lens structures
US4702244A (en) 1982-02-05 1987-10-27 Staar Surgical Company Surgical device for implantation of a deformable intraocular lens
US4573998A (en) 1982-02-05 1986-03-04 Staar Surgical Co. Methods for implantation of deformable intraocular lenses
DE3208729A1 (en) 1982-03-11 1983-09-22 Jörg Dr.med. 4630 Bochum Krumeich Plastic lens
US4545478A (en) 1982-07-08 1985-10-08 Fred Waldman Hard contact lens suction cups and method for their production
US4554918A (en) 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
US4504982A (en) 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
US4619256A (en) 1982-09-08 1986-10-28 Gerald Horn Intraocular lens inserting assembly
US4466705A (en) 1982-09-30 1984-08-21 Michelson Paul E Fluid lens
JPS5973622A (en) 1982-10-19 1984-04-25 Nobuyuki Tsuboi Slide bearing
US4521210A (en) 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4616910A (en) 1983-03-01 1986-10-14 Klein Robert E Visual indicator on soft contact lenses
US4580882A (en) 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4525044A (en) 1983-05-05 1985-06-25 Bauman Robert C Soft contact lens with surface identification and method of using same
US4554115A (en) 1983-08-30 1985-11-19 Neefe Charles W Method of controlling the convex curve of soft lenses
US4618227A (en) 1983-10-07 1986-10-21 Vistakon, Inc. Soft contact lens
US4721124A (en) 1983-12-01 1988-01-26 Barry Tuerkheimer Optometric soft and rigid contact lens cleaning and storage system
US4565198A (en) 1983-12-27 1986-01-21 Barnes-Hind, Inc. Method for altering the curvature of the cornea
US4586929A (en) 1984-04-06 1986-05-06 Binder Perry S Hydrogel keratoprosthesis
US4640595A (en) 1984-05-02 1987-02-03 David Volk Aspheric contact lens
US4971732A (en) 1984-06-28 1990-11-20 Ceskoslovenska Academie Ved Method of molding an intraocular lens
DE3433581C2 (en) 1984-09-13 1986-08-07 Fa. Carl Zeiss, 7920 Heidenheim Device for laminating, refractive corneal surgery
US4624669A (en) 1984-09-26 1986-11-25 Surgidev Corporation Corneal inlay with holes
US4604087A (en) 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4646720A (en) 1985-03-12 1987-03-03 Peyman Gholam A Optical assembly permanently attached to the cornea
JPH0678460B2 (en) 1985-05-01 1994-10-05 株式会社バイオマテリアル・ユニバース Porous transparent polyvinyl alcohol gel
US4624664A (en) 1985-07-22 1986-11-25 Travenol European Research And Development Centre (Teradec) Antibacterial closure system
US6264648B1 (en) 1985-07-29 2001-07-24 Bausch & Lomb Incorporated Corneal curvature modification via internal ablation
US4726367A (en) 1985-08-19 1988-02-23 Shoemaker David W Surgical instrument for implanting an intraocular lens
GB2185124B (en) 1986-01-03 1989-10-25 Choyce David P Intra-corneal implant
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
US5139518A (en) 1986-05-16 1992-08-18 White Thomas C Methods employed in replacement of the corneal endothelium
US4772283A (en) 1986-05-16 1988-09-20 White Thomas C Corneal implant
US5030230A (en) 1986-05-16 1991-07-09 Great Plains Eye Clinic, Ltd. Corneal implant
CS263203B1 (en) 1986-07-22 1989-04-14 Sulc Jiri Soft intraocular lenses
US5019084A (en) 1986-08-06 1991-05-28 Minnesota Mining And Manufacturing Company Corneal holder
US4697697A (en) 1986-08-18 1987-10-06 Coopervision, Inc. Method and apparatus for packaging an intraocular lens
US4676792A (en) 1986-08-26 1987-06-30 Donald Praeger Method and artificial intraocular lens device for the phakic treatment of myopia
US5112350A (en) 1986-10-16 1992-05-12 Cbs Lens, A California General Partnership Method for locating on a cornea an artificial lens fabricated from a collagen-hydrogel for promoting epithelial cell growth and regeneration of the stroma
US5114627A (en) 1986-10-16 1992-05-19 Cbs Lens Method for producing a collagen hydrogel
US4842599A (en) 1986-10-28 1989-06-27 Ann M. Bronstein Prosthetic cornea and method of implantation therefor
US4919130A (en) 1986-11-07 1990-04-24 Nestle S.A. Tool for inserting compressible intraocular lenses into the eye and method
US4840175A (en) 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
US4897981A (en) 1986-12-24 1990-02-06 Alcon Laboratories, Inc. Method of packaging intraocular lenses and contact lenses
US4762496A (en) 1987-02-13 1988-08-09 William F. Maloney Ophthalmologic lens phantom system
US4865552A (en) 1987-02-13 1989-09-12 William F. Maloney Ophthalmologic phantom system
US4806382A (en) 1987-04-10 1989-02-21 University Of Florida Ocular implants and methods for their manufacture
US5244799A (en) 1987-05-20 1993-09-14 Anderson David M Preparation of a polymeric hydrogel containing micropores and macropores for use as a cell culture substrate
US5270744A (en) 1987-06-01 1993-12-14 Valdemar Portney Multifocal ophthalmic lens
US5225858A (en) 1987-06-01 1993-07-06 Valdemar Portney Multifocal ophthalmic lens
US4769033A (en) 1987-07-02 1988-09-06 Nordan Lee T Intraocular multifocal lens
US5282851A (en) 1987-07-07 1994-02-01 Jacob Labarre Jean Intraocular prostheses
US5163934A (en) 1987-08-05 1992-11-17 Visx, Incorporated Photorefractive keratectomy
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
US4798609A (en) 1987-08-24 1989-01-17 Grendahl Dennis T Radially segmented zone of focus artificial lens
US4778462A (en) 1987-08-24 1988-10-18 Grendahl Dennis T Multiple element zone of focus artificial lens
US5123912A (en) 1987-08-26 1992-06-23 United States Surgical Corporation Absorbable coating composition, coated sutures and method of preparation
US4844242A (en) 1987-09-02 1989-07-04 The Johns Hopkins University Cornea retainer
EP0308077A3 (en) 1987-09-14 1990-05-30 Nestle S.A. Synthetic intracorneal lens
US4934363A (en) 1987-12-15 1990-06-19 Iolab Corporation Lens insertion instrument
US4851003A (en) 1988-01-05 1989-07-25 Lindstrom Richard L Corneal implant lens with fixation holes
US4888016A (en) 1988-02-10 1989-12-19 Langerman David W "Spare parts" for use in ophthalmic surgical procedures
US5108428A (en) 1988-03-02 1992-04-28 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US4923467A (en) 1988-03-02 1990-05-08 Thompson Keith P Apparatus and process for application and adjustable reprofiling of synthetic lenticules for vision correction
US4836201A (en) 1988-03-24 1989-06-06 Patton Medical Technologies, Inc. "Envelope" apparatus for inserting intra-ocular lens into the eye
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US4860885A (en) 1988-04-29 1989-08-29 Allergan, Inc. Lens storage system
US5273750A (en) 1988-05-02 1993-12-28 Institute National De La Sante Et De La Recherche Medicale- Inserm Uncrosslinked hydrogel, process for its preparation and its uses as an article for medical and/or surgical purposes such as tubes, films, joints, implants and the like, particularly in ophthalmology
US5211660A (en) 1988-05-02 1993-05-18 University Of South Florida Method for performing epikeratophakia by electrofusion
US5192317A (en) 1988-07-26 1993-03-09 Irvin Kalb Multi focal intra-ocular lens
US5785674A (en) 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
JPH02211119A (en) 1988-10-21 1990-08-22 Genjiro Omi Astigmatism degree of toric type eye lens and method for determining degree of eye lens
US4976719A (en) 1988-11-21 1990-12-11 Siepser Steven B Device used to change corneal curvature
FR2647227B1 (en) 1989-05-19 1991-08-23 Essilor Int OPTICAL COMPONENT, SUCH AS AN INTRAOCULAR IMPLANT OR CONTACT LENS, SUITABLE FOR CORRECTING THE VISION OF AN INDIVIDUAL
US4911715A (en) 1989-06-05 1990-03-27 Kelman Charles D Overlapping two piece intraocular lens
EP0420549A3 (en) 1989-09-25 1991-06-12 Kingston Technologies, Inc. Corneal lens implant
US4946436A (en) 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5063942A (en) 1989-12-14 1991-11-12 Corneal Contouring, Inc. Method for surgically re-profiling the cornea
US5318044A (en) 1989-12-14 1994-06-07 Corneal Contouring, Inc. Method and apparatus for re-profiling the cornea to correct for hyperopia
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5073163A (en) 1990-01-29 1991-12-17 Lippman Myron E Apparatus for treating glaucoma
US5098444A (en) 1990-03-16 1992-03-24 Feaster Fred T Epiphakic intraocular lens and process of implantation
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5181053A (en) 1990-05-10 1993-01-19 Contact Lens Corporation Of America Multi-focal contact lens
US5041081A (en) 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5178604A (en) 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5397300A (en) 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5634943A (en) 1990-07-12 1997-06-03 University Of Miami Injectable polyethylene oxide gel implant and method for production
US5229797A (en) 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5173723A (en) 1990-10-02 1992-12-22 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
BR9106205A (en) 1990-10-31 1993-03-30 Baxter Int DEVICE FOR IMPLANTATION IN HOST, IMPLANTATION PROCESS, IMPLANTED DEVICE, AND IMMUNO INSULATION CONTAINER
US5071276A (en) 1991-01-04 1991-12-10 Abbott Laboratories Contact lens cleaning system
WO1992013501A1 (en) 1991-02-11 1992-08-20 Ommaya Ayub K Spinal fluid driven artificial organ
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5123905A (en) 1991-06-07 1992-06-23 Kelman Charles D Intraocular lens injector
US5512220A (en) 1991-07-10 1996-04-30 Johnson & Johnson Vision Products, Inc. Method of making a clear axis, segmented multifocal ophthalmic lens
US5312413A (en) 1991-07-17 1994-05-17 Eaton Alexander M Instrumentation for ophthalmic surgery and method of using the same
US5171213A (en) 1991-08-14 1992-12-15 Price Jr Francis W Technique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5428412B1 (en) 1991-08-23 2000-08-08 Contex Inc Method for treating myopia with an aspheric corneal contact lens
US5196026A (en) 1991-09-16 1993-03-23 Chiron Ophthalmics, Inc. Method of implanting corneal inlay lenses smaller than the optic zone
US5647865A (en) 1991-11-01 1997-07-15 Swinger; Casimir A. Corneal surgery using laser, donor corneal tissue and synthetic material
US6325792B1 (en) 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
US5258042A (en) 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
CA2127109A1 (en) 1992-01-02 1993-07-08 Graham D. Barrett Corneal ring inlay and methods of use
BR9305734A (en) 1992-01-14 1997-01-28 Keravision Inc Corneal ring of varying thickness and process for selecting an intra-stromal corneal ring
US5190552A (en) 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5344448A (en) 1992-02-11 1994-09-06 Schneider Richard T Multi-focal intra-ocular implant
US5346464A (en) 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
AU650156B2 (en) 1992-08-05 1994-06-09 Lions Eye Institute Limited Keratoprosthesis and method of producing the same
EP0653926B1 (en) 1992-08-07 1999-05-06 Keravision, Inc. Intrastromal corneal ring
US5405384A (en) 1992-09-03 1995-04-11 Keravision, Inc. Astigmatic correcting intrastromal corneal ring
US5944752A (en) 1992-09-03 1999-08-31 Kera Vision, Inc. Astigmatic correcting intrastromal corneal insert
DE69326024T2 (en) 1992-09-03 2000-02-24 Keravision Inc INTRASTROMAL, CORNAL RING FOR ASTIGMATISM CORRECTION
US5318046A (en) 1992-09-23 1994-06-07 Rozakis George W Method for corneal reprofiling
US5755786A (en) 1992-09-28 1998-05-26 Iolab Corporation Ophthalmic lens with reduced edge glare
US5620450A (en) 1992-09-30 1997-04-15 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US6056757A (en) 1992-09-30 2000-05-02 Staar Surgical Company, Inc. Implantation device with deformable nozzle tip for implanting a deformable intraocular lens
US5860984A (en) 1992-09-30 1999-01-19 Staar Surgical Company, Inc. Spring biased deformable intraocular injecting apparatus
US5928245A (en) 1992-09-30 1999-07-27 Staar Surgical Company, Inc. Deformable intraocular lens injecting apparatus with transverse hinged lens cartridge
US6712848B1 (en) 1992-09-30 2004-03-30 Staar Surgical Company, Inc. Deformable intraocular lens injecting apparatus with transverse hinged lens cartridge
US6022358A (en) 1992-09-30 2000-02-08 Staar Surgical Company, Inc. Deformable intraocular lens injecting device
US5616148A (en) 1992-09-30 1997-04-01 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
US5872613A (en) 1992-11-23 1999-02-16 Innotech, Inc. Method of manufacturing contact lenses
US5406341A (en) 1992-11-23 1995-04-11 Innotech, Inc. Toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses and method of manufacturing
US5338291A (en) 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
US5352233A (en) 1993-02-09 1994-10-04 Anis Aziz Y Scalpel and technique for using scalpel
FR2701770B1 (en) 1993-02-18 1995-05-12 Essilor Int Simultaneous vision ophthalmic lens for the correction of presbyopia and set of two such ophthalmic lenses for the same wearer.
US6090141A (en) 1993-03-05 2000-07-18 Lindstrom; Richard L. Small intracorneal lens
US5653715A (en) 1993-03-09 1997-08-05 Chiron Vision Corporation Apparatus for preparing an intraocular lens for insertion
US5493350A (en) 1993-03-31 1996-02-20 Seidner; Leonard Multipocal contact lens and method for preparing
US5467149A (en) 1993-06-15 1995-11-14 Bausch & Lomb Incorporated Highly visible markings for contact lenses
US5468246A (en) 1993-07-02 1995-11-21 Iovision, Inc. Intraocular lens injector
SG52643A1 (en) 1993-08-02 1998-09-28 Keravision Inc Segmented preformed intrastromal corneal insert
US5489301A (en) 1993-09-03 1996-02-06 Barber; John C. Corneal prosthesis
US5502518A (en) 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US5601584A (en) 1993-10-22 1997-02-11 Zein E. Obagi Scalpel with integrated visual control aperture
US5487377A (en) 1993-11-05 1996-01-30 Clinical Innovation Associates, Inc. Uterine manipulator and manipulator tip assembly
WO1995013766A1 (en) 1993-11-18 1995-05-26 Allergan, Inc. Deformable lens insertion apparatus
TW257671B (en) 1993-11-19 1995-09-21 Ciba Geigy
JP3782482B2 (en) 1994-02-17 2006-06-07 アイオーラブ・コーポレーシヨン Eye lens with reduced glare on the edge and method of manufacture
US6197019B1 (en) 1994-04-25 2001-03-06 Gholam A. Peyman Universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US5630810A (en) 1994-05-06 1997-05-20 Machat; Jeffery J. Method of ophthalmological surgery
US6302877B1 (en) 1994-06-29 2001-10-16 Luis Antonio Ruiz Apparatus and method for performing presbyopia corrective surgery
US5533997A (en) 1994-06-29 1996-07-09 Ruiz; Luis A. Apparatus and method for performing presbyopia corrective surgery
US5629577A (en) 1994-07-15 1997-05-13 Micro Medical Devices Miniature linear motion actuator
US5407241A (en) * 1994-07-21 1995-04-18 Harrison; Kenneth Contact lens applicator
US5520631A (en) 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5755785A (en) 1994-08-12 1998-05-26 The University Of South Florida Sutureless corneal transplantation method
ATE262857T1 (en) 1994-10-06 2004-04-15 Vladimir Feingold INTRAOCULAR CONTACT LENS
US5433701A (en) 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
IL117335A (en) 1995-03-02 2001-08-08 Keravision Inc Corneal implant for changing refractive properties
US6110166A (en) 1995-03-20 2000-08-29 Escalon Medical Corporation Method for corneal laser surgery
TW393498B (en) 1995-04-04 2000-06-11 Novartis Ag The preparation and use of Polysiloxane-comprising perfluoroalkyl ethers
US5980549A (en) 1995-07-13 1999-11-09 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
US5684560A (en) 1995-05-04 1997-11-04 Johnson & Johnson Vision Products, Inc. Concentric ring single vision lens designs
IL118064A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Concentric annular ring lens designs for astigmatic presbyopes
US5929969A (en) 1995-05-04 1999-07-27 Johnson & Johnson Vision Products, Inc. Multifocal ophthalmic lens
US5682223A (en) 1995-05-04 1997-10-28 Johnson & Johnson Vision Products, Inc. Multifocal lens designs with intermediate optical powers
US5715031A (en) 1995-05-04 1998-02-03 Johnson & Johnson Vision Products, Inc. Concentric aspheric multifocal lens designs
IL117937A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Combined multifocal toric lens designs
US6125294A (en) 1995-06-07 2000-09-26 Kera Vision Inc. Method and apparatus for measuring corneal incisions
US6175754B1 (en) 1995-06-07 2001-01-16 Keravision, Inc. Method and apparatus for measuring corneal incisions
US20040073303A1 (en) 1995-06-07 2004-04-15 Harry J. Macey Radial intrastromal corneal insert and a method of insertion
US5968065A (en) 1995-07-13 1999-10-19 Origin Medsystems, Inc. Tissue separation cannula
US5779711A (en) 1995-07-27 1998-07-14 Michiel S. Kritzinger Corneal flap/cap elevator
US5643276A (en) 1995-10-10 1997-07-01 Allergan Apparatus and method for providing desired rotational orientation to an intraocular lens
US20050143717A1 (en) 2001-04-27 2005-06-30 Peyman Gholam A. Method of treatment of refractive errors using subepithelial or intrastromal corneal inlay with bonding coating
US6989008B2 (en) 2001-03-23 2006-01-24 Minu Llc Adjustable ablatable inlay
US6551307B2 (en) 2001-03-23 2003-04-22 Gholam A. Peyman Vision correction using intrastromal pocket and flap
US6221067B1 (en) 1995-10-20 2001-04-24 Gholam A. Peyman Corneal modification via implantation
US5919185A (en) 1997-04-25 1999-07-06 Peyman; Gholam A. Universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US20010027314A1 (en) 1995-10-20 2001-10-04 Peyman Gholam A. Intrastromal corneal modification via laser
US5722971A (en) 1995-10-20 1998-03-03 Peyman; Gholam A. Intrastromal corneal modification
US5964748A (en) 1995-10-20 1999-10-12 Peyman; Gholam A. Intrastromal corneal modification
US6280470B1 (en) 1995-10-20 2001-08-28 Gholam A. Peyman Intrastromal corneal modification
US5929968A (en) 1995-11-01 1999-07-27 Cotie; Robert L. Scleral-corneal contact lens
US6203538B1 (en) 1995-11-03 2001-03-20 Gholam A. Peyman Intrastromal corneal modification
US5817115A (en) 1995-12-04 1998-10-06 Chiron Vision Corporation Apparatus for resecting corneal tissue
US5728155A (en) 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5722948A (en) 1996-02-14 1998-03-03 Gross; Fredric J. Covering for an ocular device
US5695513A (en) 1996-03-01 1997-12-09 Metagen, Llc Flexible cutting tool and methods for its use
US5628794A (en) 1996-03-08 1997-05-13 Lindstrom; Richard L. Multifocal corneal implant lens having a hydrogelo coating
FR2746000B1 (en) 1996-03-14 1998-06-12 FLEXIBLE INTRAOCULAR IMPLANT AND SET OF SUCH IMPLANTS
US5732990A (en) 1996-06-06 1998-03-31 Yavitz; Edward Q. Contact lens applicator
US5766181A (en) 1996-08-02 1998-06-16 Staar Surgical Company, Inc. Spring biased deformable intraocular injecting apparatus
AUPO185796A0 (en) 1996-08-26 1996-09-19 Lions Eye Institute Ocular socket prosthesis
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
US6142969A (en) 1996-10-25 2000-11-07 Anamed, Inc. Sutureless implantable device and method for treatment of glaucoma
US6881197B1 (en) 1996-10-25 2005-04-19 Anamed, Inc. Sutureless implantable device and method for treatment of glaucoma
US5855604A (en) 1996-12-09 1999-01-05 Microoptix, Llc Method and apparatus for adjusting corneal curvature using a solid filled corneal ring
US5733334A (en) 1996-12-09 1998-03-31 Microoptix Method and apparatus for adjusting corneal curvature
US5876439A (en) 1996-12-09 1999-03-02 Micooptix, Llc Method and appartus for adjusting corneal curvature using a fluid-filled corneal ring
US6159241A (en) 1997-04-01 2000-12-12 Joseph Y. Lee Method and apparatus for adjusting corneal curvature using multiple removable corneal implants
US6228114B1 (en) 1997-04-01 2001-05-08 Joseph Y. Lee Adjustable corneal ring
ID20540A (en) 1997-04-07 1999-01-07 Bausch & Lomb METHOD FOR UNTUYK IDENTIFY THE CHARACTERISTICS OF THE CONTACT LENS
US6055990A (en) 1997-04-21 2000-05-02 Thompson; Keith P. Polymerizing gel intrakeratophakia-PGI
US6030398A (en) 1997-05-30 2000-02-29 Summit Technology, Inc. Surgical microtomes
US5752928A (en) 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US5935140A (en) 1997-07-31 1999-08-10 Buratto; Lucio Method for modifying the curvature of the cornea
US5873889A (en) 1997-08-08 1999-02-23 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
US5964776A (en) 1997-09-24 1999-10-12 Peyman; Gholam A. Internal keratome apparatus and method for using the same to form a pocket/flap between layers of a live cornea
US5941583A (en) 1997-10-07 1999-08-24 Raimondi; Kent Contact lens insertion and manipulation assembly and method
US6007578A (en) 1997-10-08 1999-12-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6605093B1 (en) 1997-10-24 2003-08-12 Tekia, Inc. Device and method for use with an ophthalmologic insertor apparatus
WO1999021513A1 (en) 1997-10-24 1999-05-06 Tekia, Inc. Ophthalmologic insertor apparatus and methods of use
US5893719A (en) 1997-10-29 1999-04-13 Radow; Brett K. Variable pathological and surgical eye model and method related thereto
US6033395A (en) 1997-11-03 2000-03-07 Peyman; Gholam A. System and method for modifying a live cornea via laser ablation and mechanical erosion
US6050999A (en) 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US20020055753A1 (en) 1997-12-18 2002-05-09 Thomas A. Silvestrini Corneal implant methods and pliable implant therefor
US5936704A (en) 1997-12-22 1999-08-10 Gabrielian; Grant Marked contact lens bearing optical marking element
WO1999033411A1 (en) 1997-12-29 1999-07-08 Duckworth & Kent Limited Injectors for intraocular lenses
US6059775A (en) 1997-12-31 2000-05-09 Nielsen; James M. Multifocal corneal sculpturing
US6428572B2 (en) 1998-01-12 2002-08-06 Menicon Co., Ltd. Intraocular ring
US6206919B1 (en) 1998-01-14 2001-03-27 Joseph Y. Lee Method and apparatus to correct refractive errors using adjustable corneal arcuate segments
US5921989A (en) 1998-02-12 1999-07-13 Allergan Lens protector for intraocular lens inserter
ES2277430T3 (en) 1998-03-04 2007-07-01 Visx Incorporated LASER PRESBORAGE TREATMENT SYSTEM.
US6024448A (en) 1998-03-31 2000-02-15 Johnson & Johnson Vision Products, Inc. Contact lenses bearing identifying marks
FR2777093B1 (en) 1998-04-07 2000-06-23 Essilor Int METHOD FOR PRODUCING ANGULAR TOLERANCE MARK FOR AN ASTIGMATIC CORRECTIVE LENS, AND ASSOCIATED LENS
US6371960B2 (en) 1998-05-19 2002-04-16 Bausch & Lomb Surgical, Inc. Device for inserting a flexible intraocular lens
US5947976A (en) 1998-06-02 1999-09-07 Alcon Laboratories, Inc. Asymmetric intraocular lens injection cartridge
US6143001A (en) 1998-06-02 2000-11-07 Alcon Laboratories, Inc. Asymmetric intraocular lens injection cartridge
US6010510A (en) 1998-06-02 2000-01-04 Alcon Laboratories, Inc. Plunger
US6183513B1 (en) 1998-06-05 2001-02-06 Bausch & Lomb Surgical, Inc. Intraocular lens packaging system, method of producing, and method of using
US5976150A (en) 1998-08-25 1999-11-02 Alcon Laboratories, Inc. Intraocular lens injection system
US6171324B1 (en) 1998-09-30 2001-01-09 Becton, Dickinson And Company Marker for corneal incision
US6120148A (en) 1998-10-05 2000-09-19 Bifocon Optics Gmbh Diffractive lens
US6197057B1 (en) 1998-10-27 2001-03-06 Gholam A. Peyman Lens conversion system for teledioptic or difractive configurations
US20020010510A1 (en) 1998-11-04 2002-01-24 Thomas A. Silvestrini Variable modulus corneal implant and fabrication methods
US6447520B1 (en) 2001-03-19 2002-09-10 Advanced Medical Optics, Inc. IOL insertion apparatus with IOL engagement structure and method for using same
US6329485B1 (en) 1998-12-11 2001-12-11 Bausch & Lomb Incorporated High refractive index hydrogel compositions for ophthalmic implants
AU2365300A (en) 1998-12-16 2000-07-03 Wesley-Jessen Corporation Multifocal contact lens with aspheric surface
US6361560B1 (en) 1998-12-23 2002-03-26 Anamed, Inc. Corneal implant and method of manufacture
US6102946A (en) 1998-12-23 2000-08-15 Anamed, Inc. Corneal implant and method of manufacture
US6626941B2 (en) 1998-12-23 2003-09-30 Anamed, Inc. Corneal implant and method of manufacture
DE19904220C2 (en) 1999-02-03 2001-08-30 Helmut Binder Injector for folding and inserting an intraocular lens, and containers for storing and transporting the injector
US6210005B1 (en) 1999-02-04 2001-04-03 Valdemar Portney Multifocal ophthalmic lens with reduced halo size
DE60018044T2 (en) 1999-02-18 2005-12-29 Commonwealth Scientific And Industrial Research Organisation NEW BIOMATERIALS
WO2000052516A2 (en) 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US6139560A (en) 1999-03-16 2000-10-31 Kremer; Frederic B. Cutting device and method for making controlled surgical incisions
US6197058B1 (en) 1999-03-22 2001-03-06 Valdemar Portney Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US6129733A (en) 1999-04-15 2000-10-10 Allergan Sales, Inc. Apparatus for holding intraocular lenses and injectors, and methods for using same
MXPA01010832A (en) 1999-04-26 2003-06-30 Gmp Vision Solutions Inc Shunt device and method for treating glaucoma.
US20040010278A1 (en) 1999-05-18 2004-01-15 Shoichi Nakamura Surgical knife
US6461384B1 (en) 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6511178B1 (en) 1999-07-19 2003-01-28 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses and processes for their production
DK175106B1 (en) * 1999-07-23 2004-06-01 Thomas Faxe Contact lens packaging and magazine and method of applying a contact lens in one eye
US6248111B1 (en) 1999-08-06 2001-06-19 Allergan Sales, Inc. IOL insertion apparatus and methods for using same
US6325509B1 (en) 1999-08-20 2001-12-04 Art Optical Contact Lens, Inc. Low-mass ophthalmic lens
US6271281B1 (en) 1999-08-26 2001-08-07 Medennium, Inc. Homopolymers containing stable elasticity inducing crosslinkers and ocular implants made therefrom
US6645246B1 (en) 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
JP2001091910A (en) * 1999-09-22 2001-04-06 Otoya Sakai Contact lens cleaning device
US6251114B1 (en) 1999-10-29 2001-06-26 Allergan Sales, Inc. Rotatable IOL insertion apparatus and method for using same
US6596000B2 (en) 1999-11-05 2003-07-22 Alcon Universal Ltd. Instrument for positioning an intracorneal optical lens
US6250757B1 (en) 1999-12-15 2001-06-26 Johnson & Johnson Vision Products, Inc. Hybrid refractive birefringent multifocal ophthalmic lenses
US20010031959A1 (en) 1999-12-29 2001-10-18 Rozakis George W. Method and system for treating presbyopia
US6228113B1 (en) 2000-01-10 2001-05-08 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Intracorneal astigmatic onlay
US6589203B1 (en) 2000-01-26 2003-07-08 Peter Mitrev Glaucoma drainage device implant
US6391230B1 (en) 2000-02-18 2002-05-21 Bausch & Lomb Incorporated Intraocular lens manufacturing process
US6364483B1 (en) 2000-02-22 2002-04-02 Holo Or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
US7048759B2 (en) 2000-02-24 2006-05-23 Advanced Medical Optics, Inc. Intraocular lenses
US6283595B1 (en) 2000-02-24 2001-09-04 Joseph L. Breger Pinhole presbyopic contact lenses
US6458141B1 (en) 2000-03-10 2002-10-01 Gholam A. Peyman Method and apparatus for creating a flap in the cornea and incisions or shrinkage under the flap to correct vision disorders
US6350272B1 (en) 2000-03-20 2002-02-26 Glenn Kawesch Method and apparatus for cutting an oblong corneal flap
US6949093B1 (en) 2000-03-21 2005-09-27 Minu, L.L.C. Adjustable universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US6436092B1 (en) 2000-03-21 2002-08-20 Gholam A. Peyman Adjustable universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US20040039401A1 (en) 2000-03-31 2004-02-26 Chow Alan Y. Implant instrument
US6648877B1 (en) 2000-06-30 2003-11-18 Intralase Corp. Method for custom corneal corrections
US6544286B1 (en) 2000-07-18 2003-04-08 Tissue Engineering Refraction, Inc. Pre-fabricated corneal tissue lens method of corneal overlay to correct vision
US6582076B1 (en) 2000-08-30 2003-06-24 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses useful in correcting astigmatism and presbyopia
US6474814B1 (en) 2000-09-08 2002-11-05 Florida Optical Engineering, Inc Multifocal ophthalmic lens with induced aperture
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
WO2002021965A1 (en) 2000-09-12 2002-03-21 Anamed, Inc. System for packaging and handling an implant and method of use
US6589057B1 (en) 2000-09-27 2003-07-08 Becton, Dickinson & Company Incision trainer for ophthalmological surgery
US6554425B1 (en) 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
US6398789B1 (en) 2000-10-19 2002-06-04 Alcon Universal, Ltd. Intraocular lens injector cartridge
WO2002034178A1 (en) 2000-10-20 2002-05-02 Bausch & Lomb Incorporated Method and system for improving vision
US6666887B1 (en) 2000-10-20 2003-12-23 Thinoptx, Inc. Deformable intraocular multi-focus lens
US6471708B2 (en) 2000-12-21 2002-10-29 Bausch & Lomb Incorporated Intraocular lens and additive packaging system
JP2002303831A (en) 2001-01-30 2002-10-18 Menicon Co Ltd Contact lens
US6398277B1 (en) 2001-03-15 2002-06-04 Mcdonald Marguerite B. Contact lens insertion device
US6740078B2 (en) 2001-04-24 2004-05-25 Gustavo E. Tamayo Method and apparatus for treating presbyopia
US20050222679A1 (en) 2001-04-27 2005-10-06 Peyman Gholam A Bifocal implant and method for altering the refractive properties of the eye
US20050182488A1 (en) 2001-04-27 2005-08-18 Peyman Gholam A. Implant and method for altering the refractive properties of the eye
US6589280B1 (en) 2001-05-11 2003-07-08 Jeffrey E. Koziol Method for producing a multifocal corneal surface using intracorneal microscopic lenses
JP2004528148A (en) 2001-06-13 2004-09-16 ザ ライオンズ アイ インスティチュート オブ ウェスターン オーストラリア インコーポレイテッド Improved artificial corneal implant
US20030014042A1 (en) 2001-07-13 2003-01-16 Tibor Juhasz Method of creating stromal pockets for corneal implants
US20030208190A1 (en) 2001-07-20 2003-11-06 Cynthia Roberts Methods and instruments for refractive ophthalmic surgery
US20030078487A1 (en) 2001-08-09 2003-04-24 Jeffries Robert E. Ocular pressure measuring device
US6537283B2 (en) 2001-08-17 2003-03-25 Alcon, Inc. Intraocular lens shipping case and injection cartridge
US6702807B2 (en) 2001-09-10 2004-03-09 Minu, L.L.C. Ablatable intracorneal inlay with predetermined refractive properties
US6623522B2 (en) 2001-11-07 2003-09-23 Alok Nigam Myopic corneal ring with central accommodating portion
US9155652B2 (en) 2001-11-07 2015-10-13 Gholam A. Peyman Method for laser correction of refractive errors of an eye with a thin cornea
US7153316B1 (en) 2001-11-09 2006-12-26 Mcdonald Marguerite B Surgical instruments and method for corneal reformation
US6786926B2 (en) * 2001-11-09 2004-09-07 Minu, L.L.C. Method and apparatus for alignment of intracorneal inlay
EP1444482B1 (en) 2001-11-16 2010-05-26 Zygo Corporation Scanning interferometer for aspheric surfaces and wavefronts
US6641577B2 (en) 2001-11-28 2003-11-04 20/10 Perfect Vision Optische Geraete Gmbh Apparatus and method for creating a corneal flap
MXPA04006954A (en) 2002-01-17 2005-03-23 Perez Edward Methods for producing epithelial flaps on the cornea and for placement of ocular devices and lenses beneath an epithelial flap or membrane, epithelial delaminating devices, and structures of epithelium and ocular devices and lenses.
US6723104B2 (en) 2002-03-13 2004-04-20 Advanced Medical Optics, Inc. IOL insertion apparatus and method for using same
US8216213B2 (en) 2002-03-14 2012-07-10 Amo Manufacturing Usa, Llc. Application of blend zones, depth reduction, and transition zones to ablation shapes
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US6733507B2 (en) 2002-04-12 2004-05-11 Advanced Medical Optics, Inc. Intraocular lens insertion apparatus
US6733526B2 (en) 2002-04-25 2004-05-11 Advanced Medical Optics, Inc. Method of improving adherence and centering of intra-corneal implants on corneal bed
MXPA04012162A (en) 2002-06-03 2005-04-19 Scient Optics Inc Method and system for improving vision.
US6855163B2 (en) 2002-07-19 2005-02-15 Minu, Llc Gradual correction of corneal refractive error using multiple inlays
US20040019379A1 (en) 2002-07-25 2004-01-29 Advanced Medical Optics, Inc. Intracorneal lens with flow enhancement area for increased nutrient transport
US20040034413A1 (en) 2002-08-13 2004-02-19 Christensen James M. Hydrogel corneal inlay
JP2004148074A (en) 2002-09-06 2004-05-27 Nidek Co Ltd Cornea surgery apparatus
MXPA05002669A (en) 2002-09-13 2005-08-19 Ocular Sciences Inc Devices and methods for improving vision.
US7018409B2 (en) 2002-09-13 2006-03-28 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with aspheric optic design
RU2294722C2 (en) * 2002-09-18 2007-03-10 Аллерган, Инк. Method and device for introducing eye implants
US6709103B1 (en) 2002-10-31 2004-03-23 Johnson & Johnson Vision Care, Inc. Methods for designing multifocal ophthalmic lenses
US7434936B2 (en) 2002-12-06 2008-10-14 Amo Manufacturing Usa, Llc Residual accommodation threshold for correction of presbyopia and other presbyopia correction using patient data
US6955432B2 (en) 2003-04-03 2005-10-18 Neil John Graham Contact lens placement instrument
WO2005020792A2 (en) 2003-08-21 2005-03-10 Revision Optics, Inc. Method for keratophakia surgery
DE10338893B4 (en) 2003-08-23 2007-07-05 Essilor International (Compagnie Generale D'optique) Process for the production of spectacle lenses and other optical molded articles made of plastic
WO2005034730A2 (en) 2003-10-06 2005-04-21 Crs & Associates Method and apparatus for enhanced corneal accommodation
AU2005222863C1 (en) 2004-03-15 2010-07-22 Visx, Incorporated Stabilizing delivered laser energy
US20080262610A1 (en) 2007-04-20 2008-10-23 Alan Lang Biomechanical design of intracorneal inlays
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US20050246016A1 (en) 2004-04-30 2005-11-03 Intralens Vision, Inc. Implantable lenses with modified edge regions
US20110218623A1 (en) 2004-04-30 2011-09-08 Jon Dishler Small Diameter Inlays
US7776086B2 (en) 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US20050261752A1 (en) 2004-05-18 2005-11-24 Visx, Incorporated Binocular optical treatment for presbyopia
MXPA06013343A (en) 2004-05-20 2007-05-08 Coopervision Inc Corneal onlays and wavefront aberration correction to enhance vision.
US20060004381A1 (en) 2004-07-01 2006-01-05 Vladimir Feingold Intracorneal lens insertion device
US20060020267A1 (en) 2004-07-15 2006-01-26 Marmo J C Intrastromal devices and methods for improving vision
WO2006015490A1 (en) 2004-08-13 2006-02-16 Ottawa Health Research Institute Ophthalmic devices and related methods and compositions
US20060064112A1 (en) 2004-09-08 2006-03-23 Edward Perez Ocular device applicator
US8235728B2 (en) 2004-11-13 2012-08-07 Stuart Stoll Apparatus for practicing ophthalmologic surgical techniques
US20060116762A1 (en) 2004-11-30 2006-06-01 Xin Hong Aspheric lenticule for keratophakia
US20060142780A1 (en) 2004-12-29 2006-06-29 Joel Pynson Preloaded IOL injector and method
US20060142781A1 (en) 2004-12-29 2006-06-29 Joel Pynson Preloaded IOL injector and method
US9999497B2 (en) * 2005-01-31 2018-06-19 Yichieh Shiuey Corneal implants and methods and systems for placement
US8029515B2 (en) 2005-01-31 2011-10-04 Yichieh Shiuey Corneal implants and methods and systems for placement
EP1871281B1 (en) 2005-04-06 2014-01-08 Boston Scientific Limited Assembly for sub-urethral support
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
US20060235430A1 (en) 2005-04-15 2006-10-19 Intralens Vision, Inc. Corneal implant injector assembly and methods of use
US8088161B2 (en) 2005-07-28 2012-01-03 Visioncare Ophthalmic Technologies Inc. Compressed haptics
US20070038276A1 (en) 2005-08-15 2007-02-15 Yaldo Mazin K Instrument for conductive keratoplasty
DE102005053297A1 (en) 2005-11-08 2007-05-10 Bausch & Lomb Inc. System and method for correcting ophthalmic refractive errors
US20070129797A1 (en) 2005-12-01 2007-06-07 Revision Optics, Inc. Intracorneal inlays
CN101495063B (en) 2006-01-26 2015-04-22 韦克福里斯特大学健康科学院 Medical tools for facilitating deep lamellar endothelial keratoplasty and related methods
WO2007092550A2 (en) 2006-02-08 2007-08-16 Coopervision Inc. Corneal onlays and related methods
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
US8454160B2 (en) 2006-02-24 2013-06-04 Amo Development, Llc Zone extension systems and methods
US20070255401A1 (en) 2006-05-01 2007-11-01 Revision Optics, Inc. Design of Inlays With Intrinsic Diopter Power
ITPC20060025A1 (en) 2006-05-15 2007-11-16 Claudio Malacuso SURGICAL INSTRUMENT TO MANIPULATE AND INSERT A CELL LAMINA IN THE EYE, IN PARTICULAR A THIN SUPPORT OF STROMA WITH ENDOTHELIAL CELLS, FOR CORNEAL TRANSPLANT
ATE474526T1 (en) 2006-05-18 2010-08-15 Staar Japan Inc INTRAOCULAR LENS INSERTION DEVICE
US20070280994A1 (en) 2006-06-01 2007-12-06 Cunanan Crystal M Ocular Tissue Separation Areas With Barrier Regions For Inlays Or Other Refractive Procedures
US9955867B2 (en) 2006-07-26 2018-05-01 Shui T. Lai Intrastromal surgery correcting low order and high order aberrations of the eye
US7637085B2 (en) * 2006-10-27 2009-12-29 Newman Stephen D System and method for transferring hydrated lenses on an automated line
WO2008096821A1 (en) 2007-02-08 2008-08-14 Kaneka Corporation Injector for eye
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US20080269771A1 (en) 2007-04-26 2008-10-30 Fulcher Samuel F A Method and apparatus for ophthalmic surgery
DE102007019813A1 (en) 2007-04-26 2008-10-30 Carl Zeiss Meditec Ag Apparatus and method for creating cut surfaces in the cornea of an eye for correction of ametropia
EP2144582B1 (en) 2007-05-11 2017-08-23 AMO Development, LLC Combined wavefront and topography systems and methods
WO2009003107A1 (en) 2007-06-26 2008-12-31 Bausch & Lomb Incorporated Method for modifying the refractive index of ocular tissues
WO2009058755A1 (en) 2007-10-29 2009-05-07 Junzhong Liang Methods and devices for refractive treatments of presbyopia
DE102007053283B4 (en) 2007-11-08 2019-08-29 Carl Zeiss Meditec Ag Treatment device for operative vision correction of an eye and method for generating control data therefor
DE102007053281A1 (en) 2007-11-08 2009-05-14 Carl Zeiss Meditec Ag A treatment device for operative vision correction of an eye, a method for generating control data therefor and methods for surgical correction of defective vision of an eye
EP2265216B1 (en) 2008-04-02 2016-10-12 Junzhong Liang Methods and devices for refractive corrections of presbyopia
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
US9125735B2 (en) 2008-04-04 2015-09-08 Forsight Labs, Llc Method of correcting vision using corneal onlays
AU2009231636B2 (en) 2008-04-04 2014-07-24 Revision Optics, Inc. Corneal inlay design and methods of correcting vision
EP2337523B1 (en) 2008-06-27 2017-08-16 AMO Development, LLC System for modifying a refractive profile using a corneal tissue inlay
US9168175B2 (en) 2008-09-04 2015-10-27 Vladimir Feingold Method for laser cutting a corneal pocket
FR2937574A1 (en) 2008-10-29 2010-04-30 Guy Monnoyeur DEVICE AND METHOD FOR MACHINING AND / OR POLISHING LENS
WO2010084595A1 (en) 2009-01-22 2010-07-29 株式会社Frontier Vision Simulated eye system for cataract surgery training
JP5698900B2 (en) * 2009-03-19 2015-04-08 テルモ株式会社 Cell culture transfer device
WO2010119692A1 (en) * 2009-04-16 2010-10-21 Keio University Transplantation device
US20120238806A1 (en) 2009-08-24 2012-09-20 Quali-Med Gmbh Implantation system with handle and catheter and method of use thereof
WO2011069059A1 (en) 2009-12-04 2011-06-09 Acufocus, Inc. Corneal implant for refractive correction
EP2332494A1 (en) * 2009-12-09 2011-06-15 Neoptics AG Applicator for inserting lenses
US20110172675A1 (en) * 2010-01-12 2011-07-14 Acufocus, Inc. Ocular inlay delivery system and method of use
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
JP2012147900A (en) * 2011-01-18 2012-08-09 Terumo Corp Device for fixing graft to target site
CN103415268B (en) 2011-02-15 2016-04-06 视乐有限公司 Assist the device of corneal transplant prosthese in human eye
US20120231416A1 (en) 2011-03-09 2012-09-13 Warsaw Orthopedic, Inc. Periodontal scaler and planer combined instrument
US9186245B2 (en) 2011-09-07 2015-11-17 Vladimir Feingold Lens injector apparatus and method
RU2619654C2 (en) 2011-10-21 2017-05-17 Ревижн Оптикс, Инк. Device for cornea implants storage and delivery
US8920511B2 (en) 2011-11-17 2014-12-30 Allosource Multi-piece machine graft systems and methods
DE102012018421A1 (en) 2012-09-14 2014-03-20 Carl Zeiss Meditec Ag Planning device for producing control data for treating device for myopia correction with and without astigmatism of visually impaired patient, has calculating unit determining cornea-cut surface so that surface is formed from partial areas
WO2014081422A1 (en) 2012-11-21 2014-05-30 Revision Optics, Inc. Corneal implant edges and methods of use
JP2017514572A (en) 2014-04-16 2017-06-08 リヴィジョン・オプティックス・インコーポレーテッド Corneal inlay delivery device and method
WO2015199751A1 (en) 2014-06-26 2015-12-30 Revision Optics, Inc. Integrated part fixturing for lathing processes
WO2016144404A1 (en) 2015-03-12 2016-09-15 Revision Optics, Inc. Methods of correcting vision

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008423A1 (en) * 1989-01-23 1992-05-29 Cumming J Stuart Intraocular lens insertion device
US20050113844A1 (en) 2000-09-12 2005-05-26 Alok Nigam System for packaging and handling an implant and method of use
US20060173539A1 (en) * 2005-01-31 2006-08-03 Yichieh Shiuey Corneal implants and methods and systems for placement
US20080243138A1 (en) * 2007-03-28 2008-10-02 Jon Dishler Insertion system for corneal implants
US20100241060A1 (en) * 2009-03-18 2010-09-23 Roizman Keith Surgical devices and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2768430A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028275A1 (en) * 2014-08-19 2016-02-25 Revision Optics, Inc. Corneal implant storage, packaging, and delivery devices
JP2017525463A (en) * 2014-08-19 2017-09-07 リヴィジョン・オプティックス・インコーポレーテッド Corneal graft storage, packaging, and delivery device
CN107249514A (en) * 2014-08-19 2017-10-13 修正光学公司 Cornea implant storage, packaging and conveying device
EP3182926A4 (en) * 2014-08-19 2018-04-04 Revision Optics, Inc. Corneal implant storage, packaging, and delivery devices
US11957569B2 (en) 2020-02-28 2024-04-16 Tissuecor, Llc Graft tissue injector
US20230060227A1 (en) * 2021-09-01 2023-03-02 Tissuecor, Llc Device and system for injecting biological tissue

Also Published As

Publication number Publication date
KR101762932B1 (en) 2017-08-04
US20140257477A1 (en) 2014-09-11
AU2012325705B2 (en) 2017-07-20
AU2012325705A1 (en) 2014-05-01
KR20140118988A (en) 2014-10-08
EP2768430A1 (en) 2014-08-27
JP2015501179A (en) 2015-01-15
US20170095325A1 (en) 2017-04-06
RU2619654C2 (en) 2017-05-17
US9345569B2 (en) 2016-05-24
RU2013102261A (en) 2015-11-27
AU2017248529A1 (en) 2017-11-09
JP2016172028A (en) 2016-09-29
EP2768430A4 (en) 2015-05-20
CA2853116A1 (en) 2013-04-25
JP6165295B2 (en) 2017-07-19
JP5944005B2 (en) 2016-07-05
US20160051359A1 (en) 2016-02-25
US9987124B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
US9987124B2 (en) Corneal implant storage and delivery devices
US9889000B2 (en) Corneal implant applicators
US9877823B2 (en) Corneal implant retaining devices and methods of use
RU2380068C2 (en) Device of intraocular lens charge into introduction cartridge
EP3037063B1 (en) Holding device for an intraocular lens
EP1901796B1 (en) Implantable medical device delivery apparatus
KR20130140795A (en) Cleaning tool
EP2328514A1 (en) Cassette for intraocular lens and preloaded lens injection system
US20150297340A1 (en) Corneal implant delivery devices and methods of use
EP3244959B1 (en) Medical instrument receptacle
US9861471B2 (en) Intraocular lens surgical system and method
EP3182926A1 (en) Corneal implant storage, packaging, and delivery devices
WO2017083805A1 (en) Corneal device inserters and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352628

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014537365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2853116

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012325705

Country of ref document: AU

Date of ref document: 20121022

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012841027

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013102261

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20147013664

Country of ref document: KR

Kind code of ref document: A