WO2013109755A1 - Segmentation for wafer inspection - Google Patents

Segmentation for wafer inspection Download PDF

Info

Publication number
WO2013109755A1
WO2013109755A1 PCT/US2013/021940 US2013021940W WO2013109755A1 WO 2013109755 A1 WO2013109755 A1 WO 2013109755A1 US 2013021940 W US2013021940 W US 2013021940W WO 2013109755 A1 WO2013109755 A1 WO 2013109755A1
Authority
WO
WIPO (PCT)
Prior art keywords
segments
image
wafer
individual pixels
pixels
Prior art date
Application number
PCT/US2013/021940
Other languages
French (fr)
Inventor
Tao Luo
Yong Zhang
Stephanie Chen
Original Assignee
Kla-Tencor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kla-Tencor Corporation filed Critical Kla-Tencor Corporation
Priority to JP2014553408A priority Critical patent/JP2015511310A/en
Priority to KR1020147023290A priority patent/KR102009494B1/en
Priority to DE112013000627.8T priority patent/DE112013000627T5/en
Publication of WO2013109755A1 publication Critical patent/WO2013109755A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • This invention generally relates to segmenting pixels in an image of a wafer for defect detection.
  • Wafer inspection using either optical or electron beam technologies, is an important technique for debugging semiconductor manufacturing processes, monitoring process variations, and improving production yield in the
  • I S circuits (ICs) as well as the increasing complexity of the manufacturing process, inspection becomes more and more difficult.
  • the printed circuit in each die may include many areas of patterned features that repeat in the x or y direction such as ihe areas of DRAM, SRAM, or FLASH, This type of area is commonly referred to as an array area (the rest of the areas are called random or logic areas).
  • array area the rest of the areas are called random or logic areas.
  • Intensity may be used as a feature of segmentation to group similar intensity pixels together. Then, the same set of defect detection parameters are applied to all of the pixels in the same group (intensity-based).
  • this 30 method has a number of disadvantages. For example, an intensity-based
  • segmentation algorithm can he used when a geometr feature scatters uniformly. Often, however, this is not enough, For example, in an intensity- or sum-of- intensity-based segmentation, a wafer image can be segmented into a quiet array segment, a noisy page break segment, and a noisy intersection segment.
  • defects of interest (DOls) in a quiet segment can be missed if a quiet segment is miseiassified as a noisy segment.
  • Segments can be miseiassified when the same ctttiine between segments leads to different segmentation in training and runtime.
  • Such niis assificaiion of the segments may also be bad for any pre-processing of the image such as that which removes the periodic pattern in the page break area.
  • segmentation based purely on intensity or sum of intensity is prone to instability related to intensity variation from job-to-job during runtime, Therefore, other property-based segmentation is needed.
  • PBS projection-based segmentation
  • MBS median intensity-based segmentation
  • One embodiment relates to a computer-implemented method for segmenting pixels in an image of a wafer for defect detection.
  • the method includes determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system.
  • the method also includes assigning the individual pixels to first segments based on the statistic and detecting one or more edges between the first segments in an image of the first segments.
  • the method includes generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer, The method further includes assigning the individual pixels to second segment by applying the first segments and the edge map to the image for the wafer thereby segmenting the image. Defect detection is performed based o the second segments to which the individual pixels are assigned. Steps of the method are performed by a computer system.
  • the computer-implemented method described above may include any other step(s) of any other method(s) described herein.
  • the computer-implemented method described above may be per formed using any of the systems described herein.
  • Another embodiment relates to a non-transitory computer-readable medium storing program instructions executable on a computer system for performing a method for segmenting pixels in an image of a wafer for defect detection.
  • the method includes the steps of the computer-implemented method described above.
  • the computer-readable medium may be further configured as described herein.
  • the steps of the method may be performed as described further herein.
  • the method for which the program instructions are executable may include any other step(s) of any other method(s) described herein.
  • An additional embodiment relates to a system configured to segment pixels in an image of a wafer for defect detection.
  • the system includes an inspection subsystem configured to generate an image for a wafer.
  • the system also includes a computer subsystem configured for performing the steps of the method described above.
  • the system may be further configured as described herein.
  • Fig, 1 is a schematic diagram illustrating one embodiment f a computer- implemented method for segmenting pixels in an image f a wafer for defect detection;
  • Fig. 2 is a block diagram illustrating one embodiment of a non-transitory computer-readable medium that includes program instructions executable on a compute system for performing one or more of the method embodiments described herein;
  • Fig. 3 is a schematic diagram illustrating a side view of one embodiment of a system configured to segment pixels in an image of a wafer for defect detection.
  • the computer* implemented method may include acquiring an image of a wafer generated by an inspection system. Acquiring the image for the wafer may be performed using the inspection system, For example, acquiring the image may include using the inspection system to scan light over the wafer and to generate image(s) responsive to light scattered and/or reflected from the wafer detected by the inspection system during scanning. In this manner, acquiring the image may include scanning the wafer. However, acquiring the image does not necessaril include scanning the wafer. or example, acquiring the image may include acquiring the image from a computer-readable storage medium in which the image has been stored (e.g., by the inspection system).
  • Acquiring the image from the storage medium may be performed in any suitable manner, and the storage medium from which the image is acquired may include any of the storage media described herein.
  • the image acquired for the wafer may be referred to or described as an 'image frame," the image for the wafer used in the embodiments described herein may include any image or portion of any image thai can he generated or acquired by any wafer inspection system.
  • the method includes determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system.
  • the characteristic is image intensity of the individual pixels.
  • the statistic is median image intensity of the individual pixels.
  • the method may include determining a statistic for each of the individual pixels on a pixel-by-pixel basis even though the statistic for any one pixel may be determined using the characteristic of multiple pixels in the image. For example, the median intensity of one single pixel may be determined based on the image intensity of that pixel as well as the image intensity of the surrounding pixels. The median image intensity may be determined using any suitable method or algorithm.
  • the characteristic and the statistic may include any other suitable characteristic and statistic of the individual pixels determined in any suitable manner.
  • the method also includes assigning the individual pixels to First segments based ou the statistic, if the statistic is median image intensity as described above, this step may be similar to median intensity-based segmentation (MBS).
  • MBS median intensity-based segmentation
  • additional steps described herein help to define segment boundaries in MBS with greater accuracy, "Segments" can be generally defined as different portions of an entire range of possible values for the individual pixels.
  • the segments may be defined based on values for the statistic of " the individual pixels depending on the defect detection algorithm that uses the segments. For instance, In the multiple die auto-thresholding (MDA.T) algorithm, the value for the statistic of the individual pixels that is used to define the first segments may include median intensity value.
  • MDA.T multiple die auto-thresholding
  • one of the first segments may include median intensity values from 0 to 100 and another of the first segments may include median intensity values from 101 to 255, In this manner, one of the first segments corresponds to darker pixels In the image, and the other of the first segments corresponds to brighter pixels in the image.
  • the first segments used in the embodiments described herein may be determined In any suitable manner, and the individual pixels may be assigned to the first segments using any suitable method and/or algorithm.
  • the method includes generating an image showing the statistic determined for the individual pixels, and assigning the individual pixels to the first segments is performed based on the image showing the statistic.
  • the method may include labeling the image for the wafer based on the pixel intensity statistics (e.g., median intensity, range-based, etc.). in addition, although some embodiments are described herein as being based on median intensity, it is to be understood that the embodiments may be based on any statistic first with edge detection as described herein performed later.
  • the method may generate image 16 showing the statistic determined for each of the individual pixels as a function of the individual pixels. If the statistic is median image intensity as described above, image 10 shown in Fig. I may be a median image for one channel (one detection subsystem or one detector) of the inspection system, and other images may be separately generated for other channels of the inspection system.
  • first segments 12 in image 10 may be defined to include pixels having values for the statistic in one range
  • first segments 14 may be defined to include pixels having values for the statistic in another range different from the first.
  • the pixels in the image can be separated into first segments based on the statistic. Assigning the pixels to the first segments does not necessarily include generating an image as described above and using the image for the first segmentation may be performed in any other suitable manner.
  • the method also includes detecting one or more edges between the first segments in an image of the first segments, in some embodiments, the method includes generating the image of the first segments by labeling the individual pixels based on the first segment to which the individual pixel were assigned. For example, as shown in Fig. 1, image 16 of the first segments may be generated by labeling the individual pixels of image 10 based on the first segments to which the individual pixels were assigned. Edge detection may then be applied to the labeled image. In this manner, MBS may be applied to median image 10 to generate image 16 showing the labeled first segments.
  • image 16 may be a binary image with one of the first segments (first segments 12) show n as black regions 18 in the image and the other of the first segments (first segments 14) shown as white regions 20 in the image.
  • the image showing the labeled first segments may then be used as a segmentation mask for other steps described herein (e.g., by overlaying it with an image acquired for the wafer such that pixels within the different segments can be identified based on their location within the mask).
  • the image sho ing the first segments may also be labeled in any other suitable manner (e.g., via color differences, gray level differences, alphanumeric differences, and the like). That image may then be used to detect the edge(s) of the first segments as described further herein.
  • the one or more edges include at least one edge that extends in the x direction, at least one edge that extends in the y direction, or a combination of at least one edge that extends in the x direction and at least one edge that extends in the y direction.
  • edge detection may include horizontal and/or vertical edge detection.
  • edge detection may add 1 to the horizontal edge at the ith location if (i, (i, j+1) belong to different segments, in addition, edge detection may add 1 to the vertical edge at the jth location if (i-l, j), (i+l, j) belong to different segments, in the example shown in Fig.
  • edge detection may be performed in a number of other different ways.
  • the method includes modifying the one or more detected edges before generating the edge ma described further herein based on spatial characteristics of the one or more detected edges.
  • This step may include ''pruning' * redundant edges.
  • the edge detection step may detect multiple edges (redundant edges) that are substantially close together around a real physical edge.
  • the one or more detected edges may be modified using, for example, a dilation algorithm to merge (or reduce) the edges that are substantially close to one another into one edge.
  • the dilation algorithm may include anv suitable dilation algorithm known in the art.
  • the method also includes generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer, in this manner, the methods described herein may perform projection-based
  • edge map 32 may be generated as a grid from the edge projection of the horizontal and vertical edges shown in Fig. 1 (edges 22, 24 and 28). Projecting the one or more edges may include extending any edges that were detected and do not extend across the entire image such that they do extend across the entire image. In other words, projecting the edge(s) may include extending an edge along its length such that it spans the entire image area.
  • Detecting edges based on a statistic-based (e.g., median intensity-based) segment map and then projecting the edge(s) in the x and/or y directions can greatly help to reduce the ambiguity of the edge(s) compared to intensity-based projection. As such, this approach can be used to accurately segment frame images for the underlying structure patterns.
  • the edge detection described herein that can foe performed on a segment map and projection based on the edge map is also advantageously stable (with respect to any intensity variations in the light detected from the wafer that is used to form the image fo the wafer). For example, an MBS segment map is stable for performing edge detection in and y.
  • projection based on the x and y edges is much more stable than edge projection based on other characteristics of the image for the wafer.
  • the method also includes assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image. Therefore, the embodiments described herein may segment (and label) the frame image based on the edges.
  • the method may segment th pixels based on a combination of image intensity (used to define the first segments that are applied to the image) and intensity change pattern (used to define the edge map that is applied to the image) to accurately segment the underlying structures. For example, even relatively thin vertical areas with relatively low image intensity can be segmented out with the approaches described herein, in addition, edge projection in ⁇ and y described herein is substantially stable for reconstructing the segment map (for the second segments).
  • assigning the individual pixels to the second segments includes generating the second segments based on the first segments and the edge map and applying the second segments to the individual pixels.
  • the segmentation mask (or image 16 showing the first segments) may be combined with the grid (or edge map 32 showing the edges) to generate second segment groups shown in image 34 in Fig. 1, in this manner, this image shows the second segment groups and may be used as a second segmentation mask as described above. Assigning the individual pixels to the second segments may, however, be performed in any other suitable manner.
  • Defect detection is performed based on the second segments to which the individual pixels are assigned.
  • the embodiments described herein can be used as pre-processing method(s) to separate regions into different segments, font are not themselves an inspection or defect detection algorithm.
  • the embodiments described herein can be used for pre-processing for any inspection algorithm, in this manner, defect detection may b performed in any suitable manner using any suitable method and/or algorithm,
  • Steps of the method are performed bv a computer system, which raav be configured as described further herein.
  • assigning the individual pixels to the first segments results in the individual pixels having different levels of noise assigned to different first segments.
  • the methods described herein basically segment low intensity segments from high intensity segments in the form of rectangular bounding boxes. Therefore, the methods described herein essentially separate relatively low noise segments from relatively high noise segments, and the segments having different noise levels can then be processed separately during defect detection such that defects of interest (DOIs) can be detected in each of the segments regardless of the noise levels (e.g., by adjusting a threshold that is applied to the pixels), which also suppresses nuisance, noise, and background signal detection,
  • DOIs defects of interest
  • At least one of the first segments corresponds to a region on the wafer containing structures having a first characteristic
  • at least another of the first segments corresponds to a region on the wafer containing structures having a second characteristic that is different than the first characteristic.
  • the first segments since wafer structures that have different characteristics will affect the tight from the wafer detected by the inspection system in different ways and since the first segments may be defined based on a statistic related to the image of the wafer (e.g., median image intensity), the first segments can be used to separate different regions of the wafer con taining different structures, in addition, since the first segments are defined based on a statistic of a characteristic of the individual pixels, instead of the characteristic itself, the first segments can be used to separate the regions with relatively high accuracy.
  • a statistic related to the image of the wafer e.g., median image intensity
  • At least one of the second segments corresponds to a region on the wafer containing structures having a first characteristic
  • at least another of the second segments corresponds to a region on the wafer containing structures having a second characteristic that is different than the first characteristic
  • At least one of the first segments corresponds to a page break region of a device being fabricated on the wafer, and at least another of the first segments corresponds to an array region of the device.
  • Page breaks are generally defined in the art as regions of a die separating substantially continuous regions of physical memory. Eac of the continuous regions of physical memory may be commonly referred to as a page frame. Inside a dark field array region, there is no substantial feature difference and therefore no substantial intensity difference, only some background noise. However, since the page breaks include dramatically different structures than the array regions, there will be a substantial intensity difference in the image for the page breaks compared to the array regions. Therefore, the embodiments can separate an array segment from a page break segment. As described further herein, median intensity may be the statistic of the characteristic of the individual pixels that is used to assign the individual pixels to the first segments. Using median intensity as described herein is advantageous because it is stable for differentiating array from page break in terms of intensity difference.
  • At least one of the second segments corresponds to a page break region of a device being fabricated on the wafer, and at least another of the second segments corresponds to an array region of the device.
  • the second segments are based, at least in part, on the first segments and since some of the first segments may, as described above, correspond to page break regions while other first segments may correspond to array regions, some of the second segments may also correspond to page break regions and other second segments may correspond to array regions.
  • the method is performed during scanning of the wafer by the inspection system. For example, as image frames are acquired for a wafer during scanning, the method may be performed for each or at least some of the image frames. In this manner, the method may be performed in real time during inspection by a computer subsystem of an inspection system, which may be configured as described further herein,
  • the image for the wafer includes one of multiple image frames acquired sequentially tor different areas on the wafer during scanning of the wafer by the inspection system.
  • a detector or detection subsystem of the inspection system may capture multiple image frames as the wafer is moved relative to the inspection system or vice versa. Therefore, the image frames may be acquired at different positions on the wafer.
  • the method described herein may be performed for any or all of those image frames. For example, in one such embodiment, the method is performed for more than one of the multiple image frames. In this manner, the method may be performed independently and separately for each image frame on a frame-by-frame basis.
  • the image for the wafer includes one of multiple image frames acquired simultaneously for one area on the wafer by multiple detection subsystems of the inspection system, and the method includes assigning individual pixels in at least one other of the multiple image frames to the second segments by applying the first segments and the edge ma to the at least one other of the multiple image frames.
  • the segmentation result generated using any one frame image can be applied to image frames across other detection subsystems (or "channels") of the inspection system for the same job. In this manner, the segmentation determined for image frames generated by one channel may, In some instances, be applied to an image frame generated by another channel.
  • the inspection system is a dark field inspection system. Therefore, the embodiments described herein may be used for segmentation on a dark field inspection system, which may be configured as described further herein. In addition, the embodiments described herein improve the accuracy, stability, and ease of use of the segmentation of wafer images produced by a dark field scanning inspection system.
  • the embodiment described herein are not specific to a particular wafer or layer or a specific inspection system.
  • the method may be used to segment any images, no matter what kind of inspection system was used to acquire the images.
  • the method may also include storing results of any of the step(s) of the method in a computer-read able storage medium.
  • the results may include any of the results described herein and may be stored in any manner known in the art.
  • the storage medium may include any suitable storage medium known in the art. After the results have been stored, the results can be accessed in the storage medium and used as described herein, formatted for display to a user, used by another software module, method, or system, etc.
  • FIG. 2 Another embodiment relates to a non-transitory computer-readable medium storing program instructions executable on a computer system for performing a method (i.e., a computer-implemented method) for segmenting pixels in an image of a wafer for defect detection.
  • a method i.e., a computer-implemented method
  • FIG. 2 One such embodiment is shown in Fig. 2.
  • computer-readable medium 36 stores program instructions 38 executable on computer system 40 for performing the method described above.
  • the computer-implemented method for which the program instructions are executable may include any other step(s) of any other method(s) described herein.
  • Program instructions 38 implementing methods such as those described herein may be stored on computer-readable medium 40.
  • the computer-readable medium may be a storage medium such as a magnetic or optical disk, or a magnetic tape or any other suitable non -transitory computer-readable medium known in the art.
  • the program instructions may be implemented in any of variou ways, including procedure-based techniques, component-based techniques, and/or object-oriented techniques, among others.
  • the program instructions may be implemented using atlab, Visual Basic, ActiveX controls, C, C++ objects, C#, JavaBeans, Microsoft Foundation Classes ("MFC"), or other technologies or methodologies, as desired.
  • Computer system 40 may take variou forms, including a personal computer system, mainframe computer system, workstation, system computer, image computer, programmable image computer, parallel processor, or any other device known in the art.
  • the term "computer system” may be broadly defined to encompass any device having one or more processors, which executes instructions from a memory medium.
  • An additional embodiment relates to a system configured to segment pixels in an ima e of a wafer for defect detection.
  • system 42 includes inspection subsystem 44 and computer subsystem 46.
  • the inspection subsystem is configured to generate an image for a wafer.
  • the inspection subsystem includes light source 48 such as a laser.
  • Light source 48 is configured to direct light to polarizing component 50.
  • the inspection subsystem may include more than one polarising component (not shown), each of which may be positioned independently in the path of the light from the light source.
  • Each of the polarizing components may be configured to alter the polarization of the light from the light source in a different manner.
  • the inspection subsystem may be configured to move the polarizing components into and out of the path of the light from the light source in any suitable manner depending on which polarization setting is selected for illumination of the wafer during a scan.
  • the polarization setting used for the illumination of the wafer during a scan may include p-polarized (P), s-polarized (S), or circularly
  • Light exiting polarizing component 50 is directed to wafer 52 at an oblique angle of incidence, which may include any suitable oblique angle of incidence.
  • the inspection subsystem may also include one or more optical components (not shown) that are configured to direct light from light source 48 to polarizing component 50 or from polarizing component 50 to wafer 52.
  • the optical components may include any suitable optical components known in the art such s, but not limited to, a reflective optical component.
  • the light source, the polarizing component, and/or the one or more optical components may be configured to direct the light to the wafer at one or more angles of incidence (e.g., an oblique angle of incidence and/or a substantially normal angle of incidence).
  • the inspection subsystem may be configured to perform the scanning by scanning the light over the wafer in any suitable manner.
  • Light scattered from wafer 52 may be collected and detected by multiple channels of the inspection subsystem during scanning.
  • Lens 5 ma include a refractiv optica! element as shown in Fig. 3.
  • lens 54 may include one or more refractive optical elements and/or one or more reflective optical elements.
  • Light collected by lens 54 may be tiirecied to polarizing component 56, which may include any suitable polarizing component known in the art.
  • the inspection subsystem may include more than one polarizing component (not shown), each of which may be positioned independently in the path of the light collected by the lens.
  • Each of the polarizing components may toe configured to alter the polarization of the light collected by the lens in a different manner.
  • the inspection subsystem may be configured to move the polarizing components into and out of the path of the light collected by the lens in any suitable manner depending on which
  • the polarization setting used for the detection of the light collected by lens 54 during scanning may include any of the polarization settings described herein (e.g., , S, and unpolarized ( )).
  • Detector 58 may include any suitable detector known in the art such as a charge coupled device (CCD) or another type of imaging detector. Detector 58 is configured to generate an image that is responsive to the scattered light collected by lens 54 and transmitted by polarizing component 56 if positioned in the path of the collected scattered light. Therefore, lens 54, polarizing component 56 if positioned in the path of the light collected by lens 54, and detector 58 form one channel of the inspection subsystem. This channel of the inspection subsystem may include any other suitable optical components (not shown) known in the art such as a Fourier filtering component.
  • Light scattered from wafer 52 at different angles may be collected by lens 60.
  • Lens 60 may be configured as described above.
  • Light collected b lens 60 may be directed to polarizing component 62, which may include any suitable polarizing component known in the art.
  • the inspection subsystem may include more than one polarizing component (not shown), each of which may be positioned independently in the path of the light collected by the lens.
  • Each of the polarizing components may be configured to alter the polarization of the light collected b the lens in a different manner.
  • the inspection subsystem may be configured to move the polarizing components into and out of the path of the light collected by the lens in any suitable manner depending on which polarization setting is selected for detection of the light collected by lews 60 during scanning.
  • the polarization setting used for detection of the light collected by lens 60 during scanning may include l ⁇ S, or .
  • Light exiting polarizing component 62 is directed to detector 64, which may be configured as described above.
  • Detector 64 is also configured to generate an image that is responsive to the collected scattered light that passes through polarizing component 62 if positioned in the path of the scattered light.
  • lens 60, polarizing component 62 if positioned in the path of the light collected by lens 60, and detector 64 may form another channel of the inspection subsystem.
  • This channel may also include any other optical components (not shown) described above.
  • lens 60 may he configured to collect light scattered from the wafer at polar angles from about 20 degrees to about 70 degrees.
  • lens 60 may be configured as a reflective optical component (not shown) that is configured to collect light scattered from the wafer at azimuthal angles of about 360 degrees.
  • the inspection subsystem shown in Fig, 3 may also include one o more other channels (not shown).
  • the inspection subsystem may include an additional channel, which may include any of the optical components described herein such as a lens, one or more polarizing components, and a detector, configured as a side channel.
  • the lens, the one or more polarizing components, and the detector may foe further configured as described herein, in one such example, the side channel may be configured to collect and detect light that is scattered out of the plane of incidence (e.g., the side channel may inciwde a lens, which is centered in a plane that is substantially perpendicular to the plane of incidence, and a detector configured to detect light collected by the lens).
  • Computer subsystem 46 is configu ed to acquire the image(s) generated by the inspection subsystem.
  • image(s) generated by the detectors during scanning may be provided to computer subsystem 46.
  • the computer subsystem may be coupled to each of the detectors (e.g., by one or more transmission media shown by the dashed lines in Fig, 3, which may include any suitable transmission media known in the art) such that the computer subsystem may receive the imagers) generated by the detectors.
  • the computer subsystem may be coupled to each of the detectors in any suitable manner.
  • the image(s) generated by the detectors during scanning of the wafer may include any o the imagers) described herein.
  • the computer subsystem is configu ed for performing the steps of the method described herein.
  • the computer subsystem may also be configured to perform any other step(s) of any method embodiment ⁇ ) described herein.
  • the computer subsystem, the inspection subsystem, and the system may be further configured as described herein.
  • Fig. 3 is provided herein to generally illustrate one configuration of an inspection subsystem that may be included in the system embodiments described herein. Obviously, the inspection subsystem
  • an existing inspection system e.g., by adding functionality described herein to an existing inspection system
  • an existing inspection system such as the Puma 90xx, 91xx, and 93xx series of tools that are commercially available from KLA-Tencor,
  • the methods described herein may be provided as optional functionality of the system (e.g., in addition to other functionalit of the system).
  • the system described herein may be designed "from scratch" to provide a completely new system.

Abstract

Methods and systems for segmenting pixels for wafer inspection are provided. One method includes determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system. The method also includes assigning the individual pixels to first segments based on the statistic. In addition, the method includes detecting one or more edges between the first segments in an image of the first segments and generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer. The method further includes assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image. Defect detection is performed based on the second segments to which the individual pixels are assigned.

Description

SEGMENTATION FOR WAFER INSPECTION
BACKGROUND OF THE INVENTION
1. P eld f the Inv enti on
This invention generally relates to segmenting pixels in an image of a wafer for defect detection.
2, Description of the Related Art
The following description and examples are not admitted to he prior art
10 by virtue of their inclusion in this section.
Wafer inspection, using either optical or electron beam technologies, is an important technique for debugging semiconductor manufacturing processes, monitoring process variations, and improving production yield in the
semiconductor industry. With the ever decreasing scale of modern integrated
I S circuits (ICs) as well as the increasing complexity of the manufacturing process, inspection becomes more and more difficult.
In each processing step performed on a semiconductor wafer, the same circuit pattern is printed in each die on the wafer. Most wafer inspection systems take advantage of this fac and use a relatively simple die-to-die
20 comparison to detect defects on the wafer. However, the printed circuit in each die may include many areas of patterned features that repeat in the x or y direction such as ihe areas of DRAM, SRAM, or FLASH, This type of area is commonly referred to as an array area (the rest of the areas are called random or logic areas). To achieve better sensitivity, advanced inspection systems
25 employ different strategies for inspecting the array areas and the random or logic areas.
Intensity may be used as a feature of segmentation to group similar intensity pixels together. Then, the same set of defect detection parameters are applied to all of the pixels in the same group (intensity-based). However, this 30 method has a number of disadvantages. For example, an intensity-based
segmentation algorithm can he used when a geometr feature scatters uniformly. Often, however, this is not enough, For example, in an intensity- or sum-of- intensity-based segmentation, a wafer image can be segmented into a quiet array segment, a noisy page break segment, and a noisy intersection segment.
However, defects of interest (DOls) in a quiet segment can be missed if a quiet segment is miseiassified as a noisy segment. Segments can be miseiassified when the same ctttiine between segments leads to different segmentation in training and runtime. Such niis assificaiion of the segments may also be bad for any pre-processing of the image such as that which removes the periodic pattern in the page break area. As such, segmentation based purely on intensity or sum of intensity is prone to instability related to intensity variation from job-to-job during runtime, Therefore, other property-based segmentation is needed.
Another method for segmenting output of a dark field (DF) inspection system is projection-based segmentation (PBS). PBS provides a relativeiy simple way to separate segments in regions based on the relative projected intensity in the x and y directions. Most of the time, the PBS approach works well.
However, since it is used in the pre-processing part of I)F wafer inspection algorithms, there are eases when the PBS segmentation result fluctuates along the side of the underlying physical structure pattern, which makes the projection-based segmentation unstable. The direct result is to mis-segment some quiet segments as noisy segments and vice versa. The impact is to cause the defect inspection to be less adaptive to local noise.
An additional method for segmenting output of a dark field inspection system is median intensity-based segmentation (MBS). MBS is more stable than PBS because most of the time the median intensity differences between the array region and page break region are substantial, which provides easier separation between array and page break. However, the segment boundarie from the MBS can b irregular, which might not correlate to the underlying physical structure pattern very well.
Accordingly, it would be advantageous to develop methods and systems for segme ting pixels in an image of a wafer for defect detection that do not have one or more of the disadvantages described above.
SUMMARY OF THE INVENTION
The following description of various embodiments is not to be construed way as limiting the subject matter of the appended claims. One embodiment relates to a computer-implemented method for segmenting pixels in an image of a wafer for defect detection. The method includes determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system. The method also includes assigning the individual pixels to first segments based on the statistic and detecting one or more edges between the first segments in an image of the first segments. In addition, the method includes generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer, The method further includes assigning the individual pixels to second segment by applying the first segments and the edge map to the image for the wafer thereby segmenting the image. Defect detection is performed based o the second segments to which the individual pixels are assigned. Steps of the method are performed by a computer system.
Each of the steps of the computer-implemented method described above may be performed as described further herein. The computer-implemented method described above may include any other step(s) of any other method(s) described herein. The computer-implemented method described above may be per formed using any of the systems described herein.
Another embodiment relates to a non-transitory computer-readable medium storing program instructions executable on a computer system for performing a method for segmenting pixels in an image of a wafer for defect detection. The method includes the steps of the computer-implemented method described above. The computer-readable medium may be further configured as described herein. The steps of the method may be performed as described further herein. In addition, the method for which the program instructions are executable may include any other step(s) of any other method(s) described herein.
An additional embodiment relates to a system configured to segment pixels in an image of a wafer for defect detection. The system includes an inspection subsystem configured to generate an image for a wafer. The system also includes a computer subsystem configured for performing the steps of the method described above. The system may be further configured as described herein. BRIEF DESCRIPTiO OF THE DRAWINGS
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the
accompanying drawings in which:
Fig, 1 is a schematic diagram illustrating one embodiment f a computer- implemented method for segmenting pixels in an image f a wafer for defect detection;
Fig. 2 is a block diagram illustrating one embodiment of a non-transitory computer-readable medium that includes program instructions executable on a compute system for performing one or more of the method embodiments described herein; and
Fig. 3 is a schematic diagram illustrating a side view of one embodiment of a system configured to segment pixels in an image of a wafer for defect detection.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail, it should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Turning now to the drawings, it is noted that the figures are not drawn to scale. In particular, the scale of some of the elements of the figures is greatly exaggerated to emphasize characteristics of the elements. It is also noted that the figures are not drawn to the same scale. Elements shown in more than one figure that may be similarly configured have been indicated using the same reference numerals.
One embodiment relates to a computer-implemented method for segmenting pixels in an image of a wafer for defect detection. The computer* implemented method may include acquiring an image of a wafer generated by an inspection system. Acquiring the image for the wafer may be performed using the inspection system, For example, acquiring the image may include using the inspection system to scan light over the wafer and to generate image(s) responsive to light scattered and/or reflected from the wafer detected by the inspection system during scanning. In this manner, acquiring the image may include scanning the wafer. However, acquiring the image does not necessaril include scanning the wafer. or example, acquiring the image may include acquiring the image from a computer-readable storage medium in which the image has been stored (e.g., by the inspection system). Acquiring the image from the storage medium may be performed in any suitable manner, and the storage medium from which the image is acquired may include any of the storage media described herein. Although in some embodiments described herein, the image acquired for the wafer may be referred to or described as an 'image frame," the image for the wafer used in the embodiments described herein may include any image or portion of any image thai can he generated or acquired by any wafer inspection system.
The method includes determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system. In one embodiment, the characteristic is image intensity of the individual pixels. In some embodiments, the statistic is median image intensity of the individual pixels. In this manner, the method may include determining a statistic for each of the individual pixels on a pixel-by-pixel basis even though the statistic for any one pixel may be determined using the characteristic of multiple pixels in the image. For example, the median intensity of one single pixel may be determined based on the image intensity of that pixel as well as the image intensity of the surrounding pixels. The median image intensity may be determined using any suitable method or algorithm. In addition, the characteristic and the statistic may include any other suitable characteristic and statistic of the individual pixels determined in any suitable manner.
The method also includes assigning the individual pixels to First segments based ou the statistic, if the statistic is median image intensity as described above, this step may be similar to median intensity-based segmentation (MBS). However, additional steps described herein help to define segment boundaries in MBS with greater accuracy, "Segments" can be generally defined as different portions of an entire range of possible values for the individual pixels. The segments may be defined based on values for the statistic of" the individual pixels depending on the defect detection algorithm that uses the segments. For instance, In the multiple die auto-thresholding (MDA.T) algorithm, the value for the statistic of the individual pixels that is used to define the first segments may include median intensity value. In one such illustrative and non-limiting example, if the entire range of median intensity values is from 0 to 255, one of the first segments may include median intensity values from 0 to 100 and another of the first segments may include median intensity values from 101 to 255, In this manner, one of the first segments corresponds to darker pixels In the image, and the other of the first segments corresponds to brighter pixels in the image. The first segments used in the embodiments described herein may be determined In any suitable manner, and the individual pixels may be assigned to the first segments using any suitable method and/or algorithm.
In one embodiment, the method includes generating an image showing the statistic determined for the individual pixels, and assigning the individual pixels to the first segments is performed based on the image showing the statistic. For example, the method may include labeling the image for the wafer based on the pixel intensity statistics (e.g., median intensity, range-based, etc.). in addition, although some embodiments are described herein as being based on median intensity, it is to be understood that the embodiments may be based on any statistic first with edge detection as described herein performed later. In one such example shown in Fig. 1, the method may generate image 16 showing the statistic determined for each of the individual pixels as a function of the individual pixels. If the statistic is median image intensity as described above, image 10 shown in Fig. I may be a median image for one channel (one detection subsystem or one detector) of the inspection system, and other images may be separately generated for other channels of the inspection system.
That image may then be used for the first segmentation. For example, first segments 12 in image 10 may be defined to include pixels having values for the statistic in one range, and first segments 14 may be defined to include pixels having values for the statistic in another range different from the first.
Therefore, the pixels in the image can be separated into first segments based on the statistic. Assigning the pixels to the first segments does not necessarily include generating an image as described above and using the image for the first segmentation may be performed in any other suitable manner.
The method also includes detecting one or more edges between the first segments in an image of the first segments, in some embodiments, the method includes generating the image of the first segments by labeling the individual pixels based on the first segment to which the individual pixel were assigned. For example, as shown in Fig. 1, image 16 of the first segments may be generated by labeling the individual pixels of image 10 based on the first segments to which the individual pixels were assigned. Edge detection may then be applied to the labeled image. In this manner, MBS may be applied to median image 10 to generate image 16 showing the labeled first segments. More specifically, since image 16 includes pixels in two different first segments (firs segments 12 and 14), image 16 may be a binary image with one of the first segments (first segments 12) show n as black regions 18 in the image and the other of the first segments (first segments 14) shown as white regions 20 in the image. The image showing the labeled first segments may then be used as a segmentation mask for other steps described herein (e.g., by overlaying it with an image acquired for the wafer such that pixels within the different segments can be identified based on their location within the mask). The image sho ing the first segments may also be labeled in any other suitable manner (e.g., via color differences, gray level differences, alphanumeric differences, and the like). That image may then be used to detect the edge(s) of the first segments as described further herein.
In one embodiment, the one or more edges include at least one edge that extends in the x direction, at least one edge that extends in the y direction, or a combination of at least one edge that extends in the x direction and at least one edge that extends in the y direction. For example, edge detection may include horizontal and/or vertical edge detection. In one such example, for each pixel (i, j) in an image such as the labeled image described above, edge detection may add 1 to the horizontal edge at the ith location if (i, (i, j+1) belong to different segments, in addition, edge detection may add 1 to the vertical edge at the jth location if (i-l, j), (i+l, j) belong to different segments, in the example shown in Fig. 1, using image 16, two vertical edges 22 and 24 extending in the y direction may be detected (with respect to horizontal axis 26) and one horizontal edge 28 extending in the x direction may be detected (with respect to vertical axis 30). This is a relatively simple edge detection approach that can be fine-tuned to any specific application, computation consideration, or expense. In addition, edge detection may be performed in a number of other different ways.
In some embodiments, the method includes modifying the one or more detected edges before generating the edge ma described further herein based on spatial characteristics of the one or more detected edges. This step may include ''pruning'* redundant edges. For example, due to physical structure roughness and inspection system resolution limitations, the edge of segments in an image is not always clean cut. Therefore, the edge detection step may detect multiple edges (redundant edges) that are substantially close together around a real physical edge. As such, the one or more detected edges may be modified using, for example, a dilation algorithm to merge (or reduce) the edges that are substantially close to one another into one edge. The dilation algorithm may include anv suitable dilation algorithm known in the art.
The method also includes generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer, in this manner, the methods described herein may perform projection-based
segmentation (PBS) based on edge information. For example, as shown in Fig. I, edge map 32 may be generated as a grid from the edge projection of the horizontal and vertical edges shown in Fig. 1 (edges 22, 24 and 28). Projecting the one or more edges may include extending any edges that were detected and do not extend across the entire image such that they do extend across the entire image. In other words, projecting the edge(s) may include extending an edge along its length such that it spans the entire image area.
Detecting edges based on a statistic-based (e.g., median intensity-based) segment map and then projecting the edge(s) in the x and/or y directions can greatly help to reduce the ambiguity of the edge(s) compared to intensity-based projection. As such, this approach can be used to accurately segment frame images for the underlying structure patterns. The edge detection described herein that can foe performed on a segment map and projection based on the edge map is also advantageously stable (with respect to any intensity variations in the light detected from the wafer that is used to form the image fo the wafer). For example, an MBS segment map is stable for performing edge detection in and y. In addition, projection based on the x and y edges is much more stable than edge projection based on other characteristics of the image for the wafer.
The method also includes assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image. Therefore, the embodiments described herein may segment (and label) the frame image based on the edges. The method may segment th pixels based on a combination of image intensity (used to define the first segments that are applied to the image) and intensity change pattern (used to define the edge map that is applied to the image) to accurately segment the underlying structures. For example, even relatively thin vertical areas with relatively low image intensity can be segmented out with the approaches described herein, in addition, edge projection in \ and y described herein is substantially stable for reconstructing the segment map (for the second segments).
In one embodiment, assigning the individual pixels to the second segments includes generating the second segments based on the first segments and the edge map and applying the second segments to the individual pixels. For example, the segmentation mask (or image 16 showing the first segments) may be combined with the grid (or edge map 32 showing the edges) to generate second segment groups shown in image 34 in Fig. 1, in this manner, this image shows the second segment groups and may be used as a second segmentation mask as described above. Assigning the individual pixels to the second segments may, however, be performed in any other suitable manner.
Defect detection is performed based on the second segments to which the individual pixels are assigned. For example, the embodiments described herein can be used as pre-processing method(s) to separate regions into different segments, font are not themselves an inspection or defect detection algorithm. The embodiments described herein can be used for pre-processing for any inspection algorithm, in this manner, defect detection may b performed in any suitable manner using any suitable method and/or algorithm,
Steps of the method are performed bv a computer system, which raav be configured as described further herein.
in one embodiment, assigning the individual pixels to the first segments results in the individual pixels having different levels of noise assigned to different first segments. For example, the methods described herein basically segment low intensity segments from high intensity segments in the form of rectangular bounding boxes. Therefore, the methods described herein essentially separate relatively low noise segments from relatively high noise segments, and the segments having different noise levels can then be processed separately during defect detection such that defects of interest (DOIs) can be detected in each of the segments regardless of the noise levels (e.g., by adjusting a threshold that is applied to the pixels), which also suppresses nuisance, noise, and background signal detection,
i another embodiment, at least one of the first segments corresponds to a region on the wafer containing structures having a first characteristic, and at least another of the first segments corresponds to a region on the wafer containing structures having a second characteristic that is different than the first characteristic. For example, since wafer structures that have different characteristics will affect the tight from the wafer detected by the inspection system in different ways and since the first segments may be defined based on a statistic related to the image of the wafer (e.g., median image intensity), the first segments can be used to separate different regions of the wafer con taining different structures, in addition, since the first segments are defined based on a statistic of a characteristic of the individual pixels, instead of the characteristic itself, the first segments can be used to separate the regions with relatively high accuracy.
In some embodiments, at least one of the second segments corresponds to a region on the wafer containing structures having a first characteristic, and at least another of the second segments corresponds to a region on the wafer containing structures having a second characteristic that is different than the first characteristic, For example, since the second segments are based, at least in part, on the first segments and since different first segments may, a described above, correspond to different regions containing structures having different characteristics, the second segments may also correspond to different regions containing structures having different characteristics.
In one embodiment, at least one of the first segments corresponds to a page break region of a device being fabricated on the wafer, and at least another of the first segments corresponds to an array region of the device. Page breaks are generally defined in the art as regions of a die separating substantially continuous regions of physical memory. Eac of the continuous regions of physical memory may be commonly referred to as a page frame. Inside a dark field array region, there is no substantial feature difference and therefore no substantial intensity difference, only some background noise. However, since the page breaks include dramatically different structures than the array regions, there will be a substantial intensity difference in the image for the page breaks compared to the array regions. Therefore, the embodiments can separate an array segment from a page break segment. As described further herein, median intensity may be the statistic of the characteristic of the individual pixels that is used to assign the individual pixels to the first segments. Using median intensity as described herein is advantageous because it is stable for differentiating array from page break in terms of intensity difference.
In some embodiments, at least one of the second segments corresponds to a page break region of a device being fabricated on the wafer, and at least another of the second segments corresponds to an array region of the device. For example, since the second segments are based, at least in part, on the first segments and since some of the first segments may, as described above, correspond to page break regions while other first segments may correspond to array regions, some of the second segments may also correspond to page break regions and other second segments may correspond to array regions.
In one embodiment, the method is performed during scanning of the wafer by the inspection system. For example, as image frames are acquired for a wafer during scanning, the method may be performed for each or at least some of the image frames. In this manner, the method may be performed in real time during inspection by a computer subsystem of an inspection system, which may be configured as described further herein,
In another embodiment, the image for the wafer includes one of multiple image frames acquired sequentially tor different areas on the wafer during scanning of the wafer by the inspection system. For example, a detector or detection subsystem of the inspection system may capture multiple image frames as the wafer is moved relative to the inspection system or vice versa. Therefore, the image frames may be acquired at different positions on the wafer. The method described herein may be performed for any or all of those image frames. For example, in one such embodiment, the method is performed for more than one of the multiple image frames. In this manner, the method may be performed independently and separately for each image frame on a frame-by-frame basis.
In some embodiments, the image for the wafer includes one of multiple image frames acquired simultaneously for one area on the wafer by multiple detection subsystems of the inspection system, and the method includes assigning individual pixels in at least one other of the multiple image frames to the second segments by applying the first segments and the edge ma to the at least one other of the multiple image frames. For example, the segmentation result generated using any one frame image can be applied to image frames across other detection subsystems (or "channels") of the inspection system for the same job. In this manner, the segmentation determined for image frames generated by one channel may, In some instances, be applied to an image frame generated by another channel.
In some embodiments, the inspection system is a dark field inspection system. Therefore, the embodiments described herein may be used for segmentation on a dark field inspection system, which may be configured as described further herein. In addition, the embodiments described herein improve the accuracy, stability, and ease of use of the segmentation of wafer images produced by a dark field scanning inspection system. However, the embodiment described herein are not specific to a particular wafer or layer or a specific inspection system. For example, the method may be used to segment any images, no matter what kind of inspection system was used to acquire the images. The method may also include storing results of any of the step(s) of the method in a computer-read able storage medium. The results may include any of the results described herein and may be stored in any manner known in the art. The storage medium may include any suitable storage medium known in the art. After the results have been stored, the results can be accessed in the storage medium and used as described herein, formatted for display to a user, used by another software module, method, or system, etc.
Another embodiment relates to a non-transitory computer-readable medium storing program instructions executable on a computer system for performing a method (i.e., a computer-implemented method) for segmenting pixels in an image of a wafer for defect detection. One such embodiment is shown in Fig. 2. For example, as shown in Fig. 2, computer-readable medium 36 stores program instructions 38 executable on computer system 40 for performing the method described above. The computer-implemented method for which the program instructions are executable may include any other step(s) of any other method(s) described herein.
Program instructions 38 implementing methods such as those described herein may be stored on computer-readable medium 40. The computer-readable medium may be a storage medium such as a magnetic or optical disk, or a magnetic tape or any other suitable non -transitory computer-readable medium known in the art.
The program instructions may be implemented in any of variou ways, including procedure-based techniques, component-based techniques, and/or object-oriented techniques, among others. For example, the program instructions may be implemented using atlab, Visual Basic, ActiveX controls, C, C++ objects, C#, JavaBeans, Microsoft Foundation Classes ("MFC"), or other technologies or methodologies, as desired.
Computer system 40 may take variou forms, including a personal computer system, mainframe computer system, workstation, system computer, image computer, programmable image computer, parallel processor, or any other device known in the art. In general, the term "computer system" may be broadly defined to encompass any device having one or more processors, which executes instructions from a memory medium. An additional embodiment relates to a system configured to segment pixels in an ima e of a wafer for defect detection. One embodiment of such a system is shown in Fig. 3, As shown in Fig. 3, system 42 includes inspection subsystem 44 and computer subsystem 46. The inspection subsystem is configured to generate an image for a wafer. For example, as shown in Fig, 3, the inspection subsystem includes light source 48 such as a laser. Light source 48 is configured to direct light to polarizing component 50. in addition, the inspection subsystem may include more than one polarising component (not shown), each of which may be positioned independently in the path of the light from the light source. Each of the polarizing components may be configured to alter the polarization of the light from the light source in a different manner. The inspection subsystem may be configured to move the polarizing components into and out of the path of the light from the light source in any suitable manner depending on which polarization setting is selected for illumination of the wafer during a scan. The polarization setting used for the illumination of the wafer during a scan may include p-polarized (P), s-polarized (S), or circularly
polarized fC).
Light exiting polarizing component 50 is directed to wafer 52 at an oblique angle of incidence, which may include any suitable oblique angle of incidence. The inspection subsystem may also include one or more optical components (not shown) that are configured to direct light from light source 48 to polarizing component 50 or from polarizing component 50 to wafer 52. The optical components may include any suitable optical components known in the art such s, but not limited to, a reflective optical component. In addition, the light source, the polarizing component, and/or the one or more optical components may be configured to direct the light to the wafer at one or more angles of incidence (e.g., an oblique angle of incidence and/or a substantially normal angle of incidence). The inspection subsystem may be configured to perform the scanning by scanning the light over the wafer in any suitable manner.
Light scattered from wafer 52 may be collected and detected by multiple channels of the inspection subsystem during scanning. For example, light scattered from wafer 52 at angles relativel close to normal ma be collected by lens 54. Lens 5 ma include a refractiv optica! element as shown in Fig. 3. In addition, lens 54 may include one or more refractive optical elements and/or one or more reflective optical elements. Light collected by lens 54 may be tiirecied to polarizing component 56, which may include any suitable polarizing component known in the art. In addition, the inspection subsystem may include more than one polarizing component (not shown), each of which may be positioned independently in the path of the light collected by the lens. Each of the polarizing components may toe configured to alter the polarization of the light collected by the lens in a different manner. The inspection subsystem may be configured to move the polarizing components into and out of the path of the light collected by the lens in any suitable manner depending on which
polarization setting is selected for detection of the light collected by lens 54 during scanning. The polarization setting used for the detection of the light collected by lens 54 during scanning may include any of the polarization settings described herein (e.g., , S, and unpolarized ( )).
Light exiting polarizing component 56 is directed to detector 58. Detector 58 may include any suitable detector known in the art such as a charge coupled device (CCD) or another type of imaging detector. Detector 58 is configured to generate an image that is responsive to the scattered light collected by lens 54 and transmitted by polarizing component 56 if positioned in the path of the collected scattered light. Therefore, lens 54, polarizing component 56 if positioned in the path of the light collected by lens 54, and detector 58 form one channel of the inspection subsystem. This channel of the inspection subsystem may include any other suitable optical components (not shown) known in the art such as a Fourier filtering component.
Light scattered from wafer 52 at different angles may be collected by lens 60. Lens 60 ma be configured as described above. Light collected b lens 60 may be directed to polarizing component 62, which may include any suitable polarizing component known in the art. In addition, the inspection subsystem may include more than one polarizing component (not shown), each of which may be positioned independently in the path of the light collected by the lens. Each of the polarizing components may be configured to alter the polarization of the light collected b the lens in a different manner. The inspection subsystem may be configured to move the polarizing components into and out of the path of the light collected by the lens in any suitable manner depending on which polarization setting is selected for detection of the light collected by lews 60 during scanning. The polarization setting used for detection of the light collected by lens 60 during scanning may include l\ S, or .
Light exiting polarizing component 62 is directed to detector 64, which may be configured as described above. Detector 64 is also configured to generate an image that is responsive to the collected scattered light that passes through polarizing component 62 if positioned in the path of the scattered light.
Therefore, lens 60, polarizing component 62 if positioned in the path of the light collected by lens 60, and detector 64 may form another channel of the inspection subsystem. This channel may also include any other optical components (not shown) described above. In some embodiments, lens 60 may he configured to collect light scattered from the wafer at polar angles from about 20 degrees to about 70 degrees. In addition, lens 60 ma be configured as a reflective optical component (not shown) that is configured to collect light scattered from the wafer at azimuthal angles of about 360 degrees.
The inspection subsystem shown in Fig, 3 may also include one o more other channels (not shown). For example, the inspection subsystem may include an additional channel, which may include any of the optical components described herein such as a lens, one or more polarizing components, and a detector, configured as a side channel. The lens, the one or more polarizing components, and the detector may foe further configured as described herein, in one such example, the side channel may be configured to collect and detect light that is scattered out of the plane of incidence (e.g., the side channel may inciwde a lens, which is centered in a plane that is substantially perpendicular to the plane of incidence, and a detector configured to detect light collected by the lens).
Computer subsystem 46 is configu ed to acquire the image(s) generated by the inspection subsystem. For example, image(s) generated by the detectors during scanning may be provided to computer subsystem 46. in particular, the computer subsystem may be coupled to each of the detectors (e.g., by one or more transmission media shown by the dashed lines in Fig, 3, which may include any suitable transmission media known in the art) such that the computer subsystem may receive the imagers) generated by the detectors. The computer subsystem may be coupled to each of the detectors in any suitable manner. The image(s) generated by the detectors during scanning of the wafer may include any o the imagers) described herein.
The computer subsystem is configu ed for performing the steps of the method described herein. The computer subsystem may also be configured to perform any other step(s) of any method embodiment^) described herein. The computer subsystem, the inspection subsystem, and the system may be further configured as described herein.
It is noted that Fig. 3 is provided herein to generally illustrate one configuration of an inspection subsystem that may be included in the system embodiments described herein. Obviously, the inspection subsystem
configuration described herein may be altered to optimize the performance of the inspection subsystem as is normally performed when designing a commercial inspection system. In addition, the systems described herein may be
implemented using an existing inspection system (e.g., by adding functionality described herein to an existing inspection system) such as the Puma 90xx, 91xx, and 93xx series of tools that are commercially available from KLA-Tencor,
ilpitas, California. For some such systems, the methods described herein may be provided as optional functionality of the system (e.g., in addition to other functionalit of the system). Alternatively, the system described herein may be designed "from scratch" to provide a completely new system.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. For example, methods and systems for segmenting pixels in an image of a wafer for defect detection are provided. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may he made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims

WHAT IS CLAIMED IS:
1. A computer-implemented method for segmenting pixels in an image of a wafer for defect detection, comprising:
determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system;
assigning the individual pixels to first segments based on the statistic; detecting one or more edges between the first segments in an image of the first segments;
generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer; and assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image, wherein defect detection is performed based on the second segments to which the individual pixels are assigned, and w herein steps of the method are performed by a computer system.
2, The method of claim 1, wherein the characteristic is image intensity of the individual pixels.
3, The method of claim 1, wherein the statistic is median image intensity of the individual pixels.
4, The method of claim 1, further comprising generating an image showing the statistic determined for the individual pixels, wherein assigning the individual pixels to the first segments is performed based on the image showing the statistic.
5, The method of claim I» further comprising generating the image of the first segments by labeling the individual pixels based on the first segments to which the individual pixels were assigned.
6, The method of claim 1, wherein the one or more edges comprise at least one edge that extends in the x direction, at least one edge that extends in the y direction, or a combination of at least one edge that extends in the x direction and at least one edge that extends in the y direction,
7, The method of claim t„ further comprising modifying the one or more detected edges before said generating based on spatial characteristics of the one or more detected edges.
8, The method of claim 1, wherein assigning the individual pixels to the second segments comprises generating the second segments based on the first segments and the edge map and applying the second segments to the individual pixels.
9, The method of claim 1, wherein assigning the indi vidual pixels to the first segments results in the individual pixels having different levels of noise assigned to different first segments.
10, The method of claim 1, wherein at least one of the first segments corresponds to a region on the wafer containing structures having a first characteristic, and wherein at least another of the first segments corresponds to a region on the wafer containing structures having a second characteristic that is different than the first characteristic,
11. The method of claim 1, wherein at least one of the second segments corresponds to a region on the wafer containing structures having a first characteristic, and wherein at least another of the second segments correspond to a region on the wafer containing structures having a second characteristic that is different than the first characteristic.
12. The method of claim 1, wherein at least one of the first segments
corresponds to a page break region of a device being fabricated on the wafer, and wherein at least another of the first segments corresponds to an array region of the device,
J 3, The method of claim 1„ wherein at least one of the second segments corresponds to a page break region of a device being fabricated on the wafer, and wherein at least another of the second segments corresponds to an array region of the device.
14. The method of claim 1, wherein the method is performed during scanning of the wafer by the inspection system.
15. The method of claim 1, wherein the image for the wafer comprises one of multiple image frames acquired sequentially for different areas on the wafer during scanning of the wafer by the inspection system.
16. The method of claim 1, wherein the image for the wafer comprises one of multiple image frames acquired sequentially for different areas on the wafer during scanning of the wafer by the inspection system, and wherein the method is performed for more than one of the multiple image frames.
17. The method of claim 1, wherein the image for the wafer comprises one of multiple image frames acquired simultaneously for one area on the wafer by multiple detection subsystems of the inspection system, and wherein the method further comprises assigning individual pixels in at least one other of the multiple image frames to the second segments by applying the first segments and the edge map to the at least one other of the multiple image frames.
18. T he method of claim 1, wherein the inspection system is a dark field inspection system.
19. A non-transitory computer-readable medium storing program
instructions executable on a computer system for performing a method for segmenting pixels in an image of a wafer for defect detection, wherein the method comprises:
determining a statistic for individual pixels based on a characteristic of the individual pixels in an image acquired for a wafer by an inspection system;
assigning the individual pixels to first segments based on the statistic; detecting one or more edges betw een the first segments in an image of the first segments;
generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer; and assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image, wherein defect detection is performed based on the second segments to which the individual pixels are assigned.
20. A system configured to segment pixels in an image of a wafer for defect detection, comprising:
an inspection subsystem configured to generate an image for a wafer; and a computer subsystem configured for:
determining a statistic for individual pixels based on a characteristic of the individual pixels in the image for the wafer;
assigning the individual pixels to first segments based on the
statistic;
detecting one or more edges between the first segments in an image of the first segments;
generating an edge map by projecting the one or more edges across an area corresponding to the image for the wafer; and assigning the individual pixels to second segments by applying the first segments and the edge map to the image for the wafer thereby segmenting the image, wherein defect detection is performed based on the second segments to which the individual pixels are assigned.
PCT/US2013/021940 2012-01-20 2013-01-17 Segmentation for wafer inspection WO2013109755A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014553408A JP2015511310A (en) 2012-01-20 2013-01-17 Segmentation for wafer inspection
KR1020147023290A KR102009494B1 (en) 2012-01-20 2013-01-17 Segmentation for wafer inspection
DE112013000627.8T DE112013000627T5 (en) 2012-01-20 2013-01-17 Segmentation for wafer inspection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261588871P 2012-01-20 2012-01-20
US61/588,871 2012-01-20
US13/742,259 US8831334B2 (en) 2012-01-20 2013-01-15 Segmentation for wafer inspection
US13/742,259 2013-01-15

Publications (1)

Publication Number Publication Date
WO2013109755A1 true WO2013109755A1 (en) 2013-07-25

Family

ID=48797246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/021940 WO2013109755A1 (en) 2012-01-20 2013-01-17 Segmentation for wafer inspection

Country Status (6)

Country Link
US (1) US8831334B2 (en)
JP (1) JP2015511310A (en)
KR (1) KR102009494B1 (en)
DE (1) DE112013000627T5 (en)
TW (1) TWI562098B (en)
WO (1) WO2013109755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9262821B2 (en) 2014-05-12 2016-02-16 Kla-Tencor Corp. Inspection recipe setup from reference image variation

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493177B (en) * 2013-10-15 2015-07-21 Benq Materials Corp Method of detecting defect on optical film with periodic structure and device thereof
US9506873B2 (en) 2014-04-15 2016-11-29 Kla-Tencor Corp. Pattern suppression in logic for wafer inspection
US9816939B2 (en) 2014-07-22 2017-11-14 Kla-Tencor Corp. Virtual inspection systems with multiple modes
US9569834B2 (en) 2015-06-22 2017-02-14 Kla-Tencor Corporation Automated image-based process monitoring and control
JP6779229B2 (en) * 2015-04-30 2020-11-04 ケーエルエー コーポレイション Process monitoring and control based on automated images
KR102368587B1 (en) 2015-10-21 2022-03-02 삼성전자주식회사 inspection apparatus, semiconductor device manufacturing system including the same, and semiconductor device manufacturing method
US10186028B2 (en) * 2015-12-09 2019-01-22 Kla-Tencor Corporation Defect signal to noise enhancement by reducing die to die process noise
US10365639B2 (en) * 2016-01-06 2019-07-30 Kla-Tencor Corporation Feature selection and automated process window monitoring through outlier detection
JP2017134596A (en) * 2016-01-27 2017-08-03 株式会社東芝 Image processing method and process simulation device
US20180045937A1 (en) * 2016-08-10 2018-02-15 Zeta Instruments, Inc. Automated 3-d measurement
US11295432B2 (en) * 2017-06-29 2022-04-05 Kla-Tencor Corporation Broad band plasma inspection based on a nuisance map
EP3867942A1 (en) * 2018-10-19 2021-08-25 ASML Netherlands B.V. System and method for aligning electron beams in multi-beam inspection apparatus
WO2020133046A1 (en) * 2018-12-27 2020-07-02 深圳配天智能技术研究院有限公司 Defect detection method and device
US11676260B2 (en) * 2019-09-26 2023-06-13 Kla Corporation Variation-based segmentation for wafer defect detection
US11610296B2 (en) 2020-01-09 2023-03-21 Kla Corporation Projection and distance segmentation algorithm for wafer defect detection
KR20220001125A (en) * 2020-06-29 2022-01-05 삼성전자주식회사 Method and apparatus for detecting defects on substrate
US20220301133A1 (en) * 2021-03-16 2022-09-22 Kla Corporation Segmentation of design care areas with a rendered design image
TW202316535A (en) * 2021-04-05 2023-04-16 美商科磊股份有限公司 Semantic image segmentation for semiconductor-based applications
CN115063413B (en) * 2022-08-04 2022-11-11 宁波鑫芯微电子科技有限公司 Feature extraction method for abnormal data of super-large-scale wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179738A1 (en) * 2002-09-12 2004-09-16 Dai X. Long System and method for acquiring and processing complex images
US20050013474A1 (en) * 2003-07-14 2005-01-20 August Technology Corp. Edge normal process
US20050069217A1 (en) * 2003-09-30 2005-03-31 Debargha Mukherjee Enhancing text-like edges in digital images
US20070019856A1 (en) * 2003-01-15 2007-01-25 Negevtech Ltd.. System for detection of wafer defects
WO2010093733A2 (en) * 2009-02-13 2010-08-19 Kla-Tencor Corporation Detecting defects on a wafer

Family Cites Families (373)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495269A (en) 1966-12-19 1970-02-10 Xerox Corp Electrographic recording method and apparatus with inert gaseous discharge ionization and acceleration gaps
US3496352A (en) 1967-06-05 1970-02-17 Xerox Corp Self-cleaning corona generating apparatus
US3909602A (en) 1973-09-27 1975-09-30 California Inst Of Techn Automatic visual inspection system for microelectronics
US4015203A (en) 1975-12-31 1977-03-29 International Business Machines Corporation Contactless LSI junction leakage testing method
US4247203A (en) 1978-04-03 1981-01-27 Kla Instrument Corporation Automatic photomask inspection system and apparatus
US4347001A (en) 1978-04-03 1982-08-31 Kla Instruments Corporation Automatic photomask inspection system and apparatus
FR2473789A1 (en) 1980-01-09 1981-07-17 Ibm France TEST METHODS AND STRUCTURES FOR SEMICONDUCTOR INTEGRATED CIRCUITS FOR ELECTRICALLY DETERMINING CERTAIN TOLERANCES DURING PHOTOLITHOGRAPHIC STAGES
US4378159A (en) 1981-03-30 1983-03-29 Tencor Instruments Scanning contaminant and defect detector
US4448532A (en) 1981-03-31 1984-05-15 Kla Instruments Corporation Automatic photomask inspection method and system
US4475122A (en) 1981-11-09 1984-10-02 Tre Semiconductor Equipment Corporation Automatic wafer alignment technique
US4926489A (en) 1983-03-11 1990-05-15 Kla Instruments Corporation Reticle inspection system
US4579455A (en) 1983-05-09 1986-04-01 Kla Instruments Corporation Photomask inspection apparatus and method with improved defect detection
US4532650A (en) 1983-05-12 1985-07-30 Kla Instruments Corporation Photomask inspection apparatus and method using corner comparator defect detection algorithm
US4555798A (en) 1983-06-20 1985-11-26 Kla Instruments Corporation Automatic system and method for inspecting hole quality
US4578810A (en) 1983-08-08 1986-03-25 Itek Corporation System for printed circuit board defect detection
JPS6062122A (en) 1983-09-16 1985-04-10 Fujitsu Ltd Inspection of mask pattern
US4599558A (en) 1983-12-14 1986-07-08 Ibm Photovoltaic imaging for large area semiconductors
US4595289A (en) 1984-01-25 1986-06-17 At&T Bell Laboratories Inspection system utilizing dark-field illumination
JPS60263807A (en) 1984-06-12 1985-12-27 Dainippon Screen Mfg Co Ltd Instument for inspecting pattern defect of printed wiring board
US4633504A (en) 1984-06-28 1986-12-30 Kla Instruments Corporation Automatic photomask inspection system having image enhancement means
US4817123A (en) 1984-09-21 1989-03-28 Picker International Digital radiography detector resolution improvement
US4818169A (en) * 1985-05-17 1989-04-04 Schram Richard R Automated wafer inspection system
JPH0648380B2 (en) 1985-06-13 1994-06-22 株式会社東芝 Mask inspection method
US4734721A (en) 1985-10-04 1988-03-29 Markem Corporation Electrostatic printer utilizing dehumidified air
US4641967A (en) 1985-10-11 1987-02-10 Tencor Instruments Particle position correlator and correlation method for a surface scanner
US4928313A (en) 1985-10-25 1990-05-22 Synthetic Vision Systems, Inc. Method and system for automatically visually inspecting an article
US5046109A (en) 1986-03-12 1991-09-03 Nikon Corporation Pattern inspection apparatus
US4814829A (en) 1986-06-12 1989-03-21 Canon Kabushiki Kaisha Projection exposure apparatus
US4805123B1 (en) 1986-07-14 1998-10-13 Kla Instr Corp Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
US4758094A (en) 1987-05-15 1988-07-19 Kla Instruments Corp. Process and apparatus for in-situ qualification of master patterns used in patterning systems
US4766324A (en) 1987-08-07 1988-08-23 Tencor Instruments Particle detection method including comparison between sequential scans
US4812756A (en) 1987-08-26 1989-03-14 International Business Machines Corporation Contactless technique for semicondutor wafer testing
US4845558A (en) 1987-12-03 1989-07-04 Kla Instruments Corporation Method and apparatus for detecting defects in repeated microminiature patterns
US4877326A (en) 1988-02-19 1989-10-31 Kla Instruments Corporation Method and apparatus for optical inspection of substrates
US5054097A (en) 1988-11-23 1991-10-01 Schlumberger Technologies, Inc. Methods and apparatus for alignment of images
US5155336A (en) 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5124927A (en) 1990-03-02 1992-06-23 International Business Machines Corp. Latent-image control of lithography tools
JP3707172B2 (en) 1996-01-24 2005-10-19 富士ゼロックス株式会社 Image reading device
US5189481A (en) 1991-07-26 1993-02-23 Tencor Instruments Particle detector for rough surfaces
US5563702A (en) 1991-08-22 1996-10-08 Kla Instruments Corporation Automated photomask inspection apparatus and method
DE69208413T2 (en) 1991-08-22 1996-11-14 Kla Instr Corp Device for automatic testing of photomask
DE69333348T2 (en) 1992-03-09 2004-09-16 San Diego Regional Cancer Center, San Diego Anti-idiotypic antibodies and their use in the diagnosis and therapy of HIV-related diseases
US6205259B1 (en) 1992-04-09 2001-03-20 Olympus Optical Co., Ltd. Image processing apparatus
JP2667940B2 (en) 1992-04-27 1997-10-27 三菱電機株式会社 Mask inspection method and mask detection device
JP3730263B2 (en) 1992-05-27 2005-12-21 ケーエルエー・インストルメンツ・コーポレーション Apparatus and method for automatic substrate inspection using charged particle beam
JP3212389B2 (en) 1992-10-26 2001-09-25 株式会社キリンテクノシステム Inspection method for foreign substances on solids
KR100300618B1 (en) 1992-12-25 2001-11-22 오노 시게오 EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD USING THE DEVICE
US5448053A (en) 1993-03-01 1995-09-05 Rhoads; Geoffrey B. Method and apparatus for wide field distortion-compensated imaging
US5355212A (en) 1993-07-19 1994-10-11 Tencor Instruments Process for inspecting patterned wafers
US5453844A (en) 1993-07-21 1995-09-26 The University Of Rochester Image data coding and compression system utilizing controlled blurring
US5497381A (en) 1993-10-15 1996-03-05 Analog Devices, Inc. Bitstream defect analysis method for integrated circuits
US5544256A (en) 1993-10-22 1996-08-06 International Business Machines Corporation Automated defect classification system
US5500607A (en) 1993-12-22 1996-03-19 International Business Machines Corporation Probe-oxide-semiconductor method and apparatus for measuring oxide charge on a semiconductor wafer
US5553168A (en) 1994-01-21 1996-09-03 Texas Instruments Incorporated System and method for recognizing visual indicia
US5696835A (en) 1994-01-21 1997-12-09 Texas Instruments Incorporated Apparatus and method for aligning and measuring misregistration
US5883710A (en) 1994-12-08 1999-03-16 Kla-Tencor Corporation Scanning system for inspecting anomalies on surfaces
US5608538A (en) 1994-08-24 1997-03-04 International Business Machines Corporation Scan line queuing for high performance image correction
US5572608A (en) 1994-08-24 1996-11-05 International Business Machines Corporation Sinc filter in linear lumen space for scanner
US5528153A (en) 1994-11-07 1996-06-18 Texas Instruments Incorporated Method for non-destructive, non-contact measurement of dielectric constant of thin films
US6014461A (en) 1994-11-30 2000-01-11 Texas Instruments Incorporated Apparatus and method for automatic knowlege-based object identification
US5694478A (en) 1994-12-15 1997-12-02 Minnesota Mining And Manufacturing Company Method and apparatus for detecting and identifying microbial colonies
US5948972A (en) 1994-12-22 1999-09-07 Kla-Tencor Corporation Dual stage instrument for scanning a specimen
CA2139182A1 (en) 1994-12-28 1996-06-29 Paul Chevrette Method and system for fast microscanning
US5661408A (en) 1995-03-01 1997-08-26 Qc Solutions, Inc. Real-time in-line testing of semiconductor wafers
US5991699A (en) 1995-05-04 1999-11-23 Kla Instruments Corporation Detecting groups of defects in semiconductor feature space
US5485091A (en) 1995-05-12 1996-01-16 International Business Machines Corporation Contactless electrical thin oxide measurements
TW341664B (en) 1995-05-12 1998-10-01 Ibm Photovoltaic oxide charge measurement probe technique
US5644223A (en) 1995-05-12 1997-07-01 International Business Machines Corporation Uniform density charge deposit source
US6288780B1 (en) 1995-06-06 2001-09-11 Kla-Tencor Technologies Corp. High throughput brightfield/darkfield wafer inspection system using advanced optical techniques
US5649169A (en) 1995-06-20 1997-07-15 Advanced Micro Devices, Inc. Method and system for declustering semiconductor defect data
US5594247A (en) 1995-07-07 1997-01-14 Keithley Instruments, Inc. Apparatus and method for depositing charge on a semiconductor wafer
US5773989A (en) 1995-07-14 1998-06-30 University Of South Florida Measurement of the mobile ion concentration in the oxide layer of a semiconductor wafer
US5621519A (en) 1995-07-31 1997-04-15 Neopath, Inc. Imaging system transfer function control method and apparatus
US5619548A (en) 1995-08-11 1997-04-08 Oryx Instruments And Materials Corp. X-ray thickness gauge
WO1997013370A1 (en) 1995-10-02 1997-04-10 Kla Instruments Corporation Alignment correction prior to image sampling in inspection systems
US5754678A (en) 1996-01-17 1998-05-19 Photon Dynamics, Inc. Substrate inspection apparatus and method
JPH09320505A (en) 1996-03-29 1997-12-12 Hitachi Ltd Electron beam type inspecting method, device therefor, manufacture of semiconductor, and its manufacturing line
US5673208A (en) 1996-04-11 1997-09-30 Micron Technology, Inc. Focus spot detection method and system
US5917332A (en) 1996-05-09 1999-06-29 Advanced Micro Devices, Inc. Arrangement for improving defect scanner sensitivity and scanning defects on die of a semiconductor wafer
US5742658A (en) 1996-05-23 1998-04-21 Advanced Micro Devices, Inc. Apparatus and method for determining the elemental compositions and relative locations of particles on the surface of a semiconductor wafer
US6091846A (en) 1996-05-31 2000-07-18 Texas Instruments Incorporated Method and system for anomaly detection
US6246787B1 (en) 1996-05-31 2001-06-12 Texas Instruments Incorporated System and method for knowledgebase generation and management
US6292582B1 (en) 1996-05-31 2001-09-18 Lin Youling Method and system for identifying defects in a semiconductor
US6205239B1 (en) 1996-05-31 2001-03-20 Texas Instruments Incorporated System and method for circuit repair
US5822218A (en) 1996-08-27 1998-10-13 Clemson University Systems, methods and computer program products for prediction of defect-related failures in integrated circuits
US5767693A (en) 1996-09-04 1998-06-16 Smithley Instruments, Inc. Method and apparatus for measurement of mobile charges with a corona screen gun
US6076465A (en) 1996-09-20 2000-06-20 Kla-Tencor Corporation System and method for determining reticle defect printability
KR100200734B1 (en) 1996-10-10 1999-06-15 윤종용 Measuring apparatus and method of aerial image
US5866806A (en) 1996-10-11 1999-02-02 Kla-Tencor Corporation System for locating a feature of a surface
US5928389A (en) 1996-10-21 1999-07-27 Applied Materials, Inc. Method and apparatus for priority based scheduling of wafer processing within a multiple chamber semiconductor wafer processing tool
US6259960B1 (en) 1996-11-01 2001-07-10 Joel Ltd. Part-inspecting system
US5852232A (en) 1997-01-02 1998-12-22 Kla-Tencor Corporation Acoustic sensor as proximity detector
US5978501A (en) 1997-01-03 1999-11-02 International Business Machines Corporation Adaptive inspection method and system
US5955661A (en) 1997-01-06 1999-09-21 Kla-Tencor Corporation Optical profilometer combined with stylus probe measurement device
US5795685A (en) 1997-01-14 1998-08-18 International Business Machines Corporation Simple repair method for phase shifting masks
US5889593A (en) 1997-02-26 1999-03-30 Kla Instruments Corporation Optical system and method for angle-dependent reflection or transmission measurement
US5980187A (en) 1997-04-16 1999-11-09 Kla-Tencor Corporation Mechanism for transporting semiconductor-process masks
US6121783A (en) 1997-04-22 2000-09-19 Horner; Gregory S. Method and apparatus for establishing electrical contact between a wafer and a chuck
US6097196A (en) 1997-04-23 2000-08-01 Verkuil; Roger L. Non-contact tunnelling field measurement for a semiconductor oxide layer
US6078738A (en) 1997-05-08 2000-06-20 Lsi Logic Corporation Comparing aerial image to SEM of photoresist or substrate pattern for masking process characterization
KR100308811B1 (en) 1997-05-10 2001-12-15 박종섭 Method for improving time error of time and frequency generating device using gps
US6201999B1 (en) 1997-06-09 2001-03-13 Applied Materials, Inc. Method and apparatus for automatically generating schedules for wafer processing within a multichamber semiconductor wafer processing tool
US6011404A (en) 1997-07-03 2000-01-04 Lucent Technologies Inc. System and method for determining near--surface lifetimes and the tunneling field of a dielectric in a semiconductor
US6072320A (en) 1997-07-30 2000-06-06 Verkuil; Roger L. Product wafer junction leakage measurement using light and eddy current
US6104206A (en) 1997-08-05 2000-08-15 Verkuil; Roger L. Product wafer junction leakage measurement using corona and a kelvin probe
US5834941A (en) 1997-08-11 1998-11-10 Keithley Instruments, Inc. Mobile charge measurement using corona charge and ultraviolet light
US6191605B1 (en) 1997-08-18 2001-02-20 Tom G. Miller Contactless method for measuring total charge of an insulating layer on a substrate using corona charge
US6470489B1 (en) 1997-09-17 2002-10-22 Numerical Technologies, Inc. Design rule checking system and method
US6757645B2 (en) 1997-09-17 2004-06-29 Numerical Technologies, Inc. Visual inspection and verification system
US6578188B1 (en) 1997-09-17 2003-06-10 Numerical Technologies, Inc. Method and apparatus for a network-based mask defect printability analysis system
US7107571B2 (en) 1997-09-17 2006-09-12 Synopsys, Inc. Visual analysis and verification system using advanced tools
US5965306A (en) 1997-10-15 1999-10-12 International Business Machines Corporation Method of determining the printability of photomask defects
US5874733A (en) 1997-10-16 1999-02-23 Raytheon Company Convergent beam scanner linearizing method and apparatus
US6097887A (en) 1997-10-27 2000-08-01 Kla-Tencor Corporation Software system and method for graphically building customized recipe flowcharts
US6233719B1 (en) 1997-10-27 2001-05-15 Kla-Tencor Corporation System and method for analyzing semiconductor production data
US6104835A (en) 1997-11-14 2000-08-15 Kla-Tencor Corporation Automatic knowledge database generation for classifying objects and systems therefor
JPH11162832A (en) 1997-11-25 1999-06-18 Nikon Corp Scan aligning method and scan aligner
US5999003A (en) 1997-12-12 1999-12-07 Advanced Micro Devices, Inc. Intelligent usage of first pass defect data for improved statistical accuracy of wafer level classification
US6614520B1 (en) 1997-12-18 2003-09-02 Kla-Tencor Corporation Method for inspecting a reticle
US6060709A (en) 1997-12-31 2000-05-09 Verkuil; Roger L. Apparatus and method for depositing uniform charge on a thin oxide semiconductor wafer
US6122017A (en) 1998-01-22 2000-09-19 Hewlett-Packard Company Method for providing motion-compensated multi-field enhancement of still images from video
US6175645B1 (en) 1998-01-22 2001-01-16 Applied Materials, Inc. Optical inspection method and apparatus
US6171737B1 (en) 1998-02-03 2001-01-09 Advanced Micro Devices, Inc. Low cost application of oxide test wafer for defect monitor in photolithography process
US6091845A (en) 1998-02-24 2000-07-18 Micron Technology, Inc. Inspection technique of photomask
US5932377A (en) 1998-02-24 1999-08-03 International Business Machines Corporation Exact transmission balanced alternating phase-shifting mask for photolithography
US6091257A (en) 1998-02-26 2000-07-18 Verkuil; Roger L. Vacuum activated backside contact
US6282309B1 (en) 1998-05-29 2001-08-28 Kla-Tencor Corporation Enhanced sensitivity automated photomask inspection system
US6137570A (en) 1998-06-30 2000-10-24 Kla-Tencor Corporation System and method for analyzing topological features on a surface
JP2000089148A (en) 1998-07-13 2000-03-31 Canon Inc Optical scanner and image forming device using the same
US6324298B1 (en) 1998-07-15 2001-11-27 August Technology Corp. Automated wafer defect inspection system and a process of performing such inspection
US6266437B1 (en) 1998-09-04 2001-07-24 Sandia Corporation Sequential detection of web defects
US6466314B1 (en) 1998-09-17 2002-10-15 Applied Materials, Inc. Reticle design inspection system
US6040912A (en) 1998-09-30 2000-03-21 Advanced Micro Devices, Inc. Method and apparatus for detecting process sensitivity to integrated circuit layout using wafer to wafer defect inspection device
US6122046A (en) 1998-10-02 2000-09-19 Applied Materials, Inc. Dual resolution combined laser spot scanning and area imaging inspection
US6535628B2 (en) 1998-10-15 2003-03-18 Applied Materials, Inc. Detection of wafer fragments in a wafer processing apparatus
US6393602B1 (en) 1998-10-21 2002-05-21 Texas Instruments Incorporated Method of a comprehensive sequential analysis of the yield losses of semiconductor wafers
JP3860347B2 (en) 1998-10-30 2006-12-20 富士通株式会社 Link processing device
US6248486B1 (en) 1998-11-23 2001-06-19 U.S. Philips Corporation Method of detecting aberrations of an optical imaging system
US6476913B1 (en) 1998-11-30 2002-11-05 Hitachi, Ltd. Inspection method, apparatus and system for circuit pattern
US6529621B1 (en) 1998-12-17 2003-03-04 Kla-Tencor Mechanisms for making and inspecting reticles
US6539106B1 (en) 1999-01-08 2003-03-25 Applied Materials, Inc. Feature-based defect detection
US6373975B1 (en) 1999-01-25 2002-04-16 International Business Machines Corporation Error checking of simulated printed images with process window effects included
US7106895B1 (en) 1999-05-05 2006-09-12 Kla-Tencor Method and apparatus for inspecting reticles implementing parallel processing
WO2000068738A1 (en) 1999-05-07 2000-11-16 Nikon Corporation Aligner, microdevice, photomask, exposure method, and method of manufacturing device
EP1190238A1 (en) 1999-05-18 2002-03-27 Applied Materials, Inc. Method of and apparatus for inspection of articles by comparison with a master
US6526164B1 (en) 1999-05-27 2003-02-25 International Business Machines Corporation Intelligent photomask disposition
US6407373B1 (en) 1999-06-15 2002-06-18 Applied Materials, Inc. Apparatus and method for reviewing defects on an object
US6922482B1 (en) 1999-06-15 2005-07-26 Applied Materials, Inc. Hybrid invariant adaptive automatic defect classification
EP1065567A3 (en) 1999-06-29 2001-05-16 Applied Materials, Inc. Integrated critical dimension control
JP3816390B2 (en) 1999-07-02 2006-08-30 富士通株式会社 Service allocation device
US6776692B1 (en) 1999-07-09 2004-08-17 Applied Materials Inc. Closed-loop control of wafer polishing in a chemical mechanical polishing system
US6466895B1 (en) 1999-07-16 2002-10-15 Applied Materials, Inc. Defect reference system automatic pattern classification
US6248485B1 (en) 1999-07-19 2001-06-19 Lucent Technologies Inc. Method for controlling a process for patterning a feature in a photoresist
US6466315B1 (en) 1999-09-03 2002-10-15 Applied Materials, Inc. Method and system for reticle inspection by photolithography simulation
US20020144230A1 (en) 1999-09-22 2002-10-03 Dupont Photomasks, Inc. System and method for correcting design rule violations in a mask layout file
US6268093B1 (en) 1999-10-13 2001-07-31 Applied Materials, Inc. Method for reticle inspection using aerial imaging
FR2801673B1 (en) 1999-11-26 2001-12-28 Pechiney Aluminium METHOD FOR MEASURING THE DEGREE AND THE HOMOGENEITY OF CALCINATION OF ALUMINS
US7190292B2 (en) 1999-11-29 2007-03-13 Bizjak Karl M Input level adjust system and method
KR20010101697A (en) 1999-11-29 2001-11-14 기시모토 마사도시 Defect inspecting system
US6738954B1 (en) 1999-12-08 2004-05-18 International Business Machines Corporation Method for prediction random defect yields of integrated circuits with accuracy and computation time controls
US6553329B2 (en) 1999-12-13 2003-04-22 Texas Instruments Incorporated System for mapping logical functional test data of logical integrated circuits to physical representation using pruned diagnostic list
US6445199B1 (en) 1999-12-14 2002-09-03 Kla-Tencor Corporation Methods and apparatus for generating spatially resolved voltage contrast maps of semiconductor test structures
US6771806B1 (en) 1999-12-14 2004-08-03 Kla-Tencor Multi-pixel methods and apparatus for analysis of defect information from test structures on semiconductor devices
US6701004B1 (en) 1999-12-22 2004-03-02 Intel Corporation Detecting defects on photomasks
US6778695B1 (en) 1999-12-23 2004-08-17 Franklin M. Schellenberg Design-based reticle defect prioritization
JP4419250B2 (en) 2000-02-15 2010-02-24 株式会社ニコン Defect inspection equipment
US7120285B1 (en) 2000-02-29 2006-10-10 Advanced Micro Devices, Inc. Method for evaluation of reticle image using aerial image simulator
US6451690B1 (en) 2000-03-13 2002-09-17 Matsushita Electronics Corporation Method of forming electrode structure and method of fabricating semiconductor device
US6482557B1 (en) 2000-03-24 2002-11-19 Dupont Photomasks, Inc. Method and apparatus for evaluating the runability of a photomask inspection tool
US6569691B1 (en) 2000-03-29 2003-05-27 Semiconductor Diagnostics, Inc. Measurement of different mobile ion concentrations in the oxide layer of a semiconductor wafer
US6759255B2 (en) 2000-05-10 2004-07-06 Kla-Tencor Technologies Corp. Method and system for detecting metal contamination on a semiconductor wafer
US6425113B1 (en) 2000-06-13 2002-07-23 Leigh C. Anderson Integrated verification and manufacturability tool
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
JP2002032737A (en) 2000-07-14 2002-01-31 Seiko Instruments Inc Method and device for navigation for pattern observation of semiconductor device
US6636301B1 (en) 2000-08-10 2003-10-21 Kla-Tencor Corporation Multiple beam inspection apparatus and method
US6634018B2 (en) 2000-08-24 2003-10-14 Texas Instruments Incorporated Optical proximity correction
JP2002071575A (en) 2000-09-04 2002-03-08 Matsushita Electric Ind Co Ltd Defect inspecting and analyzing method and system therefor
TW513772B (en) 2000-09-05 2002-12-11 Komatsu Denshi Kinzoku Kk Apparatus for inspecting wafer surface, method for inspecting wafer surface, apparatus for judging defective wafer, method for judging defective wafer and information treatment apparatus of wafer surface
DE10044257A1 (en) 2000-09-07 2002-04-11 Infineon Technologies Ag Process for generating mask layout data for lithography simulation and optimized mask layout data, and associated device and programs
US6513151B1 (en) 2000-09-14 2003-01-28 Advanced Micro Devices, Inc. Full flow focus exposure matrix analysis and electrical testing for new product mask evaluation
US6919957B2 (en) 2000-09-20 2005-07-19 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
US6724489B2 (en) 2000-09-22 2004-04-20 Daniel Freifeld Three dimensional scanning camera
WO2002029392A2 (en) 2000-10-02 2002-04-11 Applied Materials, Inc. Defect source identifier
US6593152B2 (en) 2000-11-02 2003-07-15 Ebara Corporation Electron beam apparatus and method of manufacturing semiconductor device using the apparatus
US6753954B2 (en) 2000-12-06 2004-06-22 Asml Masktools B.V. Method and apparatus for detecting aberrations in a projection lens utilized for projection optics
US6602728B1 (en) 2001-01-05 2003-08-05 International Business Machines Corporation Method for generating a proximity model based on proximity rules
US6680621B2 (en) 2001-01-26 2004-01-20 Semiconductor Diagnostics, Inc. Steady state method for measuring the thickness and the capacitance of ultra thin dielectric in the presence of substantial leakage current
US6597193B2 (en) 2001-01-26 2003-07-22 Semiconductor Diagnostics, Inc. Steady state method for measuring the thickness and the capacitance of ultra thin dielectric in the presence of substantial leakage current
US20020145734A1 (en) 2001-02-09 2002-10-10 Cory Watkins Confocal 3D inspection system and process
JP3998577B2 (en) 2001-03-12 2007-10-31 ピー・デイ・エフ ソリユーシヨンズ インコーポレイテツド Characterization Vehicle and Design Method, Defect Identification Method, and Defect Size Distribution Determination Method
US6873720B2 (en) 2001-03-20 2005-03-29 Synopsys, Inc. System and method of providing mask defect printability analysis
JP3973372B2 (en) 2001-03-23 2007-09-12 株式会社日立製作所 Substrate inspection apparatus and substrate inspection method using charged particle beam
US6605478B2 (en) 2001-03-30 2003-08-12 Appleid Materials, Inc, Kill index analysis for automatic defect classification in semiconductor wafers
US6665065B1 (en) 2001-04-09 2003-12-16 Advanced Micro Devices, Inc. Defect detection in pellicized reticles via exposure at short wavelengths
JP4038356B2 (en) 2001-04-10 2008-01-23 株式会社日立製作所 Defect data analysis method and apparatus, and review system
JP4266082B2 (en) 2001-04-26 2009-05-20 株式会社東芝 Inspection method for exposure mask pattern
JP4199939B2 (en) 2001-04-27 2008-12-24 株式会社日立製作所 Semiconductor inspection system
JP2002353099A (en) 2001-05-22 2002-12-06 Canon Inc Apparatus and method for detecting position aligner and method for manufacturing device
US20030004699A1 (en) 2001-06-04 2003-01-02 Choi Charles Y. Method and apparatus for evaluating an integrated circuit model
US20020186878A1 (en) 2001-06-07 2002-12-12 Hoon Tan Seow System and method for multiple image analysis
US6779159B2 (en) 2001-06-08 2004-08-17 Sumitomo Mitsubishi Silicon Corporation Defect inspection method and defect inspection apparatus
JP3551163B2 (en) 2001-06-08 2004-08-04 三菱住友シリコン株式会社 Defect inspection method and defect inspection device
US6581193B1 (en) 2001-06-13 2003-06-17 Kla-Tencor Apparatus and methods for modeling process effects and imaging effects in scanning electron microscopy
US7382447B2 (en) 2001-06-26 2008-06-03 Kla-Tencor Technologies Corporation Method for determining lithographic focus and exposure
US20030014146A1 (en) 2001-07-12 2003-01-16 Kabushiki Kaisha Toshiba Dangerous process/pattern detection system and method, danger detection program, and semiconductor device manufacturing method
US6593748B1 (en) 2001-07-12 2003-07-15 Advanced Micro Devices, Inc. Process integration of electrical thickness measurement of gate oxide and tunnel oxides by corona discharge technique
JP2003031477A (en) 2001-07-17 2003-01-31 Hitachi Ltd Manufacturing method of semiconductor device and system thereof
JP4122735B2 (en) 2001-07-24 2008-07-23 株式会社日立製作所 Semiconductor device inspection method and inspection condition setting method
US7030997B2 (en) 2001-09-11 2006-04-18 The Regents Of The University Of California Characterizing aberrations in an imaging lens and applications to visual testing and integrated circuit mask analysis
US7155698B1 (en) 2001-09-11 2006-12-26 The Regents Of The University Of California Method of locating areas in an image such as a photo mask layout that are sensitive to residual processing effects
EP1694076B1 (en) 2001-09-12 2009-12-30 Panasonic Corporation Picture coding and decoding method
JP3870052B2 (en) 2001-09-20 2007-01-17 株式会社日立製作所 Semiconductor device manufacturing method and defect inspection data processing method
JP4035974B2 (en) 2001-09-26 2008-01-23 株式会社日立製作所 Defect observation method and apparatus
JP3955450B2 (en) 2001-09-27 2007-08-08 株式会社ルネサステクノロジ Sample inspection method
US6670082B2 (en) 2001-10-09 2003-12-30 Numerical Technologies, Inc. System and method for correcting 3D effects in an alternating phase-shifting mask
DE60214506T2 (en) 2001-10-09 2007-05-16 Asml Masktools B.V. Method for calibration and optimization of a 2-dimensional modeling of patterns
US7065239B2 (en) * 2001-10-24 2006-06-20 Applied Materials, Inc. Automated repetitive array microstructure defect inspection
US6948141B1 (en) 2001-10-25 2005-09-20 Kla-Tencor Technologies Corporation Apparatus and methods for determining critical area of semiconductor design data
US6918101B1 (en) 2001-10-25 2005-07-12 Kla -Tencor Technologies Corporation Apparatus and methods for determining critical area of semiconductor design data
US6813572B2 (en) 2001-10-25 2004-11-02 Kla-Tencor Technologies Corporation Apparatus and methods for managing reliability of semiconductor devices
US6751519B1 (en) 2001-10-25 2004-06-15 Kla-Tencor Technologies Corporation Methods and systems for predicting IC chip yield
US6734696B2 (en) 2001-11-01 2004-05-11 Kla-Tencor Technologies Corp. Non-contact hysteresis measurements of insulating films
JP2003151483A (en) 2001-11-19 2003-05-23 Hitachi Ltd Substrate inspection device for circuit pattern using charged particle beam and substrate inspection method
US6886153B1 (en) 2001-12-21 2005-04-26 Kla-Tencor Corporation Design driven inspection or measurement for semiconductor using recipe
US6658640B2 (en) 2001-12-26 2003-12-02 Numerical Technologies, Inc. Simulation-based feed forward process control
US6789032B2 (en) 2001-12-26 2004-09-07 International Business Machines Corporation Method of statistical binning for reliability selection
US6906305B2 (en) 2002-01-08 2005-06-14 Brion Technologies, Inc. System and method for aerial image sensing
US7236847B2 (en) 2002-01-16 2007-06-26 Kla-Tencor Technologies Corp. Systems and methods for closed loop defect reduction
JP2003215060A (en) 2002-01-22 2003-07-30 Tokyo Seimitsu Co Ltd Pattern inspection method and inspection apparatus
US6691052B1 (en) 2002-01-30 2004-02-10 Kla-Tencor Corporation Apparatus and methods for generating an inspection reference pattern
JP3629244B2 (en) 2002-02-19 2005-03-16 本多エレクトロン株式会社 Wafer inspection equipment
US7257247B2 (en) 2002-02-21 2007-08-14 International Business Machines Corporation Mask defect analysis system
US20030223639A1 (en) 2002-03-05 2003-12-04 Vladimir Shlain Calibration and recognition of materials in technical images using specific and non-specific features
US7693323B2 (en) 2002-03-12 2010-04-06 Applied Materials, Inc. Multi-detector defect detection system and a method for detecting defects
US20030192015A1 (en) 2002-04-04 2003-10-09 Numerical Technologies, Inc. Method and apparatus to facilitate test pattern design for model calibration and proximity correction
US6966047B1 (en) 2002-04-09 2005-11-15 Kla-Tencor Technologies Corporation Capturing designer intent in reticle inspection
US6642066B1 (en) 2002-05-15 2003-11-04 Advanced Micro Devices, Inc. Integrated process for depositing layer of high-K dielectric with in-situ control of K value and thickness of high-K dielectric layer
US7152215B2 (en) 2002-06-07 2006-12-19 Praesagus, Inc. Dummy fill for integrated circuits
US20030229875A1 (en) 2002-06-07 2003-12-11 Smith Taber H. Use of models in integrated circuit fabrication
AU2003274370A1 (en) 2002-06-07 2003-12-22 Praesagus, Inc. Characterization adn reduction of variation for integrated circuits
US6828542B2 (en) 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
US7393755B2 (en) 2002-06-07 2008-07-01 Cadence Design Systems, Inc. Dummy fill for integrated circuits
JP3826849B2 (en) 2002-06-07 2006-09-27 株式会社Sumco Defect inspection method and defect inspection apparatus
US7363099B2 (en) 2002-06-07 2008-04-22 Cadence Design Systems, Inc. Integrated circuit metrology
US7124386B2 (en) 2002-06-07 2006-10-17 Praesagus, Inc. Dummy fill for integrated circuits
JP2004031709A (en) 2002-06-27 2004-01-29 Seiko Instruments Inc Waferless measuring recipe generating system
US6777676B1 (en) 2002-07-05 2004-08-17 Kla-Tencor Technologies Corporation Non-destructive root cause analysis on blocked contact or via
JP4073265B2 (en) 2002-07-09 2008-04-09 富士通株式会社 Inspection apparatus and inspection method
US7012438B1 (en) 2002-07-10 2006-03-14 Kla-Tencor Technologies Corp. Methods and systems for determining a property of an insulating film
EP1543451A4 (en) 2002-07-12 2010-11-17 Cadence Design Systems Inc Method and system for context-specific mask writing
JP2006502422A (en) 2002-07-12 2006-01-19 ケイデンス デザイン システムズ インコーポレイテッド Method and system for context-specific mask inspection
US7418124B2 (en) 2002-07-15 2008-08-26 Kla-Tencor Technologies Corp. Qualifying patterns, patterning processes, or patterning apparatus in the fabrication of microlithographic patterns
US6902855B2 (en) 2002-07-15 2005-06-07 Kla-Tencor Technologies Qualifying patterns, patterning processes, or patterning apparatus in the fabrication of microlithographic patterns
US6775818B2 (en) 2002-08-20 2004-08-10 Lsi Logic Corporation Device parameter and gate performance simulation based on wafer image prediction
US6784446B1 (en) 2002-08-29 2004-08-31 Advanced Micro Devices, Inc. Reticle defect printability verification by resist latent image comparison
US20040049722A1 (en) 2002-09-09 2004-03-11 Kabushiki Kaisha Toshiba Failure analysis system, failure analysis method, a computer program product and a manufacturing method for a semiconductor device
US7043071B2 (en) 2002-09-13 2006-05-09 Synopsys, Inc. Soft defect printability simulation and analysis for masks
US7504182B2 (en) 2002-09-18 2009-03-17 Fei Company Photolithography mask repair
KR100474571B1 (en) 2002-09-23 2005-03-10 삼성전자주식회사 Method of setting reference images, method and apparatus using the setting method for inspecting patterns on a wafer
US7061625B1 (en) 2002-09-27 2006-06-13 Kla-Tencor Technologies Corporation Method and apparatus using interferometric metrology for high aspect ratio inspection
US6831736B2 (en) 2002-10-07 2004-12-14 Applied Materials Israel, Ltd. Method of and apparatus for line alignment to compensate for static and dynamic inaccuracies in scanning
US7027143B1 (en) 2002-10-15 2006-04-11 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging at off-stepper wavelengths
US7379175B1 (en) 2002-10-15 2008-05-27 Kla-Tencor Technologies Corp. Methods and systems for reticle inspection and defect review using aerial imaging
US7123356B1 (en) 2002-10-15 2006-10-17 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging and die-to-database detection
JP4302965B2 (en) 2002-11-01 2009-07-29 株式会社日立ハイテクノロジーズ Semiconductor device manufacturing method and manufacturing system thereof
US6807503B2 (en) 2002-11-04 2004-10-19 Brion Technologies, Inc. Method and apparatus for monitoring integrated circuit fabrication
US7386839B1 (en) 2002-11-06 2008-06-10 Valery Golender System and method for troubleshooting software configuration problems using application tracing
US7457736B2 (en) 2002-11-21 2008-11-25 Synopsys, Inc. Automated creation of metrology recipes
WO2004055472A2 (en) 2002-12-13 2004-07-01 Smith Bruce W Method for aberration detection and measurement
US6882745B2 (en) 2002-12-19 2005-04-19 Freescale Semiconductor, Inc. Method and apparatus for translating detected wafer defect coordinates to reticle coordinates using CAD data
US7162071B2 (en) 2002-12-20 2007-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Progressive self-learning defect review and classification method
US6718526B1 (en) 2003-02-07 2004-04-06 Kla-Tencor Corporation Spatial signature analysis
US7030966B2 (en) 2003-02-11 2006-04-18 Asml Netherlands B.V. Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
US7756320B2 (en) 2003-03-12 2010-07-13 Hitachi High-Technologies Corporation Defect classification using a logical equation for high stage classification
JP3699960B2 (en) 2003-03-14 2005-09-28 株式会社東芝 Inspection recipe creation system, defect review system, inspection recipe creation method and defect review method
US7053355B2 (en) 2003-03-18 2006-05-30 Brion Technologies, Inc. System and method for lithography process monitoring and control
US7508973B2 (en) 2003-03-28 2009-03-24 Hitachi High-Technologies Corporation Method of inspecting defects
US6925614B2 (en) 2003-04-01 2005-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for protecting and integrating silicon intellectual property (IP) in an integrated circuit (IC)
US6859746B1 (en) 2003-05-01 2005-02-22 Advanced Micro Devices, Inc. Methods of using adaptive sampling techniques based upon categorization of process variations, and system for performing same
US7739064B1 (en) 2003-05-09 2010-06-15 Kla-Tencor Corporation Inline clustered defect reduction
JP2004340652A (en) 2003-05-14 2004-12-02 Hitachi Ltd Flaw inspection device and positive electron beam application device
US6777147B1 (en) 2003-05-21 2004-08-17 International Business Machines Corporation Method for evaluating the effects of multiple exposure processes in lithography
US7068363B2 (en) 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
US7346470B2 (en) 2003-06-10 2008-03-18 International Business Machines Corporation System for identification of defects on circuits or other arrayed products
US9002497B2 (en) 2003-07-03 2015-04-07 Kla-Tencor Technologies Corp. Methods and systems for inspection of wafers and reticles using designer intent data
US7135344B2 (en) 2003-07-11 2006-11-14 Applied Materials, Israel, Ltd. Design-based monitoring
US7968859B2 (en) 2003-07-28 2011-06-28 Lsi Corporation Wafer edge defect inspection using captured image analysis
US6988045B2 (en) 2003-08-04 2006-01-17 Advanced Micro Devices, Inc. Dynamic metrology sampling methods, and system for performing same
US7271891B1 (en) 2003-08-29 2007-09-18 Kla-Tencor Technologies Corporation Apparatus and methods for providing selective defect sensitivity
US7003758B2 (en) 2003-10-07 2006-02-21 Brion Technologies, Inc. System and method for lithography simulation
US7114143B2 (en) 2003-10-29 2006-09-26 Lsi Logic Corporation Process yield learning
US7103484B1 (en) 2003-10-31 2006-09-05 Kla-Tencor Technologies Corp. Non-contact methods for measuring electrical thickness and determining nitrogen content of insulating films
JP2005158780A (en) 2003-11-20 2005-06-16 Hitachi Ltd Method and device for inspecting defect of pattern
JP2005183907A (en) 2003-11-26 2005-07-07 Matsushita Electric Ind Co Ltd Method and apparatus for analyzing pattern
JP4351522B2 (en) 2003-11-28 2009-10-28 株式会社日立ハイテクノロジーズ Pattern defect inspection apparatus and pattern defect inspection method
US8151220B2 (en) 2003-12-04 2012-04-03 Kla-Tencor Technologies Corp. Methods for simulating reticle layout data, inspecting reticle layout data, and generating a process for inspecting reticle layout data
KR101056142B1 (en) 2004-01-29 2011-08-10 케이엘에이-텐코 코포레이션 Computerized method for detecting defects in reticle design data
JP4426871B2 (en) 2004-02-25 2010-03-03 エスアイアイ・ナノテクノロジー株式会社 Image noise removal of FIB / SEM combined device
US7194709B2 (en) 2004-03-05 2007-03-20 Keith John Brankner Automatic alignment of integrated circuit and design layout of integrated circuit to more accurately assess the impact of anomalies
JP2005283326A (en) 2004-03-30 2005-10-13 Hitachi High-Technologies Corp Defect review method and its device
US7171334B2 (en) 2004-06-01 2007-01-30 Brion Technologies, Inc. Method and apparatus for synchronizing data acquisition of a monitored IC fabrication process
JP4347751B2 (en) 2004-06-07 2009-10-21 株式会社アドバンテスト Defect analysis system and defect location display method
US7207017B1 (en) 2004-06-10 2007-04-17 Advanced Micro Devices, Inc. Method and system for metrology recipe generation and review and analysis of design, simulation and metrology results
WO2006019919A2 (en) 2004-07-21 2006-02-23 Kla-Tencor Technologies Corp. Computer-implemented methods for generating input for a simulation program for generating a simulated image of a reticle
US7678516B2 (en) 2004-07-22 2010-03-16 Kla-Tencor Technologies Corp. Test structures and methods for monitoring or controlling a semiconductor fabrication process
CN101027693B (en) 2004-08-09 2010-05-12 伯拉考国际股份公司 An image registration method and apparatus for medical imaging based on mulptiple masks
US7310796B2 (en) 2004-08-27 2007-12-18 Applied Materials, Israel, Ltd. System and method for simulating an aerial image
TW200622275A (en) 2004-09-06 2006-07-01 Mentor Graphics Corp Integrated circuit yield and quality analysis methods and systems
JP4904034B2 (en) 2004-09-14 2012-03-28 ケーエルエー−テンカー コーポレイション Method, system and carrier medium for evaluating reticle layout data
US7142992B1 (en) 2004-09-30 2006-11-28 Kla-Tencor Technologies Corp. Flexible hybrid defect classification for semiconductor manufacturing
KR20170003710A (en) 2004-10-12 2017-01-09 케이엘에이-텐코 코포레이션 Computer-implemented methods and systems for classifying defects on a specimen
US7729529B2 (en) 2004-12-07 2010-06-01 Kla-Tencor Technologies Corp. Computer-implemented methods for detecting and/or sorting defects in a design pattern of a reticle
JP2006200972A (en) 2005-01-19 2006-08-03 Tokyo Seimitsu Co Ltd Image defect inspection method, image defect inspection device, and external appearance inspection device
JP4895569B2 (en) 2005-01-26 2012-03-14 株式会社日立ハイテクノロジーズ CHARGE CONTROL DEVICE AND MEASURING DEVICE PROVIDED WITH CHARGE CONTROL DEVICE
US7475382B2 (en) 2005-02-24 2009-01-06 Synopsys, Inc. Method and apparatus for determining an improved assist feature configuration in a mask layout
US7804993B2 (en) 2005-02-28 2010-09-28 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images
US7813541B2 (en) 2005-02-28 2010-10-12 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers
US7496880B2 (en) 2005-03-17 2009-02-24 Synopsys, Inc. Method and apparatus for assessing the quality of a process model
US7760347B2 (en) 2005-05-13 2010-07-20 Applied Materials, Inc. Design-based method for grouping systematic defects in lithography pattern writing system
US7760929B2 (en) 2005-05-13 2010-07-20 Applied Materials, Inc. Grouping systematic defects with feedback from electrical inspection
US7444615B2 (en) 2005-05-31 2008-10-28 Invarium, Inc. Calibration on wafer sweet spots
US7853920B2 (en) 2005-06-03 2010-12-14 Asml Netherlands B.V. Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing
US7564017B2 (en) 2005-06-03 2009-07-21 Brion Technologies, Inc. System and method for characterizing aerial image quality in a lithography system
US7501215B2 (en) 2005-06-28 2009-03-10 Asml Netherlands B.V. Device manufacturing method and a calibration substrate
US20070002322A1 (en) 2005-06-30 2007-01-04 Yan Borodovsky Image inspection method
US8219940B2 (en) 2005-07-06 2012-07-10 Semiconductor Insights Inc. Method and apparatus for removing dummy features from a data structure
KR100663365B1 (en) 2005-07-18 2007-01-02 삼성전자주식회사 Optical inspection tools including lens unit with at least a pair of beam paths therein and methods of detecting surface defects of a substrate using the same
US7769225B2 (en) 2005-08-02 2010-08-03 Kla-Tencor Technologies Corp. Methods and systems for detecting defects in a reticle design pattern
US7488933B2 (en) 2005-08-05 2009-02-10 Brion Technologies, Inc. Method for lithography model calibration
JP4806020B2 (en) 2005-08-08 2011-11-02 エーエスエムエル ネザーランズ ビー.ブイ. Method for creating a focus exposure model of a lithographic process, method for creating a single model of a lithographic process for use at nominal conditions, and a computer readable medium
US7749666B2 (en) 2005-08-09 2010-07-06 Asml Netherlands B.V. System and method for measuring and analyzing lithographic parameters and determining optimal process corrections
KR100909474B1 (en) 2005-08-10 2009-07-28 삼성전자주식회사 Methods for Detecting Defective Semiconductor Wafers with Local Defect Mode Using Wafer Defect Index and Equipments Used Thereon
WO2007026361A2 (en) 2005-09-01 2007-03-08 Camtek Limited A method and a system for establishing an inspection recipe
JP4203498B2 (en) 2005-09-22 2009-01-07 アドバンスド・マスク・インスペクション・テクノロジー株式会社 Image correction apparatus, pattern inspection apparatus, image correction method, and pattern defect inspection method
US7676077B2 (en) 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US8041103B2 (en) 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7570800B2 (en) 2005-12-14 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for binning defects detected on a specimen
US7801353B2 (en) 2006-02-01 2010-09-21 Applied Materials Israel, Ltd. Method for defect detection using computer aided design data
EP1982160A4 (en) 2006-02-09 2016-02-17 Kla Tencor Tech Corp Methods and systems for determining a characteristic of a wafer
US8102408B2 (en) 2006-06-29 2012-01-24 Kla-Tencor Technologies Corp. Computer-implemented methods and systems for determining different process windows for a wafer printing process for different reticle designs
JP2008041940A (en) 2006-08-07 2008-02-21 Hitachi High-Technologies Corp Sem method reviewing device, and method for reviewing and inspecting defect using sem method reviewing device
US7904845B2 (en) 2006-12-06 2011-03-08 Kla-Tencor Corp. Determining locations on a wafer to be reviewed during defect review
WO2008077100A2 (en) 2006-12-19 2008-06-26 Kla-Tencor Corporation Systems and methods for creating inspection recipes
WO2008086282A2 (en) 2007-01-05 2008-07-17 Kla-Tencor Corporation Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
US7962863B2 (en) 2007-05-07 2011-06-14 Kla-Tencor Corp. Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer
US7738093B2 (en) 2007-05-07 2010-06-15 Kla-Tencor Corp. Methods for detecting and classifying defects on a reticle
US8073240B2 (en) 2007-05-07 2011-12-06 Kla-Tencor Corp. Computer-implemented methods, computer-readable media, and systems for identifying one or more optical modes of an inspection system as candidates for use in inspection of a layer of a wafer
US7962864B2 (en) 2007-05-24 2011-06-14 Applied Materials, Inc. Stage yield prediction
US8799831B2 (en) * 2007-05-24 2014-08-05 Applied Materials, Inc. Inline defect analysis for sampling and SPC
US7796804B2 (en) 2007-07-20 2010-09-14 Kla-Tencor Corp. Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
US8611639B2 (en) 2007-07-30 2013-12-17 Kla-Tencor Technologies Corp Semiconductor device property extraction, generation, visualization, and monitoring methods
US7711514B2 (en) 2007-08-10 2010-05-04 Kla-Tencor Technologies Corp. Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan
WO2009026358A1 (en) 2007-08-20 2009-02-26 Kla-Tencor Corporation Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects
US8126255B2 (en) 2007-09-20 2012-02-28 Kla-Tencor Corp. Systems and methods for creating persistent data for a wafer and for using persistent data for inspection-related functions
JP5022191B2 (en) 2007-11-16 2012-09-12 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection apparatus
US7890917B1 (en) 2008-01-14 2011-02-15 Xilinx, Inc. Method and apparatus for providing secure intellectual property cores for a programmable logic device
US8139844B2 (en) 2008-04-14 2012-03-20 Kla-Tencor Corp. Methods and systems for determining a defect criticality index for defects on wafers
US8049877B2 (en) 2008-05-14 2011-11-01 Kla-Tencor Corp. Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system
US8000922B2 (en) * 2008-05-29 2011-08-16 Kla-Tencor Corp. Methods and systems for generating information to be used for selecting values for one or more parameters of a detection algorithm
WO2009152046A1 (en) 2008-06-11 2009-12-17 Kla-Tencor Corporation Systems and methods for detecting design and process defects on a wafer, reviewing defects on a wafer, selecting one or more features within a design for use as process monitoring features, or some combination thereof
US8041106B2 (en) 2008-12-05 2011-10-18 Kla-Tencor Corp. Methods and systems for detecting defects on a reticle
US9262303B2 (en) 2008-12-05 2016-02-16 Altera Corporation Automated semiconductor design flaw detection system
US8094924B2 (en) 2008-12-15 2012-01-10 Hermes-Microvision, Inc. E-beam defect review system
US8204297B1 (en) 2009-02-27 2012-06-19 Kla-Tencor Corp. Methods and systems for classifying defects detected on a reticle
US8112241B2 (en) 2009-03-13 2012-02-07 Kla-Tencor Corp. Methods and systems for generating an inspection process for a wafer
US8295580B2 (en) 2009-09-02 2012-10-23 Hermes Microvision Inc. Substrate and die defect inspection method
TW201118758A (en) * 2009-11-25 2011-06-01 Hermes Microvision Inc Method and system for the visual classification of defects
US8437967B2 (en) 2010-01-27 2013-05-07 International Business Machines Corporation Method and system for inspecting multi-layer reticles
US9201022B2 (en) 2011-06-02 2015-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Extraction of systematic defects
US9069923B2 (en) 2011-06-16 2015-06-30 Globalfoundries Singapore Pte. Ltd. IP protection
US20130009989A1 (en) * 2011-07-07 2013-01-10 Li-Hui Chen Methods and systems for image segmentation and related applications
US8611598B2 (en) * 2011-07-26 2013-12-17 Harman International (China) Holdings Co., Ltd. Vehicle obstacle detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179738A1 (en) * 2002-09-12 2004-09-16 Dai X. Long System and method for acquiring and processing complex images
US20070019856A1 (en) * 2003-01-15 2007-01-25 Negevtech Ltd.. System for detection of wafer defects
US20050013474A1 (en) * 2003-07-14 2005-01-20 August Technology Corp. Edge normal process
US20050069217A1 (en) * 2003-09-30 2005-03-31 Debargha Mukherjee Enhancing text-like edges in digital images
WO2010093733A2 (en) * 2009-02-13 2010-08-19 Kla-Tencor Corporation Detecting defects on a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9262821B2 (en) 2014-05-12 2016-02-16 Kla-Tencor Corp. Inspection recipe setup from reference image variation

Also Published As

Publication number Publication date
KR20140116946A (en) 2014-10-06
KR102009494B1 (en) 2019-08-12
US20130188859A1 (en) 2013-07-25
JP2015511310A (en) 2015-04-16
TWI562098B (en) 2016-12-11
US8831334B2 (en) 2014-09-09
DE112013000627T5 (en) 2014-10-09
TW201337839A (en) 2013-09-16

Similar Documents

Publication Publication Date Title
US8831334B2 (en) Segmentation for wafer inspection
TWI648706B (en) Method, system and non-transitory computer readable medium for detecting defects on a wafer
US9053527B2 (en) Detecting defects on a wafer
US8775101B2 (en) Detecting defects on a wafer
US7925072B2 (en) Methods for identifying array areas in dies formed on a wafer and methods for setting up such methods
US9727047B2 (en) Defect detection using structural information
KR102363265B1 (en) Adaptive local threshold and color filtering
US7894659B2 (en) Methods for accurate identification of an edge of a care area for an array area formed on a wafer and methods for binning defects detected in an array area formed on a wafer
US20150221076A1 (en) Defect detection and classification based on attributes determined from a standard reference image
SG173586A1 (en) Detecting defects on a wafer
US9778207B2 (en) Integrated multi-pass inspection
US9442077B2 (en) Scratch filter for wafer inspection
US10923317B2 (en) Detecting defects in a logic region on a wafer
KR101828536B1 (en) Method and apparatus of panel inspection
JP2006145228A (en) Unevenness defect detecting method and unevenness defect detector
KR102433319B1 (en) Vision inspection method of diffusing lens for led light source
JPH07175205A (en) Reticle inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013000627

Country of ref document: DE

Ref document number: 1120130006278

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2014553408

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147023290

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13738525

Country of ref document: EP

Kind code of ref document: A1