WO2013084835A1 - Organic semiconductor material and organic electronic devices - Google Patents

Organic semiconductor material and organic electronic devices Download PDF

Info

Publication number
WO2013084835A1
WO2013084835A1 PCT/JP2012/081245 JP2012081245W WO2013084835A1 WO 2013084835 A1 WO2013084835 A1 WO 2013084835A1 JP 2012081245 W JP2012081245 W JP 2012081245W WO 2013084835 A1 WO2013084835 A1 WO 2013084835A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic semiconductor
group
semiconductor material
general formula
Prior art date
Application number
PCT/JP2012/081245
Other languages
French (fr)
Japanese (ja)
Inventor
真名 軸丸
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2013548219A priority Critical patent/JP5978228B2/en
Publication of WO2013084835A1 publication Critical patent/WO2013084835A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic semiconductor material, an organic semiconductor film, an organic electronic device, and an organic thin film transistor.
  • a high temperature process and a high vacuum process are indispensable for forming a thin film. Since a high temperature process is required, silicon cannot be formed into a thin film on a plastic substrate or the like, and it has been difficult to impart flexibility and weight reduction to a product incorporating a semiconductor device. In addition, since a high vacuum process is required, it is difficult to increase the area and cost of a product incorporating a semiconductor device.
  • organic electronic devices for example, organic electroluminescence (organic EL) elements, organic thin film transistor elements, or organic thin film photoelectric conversion elements
  • organic semiconductor materials can significantly reduce the manufacturing process temperature as compared with inorganic semiconductor materials, they can be formed on a plastic substrate or the like.
  • organic semiconductor material that is highly soluble in a solvent and has good film formability it becomes possible to form a thin film using an application method that does not require a vacuum process, for example, an inkjet device, As a result, it is expected to realize an increase in area and cost, which has been difficult with a semiconductor element using silicon, which is an inorganic semiconductor material.
  • organic semiconductor materials are advantageous in terms of large area, flexibility, weight reduction, cost reduction, and the like compared to inorganic semiconductor materials.
  • Applications such as information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, displays such as liquid crystal displays, electronic paper, and organic EL panels are expected.
  • Patent Document 1 A hydrocarbon-based acene-type polycyclic aromatic molecule such as pentacene also has a low oxidation stability.
  • Non-patent Document 2 pentathienoacene fused with a thiophene ring has improved oxidation resistance as compared with pentacene, but has low carrier mobility and requires many steps for its synthesis. It was not a preferable material.
  • organic thin-film solar cells constructed by laminating organic semiconductor materials into thin films have been studied with single-layer films using merocyanine dyes as organic semiconductor materials, but transport holes. Since it was found that a multi-layer film having a p-type organic semiconductor layer and an n-type organic semiconductor layer for transporting electrons improves the conversion efficiency from light input to electrical output (photoelectric conversion efficiency), Multilayer films are becoming mainstream.
  • the organic semiconductor materials used when the multilayer film began to be studied were copper phthalocyanine (CuPc) as the p-type organic semiconductor material and peryleneimides (PTCBI) as the n-type organic semiconductor material.
  • a conductive polymer is used as a p-type organic semiconductor material
  • a fullerene (C60) derivative is used as an n-type organic semiconductor material, and they are mixed and heat-treated.
  • the material system used here was mainly poly-3-hexylthiophene (P3HT) as the p-type organic semiconductor material and C60 derivative (PCBM) as the n-type organic semiconductor material.
  • the material of each layer has not progressed much from the early days, and phthalocyanine derivatives, perylene imide derivatives, and C60 derivatives are still used, which is the most important characteristic of the organic thin film solar cell.
  • the photoelectric conversion efficiency was not sufficient.
  • an organic semiconductor material having high charge mobility is required.
  • solvent solubility, oxidation stability, and good film forming properties are required in order to enable the production of an organic semiconductor element by a coating method.
  • Patent Document 2 discloses an organic thin film solar cell using a compound having a fluoranthene skeleton, but does not give satisfactory photoelectric conversion efficiency.
  • An object of the present invention is to provide an organic semiconductor material having high charge mobility and oxidation stability and an organic electronic device using the same.
  • the present inventors have found a new organic semiconductor material having high charge mobility, oxidation stability, and solvent solubility, and by using this for an organic electronic device, a high-performance organic electronic device can be obtained. As a result, the present invention was reached.
  • the present invention relates to an organic semiconductor material containing a compound represented by the following general formula (1).
  • each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms, and n represents an integer of 1 to 4.
  • Examples of the compound represented by the general formula (1) include a compound represented by the general formula (2).
  • R is the same as the general formula (1).
  • another embodiment of the present invention is an organic semiconductor film characterized by containing the organic semiconductor material described above. Furthermore, another embodiment of the present invention is an organic semiconductor film formed by applying and drying an organic solvent solution of the above organic semiconductor material.
  • an organic electronic device characterized by using the organic semiconductor material described above.
  • the organic electronic device is preferably a light emitting element, an organic thin film transistor element, or a photovoltaic element, and more preferably an organic thin film transistor element.
  • the schematic cross section which showed an example of the organic thin-film transistor element is shown.
  • the schematic cross section which showed an example of the organic thin-film transistor element is shown.
  • the schematic cross section which showed an example of the organic thin-film transistor element is shown.
  • the schematic cross section which showed an example of the organic thin-film transistor element is shown.
  • the schematic cross section which showed one structural example of the photovoltaic device is shown.
  • the schematic cross section which showed one structural example of the photovoltaic device is shown.
  • the organic semiconductor material of the present invention essentially requires the compound represented by the general formula (1).
  • the organic semiconductor material of the present invention may consist only of the compound represented by the general formula (1) or may contain other compounds.
  • As the other compound an organic compound having a charge transfer property is suitable. Since the compound represented by the general formula (1) itself has characteristics as an organic semiconductor material, this compound is also an organic semiconductor material.
  • each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms, preferably hydrogen or an aliphatic hydrocarbon group having 1 to 16 carbon atoms.
  • an alkyl group is preferable, and an unsubstituted alkyl group is more preferable.
  • These aliphatic hydrocarbon groups may be linear, branched, or alicyclic, and may be saturated or unsaturated.
  • the hydrogen atom of these aliphatic hydrocarbon groups may be substituted with a halogen atom such as fluorine.
  • these aliphatic hydrocarbon groups may have a substituent, and when it has one or more substituents, the number of carbons of these substituents is included in the calculation of the number of carbons.
  • a plurality of R may be the same or different.
  • preferred aliphatic hydrocarbon groups include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-dodecyl group, n- Linear saturated hydrocarbon group such as tetradecyl group, n-octadecyl group, n-docosyl group, n-tetracosyl group, i-propyl group, isobutyl group, t-butyl group, neopentyl group, 2-ethylhexyl group, 2-hexyl Branched saturated hydrocarbon groups such as octyl group, 4-decyldodecyl group, ethenyl group, 1-propenyl group, 2-propenyl group, i-propenyl group, 1-butenyl group, 2-butenyl group, 3-but
  • a C1-16 alkyl group More preferably, a C1-16 alkyl group, a C2-8 alkenyl group, a C2-8 alkynyl group, a C5-8 cycloalkyl group, a C5-8 cycloalkyl group substituted by a C1-16 alkyl group, Or a C5-8 unsaturated alicyclic hydrocarbon group.
  • Examples of the aliphatic hydrocarbon group in which the aliphatic hydrocarbon group is substituted with a halogen atom include perfluorinated alkyl groups such as trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorooctyl group, and difluoroethyl group. Examples thereof include partially fluorinated alkyl groups such as a group, a difluorobutyl group, and a difluorooctyl group.
  • R is an aliphatic hydrocarbon group and the aliphatic hydrocarbon group has a substituent
  • the substituent is not limited as long as the performance of the organic semiconductor material is not impaired, but the total number of substituents is 1 to 4 Preferably, it is 1 to 2.
  • These preferred substituents include an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an alkoxycarbonyloxy group having 2 to 10 carbon atoms, and 2 carbon atoms.
  • More preferable examples include an alkoxy group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and an alkoxycarbonyloxy group having 2 to 8 carbon atoms.
  • R has the same meaning as in general formula (1). Although there are 8 R, 4 or more of them are preferably H, more preferably 6 to 8 are H.
  • the compound represented by the general formula (1) can be synthesized by the following reaction formula (A) with reference to the synthesis example shown in New Journal of Chemistry, 34 (7), p1243-1246 (2010). However, it is not limited to these methods.
  • the above formula (A) is a synthesis example of the compound (100) in the case where all the Rs are H in the compound represented by the general formula (1).
  • the intermediate A -1 is obtained through a two-stage cyclization reaction.
  • reaction formula (C) compound C-3 having a desired alkyl group can be obtained by reacting an alkyl-substituted indole with 2-chlorobenzaldehyde.
  • reaction formula (D) compound C-3 can also be obtained by reacting indole and 2-chlorobenzaldehyde having an alkyl group.
  • Evaluation of charge mobility which is a basic characteristic of the organic semiconductor material of the present invention containing a compound obtained by such a method, can be performed by various methods such as TOF (Time of Flight) method or FET method.
  • the TOF method is a method for obtaining the charge mobility by irradiating the surface of the organic semiconductor material thin film with an electric field and measuring the movement time of the generated charge in the film from the transient photocurrent waveform.
  • the FET method is a method of creating an organic field effect transistor element using an organic semiconductor material and evaluating its characteristics. By these methods, charge mobility can be evaluated as a basic characteristic of the organic semiconductor material of the present invention, and any method exhibits high characteristics.
  • the organic semiconductor material of the present invention contains the compound of the general formula (1), but preferably contains 50 wt% or more, more preferably 90 wt% or more of this compound. It is also preferable that the compound of the general formula (1) itself is an organic semiconductor material.
  • the component contained in the organic semiconductor material together with the compound of the general formula (1) is not particularly limited as long as it does not impair the performance as the organic semiconductor material, but is preferably a charge transporting compound. .
  • an organic electronic device formed from the organic semiconductor material of the present invention will be described with reference to FIGS. 1 to 4, taking an organic thin film transistor element (OTFT element) as an example.
  • the organic electronic device is preferably an organic semiconductor device using an organic semiconductor material.
  • FIG. 2, FIG. 3 and FIG. 4 are schematic cross-sectional views illustrating embodiments of the OTFT device of the present invention. Explanation of symbols; 1 substrate, 2 gate electrode, 3 insulating film layer, 4 organic semiconductor layer, 5 source electrode, 6 drain electrode, 7 substrate, 8 positive electrode, 9 organic semiconductor layer, 9-a electron donating organic semiconductor layer, 9-b electron Receptive organic semiconductor layer, 10 negative electrode.
  • the OTFT device shown in FIG. 1 includes a gate electrode 2 on the surface of a substrate 1, an insulating film layer 3 is formed on the gate electrode 2, and a source electrode 5 and a drain electrode 6 are formed on the insulating film layer 3. And an organic semiconductor layer 4 is formed.
  • the OTFT device shown in FIG. 2 includes a gate electrode 2 on the surface of a substrate 1, an insulating film layer 3 is formed on the gate electrode 2, and an organic semiconductor layer 4 is formed thereon. On 4, a source electrode 5 and a drain electrode 6 are provided.
  • a source electrode 5 and a drain electrode 6 are provided on the surface of a substrate 1, and a gate electrode 2 is formed on the outermost surface via an organic semiconductor layer 4 and an insulating film layer 3.
  • an organic semiconductor layer 4 a source electrode 5 and a drain electrode 6 are provided on the surface of a substrate 1, and a gate electrode 2 is formed on the outermost surface via an insulating film layer 3.
  • Examples of the substrate 1 that can be used include ceramic substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, and silicon carbide, semiconductor substrates such as silicon, germanium, gallium silicon, gallium phosphorus, and gallium nitrogen, polyethylene terephthalate, Examples thereof include polyesters such as polynaphthalene terephthalate, resin substrates such as polyethylene, polypropylene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, cyclic polyolefin, polyimide, polyamide, and polystyrene.
  • ceramic substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, and silicon carbide
  • semiconductor substrates such as silicon, germanium, gallium silicon, gallium phosphorus, and gallium nitrogen
  • polyethylene terephthalate examples thereof include polyesters such as polynaphthalene terephthalate, resin substrates such as polyethylene, polypropylene, polyvinyl alcohol, ethylene vinyl alcohol copolymer,
  • the thickness of the substrate can be from about 10 ⁇ m to about 2 mm, but in particular about 50 to about 100 ⁇ m for flexible plastic substrates, for example about 0.1 to about 0.1 to about rigid substrates such as glass plates or silicon wafers. It can be about 2 mm.
  • the gate electrode 2 may be a metal thin film, a conductive polymer film, a conductive film made from a conductive ink or paste, or the substrate itself as a gate electrode, such as heavily doped silicon. can do.
  • gate electrode materials include aluminum, copper, stainless steel, gold, chromium, n-doped or p-doped silicon, indium tin oxide, conductive polymers such as poly (3,4-polystyrene) doped with polystyrene sulfonic acid. Examples thereof include a conductive ink / paste containing ethylenedioxythiophene), carbon black / graphite, or a colloidal silver dispersed in a polymer binder.
  • the gate electrode 2 can be formed by using vacuum deposition, sputtering of a metal or conductive metal oxide, spin coating of a conductive polymer solution or conductive ink, inkjet, spraying, coating, casting, or the like.
  • the thickness of the gate electrode 2 is preferably in the range of about 10 nm to 10 ⁇ m, for example.
  • the insulating film layer 3 can generally be an inorganic material film or an organic polymer film.
  • inorganic materials suitable for the insulating film layer 3 include silicon oxide, silicon nitride, aluminum oxide, barium titanate, and barium zirconium titanate.
  • organic compounds suitable for the insulating film layer 3 include polyesters, polycarbonates, poly (vinylphenol), polyimides, polystyrene, poly (methacrylates), poly (acrylates), and epoxy resins.
  • an inorganic material may be dispersed in an organic polymer and used as an insulating layer film. The thickness of the insulating film layer varies depending on the dielectric constant of the insulating material used, but is, for example, about 10 nm to 10 ⁇ m.
  • Examples of the means for forming the insulating film layer include dry film formation methods such as vacuum deposition, CVD, sputtering, and laser deposition, spin coating, blade coating, screen printing, ink jet printing, and stamping. Examples include a wet film forming method such as a method, which can be used depending on the material.
  • the source electrode 5 and the drain electrode 6 can be made of a material that gives low resistance ohmic contact to the organic semiconductor layer 4 described later.
  • a preferable material for the source electrode 5 and the drain electrode 6 those exemplified as a preferable material for the gate electrode 2 can be used, and examples thereof include gold, nickel, aluminum, platinum, a conductive polymer, and a conductive ink.
  • the thicknesses of the source electrode 5 and the drain electrode 6 are typically, for example, from about 10 nm to about 10 ⁇ m, and more preferably from 10 nm to 1 ⁇ m.
  • Examples of means for forming the source electrode 5 and the drain electrode 6 include a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, and a sol-gel method. It is preferable to perform patterning as needed during film formation or after film formation.
  • a patterning method for example, a photolithography method in which patterning and etching of a photoresist are combined can be used. Patterning can also be performed by using a technique combining a plurality of these techniques such as inkjet printing, screen printing, offset printing, soft lithography such as microcontact printing.
  • a dry film forming method such as a vacuum deposition method, a CVD method, a sputtering method, or a laser deposition method, or after applying a solution or dispersion on a substrate, a solvent or dispersion medium
  • a wet film formation method in which a thin film is formed by removing the film, but it is preferable to use a wet film formation method.
  • the wet film formation method include spin coating, blade coating, screen printing, ink jet printing, and stamping.
  • the organic semiconductor material of the present invention is dissolved in an appropriate solvent to prepare a solution having a concentration of 0.01 wt% to 10 wt%, and then the insulating film layer 3 formed on the substrate 1.
  • the organic semiconductor material solution is dropped onto the solution, and then rotated at 500 to 6000 rpm for 5 to 120 seconds.
  • the solvent is selected depending on the solubility of the organic semiconductor material and the film quality obtained by film formation.
  • water for example, water, alcohols typified by methanol, aromatic hydrocarbons typified by toluene, hexane and cyclohexane Aliphatic hydrocarbons such as nitromethane and nitrobenzene, cyclic ether compounds such as tetrahydrofuran and dioxane, nitrile compounds such as acetonitrile and benzonitrile, ketones such as acetone and methyl ethyl ketone, ethyl acetate, etc. And a solvent selected from aprotic polar solvents such as dimethyl sulfoxide, dimethylacetamide, sulfolane, N-methylpyrrolidone and dimethylimidazolidinone. These solvents may be used in combination of two or more.
  • aprotic polar solvents such as dimethyl sulfoxide, dimethylacetamide, sulfolane, N-methylpyrrolidone and dimethylimidazolidinone
  • the organic thin film transistor element using the organic semiconductor material of the present invention can be prepared by the above-described method.
  • the organic semiconductor layer forms a channel region, and an on / off operation is performed by controlling a current flowing between the source electrode and the drain electrode with a voltage applied to the gate electrode.
  • a photovoltaic element As another preferred embodiment of the organic electronic device obtained from the organic semiconductor material of the present invention, a photovoltaic element can be mentioned. Specifically, it is a photovoltaic device having a positive electrode, an organic semiconductor layer, and a negative electrode on a substrate, and the organic semiconductor device includes the organic semiconductor material of the present invention described above.
  • FIG. 5 is a cross-sectional view showing an example of the structure of a general photovoltaic device used in the present invention, wherein 7 represents a substrate, 8 represents a positive electrode, 9 represents an organic semiconductor layer, and 10 represents a negative electrode.
  • FIG. 6 is a cross-sectional view showing an example of a structure in which organic semiconductor layers are stacked, where 9-a is a p-type organic semiconductor layer and 9-b is an n-type organic semiconductor layer.
  • the saddle substrate is not particularly limited, and may be a conventionally known configuration, for example. It is preferable to use a glass substrate or a transparent resin film having mechanical and thermal strength and transparency.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • the electrode material it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode.
  • An electrode using a conductive material having a large work function is a positive electrode.
  • Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO) or the like is preferably used.
  • the conductive material used for the positive electrode is preferably an ohmic junction with the organic semiconductor layer.
  • a hole transport layer described later it is preferable that the conductive material used for the positive electrode is an ohmic contact with the hole transport layer.
  • An electrode using a conductive material having a small work function serves as a negative electrode.
  • the conductive material having a small work function alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. Tin, silver, and aluminum are also preferably used.
  • an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used.
  • the conductive material used for the negative electrode is preferably one that is in ohmic contact with the organic semiconductor layer.
  • an electron transport layer described later it is preferable that the conductive material used for the negative electrode is in ohmic contact with the electron transport layer.
  • the organic semiconductor layer is formed using an organic semiconductor material containing a compound represented by the formula (1).
  • the compound represented by the formula (1) functions as a p-type organic semiconductor material (hereinafter referred to as a p-type organic material) or an n-type organic semiconductor material (hereinafter referred to as an n-type organic material).
  • the compound represented by formula (1) is included in at least one of the p-type organic material and the n-type organic material.
  • Two or more compounds represented by formula (1) may be used, one or more of which may be a p-type organic material component and the other one or more may be an n-type organic material component.
  • a compound represented by formula (1) may be used as the organic material component), and a compound other than the compound represented by formula (1) may be used as the n-type organic material component (or p-type organic material component). .
  • the p-type organic material and the n-type organic material are mixed, and it is preferable that the p-type organic material and the n-type organic material are compatible at the molecular level or phase-separated.
  • the domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less.
  • a layer having a p-type organic material exhibiting p-type semiconductor characteristics is on the positive electrode side, and a layer having an n-type organic material exhibiting n-type semiconductor characteristics is provided.
  • the negative electrode side is preferred.
  • the organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm.
  • the layer having the p-type organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm, out of the above thicknesses.
  • p-type organic material a compound exhibiting p-type semiconductor characteristics among the compounds represented by the formula (1) may be used alone, or other p-type organic materials may be included.
  • other p-type organic materials include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, Conjugated polymers such as polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), zinc phthalocyanine Phthalocyanine derivatives such as (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-
  • n-type organic material a compound exhibiting n-type semiconductor characteristics among the compounds represented by the formula (1) may be used alone, or another n-type organic material may be used.
  • Other n-type organic materials include, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4, 9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5 Oxazole derivatives such as (4-t-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND), 3- (4
  • a hole transport layer may be provided between the positive electrode and the organic semiconductor layer.
  • conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used.
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polystyrene sulfonate
  • the thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  • an electron transport layer may be provided between the organic semiconductor layer and the negative electrode.
  • the material for forming the electron transport layer is not particularly limited, but the above-described n-type organic materials (NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, CNTs)
  • An organic material exhibiting n-type semiconductor characteristics such as CN-PPV
  • the thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  • two or more organic semiconductor layers may be stacked (tandemized) via one or more intermediate electrodes to form a series junction.
  • a laminated structure of substrate / positive electrode / first organic semiconductor layer / intermediate electrode / second organic semiconductor layer / negative electrode can be given.
  • the open circuit voltage can be improved.
  • the hole transport layer described above may be provided between the positive electrode and the first organic semiconductor layer and between the intermediate electrode and the second organic semiconductor layer, and between the first organic semiconductor layer and the intermediate electrode.
  • the hole transport layer described above may be provided between the second organic semiconductor layer and the negative electrode.
  • At least one of the organic semiconductor layers includes the organic semiconductor material of the present invention as a p-type organic material, and the other layers include the p-type organic material so as not to reduce a short-circuit current.
  • Conjugated polymers such as polymers, polyacetylene polymers, polythienylene vinylene polymers, phthalocyanine derivatives such as H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl-4 Triarylamine derivatives such as 4,4′-diphenyl-1,1′-diamine (NPD), 4,4′-di (carbazo Carbazole derivatives such as Le-9-yl) biphenyl (CBP), oligothiophene derivatives (terthiophene, quarter thiophene, sexithiophene, etc. oct thiophene
  • the material for the intermediate electrode used here is preferably a material having high conductivity, for example, the above-mentioned metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, and transparent Metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals and laminates of the above metals, polyethylene Examples include dioxythiophene (PEDOT) and those obtained by adding polystyrene sulfonate (PSS) to PEDOT.
  • the intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
  • organic semiconductor layer formation spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, dip pulling method, ink jet method, spray method, vacuum deposition method, etc. This method may be used, and the formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control.
  • the organic semiconductor material of the present invention has high charge mobility, solvent solubility, oxidation stability, and good film forming properties, and an organic electronic device using the material exhibits high characteristics.
  • organic electronic devices that can make use of the characteristics of the organic semiconductor material of the present invention, for example, organic field effect transistors and organic thin-film solar cells can be shown. Furthermore, by incorporating these organic electronic devices, information can be obtained. It can be applied to displays such as tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, and organic EL panels.
  • Synthesis example 1 Compound (100) was synthesized according to the above formula (A).
  • intermediate (A-2) 15 g (31 mmol), dehydrated DMF 310 mL, 38% tetrabutylammonium hydroxide methanol solution (0.15 g, 0.23 mmol), Copper iodide was added and stirred at 120 ° C. After cooling to room temperature, the solvent was distilled off. The obtained residue was purified by silica gel column chromatography to obtain dibenzo [2, 3: 5,6] pyrrolidino [1,7-bc] indolo [1,2,3-lm] carbazole 1.1 as a pale green solid.
  • Example 1 A compound (100) synthesized in Synthesis Example 1 is deposited on a 150 nm thick ITO substrate by vacuum deposition to form an organic semiconductor film having a thickness of about 2.5 mm, and then silver is deposited by vacuum deposition. A 170 nm deposited film was formed. The charge mobility of the obtained device was evaluated by the TOF method. As a result, the hole mobility was 2.6 ⁇ 10 ⁇ 2 cm 2 / Vs at an electric field strength of 53.6 MV / cm.
  • Example 2 The characteristics of the organic semiconductor material of the present invention were evaluated by preparing an organic field effect transistor having the configuration shown in FIG. First, a silicon wafer (n-doped) having a thermally grown silicon oxide layer having a thickness of about 300 nm was washed with a sulfuric acid-hydrogen peroxide aqueous solution, boiled with isopropyl alcohol, and then dried. The obtained silicon wafer was spin-coated with a photoresist, and then exposed with an exposure machine through a photomask. Subsequently, after developing with a developing solution, it wash
  • chromium having a thickness of 3 nm and further gold having a thickness of 50 nm were deposited by vacuum deposition.
  • the silicon wafer was immersed in a remover solution to produce a source electrode and a drain electrode on the silicon wafer.
  • the silicon wafer on which the source electrode and the drain electrode were formed was washed with acetone, then boiled with isopropyl alcohol and dried to produce an organic field effect transistor substrate.
  • the compound (100) obtained in Example 1 was deposited by vacuum deposition to form an organic semiconductor film having a thickness of 50 nm on the substrate. In this way, an organic field effect transistor having the structure shown in FIG. 1 was obtained.
  • the characteristic of the obtained organic field effect transistor was evaluated, it was mobility; 2.0 * 10 ⁇ -1 > cm ⁇ 2 > / Vs.
  • Example 2 instead of the compound (100), pentacene was used and the same operation was performed to produce an organic field effect transistor element.
  • the mobility was 1.0 ⁇ 10 ⁇ 1 cm 2 / Vs.
  • Example 2 As described above, comparing Example 2 and Comparative Example 1 revealed that the structure represented by Formula (1) has high characteristics as an organic semiconductor.
  • the organic semiconductor material of the present invention containing the compound represented by the general formula (1) It has high charge transfer characteristics.
  • Organic semiconductor devices using this organic semiconductor material include, for example, organic field effect transistors, organic thin film solar cells, information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, and organic EL A display such as a panel can be considered, and its technical value is great.

Abstract

Provided are: an organic semiconductor material that has a high charge mobility, solvent solubility, oxidation stability, and good film forming characteristics; and organic electronic devices, for example, organic semiconductor elements, that use said organic semiconductor material. The organic semiconductor material contains a compound having an indolocarbazole skeleton represented by general formula (1). Organic semiconductor films and organic electronic devices use the organic semiconductor material. Organic electronic devices provided with the organic semiconductor material as a thin film layer include light-emitting elements, organic thin-film transistor elements and photovoltaic elements.

Description

有機半導体材料及び有機電子デバイスOrganic semiconductor materials and organic electronic devices
 本発明は、有機半導体材料、有機半導体膜、有機電子デバイス、有機薄膜トランジスタに関するものである。 The present invention relates to an organic semiconductor material, an organic semiconductor film, an organic electronic device, and an organic thin film transistor.
 一般に、無機半導体材料のシリコンを用いる半導体デバイスでは、その薄膜形成において、高温プロセスと高真空プロセスが必須である。高温プロセスを要することから、シリコンをプラスチック基板上等に薄膜形成することができず、半導体デバイスを組み込んだ製品に対して、可とう性の付与や軽量化を行うことは困難であった。また、高真空プロセスを要することから、半導体デバイスを組み込んだ製品の大面積化と低コスト化が困難であった。 Generally, in a semiconductor device using silicon as an inorganic semiconductor material, a high temperature process and a high vacuum process are indispensable for forming a thin film. Since a high temperature process is required, silicon cannot be formed into a thin film on a plastic substrate or the like, and it has been difficult to impart flexibility and weight reduction to a product incorporating a semiconductor device. In addition, since a high vacuum process is required, it is difficult to increase the area and cost of a product incorporating a semiconductor device.
 そこで、近年、有機半導体材料を有機電子部品として利用する有機電子デバイス(例えば、有機エレクトロルミネッセンス(有機EL)素子、有機薄膜トランジスタ素子または有機薄膜光電変換素子など)に関する研究がなされている。これら有機半導体材料は、無機半導体材料に比べて、作製プロセス温度を著しく低減できるため、プラスチック基板上等に形成することが可能となる。さらに、溶媒への溶解性が大きく、かつ、良好な成膜性を有する有機半導体材料を用いることにより、真空プロセスを要さない塗布法、例えば、インクジェット装置等を用いた薄膜形成が可能となり、結果として、無機半導体材料であるシリコンを用いる半導体素子では困難であった大面積化と低コスト化の実現が期待される。このように、有機半導体材料は、無機半導体材料と比べて、大面積化、可とう性、軽量化、低コスト化等の点で有利であるため、これらの特性を生かした有機半導体製品への応用、例えば、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー、液晶ディスプレイ、電子ペーパーおよび有機ELパネル等のディスプレイなどへの応用が期待されている。 Therefore, in recent years, research on organic electronic devices (for example, organic electroluminescence (organic EL) elements, organic thin film transistor elements, or organic thin film photoelectric conversion elements) using organic semiconductor materials as organic electronic components has been conducted. Since these organic semiconductor materials can significantly reduce the manufacturing process temperature as compared with inorganic semiconductor materials, they can be formed on a plastic substrate or the like. Furthermore, by using an organic semiconductor material that is highly soluble in a solvent and has good film formability, it becomes possible to form a thin film using an application method that does not require a vacuum process, for example, an inkjet device, As a result, it is expected to realize an increase in area and cost, which has been difficult with a semiconductor element using silicon, which is an inorganic semiconductor material. As described above, organic semiconductor materials are advantageous in terms of large area, flexibility, weight reduction, cost reduction, and the like compared to inorganic semiconductor materials. Applications such as information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, displays such as liquid crystal displays, electronic paper, and organic EL panels are expected.
 このように、広範な用途が期待される有機電子デバイスに用いられる有機半導体材料には、高い電荷移動度が要求される。例えば、有機トランジスタデバイズでは、スイッチング速度や駆動する装置の性能に直接影響するので、実用化のためには電荷移動度の向上が、必須の課題である。さらに前述のように、塗布法による有機半導体素子の作成を可能とするためには、溶媒可溶性、酸化安定性、良好な製膜性が求められる。 As described above, high charge mobility is required for an organic semiconductor material used in an organic electronic device expected to be widely used. For example, in organic transistor devices, since it directly affects the switching speed and the performance of the driven device, improvement of charge mobility is an essential issue for practical use. Further, as described above, solvent solubility, oxidation stability, and good film forming properties are required to enable the production of an organic semiconductor element by a coating method.
 特に、電荷移動度が大きいことが有機半導体に対する要求特性として挙げられる。この観点から、近年、アモルファスシリコンに匹敵する電荷輸送性を有する有機半導体材料が報告されている。例えば、5個のベンゼン環が直線状に縮合した炭化水素系アセン型多環芳香族分子であるペンタセンを有機半導体材料として用いた有機電界効果型トランジスタ素子(OFET)では、アモルファスシリコン並みの電荷移動度が報告されている(非特許文献1)。また、真空蒸着法を用いずに、トリクロロベンゼンの希薄溶液中でペンタセン結晶を形成させる方法も提案されているが、製造方法が難しく安定な素子を得るには至っていない(特許文献1)。ペンタセンのような炭化水素系アセン型多環芳香族分子では酸化安定性が低いことも課題として挙げられる。 In particular, high charge mobility is a required characteristic for organic semiconductors. From this viewpoint, in recent years, organic semiconductor materials having charge transport properties comparable to amorphous silicon have been reported. For example, in organic field-effect transistor elements (OFETs) that use pentacene, a hydrocarbon-based acene-type polycyclic aromatic molecule in which five benzene rings are linearly condensed, as an organic semiconductor material, charge transfer is similar to that of amorphous silicon. Degrees have been reported (Non-Patent Document 1). In addition, a method of forming a pentacene crystal in a dilute solution of trichlorobenzene without using a vacuum deposition method has been proposed, but a manufacturing method is difficult and a stable element has not been obtained (Patent Document 1). A hydrocarbon-based acene-type polycyclic aromatic molecule such as pentacene also has a low oxidation stability.
 また、チオフェン環が縮環したペンタチエノアセンはペンタセンに比べ耐酸化性が向上しているが、キャリア移動度が低いこと及びその合成に多工程を必要とすることから(非特許文献2)実用上好ましい材料ではなかった。 In addition, pentathienoacene fused with a thiophene ring has improved oxidation resistance as compared with pentacene, but has low carrier mobility and requires many steps for its synthesis (Non-patent Document 2). It was not a preferable material.
  有機半導体材料を薄膜状に積層して構成される有機薄膜太陽電池は、開発初期では、有機半導体材料としてメロシアニン色素等を用いた単層膜で研究が進められてきたが、正孔を輸送するp型有機半導体層と電子を輸送するn型有機半導体層とを有する多層膜にすることで、光入力から電気出力への変換効率(光電変換効率)が向上することが見出されて以降、多層膜が主流になってきている。多層膜の検討が行なわれ始めた頃に用いられた有機半導体材料は、p型有機半導体材料としては銅フタロシアニン(CuPc)、n型有機半導体材料としてはペリレンイミド類(PTCBI)であった。一方、高分子を用いた有機薄膜太陽電池では、p型有機半導体材料として導電性高分子を用い、n型有機半導体材料としてフラーレン(C60)誘導体を用いてそれらを混合し、熱処理することによりミクロ層分離を誘起してヘテロ界面を増やし、光電変換効率を向上させるという、いわゆるバルクヘテロ構造の研究が主に行なわれてきた。ここで用いられてきた材料系は、主に、p型有機半導体材料としてはポリ-3-ヘキシルチオフェン(P3HT)、n型有機半導体材料としてはC60誘導体(PCBM)であった。 In the early stages of development, organic thin-film solar cells constructed by laminating organic semiconductor materials into thin films have been studied with single-layer films using merocyanine dyes as organic semiconductor materials, but transport holes. Since it was found that a multi-layer film having a p-type organic semiconductor layer and an n-type organic semiconductor layer for transporting electrons improves the conversion efficiency from light input to electrical output (photoelectric conversion efficiency), Multilayer films are becoming mainstream. The organic semiconductor materials used when the multilayer film began to be studied were copper phthalocyanine (CuPc) as the p-type organic semiconductor material and peryleneimides (PTCBI) as the n-type organic semiconductor material. On the other hand, in an organic thin film solar cell using a polymer, a conductive polymer is used as a p-type organic semiconductor material, a fullerene (C60) derivative is used as an n-type organic semiconductor material, and they are mixed and heat-treated. Research on so-called bulk heterostructures, in which layer separation is induced to increase heterointerfaces and photoelectric conversion efficiency is improved, has been mainly conducted. The material system used here was mainly poly-3-hexylthiophene (P3HT) as the p-type organic semiconductor material and C60 derivative (PCBM) as the n-type organic semiconductor material.
 このように、有機薄膜太陽電池では、各層の材料は初期の頃からあまり進展がなく、依然としてフタロシアニン誘導体、ペリレンイミド誘導体、C60誘導体が用いられているが、有機薄膜太陽電池の最も重要な特性である光電変換効率は十分なものではなかった。光電変換効率を向上させるためには、高い電荷移動度を有する有機半導体材料が求められている。また、上述の有機薄膜トランジスタと同様に、塗布法による有機半導体素子の作成を可能とするためには、溶媒可溶性、酸化安定性、良好な製膜性が求められる。 Thus, in the organic thin film solar cell, the material of each layer has not progressed much from the early days, and phthalocyanine derivatives, perylene imide derivatives, and C60 derivatives are still used, which is the most important characteristic of the organic thin film solar cell. The photoelectric conversion efficiency was not sufficient. In order to improve the photoelectric conversion efficiency, an organic semiconductor material having high charge mobility is required. In addition, as in the case of the organic thin film transistor described above, solvent solubility, oxidation stability, and good film forming properties are required in order to enable the production of an organic semiconductor element by a coating method.
 そこで、光電変換効率を高めるべく、これら従来の材料に代わる新規な材料の開発が熱望されている。例えば、特許文献2では、フルオランテン骨格を有する化合物を用いた有機薄膜太陽電池が開示されているが、満足な光電変換効率を与えるものではない。 Therefore, in order to increase the photoelectric conversion efficiency, development of new materials that replace these conventional materials is eagerly desired. For example, Patent Document 2 discloses an organic thin film solar cell using a compound having a fluoranthene skeleton, but does not give satisfactory photoelectric conversion efficiency.
WO2003/016599号公報WO2003 / 016599 特開2009-290091号公報JP2009-290091A
 本発明は、高い電荷移動性、酸化安定性を有する有機半導体材料及びそれを使用した有機電子デバイスを提供することを目的とする。 An object of the present invention is to provide an organic semiconductor material having high charge mobility and oxidation stability and an organic electronic device using the same.
 本発明者らは、鋭意検討した結果、高い電荷移動性、酸化安定性、溶媒可溶性を有する新たな有機半導体材料を見出し、これを有機電子デバイスに使用することで、高特性の有機電子デバイスが得られることを見出し、本発明に到達した。 As a result of intensive studies, the present inventors have found a new organic semiconductor material having high charge mobility, oxidation stability, and solvent solubility, and by using this for an organic electronic device, a high-performance organic electronic device can be obtained. As a result, the present invention was reached.
 本発明は、下記一般式(1)で示される化合物を含有することを特徴とする有機半導体材料に関する。
Figure JPOXMLDOC01-appb-I000003
 式(1)中、Rはそれぞれ独立に水素、炭素数1~30の脂肪族炭化水素基を示し、nは1~4の整数を表す。
The present invention relates to an organic semiconductor material containing a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-I000003
In formula (1), each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms, and n represents an integer of 1 to 4.
 一般式(1)で示される化合物としては、一般式(2)で示される化合物がある。ここで、Rは一般式(1)と同意である。
Figure JPOXMLDOC01-appb-I000004
Examples of the compound represented by the general formula (1) include a compound represented by the general formula (2). Here, R is the same as the general formula (1).
Figure JPOXMLDOC01-appb-I000004
 また、本発明の他の実施態様は、上記の有機半導体材料を含有することを特徴とする有機半導体膜である。更に、本発明の他の実施態様は、上記の有機半導体材料の有機溶媒溶液を塗布・乾燥して形成されたことを特徴とする有機半導体膜である。 Further, another embodiment of the present invention is an organic semiconductor film characterized by containing the organic semiconductor material described above. Furthermore, another embodiment of the present invention is an organic semiconductor film formed by applying and drying an organic solvent solution of the above organic semiconductor material.
 また、本発明の他の実施態様は、上記の有機半導体材料を用いることを特徴とする有機電子デバイスである。上記の有機電子デバイスが、発光素子、有機薄膜トランジスタ素子、又は光起電力素子のいずれかであることが好ましく、有機薄膜トランジスタ素子であることがより好ましい。 Further, another embodiment of the present invention is an organic electronic device characterized by using the organic semiconductor material described above. The organic electronic device is preferably a light emitting element, an organic thin film transistor element, or a photovoltaic element, and more preferably an organic thin film transistor element.
有機薄膜トランジスタ素子の一例を示した模式断面図を示す。The schematic cross section which showed an example of the organic thin-film transistor element is shown. 有機薄膜トランジスタ素子の一例を示した模式断面図を示す。The schematic cross section which showed an example of the organic thin-film transistor element is shown. 有機薄膜トランジスタ素子の一例を示した模式断面図を示す。The schematic cross section which showed an example of the organic thin-film transistor element is shown. 有機薄膜トランジスタ素子の一例を示した模式断面図を示す。The schematic cross section which showed an example of the organic thin-film transistor element is shown. 光起電力素子の一構造例を示した模式断面図を示す。The schematic cross section which showed one structural example of the photovoltaic device is shown. 光起電力素子の一構造例を示した模式断面図を示す。The schematic cross section which showed one structural example of the photovoltaic device is shown.
 本発明の有機半導体材料は、上記一般式(1)で示される化合物を必須とする。本発明の有機半導体材料は、一般式(1)で示される化合物のみからなってもよく、他の化合物を含んでもよい。他の化合物としては電荷移動性を有する有機化合物が適する。一般式(1)で示される化合物は、それ自体が有機半導体材料としての特性を有するので、この化合物が有機半導体材料でもある。 The organic semiconductor material of the present invention essentially requires the compound represented by the general formula (1). The organic semiconductor material of the present invention may consist only of the compound represented by the general formula (1) or may contain other compounds. As the other compound, an organic compound having a charge transfer property is suitable. Since the compound represented by the general formula (1) itself has characteristics as an organic semiconductor material, this compound is also an organic semiconductor material.
  一般式(1)において、Rは、それぞれ独立に水素、又は炭素数1~30の脂肪族炭化水素基を示し、好ましくは水素、又は炭素数1~16の脂肪族炭化水素基である。脂肪族炭化水素基としては、アルキル基が好ましく、より好ましくは無置換のアルキル基である。これら脂肪族炭化水素基は、直鎖であっても、分岐していても、脂環式であってもよく、飽和であっても不飽和であってもよい。また、これら脂肪族炭化水素基の水素原子はフッ素等のハロゲン原子と置換されていても良い。また、これら脂肪族炭化水素基は置換基を有してもよく、1つ以上の置換基を有する場合は、炭素数の計算にはそれら置換基の炭素数を含む。複数のRは同一であっても、異なっていてもよい。一般式(1)において、Rは最大16個あるが、その中の8個以上がHであることが好ましく、より好ましくは14~16個がHである。 In general formula (1), each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms, preferably hydrogen or an aliphatic hydrocarbon group having 1 to 16 carbon atoms. As the aliphatic hydrocarbon group, an alkyl group is preferable, and an unsubstituted alkyl group is more preferable. These aliphatic hydrocarbon groups may be linear, branched, or alicyclic, and may be saturated or unsaturated. Moreover, the hydrogen atom of these aliphatic hydrocarbon groups may be substituted with a halogen atom such as fluorine. Moreover, these aliphatic hydrocarbon groups may have a substituent, and when it has one or more substituents, the number of carbons of these substituents is included in the calculation of the number of carbons. A plurality of R may be the same or different. In the general formula (1), there are a maximum of 16 Rs, of which 8 or more are preferably H, more preferably 14 to 16 are H.
  好ましい脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、n-ドコシル基、n-テトラコシル基の如き直鎖飽和炭化水素基、i-プロピル基、イソブチル基、t-ブチル基、ネオペンチル基、2-エチルヘキシル基、2-ヘキシルオクチル基、4-デシルドデシル基等の分岐飽和炭化水素基、エテニル基、1-プロペニル基、2-プロペニル基、i-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基等の不飽和炭化水素基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、4-ブチルシクロヘキシル基、4-ドデシルシクロヘキシル基等の飽和脂環炭化水素基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基等の不飽和脂環炭化水素基が例示できる。より好ましくは、C1~16のアルキル基、C2~8のアルケニル基、C2~8のアルキニル基、C5~8のシクロアルキル基、C1~16のアルキル基が置換したC5~8のシクロアルキル基、又はC5~8の不飽和脂環炭化水素基である。 Specific examples of preferred aliphatic hydrocarbon groups include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-dodecyl group, n- Linear saturated hydrocarbon group such as tetradecyl group, n-octadecyl group, n-docosyl group, n-tetracosyl group, i-propyl group, isobutyl group, t-butyl group, neopentyl group, 2-ethylhexyl group, 2-hexyl Branched saturated hydrocarbon groups such as octyl group, 4-decyldodecyl group, ethenyl group, 1-propenyl group, 2-propenyl group, i-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, ethynyl Group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group and other unsaturated hydrocarbon groups, cyclopentyl group, cyclohexyl group, cyclooctyl group, 4-butynyl Cyclohexyl, 4-dodecyl saturated alicyclic hydrocarbon groups such as a cyclohexyl group, a cyclopentenyl group, cyclopentadienyl group, can be exemplified unsaturated alicyclic hydrocarbon groups such as a cyclohexenyl group. More preferably, a C1-16 alkyl group, a C2-8 alkenyl group, a C2-8 alkynyl group, a C5-8 cycloalkyl group, a C5-8 cycloalkyl group substituted by a C1-16 alkyl group, Or a C5-8 unsaturated alicyclic hydrocarbon group.
 脂肪族炭化水素基がハロゲン原子と置換された脂肪族炭化水素基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロオクチル基等の全フッ素化アルキル基や、ジフルオロエチル基、ジフルオロブチル基、ジフルオロオクチル基等の部分フッ素化アルキル基が例示できる。 Examples of the aliphatic hydrocarbon group in which the aliphatic hydrocarbon group is substituted with a halogen atom include perfluorinated alkyl groups such as trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorooctyl group, and difluoroethyl group. Examples thereof include partially fluorinated alkyl groups such as a group, a difluorobutyl group, and a difluorooctyl group.
 Rが脂肪族炭化水素基であり、脂肪族炭化水素基が置換基を有する場合の置換基は有機半導体材料の性能を損なわなければ限定されるものではないが、置換基の総数は1~4、好ましくは1~2である。これらの好ましい置換基としては、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数2~10のアルコキシカルボニル基、炭素数2~10のアルコキシカルボニルオキシ基、炭素数2~10のアシルオキシ基、炭素数1~10のアルキルスルホニル基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基等が挙げられる。これらの置換基は、一種または2種以上有していても良い。より好ましくは、炭素数1~12のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数2~8のアルコキシカルボニル基、炭素数2~8のアルコキシカルボニルオキシ基が挙げられ、具体例としてはメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ヘキシルオキシ基、メチルチオ基、エチルチオ基、メトキシカルボニル基、エトキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、トリイソプロピルシリルエチニル基、トリエチルシリルエチニル基、トリメチルシリルエチニル基等が例示できる。置換基を2つ以上有する場合は、同一であっても異なっていても良い。 When R is an aliphatic hydrocarbon group and the aliphatic hydrocarbon group has a substituent, the substituent is not limited as long as the performance of the organic semiconductor material is not impaired, but the total number of substituents is 1 to 4 Preferably, it is 1 to 2. These preferred substituents include an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an alkoxycarbonyloxy group having 2 to 10 carbon atoms, and 2 carbon atoms. An acyloxy group having 1 to 10 carbon atoms, an alkylsulfonyl group having 1 to 10 carbon atoms, an alkylamide group having 2 to 10 carbon atoms, a trialkylsilyl group having 3 to 20 carbon atoms, a trialkylsilylalkenyl group having 5 to 20 carbon atoms, carbon Examples thereof include a trialkylsilylalkynyl group having a number of 5 to 20. These substituents may have one kind or two or more kinds. More preferable examples include an alkoxy group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and an alkoxycarbonyloxy group having 2 to 8 carbon atoms. Specific examples include Methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-hexyloxy group, methylthio group, ethylthio group, methoxycarbonyl group, ethoxycarbonyl group, methoxycarbonyloxy group, ethoxycarbonyloxy group, triisopropylsilylethynyl Group, triethylsilylethynyl group, trimethylsilylethynyl group and the like. When it has two or more substituents, they may be the same or different.
 上記一般式(1)で示される化合物の中でも好ましい化合物として、上記一般式(2)で示される化合物がある。一般式(2)において、Rは一般式(1)と同じ意味を有する。Rは8個あるが、その中の4個以上がHであることが好ましく、より好ましくは6~8個がHである。 Among the compounds represented by the general formula (1), there is a compound represented by the general formula (2) as a preferable compound. In general formula (2), R has the same meaning as in general formula (1). Although there are 8 R, 4 or more of them are preferably H, more preferably 6 to 8 are H.
 上記一般式(1)で表わされる化合物はNew Journal of Chemistry, 34(7),p1243-1246(2010)に示される合成例を参考にして以下の反応式(A)により合成することができるが、これら手法に限定するものではない。 The compound represented by the general formula (1) can be synthesized by the following reaction formula (A) with reference to the synthesis example shown in New Journal of Chemistry, 34 (7), p1243-1246 (2010). However, it is not limited to these methods.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
  上記式(A)は、一般式(1)に示される化合物において、全部のRがHの場合の化合物(100)の合成例であり、インドールと2-クロロベンズアルデヒドを作用させることにより中間体A-1を得た後、二段階の環化反応を経て得る方法である。 The above formula (A) is a synthesis example of the compound (100) in the case where all the Rs are H in the compound represented by the general formula (1). By reacting indole and 2-chlorobenzaldehyde, the intermediate A -1 is obtained through a two-stage cyclization reaction.
 一般式(1)に示される化合物において、両端のベンゼン環に置換基Rとしてアルキル基を有する場合の合成例は、式(B)に示す反応式により合成することができるが、これら手法に限定するものではない。
 式(B)に示すように、n-ブロモインドールと2-クロロ-n-ブロモベンズアルデヒドを用いる方法により中間体B-3を得た後、B-3とアルキン誘導体のソノガシラ反応を行うことにより、所望のアルキル置換体である化合物(3)を得ることができる。
In the compound represented by the general formula (1), synthesis examples in the case where the benzene rings at both ends have an alkyl group as the substituent R can be synthesized by the reaction formula shown in the formula (B), but are limited to these methods. Not what you want.
As shown in the formula (B), after obtaining an intermediate B-3 by a method using n-bromoindole and 2-chloro-n-bromobenzaldehyde, a Sonogashira reaction between B-3 and an alkyne derivative is performed. Compound (3) which is a desired alkyl-substituted product can be obtained.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
  また、下記に示す2つの反応式のように、一般式(1)における置換基Rを有する原料を用いて、反応を行うことにより、所望の化合物を得ることも可能である。反応式(C)の場合、アルキル置換インドールと2-クロロベンズアルデヒドを作用させることにより、所望のアルキル基を有する化合物C-3を得ることができる。また、反応式(D)によれば、化合物C-3は、インドールとアルキル基を有する2-クロロベンズアルデヒドを作用させることによっても得ることができる。 It is also possible to obtain a desired compound by performing a reaction using a raw material having a substituent R in the general formula (1) as in the following two reaction formulas. In the case of reaction formula (C), compound C-3 having a desired alkyl group can be obtained by reacting an alkyl-substituted indole with 2-chlorobenzaldehyde. According to reaction formula (D), compound C-3 can also be obtained by reacting indole and 2-chlorobenzaldehyde having an alkyl group.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 すなわち、所望の置換基を有するインドール及び2-クロロベンズアルデヒドを原料として用い、反応式(B)、(C)又は(D)のような環化反応と置換反応を行うことにより、所望の一般式(1)で示される化合物を得ることができる。また、2-クロロベンズアルデヒドのかわりに2-ブロモベンズアルデヒドや、2-ヨードベンズアルデヒドを用いても同様のことが可能である。 That is, by using indole having a desired substituent and 2-chlorobenzaldehyde as raw materials, and performing a cyclization reaction and a substitution reaction as in reaction formula (B), (C) or (D), the desired general formula The compound represented by (1) can be obtained. The same can be achieved by using 2-bromobenzaldehyde or 2-iodobenzaldehyde instead of 2-chlorobenzaldehyde.
 このような方法により得られる化合物を含有する本発明の有機半導体材料の基本特性となる電荷移動度の評価は種々の方法、例えば、TOF(Time of Flight)法やFET法により行うことができる。TOF法とは、電界を印加した状態で有機半導体材料薄膜表面にパルス光を照射し、生成した電荷の膜中における移動時間を過渡光電流波形より測定することで電荷移動度を求める方法である。また、FET法は有機半導体材料を用いた有機電界効果トランジスタ素子を作成し、その特性を評価する方法である。これらの方法により、本発明の有機半導体材料の基本特性として電荷移動度を評価することができ、いずれの方法においても、高い特性を示す。 Evaluation of charge mobility, which is a basic characteristic of the organic semiconductor material of the present invention containing a compound obtained by such a method, can be performed by various methods such as TOF (Time of Flight) method or FET method. The TOF method is a method for obtaining the charge mobility by irradiating the surface of the organic semiconductor material thin film with an electric field and measuring the movement time of the generated charge in the film from the transient photocurrent waveform. . The FET method is a method of creating an organic field effect transistor element using an organic semiconductor material and evaluating its characteristics. By these methods, charge mobility can be evaluated as a basic characteristic of the organic semiconductor material of the present invention, and any method exhibits high characteristics.
 以下に、一般式(1)で表される化合物の具体的な例を示すが、これらに限定されるものではない。 Specific examples of the compound represented by the general formula (1) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 本発明の有機半導体材料は、一般式(1)の化合物を含むものであるが、この化合物を50wt%以上含有していることが好ましく、より好ましくは90wt%以上含有していることが良い。また、一般式(1)の化合物自体を有機半導体材料とすることも好ましい。有機半導体材料中に一般式(1)の化合物とともに含まれる成分としては、有機半導体材料としての性能を損なわない範囲であれば特に限定されるものではないが、電荷輸送性化合物であることが良い。 The organic semiconductor material of the present invention contains the compound of the general formula (1), but preferably contains 50 wt% or more, more preferably 90 wt% or more of this compound. It is also preferable that the compound of the general formula (1) itself is an organic semiconductor material. The component contained in the organic semiconductor material together with the compound of the general formula (1) is not particularly limited as long as it does not impair the performance as the organic semiconductor material, but is preferably a charge transporting compound. .
 続いて、本発明の有機半導体材料から形成される有機電子デバイスを、有機薄膜トランジスタ素子(OTFT素子)を例として、図1~図4に基づいて説明する。有機電子デバイスとしては、有機半導体材料を使用する有機半導体デバイスであることが好ましい。 Subsequently, an organic electronic device formed from the organic semiconductor material of the present invention will be described with reference to FIGS. 1 to 4, taking an organic thin film transistor element (OTFT element) as an example. The organic electronic device is preferably an organic semiconductor device using an organic semiconductor material.
 図1、図2、図3及び図4は、本発明のOTFT素子の実施形態を例示する模式的断面図である。
 符号の説明;
 1 基板、2 ゲート電極、3 絶縁膜層、4 有機半導体層、5 ソース電極、6 ドレイン電極、7  基板、8  正極、9  有機半導体層、9-a  電子供与性有機半導体層、9-b  電子受容性有機半導体層、10  負極。
1, FIG. 2, FIG. 3 and FIG. 4 are schematic cross-sectional views illustrating embodiments of the OTFT device of the present invention.
Explanation of symbols;
1 substrate, 2 gate electrode, 3 insulating film layer, 4 organic semiconductor layer, 5 source electrode, 6 drain electrode, 7 substrate, 8 positive electrode, 9 organic semiconductor layer, 9-a electron donating organic semiconductor layer, 9-b electron Receptive organic semiconductor layer, 10 negative electrode.
 図1に示すOTFT素子は、基板1の表面上にゲート電極2を備え、ゲート電極2上には絶縁膜層3が形成されており、絶縁膜層3上にはソース電極5およびドレイン電極6が設けられ、さらに有機半導体層4が形成されている。 The OTFT device shown in FIG. 1 includes a gate electrode 2 on the surface of a substrate 1, an insulating film layer 3 is formed on the gate electrode 2, and a source electrode 5 and a drain electrode 6 are formed on the insulating film layer 3. And an organic semiconductor layer 4 is formed.
 図2に示すOTFT素子は、基板1の表面上にゲート電極2を備え、ゲート電極2上には絶縁膜層3が形成され、その上に有機半導体層4が形成されており、有機半導体層4上にはソース電極5およびドレイン電極6が設けられている。 The OTFT device shown in FIG. 2 includes a gate electrode 2 on the surface of a substrate 1, an insulating film layer 3 is formed on the gate electrode 2, and an organic semiconductor layer 4 is formed thereon. On 4, a source electrode 5 and a drain electrode 6 are provided.
 図3に示すOTFT素子は、基板1の表面上にソース電極5およびドレイン電極6が設けられ、有機半導体層4、絶縁膜層3を介して最表面にゲート電極2が形成されている。 In the OTFT device shown in FIG. 3, a source electrode 5 and a drain electrode 6 are provided on the surface of a substrate 1, and a gate electrode 2 is formed on the outermost surface via an organic semiconductor layer 4 and an insulating film layer 3.
 図4に示すOTFT素子は、基板1の表面上には有機半導体層4、ソース電極5およびドレイン電極6が設けられ、絶縁膜層3を介して最表面にゲート電極2が形成されている。 In the OTFT device shown in FIG. 4, an organic semiconductor layer 4, a source electrode 5 and a drain electrode 6 are provided on the surface of a substrate 1, and a gate electrode 2 is formed on the outermost surface via an insulating film layer 3.
 基板1に用いられるものとしては、例えば、ガラス、石英、酸化アルミニウム、サファイア、窒化珪素、炭化珪素等のセラミックス基板、シリコン、ゲルマニウム、ガリウム枇素、ガリウム燐、ガリウム窒素等半導体基板、ポリエチレンテレフタレート、ポリナフタレンテレフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、環状ポリオレフィン、ポリイミド、ポリアミド、ポリスチレン等の樹脂基板等が挙げられる。基板の厚さは、約10μm~約2mmとすることができるが、特に可撓性のプラスチック基板ではたとえば約50~約100μm、剛直な基板、たとえばガラスプレートまたはシリコンウェハーなどでは約0.1~約2mmとすることができる。 Examples of the substrate 1 that can be used include ceramic substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, and silicon carbide, semiconductor substrates such as silicon, germanium, gallium silicon, gallium phosphorus, and gallium nitrogen, polyethylene terephthalate, Examples thereof include polyesters such as polynaphthalene terephthalate, resin substrates such as polyethylene, polypropylene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, cyclic polyolefin, polyimide, polyamide, and polystyrene. The thickness of the substrate can be from about 10 μm to about 2 mm, but in particular about 50 to about 100 μm for flexible plastic substrates, for example about 0.1 to about 0.1 to about rigid substrates such as glass plates or silicon wafers. It can be about 2 mm.
 ゲート電極2は、金属薄膜、導電性ポリマ膜、導電性のインキまたはペーストから作った導電性膜などであってもよく、あるいは、たとえば重度にドープしたシリコンのように、基板そのものをゲート電極とすることができる。ゲート電極の材料の例としては、アルミニウム、銅、ステンレス、金、クロム、nドープまたはpドープされたシリコン、インジウムスズ酸化物、導電性ポリマたとえば、ポリスチレンスルホン酸をドープしたポリ(3,4-エチレンジオキシチオフェン)、カーボンブラック/グラファイトを含む導電性インキ/ペースト、または、ポリマバインダの中にコロイド状の銀を分散させたもの等を例示できる。 The gate electrode 2 may be a metal thin film, a conductive polymer film, a conductive film made from a conductive ink or paste, or the substrate itself as a gate electrode, such as heavily doped silicon. can do. Examples of gate electrode materials include aluminum, copper, stainless steel, gold, chromium, n-doped or p-doped silicon, indium tin oxide, conductive polymers such as poly (3,4-polystyrene) doped with polystyrene sulfonic acid. Examples thereof include a conductive ink / paste containing ethylenedioxythiophene), carbon black / graphite, or a colloidal silver dispersed in a polymer binder.
 ゲート電極2は、真空蒸着、金属または導電性金属酸化物のスパッタリング、導電性ポリマ溶液または導電性インキのスピンコート、インクジェット、スプレー、コーティング、キャスティング等を用いることにより作成できる。ゲート電極2の厚さは、たとえば、約10nm~10μmの範囲が好ましい。 The gate electrode 2 can be formed by using vacuum deposition, sputtering of a metal or conductive metal oxide, spin coating of a conductive polymer solution or conductive ink, inkjet, spraying, coating, casting, or the like. The thickness of the gate electrode 2 is preferably in the range of about 10 nm to 10 μm, for example.
 絶縁膜層3は一般に、無機材料膜または有機ポリマ膜とすることができる。絶縁膜層3として好適な無機材料の例としては、酸化ケイ素、窒化ケイ素、酸化アルミニウム、チタン酸バリウム、チタン酸ジルコニウムバリウム等が例示できる。絶縁膜層3として好適な有機化合物の例としては、ポリエステル類、ポリカーボネート類、ポリ(ビニルフェノール)、ポリイミド類、ポリスチレン、ポリ(メタクリレート)類、ポリ(アクリレート)類、エポキシ樹脂などがある。また、有機ポリマ中に無機材料を分散して、絶縁層膜として使用してもよい。絶縁膜層の厚さは、使用する絶縁材料の誘電率によって異なるが、例えば約10nm~10μmである。 The insulating film layer 3 can generally be an inorganic material film or an organic polymer film. Examples of inorganic materials suitable for the insulating film layer 3 include silicon oxide, silicon nitride, aluminum oxide, barium titanate, and barium zirconium titanate. Examples of organic compounds suitable for the insulating film layer 3 include polyesters, polycarbonates, poly (vinylphenol), polyimides, polystyrene, poly (methacrylates), poly (acrylates), and epoxy resins. Further, an inorganic material may be dispersed in an organic polymer and used as an insulating layer film. The thickness of the insulating film layer varies depending on the dielectric constant of the insulating material used, but is, for example, about 10 nm to 10 μm.
 前記絶縁膜層を形成する手段としては、例えば、真空蒸着法、CVD法、スパッタリング法、レーザー蒸着法等のドライ成膜法や、スピンコート法、ブレードコート法、スクリーン印刷、インキジェット印刷、スタンプ法等のウエット製膜法が挙げられ、材料に応じて使用できる。 Examples of the means for forming the insulating film layer include dry film formation methods such as vacuum deposition, CVD, sputtering, and laser deposition, spin coating, blade coating, screen printing, ink jet printing, and stamping. Examples include a wet film forming method such as a method, which can be used depending on the material.
 ソース電極5およびドレイン電極6は、後述する有機半導体層4に対して低抵抗オーム性接触を与える材料から作ることができる。ソース電極5およびドレイン電極6として好ましい材料としては、ゲート電極2に好ましい材料として例示したものを用いることができ、例えば、金、ニッケル、アルミニウム、白金、導電性ポリマおよび導電性インキなどがある。ソース電極5およびドレイン電極6の厚さは、典型的には、たとえば、約10nm~約10μm、より好ましくは厚さが10nm~1μmである。 The source electrode 5 and the drain electrode 6 can be made of a material that gives low resistance ohmic contact to the organic semiconductor layer 4 described later. As a preferable material for the source electrode 5 and the drain electrode 6, those exemplified as a preferable material for the gate electrode 2 can be used, and examples thereof include gold, nickel, aluminum, platinum, a conductive polymer, and a conductive ink. The thicknesses of the source electrode 5 and the drain electrode 6 are typically, for example, from about 10 nm to about 10 μm, and more preferably from 10 nm to 1 μm.
 ソース電極5およびドレイン電極6を形成する手段としては、例えば、真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が挙げられる。製膜時または製膜後、必要に応じてパターニングを行うのが好ましい。パターニングの方法として、例えば、フォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法等が挙げられる。また、インクジェット印刷、スクリーン印刷、オフセット印刷の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィー法等、これら手法を複数組み合わせた手法を利用し、パターニングすることも可能である。 Examples of means for forming the source electrode 5 and the drain electrode 6 include a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, and a sol-gel method. It is preferable to perform patterning as needed during film formation or after film formation. As a patterning method, for example, a photolithography method in which patterning and etching of a photoresist are combined can be used. Patterning can also be performed by using a technique combining a plurality of these techniques such as inkjet printing, screen printing, offset printing, soft lithography such as microcontact printing.
 有機半導体層4を形成する手段としては、例えば、真空蒸着法、CVD法、スパッタリング法、レーザー蒸着法等のドライ成膜法や、基板上に溶液や分散液を塗布した後に、溶媒や分散媒を除去することで薄膜を形成するウエット成膜法が挙げられるが、ウエット成膜法を用いることが好ましい。ウエット成膜法としては、スピンコート法、ブレードコート法、スクリーン印刷、インキジェット印刷、スタンプ法などが例示できる。例えばスピンコート法を用いる場合、本発明の有機半導体材料を溶解する適切な溶媒に溶解させて、濃度が0.01wt%~10wt%の溶液を調製した後、基板1に形成した絶縁膜層3上に有機半導体材料溶液を滴下し、次いで500~6000回転で5~120秒回転することにより行われる。上記溶媒としては、有機半導体材料の溶解度と製膜して得られる膜質によって選択されるが、たとえば、水、メタノールに代表されるアルコール類、トルエンに代表される芳香族炭化水素類、ヘキサンやシクロヘキサン等に代表される脂肪族炭化水素類、ニトロメタンやニトロベンゼン等の有機ニトロ化合物、テトラヒドロフランやジオキサン等の環状エーテル化合物、アセトニトリルやベンゾニトリル等のニトリル系化合物、アセトンやメチルエチルケトン等のケトン類、酢酸エチル等のエステル類、ジメチルスルホキシド、ジメチルアセトアミド、スルホラン、N-メチルピロリドン、ジメチルイミダゾリジノン等に代表される非プロトン性極性溶媒等から選ばれる溶媒を用いることができる。また、これらの溶媒は2種類以上を組合せて用いることもできる。 As a means for forming the organic semiconductor layer 4, for example, a dry film forming method such as a vacuum deposition method, a CVD method, a sputtering method, or a laser deposition method, or after applying a solution or dispersion on a substrate, a solvent or dispersion medium There is a wet film formation method in which a thin film is formed by removing the film, but it is preferable to use a wet film formation method. Examples of the wet film formation method include spin coating, blade coating, screen printing, ink jet printing, and stamping. For example, when the spin coating method is used, the organic semiconductor material of the present invention is dissolved in an appropriate solvent to prepare a solution having a concentration of 0.01 wt% to 10 wt%, and then the insulating film layer 3 formed on the substrate 1. The organic semiconductor material solution is dropped onto the solution, and then rotated at 500 to 6000 rpm for 5 to 120 seconds. The solvent is selected depending on the solubility of the organic semiconductor material and the film quality obtained by film formation. For example, water, alcohols typified by methanol, aromatic hydrocarbons typified by toluene, hexane and cyclohexane Aliphatic hydrocarbons such as nitromethane and nitrobenzene, cyclic ether compounds such as tetrahydrofuran and dioxane, nitrile compounds such as acetonitrile and benzonitrile, ketones such as acetone and methyl ethyl ketone, ethyl acetate, etc. And a solvent selected from aprotic polar solvents such as dimethyl sulfoxide, dimethylacetamide, sulfolane, N-methylpyrrolidone and dimethylimidazolidinone. These solvents may be used in combination of two or more.
 上述の方法により、本発明の有機半導体材料を用いた有機薄膜トランジスタ素子を作成することが可能である。得られた有機薄膜トランジスタ素子では、有機半導体層がチャネル領域を成しており、ゲート電極に印加される電圧でソース電極とドレイン電極の間に流れる電流が制御されることによってオン/オフ動作する。 The organic thin film transistor element using the organic semiconductor material of the present invention can be prepared by the above-described method. In the obtained organic thin film transistor element, the organic semiconductor layer forms a channel region, and an on / off operation is performed by controlling a current flowing between the source electrode and the drain electrode with a voltage applied to the gate electrode.
  本発明の有機半導体材料をから得られる有機電子デバイスの別の好適態様の一つとして、光起電力素子が挙げられる。具体的には、基板上に、正極、有機半導体層及び負極を有する光起電力素子であって、前記有機半導体層が上述した本発明の有機半導体材料を含む有機電子デバイスである。 As another preferred embodiment of the organic electronic device obtained from the organic semiconductor material of the present invention, a photovoltaic element can be mentioned. Specifically, it is a photovoltaic device having a positive electrode, an organic semiconductor layer, and a negative electrode on a substrate, and the organic semiconductor device includes the organic semiconductor material of the present invention described above.
  本発明の光起電力素子の構造について、図面を参照しながら説明するが、本発明の光起電力素子の構造は何ら図示のものに限定されるものではない。 構造 The structure of the photovoltaic element of the present invention will be described with reference to the drawings, but the structure of the photovoltaic element of the present invention is not limited to that shown in the drawings.
  図5は本発明に用いられる一般的な光起電力素子の構造例を示す断面図であり、7は基板、8は正極、9は有機半導体層、10は負極を各々表わす。また、図6は有機半導体層が積層されている場合の構造例を示す断面図であり、9-aはp型有機半導体層、9-bはn型有機半導体層である。 FIG. 5 is a cross-sectional view showing an example of the structure of a general photovoltaic device used in the present invention, wherein 7 represents a substrate, 8 represents a positive electrode, 9 represents an organic semiconductor layer, and 10 represents a negative electrode. FIG. 6 is a cross-sectional view showing an example of a structure in which organic semiconductor layers are stacked, where 9-a is a p-type organic semiconductor layer and 9-b is an n-type organic semiconductor layer.
  基板は、特に限定されず、例えば、従来公知の構成とすることができる。機械的、熱的強度を有し、透明性を有するガラス基板や透明性樹脂フィルムを使用することが好ましい。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。 The saddle substrate is not particularly limited, and may be a conventionally known configuration, for example. It is preferable to use a glass substrate or a transparent resin film having mechanical and thermal strength and transparency. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
  電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。 As the electrode material, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is a positive electrode. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO) or the like is preferably used. Here, the conductive material used for the positive electrode is preferably an ohmic junction with the organic semiconductor layer. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode is an ohmic contact with the hole transport layer.
  仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する電子輸送層を用いた場合においては、負極に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。 An electrode using a conductive material having a small work function serves as a negative electrode. As the conductive material having a small work function, alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. In addition, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride at the interface between the negative electrode and the electron transport layer. Here, the conductive material used for the negative electrode is preferably one that is in ohmic contact with the organic semiconductor layer. Furthermore, when an electron transport layer described later is used, it is preferable that the conductive material used for the negative electrode is in ohmic contact with the electron transport layer.
-有機半導体層-
 有機半導体層は、式(1)で表される化合物を含む有機半導体材料を用いて形成される。式(1)で表される化合物は、p型有機半導体材料(以下p型有機材料という)またはn型有機半導体材料(以下n型有機材料という)として機能し、本発明の有機半導体材料は式(1)で表される化合物を含み、式(1)で表される化合物はp型有機材料またはn型有機材料の少なくとも1つに含まれる。式(1)で表される化合物を2種以上使用し、その1以上をp型有機材料成分とし、他の1以上をn型有機材料成分としてもよく、p型有機材料成分(またはn型有機材料成分)として式(1)で表される化合物を使用し、n型有機材料成分(またはp型有機材料成分)として式(1)で表される化合物以外の化合物を使用してもよい。
-Organic semiconductor layer-
The organic semiconductor layer is formed using an organic semiconductor material containing a compound represented by the formula (1). The compound represented by the formula (1) functions as a p-type organic semiconductor material (hereinafter referred to as a p-type organic material) or an n-type organic semiconductor material (hereinafter referred to as an n-type organic material). The compound represented by formula (1) is included in at least one of the p-type organic material and the n-type organic material. Two or more compounds represented by formula (1) may be used, one or more of which may be a p-type organic material component and the other one or more may be an n-type organic material component. A compound represented by formula (1) may be used as the organic material component), and a compound other than the compound represented by formula (1) may be used as the n-type organic material component (or p-type organic material component). .
 p型有機材料とn型有機材料は混合されていることが好ましく、p型有機材料とn型有機材料が分子レベルで相溶しているか、相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが通常1nm以上50nm以下のサイズである。また、p型有機材料とn型有機材料が積層されている場合は、p型半導体特性を示すp型有機材料を有する層が正極側、n型半導体特性を示すn型有機材料を有する層が負極側であることが好ましい。有機半導体層は5nm~500nmの厚さが好ましく、より好ましくは30nm~300nmである。積層されている場合は、本発明のp型有機材料を有する層は上記厚さのうち1nm~400nmの厚さを有していることが好ましく、より好ましくは15nm~150nmである。 It is preferable that the p-type organic material and the n-type organic material are mixed, and it is preferable that the p-type organic material and the n-type organic material are compatible at the molecular level or phase-separated. The domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less. In the case where a p-type organic material and an n-type organic material are stacked, a layer having a p-type organic material exhibiting p-type semiconductor characteristics is on the positive electrode side, and a layer having an n-type organic material exhibiting n-type semiconductor characteristics is provided. The negative electrode side is preferred. The organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm. When stacked, the layer having the p-type organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm, out of the above thicknesses.
  p型有機材料は、式(1)で表される化合物の内、p型半導体特性を示すものを単独で用いてもよいし、他のp型有機材料を含んでもよい。他のp型有機材料としては、例えばポリチオフェン系重合体、ベンゾチアジアゾール-チオフェン系誘導体、ベンゾチアジアゾール-チオフェン系共重合体、ポリ-p-フェニレンビニレン系重合体、ポリ-p-フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)などのフタロシアニン誘導体、ポルフィリン誘導体、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジフェニル-1,1'-ジアミン(TPD)、N,N'-ジナフチル-N,N'-ジフェニル-4,4'-ジフェニル-1,1'-ジアミン(NPD)などのトリアリールアミン誘導体、4,4'-ジ(カルバゾール-9-イル)ビフェニル(CBP)などのカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)などの低分子有機化合物が挙げられる。 As the p-type organic material, a compound exhibiting p-type semiconductor characteristics among the compounds represented by the formula (1) may be used alone, or other p-type organic materials may be included. Examples of other p-type organic materials include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, Conjugated polymers such as polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), zinc phthalocyanine Phthalocyanine derivatives such as (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1 Triarylamine derivatives such as' -diamine (NPD), carbazole derivatives such as 4,4'-di (carbazol-9-yl) biphenyl (CBP), oligothiophene derivatives (terthiophene, quarterthiophene, sexithiophene, octi Low molecular organic compounds such as thiophene).
  n型有機材料は、式(1)で表される化合物の内、n型半導体特性を示すものを単独で用いてもよいし、他のn型有機材料を用いてもよい。他のn型有機材料としては、例えば1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)などのトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)、[5,6]-フェニル C61 ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]-フェニル C61 ブチリックアシッドヘキシルエステル([6,6]-PCBH)、[6,6]-フェニル C61 ブチリックアシッドドデシルエステル([6,6]-PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)などが挙げられる。 As the n-type organic material, a compound exhibiting n-type semiconductor characteristics among the compounds represented by the formula (1) may be used alone, or another n-type organic material may be used. Other n-type organic materials include, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4, 9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5 Oxazole derivatives such as (4-t-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND), 3- (4-Biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (T AZ) and other triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds (unsubstituted ones such as C60, C70, C76, C78, C82, C84, C90, C94, and [6,6] -phenyl C61 Butyric acid methyl ester ([6,6] -PCBM), [5,6] -phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] -phenyl C61 butyric acid hexyl Ester ([6,6] -PCBH), [6,6] -phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC70BM), phenyl C85 butyric acid Methyl ester (PC8 BM), etc.), carbon nanotubes (CNT), poly -p- phenylene vinylene-based polymer derivatives obtained by introducing cyano group into (CN-PPV) and the like.
  本発明の光起電力素子では、正極と有機半導体層の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ-p-フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(H2Pc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm~600nmの厚さが好ましく、より好ましくは30nm~200nmである。 In the photovoltaic device of the present invention, a hole transport layer may be provided between the positive electrode and the organic semiconductor layer. As the material for forming the hole transport layer, conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  また、本発明の光起電力素子は、有機半導体層と負極の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、上述のn型有機材料(NTCDA、PTCDA、PTCDI-C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN-PPVなど)のようにn型半導体特性を示す有機材料が好ましく用いられる。電子輸送層は5nm~600nmの厚さが好ましく、より好ましくは30nm~200nmである。 In the photovoltaic device of the present invention, an electron transport layer may be provided between the organic semiconductor layer and the negative electrode. The material for forming the electron transport layer is not particularly limited, but the above-described n-type organic materials (NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, CNTs) An organic material exhibiting n-type semiconductor characteristics such as CN-PPV) is preferably used. The thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  また、本発明の光起電力素子は、1つ以上の中間電極を介して2層以上の有機半導体層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1の有機半導体層/中間電極/第2の有機半導体層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧を向上させることができる。なお、正極と第1の有機半導体層の間、および、中間電極と第2の有機半導体層の間に上述の正孔輸送層を設けてもよく、第1の有機半導体層と中間電極の間、および、第2の有機半導体層と負極の間に上述の正孔輸送層を設けてもよい。 In addition, in the photovoltaic device of the present invention, two or more organic semiconductor layers may be stacked (tandemized) via one or more intermediate electrodes to form a series junction. For example, a laminated structure of substrate / positive electrode / first organic semiconductor layer / intermediate electrode / second organic semiconductor layer / negative electrode can be given. By laminating in this way, the open circuit voltage can be improved. Note that the hole transport layer described above may be provided between the positive electrode and the first organic semiconductor layer and between the intermediate electrode and the second organic semiconductor layer, and between the first organic semiconductor layer and the intermediate electrode. The hole transport layer described above may be provided between the second organic semiconductor layer and the negative electrode.
  このような積層構成の場合、有機半導体層の少なくとも1層がp型有機材料として本発明の有機半導体材料を含み、他の層には、短絡電流を低下させないために、このp型有機材料とはバンドギャップの異なるp型有機材料を含むことが好ましい。このようなp型有機材料としては、例えば上述のポリチオフェン系重合体、ポリ-p-フェニレンビニレン系重合体、ポリ-p-フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)などのフタロシアニン誘導体、ポルフィリン誘導体、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジフェニル-1,1'-ジアミン(TPD)、N,N'-ジナフチル-N,N'-ジフェニル-4,4'-ジフェニル-1,1'-ジアミン(NPD)などのトリアリールアミン誘導体、4,4'-ジ(カルバゾール-9-イル)ビフェニル(CBP)などのカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)などの低分子有機化合物が挙げられる。 In the case of such a laminated structure, at least one of the organic semiconductor layers includes the organic semiconductor material of the present invention as a p-type organic material, and the other layers include the p-type organic material so as not to reduce a short-circuit current. Preferably contains p-type organic materials having different band gaps. Examples of such p-type organic materials include the polythiophene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers described above. Conjugated polymers such as polymers, polyacetylene polymers, polythienylene vinylene polymers, phthalocyanine derivatives such as H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl-4 Triarylamine derivatives such as 4,4′-diphenyl-1,1′-diamine (NPD), 4,4′-di (carbazo Carbazole derivatives such as Le-9-yl) biphenyl (CBP), oligothiophene derivatives (terthiophene, quarter thiophene, sexithiophene, etc. oct thiophene) include low molecular weight organic compounds, such as.
  また、ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの、などが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。 In addition, the material for the intermediate electrode used here is preferably a material having high conductivity, for example, the above-mentioned metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, and transparent Metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals and laminates of the above metals, polyethylene Examples include dioxythiophene (PEDOT) and those obtained by adding polystyrene sulfonate (PSS) to PEDOT. The intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
  有機半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。 For organic semiconductor layer formation, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, dip pulling method, ink jet method, spray method, vacuum deposition method, etc. This method may be used, and the formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control.
 本発明の有機半導体材料は、高電荷移動度,溶媒可溶性、酸化安定性、良好な製膜性を有しており、これを使用した有機電子デバイスも高い特性を発揮する。本発明の有機半導体材料の特徴を生かせる具体的な有機電子デバイスとしては、例えば、有機電界効果トランジスタや有機薄膜太陽電池を示すことができ、さらには、これらの有機電子デバイスを組み込むことにより、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー、液晶ディスプレイ、電子ペーパーおよび有機ELパネル等のディスプレイに応用していくことができる。 The organic semiconductor material of the present invention has high charge mobility, solvent solubility, oxidation stability, and good film forming properties, and an organic electronic device using the material exhibits high characteristics. As specific organic electronic devices that can make use of the characteristics of the organic semiconductor material of the present invention, for example, organic field effect transistors and organic thin-film solar cells can be shown. Furthermore, by incorporating these organic electronic devices, information can be obtained. It can be applied to displays such as tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, and organic EL panels.
 以下、本発明につき、実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。なお、化合物番号は上記化学式に付した番号に対応する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is of course not limited to these examples, and can be implemented in various forms as long as the gist thereof is not exceeded. is there. The compound number corresponds to the number given to the above chemical formula.
合成例1
 上記式(A)にしたがって、化合物(100)を合成した。
Synthesis example 1
Compound (100) was synthesized according to the above formula (A).
  還流管、メカニカルスタラーを備え付けた2000 mL三口フラスコに、インドール(100 g、848 mmol)、2-クロロベンズアルデヒド(60 g、424 mmol)、メタノール1.2 Lを加え80℃で22時間攪拌した。室温まで冷却した後、溶媒留去を行った。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製を行うことで、白色固体3-[(2-クロロフェニル)(1H-インドリル)メチル]-1H-インドール85 g(A-1、237 mmol、収率 56%)を得た。
1H-NMR(DMSO-d6):δ7.65(s、2H)、6.80-7.30(m、12H)、6.42(s、2H)、6.17(s、1H)
Indole (100 g, 848 mmol), 2-chlorobenzaldehyde (60 g, 424 mmol), and 1.2 L of methanol were added to a 2000 mL three-necked flask equipped with a reflux tube and a mechanical stirrer, and the mixture was stirred at 80 ° C. for 22 hours. After cooling to room temperature, the solvent was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 85 g (A-1, 237 mmol, yield 56) of white solid 3-[(2-chlorophenyl) (1H-indolyl) methyl] -1H-indole. %).
1 H-NMR (DMSO-d 6 ): δ 7.65 (s, 2H), 6.80-7.30 (m, 12H), 6.42 (s, 2H), 6.17 (s, 1H)
 還流管を備え付けた500 mLの三口フラスコに、中間体(A-1) 80 g(223 mmol)、よう素2.23 g(8.92 mmol)、アセトニトリル360 mLを加え、7時間加熱還流した。室温まで冷却した後、ろ過を行い、白色固体の6,12-ビス(2-クロロフェニル)-5,11-ジハイドロインドロ[3, 2-b]カルバゾール17 g(A-2、36 mmol、収率16%)を得た。1H-NMR(DMSO-d6):δ10.81(s、2H)、6.77-7.28(m、16H) Intermediate (A-1) 80 g (223 mmol), iodine 2.23 g (8.92 mmol) and acetonitrile 360 mL were added to a 500 mL three-necked flask equipped with a reflux tube, and the mixture was heated to reflux for 7 hours. After cooling to room temperature, filtration was performed, and white solid 6,12-bis (2-chlorophenyl) -5,11-dihydroindolo [3,2-b] carbazole 17 g (A-2, 36 mmol, Yield 16%) was obtained. 1 H-NMR (DMSO-d 6 ): δ 10.81 (s, 2H), 6.77-7.28 (m, 16H)
 窒素雰囲気下、還流管を備え付けた500 mL三口フラスコに、中間体(A-2)15 g(31 mmol)、脱水DMF310 mL、38%テトラブチルアンモニウムヒドロキシドメタノール溶液(0.15 g, 0.23 mmol)、よう化銅を加え、120℃で攪拌した。室温まで冷却した後、溶媒留去を行った。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製を行うことで、淡緑色固体のジベンゾ[2, 3:5, 6]ピロリジノ[1, 7-bc]インドロ[1, 2, 3-lm]カルバゾール1.1 g(2.72 mmol、収率 8.8%)を得た。これは化合物(100)である。1H-NMR(DMSO-d6):δ7.80(d、4H)、7.33(d、4H)、6.93 (t、4H)、6.78 (t、4H) In a 500 mL three-necked flask equipped with a reflux tube under a nitrogen atmosphere, intermediate (A-2) 15 g (31 mmol), dehydrated DMF 310 mL, 38% tetrabutylammonium hydroxide methanol solution (0.15 g, 0.23 mmol), Copper iodide was added and stirred at 120 ° C. After cooling to room temperature, the solvent was distilled off. The obtained residue was purified by silica gel column chromatography to obtain dibenzo [2, 3: 5,6] pyrrolidino [1,7-bc] indolo [1,2,3-lm] carbazole 1.1 as a pale green solid. g (2.72 mmol, yield 8.8%) was obtained. This is compound (100). 1 H-NMR (DMSO-d 6 ): δ 7.80 (d, 4H), 7.33 (d, 4H), 6.93 (t, 4H), 6.78 (t, 4H)
実施例1
 膜厚150 nmのITO基板上に、合成例1で合成した化合物(100)を真空蒸着法により蒸着製膜し膜厚が約2.5 mmの有機半導体膜を形成した後、銀を真空蒸着法により170 nm蒸着製膜した。得られた素子をTOF法により、電荷移動度を評価した。その結果電界強度53.6 MV/cmにおいて、正孔移動度が2.6×10-2 cm2/Vsであった。
Example 1
A compound (100) synthesized in Synthesis Example 1 is deposited on a 150 nm thick ITO substrate by vacuum deposition to form an organic semiconductor film having a thickness of about 2.5 mm, and then silver is deposited by vacuum deposition. A 170 nm deposited film was formed. The charge mobility of the obtained device was evaluated by the TOF method. As a result, the hole mobility was 2.6 × 10 −2 cm 2 / Vs at an electric field strength of 53.6 MV / cm.
実施例2
  本発明の有機半導体材料の特性を、図1に示す構成の有機電界効果トランジスタを作成し、評価した。まず、約300nmの厚みの熱成長酸化ケイ素層を有するシリコンウェハ(nドープ)を、硫酸-過酸化水素水溶液で洗浄し、イソプロピルアルコールで煮沸した後、乾燥した。得られたシリコンウェハにフォトレジストをスピンコート後、フォトマスクを介して露光機により露光した。次いで、現像液で現像を行った後、イオン交換水で洗浄し、空気乾燥した。そのパターニングされたフォトレジストが塗布されたシリコンウェハ上に、真空蒸着法により、厚さ3nmのクロム、更にその上から50nmの金を蒸着した。そのシリコンウェハを、リムーバー溶液に浸すことでシリコンウェハ上にソース電極およびドレイン電極を作製した。ソース電極およびドレイン電極が作成されたシリコンウェハをアセトンで洗浄し、さらに、イソプロピルアルコールで煮沸し乾燥した有機電界効果トランジスタ基板を作製した。チャネル長はL=25μm、チャネル幅はW=15.6cmであった。
  次に、実施例1で得た化合物(100)を真空蒸着法により蒸着製膜し膜厚が50nmの有機半導体膜を基板上に形成した。このようにして図1に示す構造を有する有機電界効果トランジスタを得た。得られた有機電界効果トランジスタの特性を評価したところ、移動度;2.0×10-1cm2/Vsであった。
Example 2
The characteristics of the organic semiconductor material of the present invention were evaluated by preparing an organic field effect transistor having the configuration shown in FIG. First, a silicon wafer (n-doped) having a thermally grown silicon oxide layer having a thickness of about 300 nm was washed with a sulfuric acid-hydrogen peroxide aqueous solution, boiled with isopropyl alcohol, and then dried. The obtained silicon wafer was spin-coated with a photoresist, and then exposed with an exposure machine through a photomask. Subsequently, after developing with a developing solution, it wash | cleaned with ion-exchange water and air-dried. On the silicon wafer coated with the patterned photoresist, chromium having a thickness of 3 nm and further gold having a thickness of 50 nm were deposited by vacuum deposition. The silicon wafer was immersed in a remover solution to produce a source electrode and a drain electrode on the silicon wafer. The silicon wafer on which the source electrode and the drain electrode were formed was washed with acetone, then boiled with isopropyl alcohol and dried to produce an organic field effect transistor substrate. The channel length was L = 25 μm and the channel width was W = 15.6 cm.
Next, the compound (100) obtained in Example 1 was deposited by vacuum deposition to form an organic semiconductor film having a thickness of 50 nm on the substrate. In this way, an organic field effect transistor having the structure shown in FIG. 1 was obtained. When the characteristic of the obtained organic field effect transistor was evaluated, it was mobility; 2.0 * 10 < -1 > cm < 2 > / Vs.
比較例1
 実施例2において、化合物(100)の代わりに、ペンタセンを使用し、同様の操作を行い、有機電界効果トランジスタ素子を作製した。得られた素子を実施例2と同様に評価したところ、移動度;1.0×10-1cm2/Vsであった。
Comparative Example 1
In Example 2, instead of the compound (100), pentacene was used and the same operation was performed to produce an organic field effect transistor element. When the obtained device was evaluated in the same manner as in Example 2, the mobility was 1.0 × 10 −1 cm 2 / Vs.
  以上のように、実施例2と比較例1を比較することにより、式(1)で示される構造が、有機半導体として高い特性を有していることが明らかとなった。 As described above, comparing Example 2 and Comparative Example 1 revealed that the structure represented by Formula (1) has high characteristics as an organic semiconductor.
産業上の利用の可能性Industrial applicability
 一般式(1)で示される化合物は、分子構造全体に広がった共役構造を有しているため、その電子軌道も分子構造全体に広がっている。また、その立体構造は高い平面性を有するという特徴を有しているため、分子間のパッキングが密となり、その結果、一般式(1)で示される化合物を含む本発明の有機半導体材料は、高い電荷移動特性を有するものとなる。この有機半導体材料を使用した有機半導体デバイスには、例えば、有機電界効果トランジスタ、有機薄膜太陽電池、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー、液晶ディスプレイ、電子ペーパーおよび有機ELパネル等のディスプレイ等が考えられ、その技術的価値は大きいものである。 Since the compound represented by the general formula (1) has a conjugated structure extending over the entire molecular structure, the electron orbital also extends over the entire molecular structure. Moreover, since the three-dimensional structure has a characteristic of having high planarity, packing between molecules becomes dense, and as a result, the organic semiconductor material of the present invention containing the compound represented by the general formula (1) It has high charge transfer characteristics. Organic semiconductor devices using this organic semiconductor material include, for example, organic field effect transistors, organic thin film solar cells, information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, and organic EL A display such as a panel can be considered, and its technical value is great.

Claims (8)

  1.  下記一般式(1)で示される化合物を含有することを特徴とする有機半導体材料。
    Figure JPOXMLDOC01-appb-I000001
     式(1)中、Rはそれぞれ独立に水素、又は炭素数1~30の脂肪族炭化水素基を示し、nは1~4の整数を表す。
    An organic semiconductor material comprising a compound represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-I000001
    In formula (1), each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms, and n represents an integer of 1 to 4.
  2.  一般式(1)で示される化合物が、下記一般式(2)で示される化合物であることを特徴とする請求項1に記載の有機半導体材料。
    Figure JPOXMLDOC01-appb-I000002
     式(2)中、Rはそれぞれ独立に水素、又は炭素数1~30の脂肪族炭化水素基を示す。
    The organic semiconductor material according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-I000002
    In formula (2), each R independently represents hydrogen or an aliphatic hydrocarbon group having 1 to 30 carbon atoms.
  3.  請求項1または2に記載の有機半導体材料から形成されたことを特徴とする有機半導体膜。 An organic semiconductor film formed from the organic semiconductor material according to claim 1 or 2.
  4.  請求項1または2に記載の有機半導体材料の有機溶媒溶液を塗布・乾燥して形成されたことを特徴とする有機半導体膜。 An organic semiconductor film formed by applying and drying an organic solvent solution of the organic semiconductor material according to claim 1 or 2.
  5.  請求項1または2に記載の有機半導体材料を用いることを特徴とする有機電子デバイス。 An organic electronic device using the organic semiconductor material according to claim 1 or 2.
  6.   有機電子デバイスが、発光素子、有機薄膜トランジスタ素子又は光起電力素子のいずれかである請求項5に記載の有機電子デバイス。 The organic electronic device according to claim 5, wherein the organic electronic device is a light emitting element, an organic thin film transistor element, or a photovoltaic element.
  7.  有機電子デバイスが、有機薄膜トランジスタ素子又は光起電力素子のいずれかである請求項5に記載の有機電子デバイス。 The organic electronic device according to claim 5, wherein the organic electronic device is either an organic thin film transistor element or a photovoltaic element.
  8.  有機電子デバイスが、有機薄膜トランジスタ素子である請求項5に記載の有機電子デバイス。 The organic electronic device according to claim 5, wherein the organic electronic device is an organic thin film transistor element.
PCT/JP2012/081245 2011-12-08 2012-12-03 Organic semiconductor material and organic electronic devices WO2013084835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548219A JP5978228B2 (en) 2011-12-08 2012-12-03 Organic semiconductor materials and organic electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268919 2011-12-08
JP2011-268919 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084835A1 true WO2013084835A1 (en) 2013-06-13

Family

ID=48574202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081245 WO2013084835A1 (en) 2011-12-08 2012-12-03 Organic semiconductor material and organic electronic devices

Country Status (3)

Country Link
JP (1) JP5978228B2 (en)
TW (1) TWI516490B (en)
WO (1) WO2013084835A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929353B2 (en) 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
CN107987086A (en) * 2017-12-26 2018-05-04 长春海谱润斯科技有限公司 Fused ring compound and its organic luminescent device based on carbazole class formation
KR20220092768A (en) 2020-12-25 2022-07-04 삼성전자주식회사 Nitrogen containing condensed ring compound, fluorescent luminescent emitters, materials for organic electroluminescence devices, and organic electroluminescence devices
KR20220092799A (en) 2020-12-25 2022-07-04 삼성전자주식회사 Nitrogen containing condensed ring compound, fluorescent luminescent emitters, materials for organic electroluminescence devices, and organic electroluminescence devices
JP7364781B2 (en) 2019-09-09 2023-10-18 ヘレウス ネクセンソス ゲゼルシャフト ミット ベシュレンクテル ハフツング Flexible passive electronic components and their production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090036689A1 (en) * 2004-12-14 2009-02-05 Xerox Corporation Substituted indolocarbazoles
JP2009290091A (en) * 2008-05-30 2009-12-10 Idemitsu Kosan Co Ltd Material for organic thin-film solar cell and organic thin-film solar cell using the same
JP2010219302A (en) * 2009-03-17 2010-09-30 Mitsui Chemicals Inc Organic transistor
JP2011222974A (en) * 2010-03-23 2011-11-04 Nippon Steel Chem Co Ltd Organic semiconductor material and organic semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090036689A1 (en) * 2004-12-14 2009-02-05 Xerox Corporation Substituted indolocarbazoles
JP2009290091A (en) * 2008-05-30 2009-12-10 Idemitsu Kosan Co Ltd Material for organic thin-film solar cell and organic thin-film solar cell using the same
JP2010219302A (en) * 2009-03-17 2010-09-30 Mitsui Chemicals Inc Organic transistor
JP2011222974A (en) * 2010-03-23 2011-11-04 Nippon Steel Chem Co Ltd Organic semiconductor material and organic semiconductor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929353B2 (en) 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
CN107987086A (en) * 2017-12-26 2018-05-04 长春海谱润斯科技有限公司 Fused ring compound and its organic luminescent device based on carbazole class formation
JP7364781B2 (en) 2019-09-09 2023-10-18 ヘレウス ネクセンソス ゲゼルシャフト ミット ベシュレンクテル ハフツング Flexible passive electronic components and their production method
KR20220092768A (en) 2020-12-25 2022-07-04 삼성전자주식회사 Nitrogen containing condensed ring compound, fluorescent luminescent emitters, materials for organic electroluminescence devices, and organic electroluminescence devices
KR20220092799A (en) 2020-12-25 2022-07-04 삼성전자주식회사 Nitrogen containing condensed ring compound, fluorescent luminescent emitters, materials for organic electroluminescence devices, and organic electroluminescence devices

Also Published As

Publication number Publication date
TW201326177A (en) 2013-07-01
JPWO2013084835A1 (en) 2015-04-27
TWI516490B (en) 2016-01-11
JP5978228B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
KR102001624B1 (en) Nitrogen-containing aromatic compound, organic semiconductor material and organic electronic devices
JP6275118B2 (en) Aromatic heterocyclic compound, method for producing the same, organic semiconductor material, and organic semiconductor device
JP6622229B2 (en) N-fluoroalkyl substituted dibromonaphthalenediimides and their use as semiconductors
JP5978228B2 (en) Organic semiconductor materials and organic electronic devices
US20100171108A1 (en) Use of n,n&#39;-bis(1,1-dihydroperfluoro-c3-c5-alkyl)-perylene-3,4:9,10- tetracarboxylic diimides
JP6647106B2 (en) Organic semiconductor materials and organic semiconductor devices
US20140291659A1 (en) Dioxaanthanthrene compound, laminated structure and formation method thereof, and electronic device and manufacturing method thereof
JP6043226B2 (en) Aromatic heterocyclic compound and method for producing the same, organic semiconductor material, and organic semiconductor device
WO2014156771A1 (en) Organic thin-film solar cell
WO2015087875A1 (en) Novel condensed polycyclic aromatic compound and use thereof
WO2014050902A1 (en) Organic thin film solar cell
JP2009267092A (en) Material for photovoltaic device, and photovoltaic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854908

Country of ref document: EP

Kind code of ref document: A1