WO2013107130A1 - Light path switch and control method therefor - Google Patents

Light path switch and control method therefor Download PDF

Info

Publication number
WO2013107130A1
WO2013107130A1 PCT/CN2012/074912 CN2012074912W WO2013107130A1 WO 2013107130 A1 WO2013107130 A1 WO 2013107130A1 CN 2012074912 W CN2012074912 W CN 2012074912W WO 2013107130 A1 WO2013107130 A1 WO 2013107130A1
Authority
WO
WIPO (PCT)
Prior art keywords
docking
terminal
stationary
docking terminal
motion
Prior art date
Application number
PCT/CN2012/074912
Other languages
French (fr)
Chinese (zh)
Inventor
周建明
刘志琼
杨艳玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013107130A1 publication Critical patent/WO2013107130A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3504Rotating, tilting or pivoting the waveguides, or with the waveguides describing a curved path

Definitions

  • An embodiment of the present invention provides an optical path switch, including: a plurality of static docking terminals, located on a surface of the sphere and perpendicular to a surface of the sphere, for respectively fixing a butt end of one of the plurality of docking fibers; a terminal, located on a rotating device inside the ball, for fixing another butting end of the docking fiber; the rotating device is configured to rotate the moving docking terminal to be connected with the stationary docking terminal to which the docking fiber to be docked in the plurality of docking fibers belongs .
  • the rotating device comprises: a vertical rotating rod for rotating in a vertical plane, and a moving docking terminal is mounted on the end of the vertical rotating rod; a horizontal rotating rod, wherein the middle portion is movably connected with the middle portion of the vertical rotating rod, The vertical rotating rod is rotated in a horizontal plane.
  • a first motion docking terminal as a light transmitting end is mounted on a first end of the vertical rotating lever, and a second motion docking terminal as a light receiving end is mounted on a second end of the vertical rotating lever.
  • the docking fiber passes through the center of the vertical rotating rod and the horizontal rotating rod.
  • a plurality of static docking terminals are turned on and off, and the moving docking terminal is rotated in a horizontal plane until the longitude of the moving docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs is the same; according to the latitude displacement, The plurality of stationary docking terminals are turned on and off to drive the motion docking terminal to rotate in a vertical plane until the motion docking terminal is opposite to the stationary docking terminal to which the docking fiber to be docked belongs.

Abstract

A light path switch comprises a plurality of stationary butt terminals (22) which are positioned on the surface of a sphere, perpendicular to the surface of the sphere, and respectively used for fixing one butt end of one butt optical fibre of a plurality of butt optical fibres; and moving butt terminals (24) which are positioned on a rotating device (26) inside the sphere and used for fixing the other butt end of the butt optical fibre. The rotating device (26) is used for butting the moving butt terminals (24) with the stationary butt terminals (22) of the butt optical fibres needing butting in the plurality of butt optical fibres through rotation. Also provided is a control method for the light path switch. The light path switch has no insertion loss over the whole course and is convenient for expansion.

Description

光路交换机及其控制方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种光路交换机及其控制方法。 背景技术 光路交换器用于实现光纤与光纤的对接。 相关技术中, 大多采用反射镜和分光器件形成交换光路。 图 1是根据相关技术的 光交换连接的示意图, 如图 1所示, 这种设计存在分光器件插损严重、 难以扩容等缺 陷。 发明内容 本发明实施例提供了一种光路交换机及其控制方法, 以至少解决相关技术中的光 路交换机造成较大插损, 且不便于扩容的问题。 本发明实施例提供了一种光路交换机, 包括: 多个静止对接端子, 位于球体的表 面并垂直于球体的表面,分别用于固定多条对接光纤中的一条对接光纤的一个对接端; 运动对接端子, 位于球体的内部的旋转装置上, 用于固定对接光纤的另一个对接端; 旋转装置用于通过旋转实现运动对接端子与多条对接光纤中需要对接的对接光纤所属 的静止对接端子相对接。 旋转装置包括: 垂直旋转杆, 用于在竖直平面内进行旋转, 并且, 在垂直旋转杆 的端头部安装有运动对接端子; 水平旋转杆, 其中部与垂直旋转杆的中部活动连接, 用于实现垂直旋转杆在水平面内进行旋转。 在垂直旋转杆的第一端头部安装有作为光发送端的第一运动对接端子, 在垂直旋 转杆的第二端头部安装有作为光接收端的第二运动对接端子。 对接光纤穿过垂直旋转杆和水平旋转杆的中心。 旋转装置还包括: 固定基座, 位于水平旋转杆的上端, 用于固定水平旋转杆; 旋 转基座, 位于水平旋转杆的下端, 用于支撑水平旋转杆。 水平旋转杆与旋转基座安装有极性相同的电磁或永久磁极。 水平旋转杆包括锥形头, 固定基座和旋转基座均包括与锥形头对应的锥形槽。 静止对接端子与运动对接端子安装有极性相反的电磁感应头或静电感应头。 上述装置还包括: 锥形引导头, 位于运动对接端子的前端; 锥形引导槽, 位于静 止对接端子的前端, 用于与锥形引导头形成互锁。 上述装置还包括: 自复位装置, 位于运动对接端子上, 用于锥形引导头与锥形引 导槽的互锁的自由分离。 本发明实施例提供了一种光路交换机控制方法, 包括确定运动对接端子与需要对 接的对接光纤所属的静止对接端子之间的偏移方向和偏移量;根据偏移方向和偏移量, 对多个静止对接端子进行通断电, 带动运动对接端子与需要对接的对接光纤所属的静 止对接端子相对接。 根据偏移方向和偏移量, 对多个静止对接端子进行通断电, 带动运动对接端子与 需要对接的对接光纤所属的静止对接端子相对接包括: 根据偏移方向和偏移量, 确定 运动对接端子与需要对接的对接光纤所属的静止对接端子之间的经度位移和纬度位 移; 根据经度位移和纬度位移, 对多个静止对接端子进行通断电, 带动运动对接端子 与需要对接的对接光纤所属的静止对接端子相对接。 根据经度位移和纬度位移, 对多个静止对接端子进行通断电, 带动运动对接端子 与需要对接的对接光纤所属的静止对接端子相对接包括: 根据经度位移, 对多个静止 对接端子进行通断电, 带动运动对接端子在水平面内旋转, 直到运动对接端子与需要 对接的对接光纤所属的静止对接端子的经度相同; 根据纬度位移, 对多个静止对接端 子进行通断电, 带动运动对接端子在竖直平面内旋转, 直到运动对接端子与需要对接 的对接光纤所属的静止对接端子相对接。 根据经度位移和纬度位移, 对多个静止对接端子进行通断电, 带动运动对接端子 与需要对接的对接光纤所属的静止对接端子相对接包括: 根据纬度位移, 对多个静止 对接端子进行通断电, 带动运动对接端子在竖直平面内旋转, 直到运动对接端子与需 要对接的对接光纤所属的静止对接端子的纬度相同; 根据经度位移, 对多个静止对接 端子进行通断电, 带动运动对接端子在水平面内旋转, 直到运动对接端子与需要对接 的对接光纤所属的静止对接端子相对接。 运动对接端子的运动方式是步进运动方式。 本发明实施例通过在球体中采用旋转装置实现运动对接端子与多条对接光纤中需 要对接的对接光纤所属的静止对接端子相对接, 解决了相关技术中的光路交换机造成 较大插损, 且不便于扩容的问题, 可以达到全程无插损, 且方便交换容量的扩容的效 果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的光路交换机的示意图; 图 2是根据本发明实施例的光路交换机的示意图; 图 3是根据本发明优选实施例的光路交换机的示意图; 图 4是根据本发明优选实施例的光路交换机中的水平基座的示意图; 图 5 是根据本发明优选实施例的光路交换机中的椎体自锁定位对接接头的示意 图; 图 6是根据本发明实施例的光路交换机的控制方法的流程图; 图 7是根据本发明优选实施例的光路交换机的控制方法的流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种光路交换机, 图 2是根据本发明实施例的光路交换机的 示意图, 如图 2所示, 包括静止对接端子 22、 运动对接端子 24和旋转装置 26。 下面 对其结构进行详细描述。 多个静止对接端子 22, 位于球体的表面并垂直于球体的表面, 分别用于固定多条 对接光纤中的一条对接光纤的一个对接端; 运动对接端子 24, 位于球体的内部的旋转 装置 26上, 用于固定对接光纤的另一个对接端; 旋转装置 26用于通过旋转实现运动 对接端子 24与多条对接光纤中需要对接的对接光纤所属的静止对接端子 22相对接。 相关技术中, 光路交换机使用光耦合器件, 造成较大插损, 且不便于扩容。 在本 发明中, 通过在球体中采用旋转装置 26实现运动对接端子 24与多条对接光纤中需要 对接的对接光纤所属的静止对接端子 22相对接, 全程无插损且方便扩容。 为了更精准地实现运动对接端子 24与静止对接端子 22相对接,旋转装置 26可以 通过垂直旋转杆 2与水平旋转杆 3组合实现。 其中垂直旋转杆 2的端头部安装有运动 对接端子 24并可以带动该运动对接端子 24在竖直平面内进行 ±360度旋转,水平旋转 杆 3的中部与该垂直旋转杆 2的中部活动连接, 可以在沿自身轴线旋转的同时带动该 垂直旋转杆 2在水平面内进行 ±360度旋转。 需要说明的是, 该水平旋转杆 3可以是一 根穿过球体的水平旋转轴线 (水平旋转轴线即垂直于水平面并穿过球体中心的线) 的 杆, 从而保证该垂直旋转杆 2在水平面内的旋转更加灵活; 该水平旋转杆 3也可以由 多根对称于该水平旋转轴线的多根杆组成, 从而保证该垂直旋转杆在水平面内的旋转 更加稳定。 进而, 本发明还对上述通过垂直旋转杆 2与水平旋转杆 3组合实现的旋转装置 26 进行了多种改进, 下面进行详细描述。 图 3是根据本发明优选实施例的光路交换机的 示意图, 如图 3所示。 TECHNICAL FIELD The present invention relates to the field of communications, and in particular to an optical path switch and a control method thereof. BACKGROUND An optical path switch is used to implement interconnection between an optical fiber and an optical fiber. In the related art, a mirror and a light splitting device are mostly used to form an exchange optical path. FIG. 1 is a schematic diagram of an optical switching connection according to the related art. As shown in FIG. 1, such a design has defects such as serious insertion loss of a light splitting device and difficulty in expansion. SUMMARY OF THE INVENTION The embodiments of the present invention provide an optical path switch and a control method thereof, so as to solve at least the problem that the optical path switch in the related art causes a large insertion loss and is inconvenient to expand. An embodiment of the present invention provides an optical path switch, including: a plurality of static docking terminals, located on a surface of the sphere and perpendicular to a surface of the sphere, for respectively fixing a butt end of one of the plurality of docking fibers; a terminal, located on a rotating device inside the ball, for fixing another butting end of the docking fiber; the rotating device is configured to rotate the moving docking terminal to be connected with the stationary docking terminal to which the docking fiber to be docked in the plurality of docking fibers belongs . The rotating device comprises: a vertical rotating rod for rotating in a vertical plane, and a moving docking terminal is mounted on the end of the vertical rotating rod; a horizontal rotating rod, wherein the middle portion is movably connected with the middle portion of the vertical rotating rod, The vertical rotating rod is rotated in a horizontal plane. A first motion docking terminal as a light transmitting end is mounted on a first end of the vertical rotating lever, and a second motion docking terminal as a light receiving end is mounted on a second end of the vertical rotating lever. The docking fiber passes through the center of the vertical rotating rod and the horizontal rotating rod. The rotating device further includes: a fixed base located at an upper end of the horizontal rotating rod for fixing the horizontal rotating rod; and a rotating base located at a lower end of the horizontal rotating rod for supporting the horizontal rotating rod. The horizontal rotating rod and the rotating base are mounted with electromagnetic or permanent magnetic poles of the same polarity. The horizontal rotary lever includes a tapered head, and the fixed base and the rotary base each include a tapered groove corresponding to the tapered head. The static docking terminal and the sport docking terminal are mounted with electromagnetic induction heads or electrostatic induction heads of opposite polarities. The device further includes: a tapered guiding head at a front end of the movable docking terminal; and a tapered guiding groove at a front end of the stationary butting terminal for interlocking with the tapered guiding head. The apparatus further includes: a self-resetting device located on the movable docking terminal for free separation of the interlocking of the tapered guide head and the tapered guide groove. Embodiments of the present invention provide a method for controlling an optical path switch, including determining an offset direction and an offset between a motion docking terminal and a stationary docking terminal to which a docking fiber to be docked belongs; according to an offset direction and an offset, The plurality of stationary docking terminals are powered on and off, and the movable docking terminals are brought into contact with the stationary docking terminals to which the docking fibers to be docked belong. According to the offset direction and the offset, the plurality of static docking terminals are turned on and off, and the driving docking terminal is connected with the stationary docking terminal to which the docking fiber to be docked belongs to: the motion is determined according to the offset direction and the offset. Longitude displacement and latitude displacement between the docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs; according to the longitude displacement and the latitude displacement, the plurality of stationary docking terminals are turned on and off, and the moving docking terminal and the docking fiber to be docked are driven. The associated stationary docking terminals are opposite each other. According to the longitude displacement and the latitude displacement, the plurality of stationary docking terminals are turned on and off, and the driving docking terminal is connected with the stationary docking terminal to which the docking fiber to be docked belongs to: the plurality of stationary docking terminals are turned on and off according to the longitude displacement. Electric, driving the moving docking terminal to rotate in the horizontal plane until the moving docking terminal has the same longitude as the stationary docking terminal to which the docking fiber to be docked belongs; according to the latitude displacement, the plurality of stationary docking terminals are turned on and off, and the moving docking terminal is driven Rotate in a vertical plane until the sport docking terminal is mated with the stationary docking terminal to which the docking fiber to be docked belongs. According to the longitude displacement and the latitude displacement, the plurality of stationary docking terminals are turned on and off, and the driving docking terminal is connected with the stationary docking terminal to which the butt fiber to be docked belongs to: the plurality of stationary docking terminals are turned on and off according to the latitude displacement Electric, driving the moving docking terminal to rotate in a vertical plane until the moving docking terminal has the same latitude as the stationary docking terminal to which the docking fiber to be docked belongs; according to the longitude displacement, the plurality of stationary docking terminals are turned on and off to drive the motion docking The terminal rotates in a horizontal plane until the sport docking terminal is mated with the stationary docking terminal to which the docking fiber to be docked belongs. The movement of the sports docking terminal is a stepping motion mode. The embodiment of the present invention solves the problem that the optical path switch in the related art causes a large insertion loss by using a rotating device in the ball to realize that the moving docking terminal is connected with the static docking terminal to which the docking fiber that needs to be docked in the plurality of docking fibers is connected, and The problem of easy expansion can achieve no insertion loss in the whole process, and it is convenient to expand the capacity of the exchange capacity. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of an optical path switch according to the related art; FIG. 2 is a schematic diagram of an optical path switch according to an embodiment of the present invention; FIG. 3 is a schematic diagram of an optical path switch according to a preferred embodiment of the present invention; FIG. 5 is a schematic diagram of a vertebral body self-locking docking joint in an optical path switch in accordance with a preferred embodiment of the present invention; FIG. 6 is an optical path in accordance with an embodiment of the present invention. Flowchart of a control method of a switch; Figure 7 is a flow chart of a method of controlling an optical path switch in accordance with a preferred embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. An embodiment of the present invention provides an optical path switch. FIG. 2 is a schematic diagram of an optical path switch according to an embodiment of the present invention. As shown in FIG. 2, the present invention includes a stationary docking terminal 22, a motion docking terminal 24, and a rotating device 26. The structure is described in detail below. a plurality of stationary docking terminals 22, located on the surface of the sphere and perpendicular to the surface of the sphere, for respectively securing a butt end of one of the plurality of docking fibers; the motion docking terminal 24, located on the rotating device 26 inside the sphere The other docking end for fixing the docking fiber; the rotating device 26 is configured to rotate the moving docking terminal 24 to abut the stationary docking terminal 22 to which the docking fiber to be docked in the plurality of docking fibers belongs. In the related art, the optical path switch uses an optical coupling device, which causes a large insertion loss and is inconvenient to expand. In the present invention, the moving docking terminal 24 is connected to the stationary docking terminal 22 to which the docking fiber to be docked in the plurality of docking fibers is connected by using the rotating device 26 in the ball, and the whole process has no insertion loss and is convenient for expansion. In order to more accurately realize that the sport docking terminal 24 is in contact with the stationary docking terminal 22, the rotating device 26 can be realized by a combination of the vertical rotating lever 2 and the horizontal rotating lever 3. Wherein the end portion of the vertical rotating rod 2 is mounted with the motion docking terminal 24 and can drive the motion docking terminal 24 to rotate ±360 degrees in a vertical plane, and the middle portion of the horizontal rotating rod 3 is movably connected with the middle portion of the vertical rotating rod 2 The vertical rotating rod 2 can be rotated in the horizontal plane by ±360 degrees while rotating along its own axis. It should be noted that the horizontal rotating rod 3 may be a rod passing through a horizontal rotation axis of the sphere (a horizontal rotation axis, that is, a line perpendicular to the horizontal plane and passing through the center of the sphere), thereby ensuring that the vertical rotating rod 2 is in the horizontal plane. The rotation is more flexible; the horizontal rotating rod 3 can also be composed of a plurality of rods symmetrical to the horizontal axis of rotation, thereby ensuring that the rotation of the vertical rotating rod in the horizontal plane is more stable. Further, the present invention also provides various improvements to the above-described rotating device 26 realized by the combination of the vertical rotating lever 2 and the horizontal rotating lever 3, which will be described in detail below. 3 is a schematic diagram of an optical path switch, as shown in FIG. 3, in accordance with a preferred embodiment of the present invention.
( 1 ) 与垂直旋转杆相关的改进 (1) Improvements related to vertical rotary bars
A、 垂直旋转杆 2两端采用等长设计, 从而保证垂直旋转杆 2在水平面内的旋转 更加稳定。 A. The vertical rotating rod 2 is of equal length design at both ends to ensure the rotation of the vertical rotating rod 2 in the horizontal plane is more stable.
B、 为了减少本光路交换机采用的交换体的数量, 可以将垂直旋转杆 2两端安装 的运动对接端子 24分别作为光发送端和光接收端, 并将静止对接端子 22与该运动对 接端子 24相对应的组合安装,从而保证同一垂直旋转杆的两端对准的是同一组光收发 端子, 即如果垂直旋转杆 2的第一端对准的是光发送端, 则垂直旋转杆 2的第二端对 准的是光接收端。 通过这样的 设计, 可以在同一球体内部实现收发同时定位, 减少控制电路的复杂性, 保证本 光路交换机的可靠性 (交汇对接的失误概率降低 50%)。 B. In order to reduce the number of switching bodies used by the optical switch, the moving docking terminal 24 installed at both ends of the vertical rotating rod 2 can be used as the optical transmitting end and the optical receiving end, respectively, and the stationary docking terminal 22 and the moving docking terminal 24 are respectively Corresponding combination installation, so that the two ends of the same vertical rotating rod are aligned with the same group of optical transceiver terminals, that is, if the first end of the vertical rotating rod 2 is aligned with the light transmitting end, the second of the vertical rotating rod 2 The end is aligned with the light receiving end. Through such a design, simultaneous transmission and reception can be realized within the same sphere, which reduces the complexity of the control circuit and ensures the reliability of the optical path switch (the probability of error in the convergence of the intersection is reduced by 50%).
C、 为了更好的实现全方位转动, 对接光纤安装在运动对接端子 24的中轴线上, 穿过垂直旋转杆 2和水平旋转杆 3的中心, 引出球体与外界相连。 C. In order to achieve better all-round rotation, the docking fiber is mounted on the central axis of the moving docking terminal 24, passes through the center of the vertical rotating rod 2 and the horizontal rotating rod 3, and leads the sphere to be connected to the outside.
(2) 与水平旋转杆相关的改进 A、 水平旋转杆 3的上端与安装在球体顶部的固定基座 14活动连接, 水平旋转杆 3的下端与安装在球体底部的旋转基座 13活动连接, 两个基座的中轴连线穿过球体中 心点, 从而可以实现水平旋转杆 3在旋转基座内自由旋转。 (2) Improvements related to horizontal rotary bars A. The upper end of the horizontal rotating rod 3 is movably connected with the fixed base 14 mounted on the top of the sphere, and the lower end of the horizontal rotating rod 3 is movably connected with the rotating base 13 mounted on the bottom of the sphere, and the central axes of the two bases are connected. Passing through the center point of the sphere, it is possible to freely rotate the horizontal rotating rod 3 in the rotating base.
B、 在水平旋转杆 3的下端 32与旋转基座 13安装有极性相同的电磁或永久磁极, 通过互相排斥, 从而抵消水平旋转杆 3的重力作用, 实现水平旋转杆 3的悬浮效果, 减小水平旋转杆 3相对旋转基座 13旋转的摩擦力。 B. The electromagnetic or permanent magnetic poles of the same polarity are mounted on the lower end 32 of the horizontal rotating rod 3 and the rotating base 13 to cancel the gravity of the horizontal rotating rod 3 by mutually repelling, thereby realizing the suspension effect of the horizontal rotating rod 3, and reducing The frictional force of the small horizontal rotating lever 3 relative to the rotation of the base 13 is rotated.
C、 图 4 是根据本发明优选实施例的光路交换机中的水平基座的示意图, 如图 4 所示, 水平旋转杆 3的两端采用锥形设计, 即水平旋转杆 3安装有锥形头, 固定基座 14和旋转基座 13均安装有与锥形头对应的锥形槽, 从而减少水平旋转杆 3与基座的 接触面积, 保证水平旋转杆 3能在基座内自由可靠地旋转。 C. FIG. 4 is a schematic diagram of a horizontal base in an optical circuit switch according to a preferred embodiment of the present invention. As shown in FIG. 4, both ends of the horizontal rotating rod 3 are tapered, that is, the horizontal rotating rod 3 is mounted with a tapered head. The fixed base 14 and the rotating base 13 are each mounted with a tapered groove corresponding to the tapered head, thereby reducing the contact area of the horizontal rotating rod 3 with the base, and ensuring that the horizontal rotating rod 3 can rotate freely and reliably within the base. .
( 3 ) 与运动对接端子 24和静止对接端子 22的对接相关的改进 (3) Improvements related to the docking of the sport docking terminal 24 and the stationary docking terminal 22
A、 为了实现运动对接端子 24和静止对接端子 22的安全自由对接, 静止对接端 子 22与运动对接端子 24安装有极性相反的电磁感应头 242或静电感应头 242。 工作 时, 利用同性相斥异性向吸的原理, 实现对接端子的交汇对接。 B、 为了达到精准地对接, 降低对接实现成本, 运动对接头与静止对接头采用椎 体性互锁设计, 图 5是根据本发明优选实施例的光路交换机中的椎体自锁定位对接接 头的示意图, 如图 5所示, 即在运动对接端子 24的前端采用锥形引导头 241, 在静止 对接端子 22的前端采用能与锥形引导头 241形成互锁的锥形引导槽 221, 从而保证在 引力作用下, 使位移偏移在可控范围内, 实现精准对接及互锁。 C、 运动对接端子 24上还安装有用于使得锥形引导头 241与锥形引导槽 221的互 锁能够自由分离的自复位装置 243, 从而方便运动对接端子 24和静止对接端子 22之 间的解锁。 本发明实施例还提供了一种光路交换机的控制方法, 该方法可以用于控制上述光 路交换机。 图 6是根据本发明实施例的光路交换机的控制方法的流程图, 如图 6所示, 包括如下的步骤 S602至步骤 S604。 步骤 S602,确定运动对接端子与需要对接的对接光纤所属的静止对接端子之间的 偏移方向和偏移量。 步骤 S604, 根据偏移方向和偏移量, 对多个静止对接端子进行通断电, 带动运动 对接端子与需要对接的对接光纤所属的静止对接端子相对接。 本发明实施例通过对多个静止对接端子进行通断电, 带动运动对接端子与需要对 接的对接光纤所属的静止对接端子相对接,可以控制运动对接端子的运动平稳、可靠。 优选地, 在步骤 S604中, 可以先根据偏移方向和偏移量, 确定运动对接端子与需 要对接的对接光纤所属的静止对接端子之间的经度位移和纬度位移, 再根据经度位移 和纬度位移, 对多个静止对接端子进行通断电, 带动运动对接端子与需要对接的对接 光纤所属的静止对接端子相对接。 本优选实施例可以应用于上述光路交换机中, 特别 地, 可以应用于上述采用了由垂直旋转杆与水平旋转杆组合而成的旋转装置的光路交 换机中, 在该光路交换机中, 采用本优选实施例中的经度位移控制水平旋转杆的旋转 方向和旋转量,采用本优选实施例中的纬度位移控制垂直旋转杆的旋转方向和旋转量, 可以控制运动对接端子的运动精准、 可靠。 下面通过实例一和实例二详细描述如何将本经纬度控制方法应用于上述采用了由 垂直旋转杆与水平旋转杆组合而成的旋转装置的光路交换机中。 实例一, 根据经度位移, 对多个静止对接端子进行通断电, 带动运动对接端子在 水平面内旋转, 直到运动对接端子与需要对接的对接光纤所属的静止对接端子的经度 相同; 根据纬度位移, 对多个静止对接端子进行通断电, 带动运动对接端子在竖直平 面内旋转, 直到运动对接端子与需要对接的对接光纤所属的静止对接端子相对接。 实例二, 根据经度位移和纬度位移, 对多个静止对接端子进行通断电, 带动运动 对接端子与需要对接的对接光纤所属的静止对接端子相对接包括: 根据纬度位移, 对 多个静止对接端子进行通断电, 带动运动对接端子在竖直平面内旋转, 直到运动对接 端子与需要对接的对接光纤所属的静止对接端子的纬度相同; 根据经度位移, 对多个 静止对接端子进行通断电, 带动运动对接端子在水平面内旋转, 直到运动对接端子与 需要对接的对接光纤所属的静止对接端子相对接。 需要说明的是, 为了保证运动对接端子的可靠运动, 采用步进电磁或步进静电原 理, 对若干静止对接端子电磁电路或静电电路进行控制, 通过对静止对接端子的电路 步进式控制, 带动运动对接端子持续稳定地运动, 从而达到精确的位置定位。 为了详细说明上述光路交换机的控制方法, 本发明还提供了一个描述其控制过程 的优选实施例。 图 7是根据本发明优选实施例的光路交换机的控制方法的流程图, 如图 7所示, 包括如下的步骤 S702至步骤 S724。 步骤 S702, 进行初始化。 步骤 S704, 判断是否有请求。 如果是, 执行步骤 S706; 如果否, 重复步骤 S704。 步骤 S706, 查询目前位置的经纬度。 需要说明的是, 光路交换机可以采用编码 / 译码技术, 将所有静止对接端子按经纬度定位, 将经纬度信息编码, 编码信息与静止 对接端子唯一对应, 当控制电路接收到交换指令之后, 会以其对应的经纬度地址信息 寻址。 步骤 S708, 查询需求定位经纬度。 步骤 S710, 计算初始与预设经纬度相对差。 步骤 S712, 计算经度位移路径。 步骤 S714, 计算经度位移路径。 步骤 S716, 纬度位置寻址。 步骤 S718, 经度位置寻址。 步骤 S720, 进行位置校验。 步骤 S722,判断位置是否正确,如果是,执行步骤 S724;如果否,执行步骤 S704。 步骤 S724, 结束。 另外, 为了进一步保证光路交换机的可靠性, 本发明还可以对经纬度位移轨迹进 行跟踪, 其跟踪原理是, 通过光信号接收端的接收光回馈电路, 实时监测运动对接端 子的运动轨迹, 一旦出现运动偏差, 则通过回馈运动对接端子的运动轨迹, 重新计算 位移变量, 对运动对接端子位移进行校正。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 综上所述, 根据本发明的上述实施例, 提供了一种光路交换机及其控制方法。 通 过在球体中采用旋转装置实现运动对接端子与多条对接光纤中需要对接的对接光纤所 属的静止对接端子相对接, 从而全程无插损并方便扩容。 工业实用性 本发明技术方案具备工业实用性。 本发明实施例通过在球体中采用旋转装置实现 运动对接端子与多条对接光纤中需要对接的对接光纤所属的静止对接端子相对接, 从 而全程无插损并方便扩容。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 A. In order to realize the safe and free docking of the sports docking terminal 24 and the stationary docking terminal 22, the stationary butting terminal 22 and the moving docking terminal 24 are mounted with the electromagnetic induction head 242 or the electrostatic induction head 242 of opposite polarity. When working, the principle of the same-sex repelling opposite sex is used to achieve the intersection of the docking terminals. B. In order to achieve accurate docking and reduce docking implementation cost, the motion pair joint and the static joint joint adopt a vertebral interlocking design, and FIG. 5 is a vertebral body self-locking docking joint in the optical path switch according to a preferred embodiment of the present invention. As shown in FIG. 5, a tapered guiding head 241 is used at the front end of the moving butt terminal 24, and a tapered guiding groove 221 capable of interlocking with the tapered guiding head 241 is used at the front end of the stationary butting terminal 22, thereby ensuring Under the action of gravity, the displacement is shifted within a controllable range to achieve precise docking and interlocking. C. The self-resetting device 243 for freely separating the interlocking of the tapered guiding head 241 and the tapered guiding groove 221 is also mounted on the moving docking terminal 24, thereby facilitating the unlocking between the movable docking terminal 24 and the stationary docking terminal 22. . The embodiment of the invention further provides a method for controlling an optical path switch, which can be used to control the optical path switch. FIG. 6 is a flowchart of a method for controlling an optical path switch according to an embodiment of the present invention. As shown in FIG. 6, the following steps S602 to S604 are included. Step S602, determining an offset direction and an offset between the motion docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs. Step S604, according to the offset direction and the offset amount, the plurality of static docking terminals are turned on and off, and the motion docking terminal is brought into contact with the stationary docking terminal to which the docking fiber to be docked belongs. In the embodiment of the invention, by rotating and disconnecting a plurality of stationary docking terminals, the movable docking terminal is connected with the stationary docking terminal to which the docking fiber to be docked belongs, so that the movement of the motion docking terminal can be controlled to be stable and reliable. Preferably, in step S604, the longitude displacement and the latitude displacement between the motion docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs may be determined according to the offset direction and the offset amount, and then according to the longitude displacement and the latitude displacement. And turning on and off a plurality of static docking terminals, and driving the motion docking terminal to abut the stationary docking terminal to which the docking fiber to be docked belongs. The preferred embodiment can be applied to the above-mentioned optical path switch, and in particular, can be applied to the above-mentioned optical path switch using a rotating device in which a vertical rotating lever and a horizontal rotating lever are combined, and in the optical path switch, the preferred implementation is adopted. The longitude displacement in the example controls the rotation direction and the rotation amount of the horizontal rotating rod, and the latitude displacement in the preferred embodiment controls the rotation direction and the rotation amount of the vertical rotating rod, so that the movement of the motion docking terminal can be controlled accurately and reliably. Next, how to apply the present latitude and longitude control method to the above-mentioned optical path switch using a rotating device in which a vertical rotating lever and a horizontal rotating lever are combined will be described in detail by way of Example 1 and Example 2. In the first example, according to the longitude displacement, a plurality of static docking terminals are turned on and off, and the moving docking terminal is rotated in a horizontal plane until the longitude of the moving docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs is the same; according to the latitude displacement, The plurality of stationary docking terminals are turned on and off to drive the motion docking terminal to rotate in a vertical plane until the motion docking terminal is opposite to the stationary docking terminal to which the docking fiber to be docked belongs. In the second example, according to the longitude displacement and the latitude displacement, the plurality of stationary docking terminals are turned on and off, and the driving docking terminal is connected with the stationary docking terminal to which the docking fiber to be docked belongs to: a plurality of stationary docking terminals according to the latitude displacement Turning on and off, driving the motion docking terminal to rotate in a vertical plane until the moving docking terminal has the same latitude as the stationary docking terminal to which the docking fiber to be docked belongs; according to the longitude displacement, the plurality of stationary docking terminals are turned on and off, The motion docking terminal is rotated in a horizontal plane until the motion docking terminal is opposite to the stationary docking terminal to which the docking fiber to be docked belongs. It should be noted that, in order to ensure the reliable movement of the moving docking terminal, the electromagnetic circuit or the electrostatic circuit of several stationary docking terminals is controlled by the principle of stepping electromagnetic or stepping static electricity, and the stepping control of the circuit of the stationary docking terminal is adopted. The sport docking terminal continues to move steadily to achieve precise positional positioning. In order to explain in detail the control method of the above optical path switch, the present invention also provides a preferred embodiment describing the control process thereof. FIG. 7 is a flowchart of a method for controlling an optical path switch according to a preferred embodiment of the present invention. As shown in FIG. 7, the following steps S702 to S724 are included. In step S702, initialization is performed. Step S704, determining whether there is a request. If yes, go to step S706; if no, repeat step S704. Step S706, querying the latitude and longitude of the current location. It should be noted that the optical path switch may adopt an encoding/decoding technology to position all the stationary docking terminals by latitude and longitude, encode the latitude and longitude information, and the encoded information uniquely corresponds to the stationary docking terminal. When the control circuit receives the exchange command, it will use it. Corresponding latitude and longitude address information is addressed. Step S708, querying the demand location latitude and longitude. In step S710, the calculation is relatively inferior to the preset latitude and longitude. Step S712, calculating a longitude displacement path. Step S714, calculating a longitude displacement path. Step S716, the latitude position is addressed. Step S718, the longitude position is addressed. In step S720, position verification is performed. In step S722, it is determined whether the location is correct. If yes, step S724 is performed; if no, step S704 is performed. Step S724, ending. In addition, in order to further ensure the reliability of the optical path switch, the present invention can also track the latitude and longitude displacement trajectory. The tracking principle is that the trajectory of the moving docking terminal is monitored in real time through the receiving optical feedback circuit of the optical signal receiving end, once the motion deviation occurs. Then, by retrieving the motion track of the motion docking terminal, the displacement variable is recalculated, and the displacement of the moving butt terminal is corrected. It should be noted that the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein. In summary, according to the above embodiments of the present invention, an optical path switch and a control method thereof are provided. By using a rotating device in the ball, the moving docking terminal is connected with the stationary docking terminal to which the docking fiber that needs to be docked in the plurality of docking fibers belongs, so that the entire process has no insertion loss and is convenient for expansion. Industrial Applicability The technical solution of the present invention has industrial applicability. In the embodiment of the present invention, the moving docking terminal is connected with the stationary docking terminal to which the docking optical fiber to be docked in the plurality of docking fibers is connected by using the rotating device in the ball, so that the whole process has no insertion loss and is convenient for expansion. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claims
1. 一种光路交换机, 包括: 1. An optical path switch, comprising:
多个静止对接端子, 位于球体的表面并垂直于所述球体的表面, 分别用于 固定多条对接光纤中的一条对接光纤的一个对接端;  a plurality of stationary docking terminals, located on a surface of the sphere and perpendicular to a surface of the sphere, for respectively fixing a butt end of one of the plurality of docking fibers;
运动对接端子, 位于所述球体的内部的旋转装置上, 用于固定对接光纤的 另一个对接端;  a sports docking terminal, located on a rotating device inside the ball, for fixing another butt end of the docking fiber;
所述旋转装置用于通过旋转实现所述运动对接端子与所述多条对接光纤中 需要对接的对接光纤所属的静止对接端子相对接。  The rotating device is configured to rotate the docking terminal to abut the stationary docking terminal to which the docking fiber to be docked in the plurality of docking fibers belongs.
2. 根据权利要求 1所述的光路交换机, 其中, 所述旋转装置包括: 2. The optical circuit switch according to claim 1, wherein the rotating device comprises:
垂直旋转杆, 用于在竖直平面内进行旋转, 并且, 在所述垂直旋转杆的端 头部安装有所述运动对接端子;  a vertical rotating rod for rotating in a vertical plane, and the moving docking terminal is mounted at an end of the vertical rotating rod;
水平旋转杆, 其中部与所述垂直旋转杆的中部活动连接, 用于实现所述垂 直旋转杆在水平面内进行旋转。  a horizontal rotating rod, wherein a middle portion is movably coupled to a middle portion of the vertical rotating rod for rotating the vertical rotating rod in a horizontal plane.
3. 根据权利要求 2所述的光路交换机, 其中, 在所述垂直旋转杆的第一端头部安 装有作为光发送端的第一运动对接端子, 在所述垂直旋转杆的第二端头部安装 有作为光接收端的第二运动对接端子。 3. The optical circuit switch according to claim 2, wherein a first motion docking terminal as a light transmitting end is mounted on a first end of the vertical rotating lever, and a second end of the vertical rotating lever A second motion docking terminal as a light receiving end is mounted.
4. 根据权利要求 2所述的光路交换机, 其中, 所述对接光纤穿过所述垂直旋转杆 和所述水平旋转杆的中心。 4. The optical circuit switch of claim 2, wherein the docking fiber passes through a center of the vertical rotating lever and the horizontal rotating lever.
5. 根据权利要求 2所述的光路交换机, 其中, 所述旋转装置还包括: The optical path switch according to claim 2, wherein the rotating device further comprises:
固定基座, 位于所述水平旋转杆的上端, 用于固定所述水平旋转杆; 旋转基座, 位于所述水平旋转杆的下端, 用于支撑所述水平旋转杆。  a fixed base at an upper end of the horizontal rotating rod for fixing the horizontal rotating rod; a rotating base located at a lower end of the horizontal rotating rod for supporting the horizontal rotating rod.
6. 根据权利要求 5所述的光路交换机, 其中, 所述水平旋转杆与所述旋转基座安 装有极性相同的电磁或永久磁极。 根据权利要求 5所述的光路交换机, 其中, 所述水平旋转杆包括锥形头, 所述 固定基座和所述旋转基座均包括与所述锥形头对应的锥形槽。 6. The optical circuit switch according to claim 5, wherein the horizontal rotating lever and the rotating base are mounted with electromagnetic or permanent magnetic poles of the same polarity. The optical circuit switch according to claim 5, wherein said horizontal rotating lever comprises a tapered head, and said fixed base and said rotating base each include a tapered groove corresponding to said tapered head.
8. 根据权利要求 1至 7中任一项所述的光路交换机, 其中, 所述静止对接端子与 所述运动对接端子安装有极性相反的电磁感应头或静电感应头。 The optical circuit switch according to any one of claims 1 to 7, wherein the stationary docking terminal and the motion docking terminal are mounted with electromagnetic induction heads or electrostatic induction heads of opposite polarities.
9. 根据权利要求 1至 7中任一项所述的光路交换机, 其中, 还包括: 锥形引导头, 位于所述运动对接端子的前端; The optical path switch according to any one of claims 1 to 7, further comprising: a tapered guiding head located at a front end of the moving docking terminal;
锥形引导槽, 位于所述静止对接端子的前端, 用于与所述锥形引导头形成 互锁。  A tapered guiding groove is located at a front end of the stationary docking terminal for interlocking with the tapered guiding head.
10. 根据权利要求 9所述的光路交换机, 其中, 还包括: 自复位装置, 位于所述运 动对接端子上, 用于所述锥形引导头与所述锥形引导槽的互锁的自由分离。 10. The optical circuit switch according to claim 9, further comprising: a self-reset device located on the moving docking terminal for free separation of the interlocking of the tapered guiding head and the tapered guiding slot .
11. 一种权利要求 1至 10中任一项所述的光路交换机的控制方法, 包括: 确定运动对接端子与需要对接的对接光纤所属的静止对接端子之间的偏移 方向和偏移量; 11. The method of controlling an optical circuit switch according to any one of claims 1 to 10, comprising: determining an offset direction and an offset between a motion docking terminal and a stationary docking terminal to which the docking fiber to be docked belongs;
根据所述偏移方向和所述偏移量, 对多个静止对接端子进行通断电, 带动 所述运动对接端子与所述需要对接的对接光纤所属的静止对接端子相对接。  And a plurality of stationary docking terminals are turned on and off according to the offset direction and the offset amount, and the motion docking terminal is brought into contact with the stationary docking terminal to which the docking fiber to be docked belongs.
12. 根据权利要求 11所述的方法, 其中, 根据所述偏移方向和所述偏移量, 对多个 静止对接端子进行通断电, 带动所述运动对接端子与所述需要对接的对接光纤 所属的静止对接端子相对接包括: 12. The method according to claim 11, wherein, according to the offset direction and the offset amount, a plurality of static docking terminals are turned on and off, and the docking of the motion docking terminal and the docking needs to be docked The docking of the stationary docking terminals to which the optical fibers belong includes:
根据所述偏移方向和所述偏移量, 确定所述运动对接端子与所述需要对接 的对接光纤所属的静止对接端子之间的经度位移和纬度位移;  Determining, according to the offset direction and the offset, a longitude displacement and a latitude displacement between the motion docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs;
根据所述经度位移和所述纬度位移, 对多个静止对接端子进行通断电, 带 动所述运动对接端子与所述需要对接的对接光纤所属的静止对接端子相对接。  And a plurality of stationary docking terminals are turned on and off according to the longitude displacement and the latitude displacement, and the moving docking terminal is brought into contact with the stationary docking terminal to which the docking optical fiber to be docked belongs.
13. 根据权利要求 12所述的方法, 其中, 根据所述经度位移和所述纬度位移, 对多 个静止对接端子进行通断电, 带动所述运动对接端子与所述需要对接的对接光 纤所属的静止对接端子相对接包括: The method according to claim 12, wherein, according to the longitude displacement and the latitude displacement, a plurality of static docking terminals are turned on and off, and the moving docking terminal and the docking optical fiber to be docked are driven The docking of the stationary docking terminals includes:
根据所述经度位移, 对多个静止对接端子进行通断电, 带动所述运动对接 端子在水平面内旋转, 直到所述运动对接端子与所述需要对接的对接光纤所属 的静止对接端子的经度相同;  Turning on and off the plurality of stationary docking terminals according to the longitude displacement, and driving the motion docking terminal to rotate in a horizontal plane until the longitude of the stationary docking terminal to which the docking terminal and the docking fiber to be docked belong ;
根据所述纬度位移, 对多个静止对接端子进行通断电, 带动所述运动对接 端子在竖直平面内旋转, 直到所述运动对接端子与所述需要对接的对接光纤所 属的静止对接端子相对接。 Disconnecting the plurality of stationary docking terminals according to the latitude displacement, and driving the motion docking terminal to rotate in a vertical plane until the motion docking terminal is opposite to the stationary docking terminal to which the docking fiber to be docked belongs Pick up.
14. 根据权利要求 12所述的方法, 其中, 根据所述经度位移和所述纬度位移, 对多 个静止对接端子进行通断电, 带动所述运动对接端子与所述需要对接的对接光 纤所属的静止对接端子相对接包括: The method according to claim 12, wherein, according to the longitude displacement and the latitude displacement, a plurality of static docking terminals are turned on and off, and the moving docking terminal and the docking optical fiber to be docked are driven The docking of the stationary docking terminals includes:
根据所述纬度位移, 对多个静止对接端子进行通断电, 带动所述运动对接 端子在竖直平面内旋转, 直到所述运动对接端子与所述需要对接的对接光纤所 属的静止对接端子的纬度相同;  Disconnecting a plurality of stationary docking terminals according to the latitude displacement, and driving the motion docking terminal to rotate in a vertical plane until the motion docking terminal and the stationary docking terminal to which the docking fiber to be docked belongs Same latitude;
根据所述经度位移, 对多个静止对接端子进行通断电, 带动所述运动对接 端子在水平面内旋转, 直到所述运动对接端子与所述需要对接的对接光纤所属 的静止对接端子相对接。  And rotating the plurality of stationary docking terminals according to the longitude displacement, and driving the motion docking terminal to rotate in a horizontal plane until the motion docking terminal is opposite to the stationary docking terminal to which the docking fiber to be docked belongs.
15. 根据权利要求 11至 14中任一项所述的方法, 其中, 所述运动对接端子的运动 方式是步进运动方式。 The method according to any one of claims 11 to 14, wherein the motion of the motion docking terminal is a step motion mode.
PCT/CN2012/074912 2012-01-19 2012-04-28 Light path switch and control method therefor WO2013107130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018347.XA CN103217746B (en) 2012-01-19 2012-01-19 Light path switch and control method thereof
CN201210018347.X 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107130A1 true WO2013107130A1 (en) 2013-07-25

Family

ID=48798553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074912 WO2013107130A1 (en) 2012-01-19 2012-04-28 Light path switch and control method therefor

Country Status (2)

Country Link
CN (1) CN103217746B (en)
WO (1) WO2013107130A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896935A (en) * 1985-10-07 1990-01-30 Lee Ho Shang Fiber optic switch
US5392370A (en) * 1994-04-21 1995-02-21 The United States Of America As Represented By The Secretary Of The Navy Multi-channel fiber optic rotatable interconnection system
US5920667A (en) * 1997-08-12 1999-07-06 Industrial Technology Research Institute Switch device for optical fibers
US20040141686A1 (en) * 2003-01-21 2004-07-22 Harry Schilling Optical high speed rotary joint
JP4294018B2 (en) * 2005-11-21 2009-07-08 株式会社フジクラ Optical module for connecting optical connector and optical connection box using the same
CN101788699A (en) * 2010-02-01 2010-07-28 天津大学 Hollow fiber optic rotary joint
CN102004288A (en) * 2010-12-28 2011-04-06 范雪峰 Rotatable optical-fiber complete exchange device
WO2011137983A1 (en) * 2010-05-04 2011-11-10 Georg-Simon-Ohm Hochschule für angewandte Wissenschaften Fachhochschule Nürnberg Optical rotary transmitter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404943B1 (en) * 1999-10-08 2002-06-11 Agilent Technologies, Inc. Apparatus and method for directing optical signals using a movable optical switching element
US6307983B1 (en) * 2000-02-01 2001-10-23 Lucent Technologies, Inc. Robotic optical cross-connect
US6807333B2 (en) * 2002-07-15 2004-10-19 Agilent Technologies, Inc. Optical switch using an annular array of optical ports

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896935A (en) * 1985-10-07 1990-01-30 Lee Ho Shang Fiber optic switch
US5392370A (en) * 1994-04-21 1995-02-21 The United States Of America As Represented By The Secretary Of The Navy Multi-channel fiber optic rotatable interconnection system
US5920667A (en) * 1997-08-12 1999-07-06 Industrial Technology Research Institute Switch device for optical fibers
US20040141686A1 (en) * 2003-01-21 2004-07-22 Harry Schilling Optical high speed rotary joint
JP4294018B2 (en) * 2005-11-21 2009-07-08 株式会社フジクラ Optical module for connecting optical connector and optical connection box using the same
CN101788699A (en) * 2010-02-01 2010-07-28 天津大学 Hollow fiber optic rotary joint
WO2011137983A1 (en) * 2010-05-04 2011-11-10 Georg-Simon-Ohm Hochschule für angewandte Wissenschaften Fachhochschule Nürnberg Optical rotary transmitter
CN102004288A (en) * 2010-12-28 2011-04-06 范雪峰 Rotatable optical-fiber complete exchange device

Also Published As

Publication number Publication date
CN103217746B (en) 2016-01-20
CN103217746A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103091579B (en) Insulator chain intelligent detection robotic system
US4834488A (en) Fiberoptic switch
US4896935A (en) Fiber optic switch
US9810920B2 (en) Positioning device for a picture stabilizer
EP4016984A1 (en) Optical image stabilization module and electronic device
CN104280976A (en) Optical shockproof mechanism capable of switching optical path
WO2018149182A1 (en) Pan-tilt and unmanned aerial vehicle
CN110908066A (en) Multi-axis optical anti-shake and focusing device, camera module, and electronic apparatus
WO2013107130A1 (en) Light path switch and control method therefor
CN103594291A (en) Two-pole magnetic latching relay
CN202904103U (en) Voice coil motor structure capable of realizing controllable inclination of lens
US20190346748A1 (en) Actuator and camera driver
WO2017209630A1 (en) A powered joint with wireless transfer
CN114153126B (en) Micro mirror surface group driving device based on bearing centering
TW200413762A (en) Optical switch
CN1321712C (en) Rudder plane controlling mechanism for miniature remote controlled model airplane
CN111474633B (en) Electromagnetic double-reflector MEMS optical switch
CN213023869U (en) Miniature anti-shake cloud platform and camera equipment
US6678434B1 (en) Disk drive optical switch
CN205384741U (en) Remote control transmitter
CN208918382U (en) A kind of connecting device and stereo garage
CN205353409U (en) Mechanical light switch
CN102445810A (en) Optical image system
CN112976015A (en) Bionic spine applied to robot
CN216624573U (en) 5G communication antenna with auxiliary mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866201

Country of ref document: EP

Kind code of ref document: A1