WO2013143959A1 - Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede - Google Patents

Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede Download PDF

Info

Publication number
WO2013143959A1
WO2013143959A1 PCT/EP2013/055896 EP2013055896W WO2013143959A1 WO 2013143959 A1 WO2013143959 A1 WO 2013143959A1 EP 2013055896 W EP2013055896 W EP 2013055896W WO 2013143959 A1 WO2013143959 A1 WO 2013143959A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
orthogonal
synchronization
detection
signal
Prior art date
Application number
PCT/EP2013/055896
Other languages
English (en)
Inventor
Zhipeng Zhao
Original Assignee
Comsis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comsis filed Critical Comsis
Priority to EP13714229.5A priority Critical patent/EP2832032B1/fr
Priority to US14/389,057 priority patent/US9736800B2/en
Publication of WO2013143959A1 publication Critical patent/WO2013143959A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J2013/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the use of a particular waveform improving the performance of detection and synchronization in the context of a WiFi network.
  • This waveform makes it possible to make a good compromise between the performance and the complexity of the implementation of this detection.
  • WiFi wireless communication is performed on the physical layer, called PHY layer ("Physical Layer").
  • PHY layer Physical Layer
  • the PHY layer provides the reliable information transmission medium.
  • the MAC layer (“Medium Access Control Layer”) is responsible for remission / reception management in the context of multi-stations.
  • the MAC layer includes a protocol for coordinating access to the radio resource that is based on the CSMA / CA protocol ("Carrier Sense Multiple Access with Collision Avoidance").
  • CSMA / CA protocol Carrier Sense Multiple Access with Collision Avoidance
  • This mechanism takes into account that each station operates in half-duplex mode, that is, it can not listen and transmit at the same time.
  • CSMA / CA protocol a station first listens for the channel for a random time when it needs to send data packets. When the channel is free, the station sends its frame. If not, the station waits for a next interval to send its data packets. The duration of listening is a random multiple of the time interval called "timeslot".
  • the object of the present invention is to provide a method of synchronization and detection that is more efficient and more robust than current methods.
  • MAC layer Medium Access Control Layer
  • PHY layer Physical Layer
  • the MAC layer transmitting to the PHY layer commands for performing said multiple access protocol and the generating PHY layer in response to at least one waveform x (t) carrying timing signals and detection signals.
  • this method of synchronization and detection implements an orthogonal or quasi-orthogonal cyclic signal s (t) to construct said at least one waveform x (t).
  • the synchronization signals include a cyclic prefix, the orthogonal or quasi-orthogonal cyclic signal, and a cyclic suffix.
  • the detection signals may advantageously include a repetition of the orthogonal or quasi-orthogonal cyclic signal, for example a Barker code repetition.
  • the specific waveform implemented in the synchronization and detection method preferably has a substantially constant amplitude.
  • the substantially constant amplitude waveform is for example generated by PSK ("Phase Shift Keying") modulation, and preferably by BPSK ("Binary Phase Shift Keying”) modulation.
  • PSK Phase Shift Keying
  • BPSK Binary Phase Shift Keying
  • the orthogonal or quasi-orthogonal cyclic signal can be generated from a pseudo-random binary sequence according to
  • the waveform corresponding to the synchronization signal can be generated using an m-sequence, i.e. a periodic sequence of values produced by a linear feedback shift register (LFSR).
  • LFSR linear feedback shift register
  • the cyclic prefix may be advantageously arranged to control an automatic gain controller (AGC).
  • AGC automatic gain controller
  • it also implements an intermediate layer (QosWiFi) provided to cooperate with the MAC layer to transmit commands to the PHY physical layer.
  • the synchronization and detection method can be implemented to implement a multiple access mechanism of the CSMA / CD type ("Sensitive Carrier Multiple Access with Collision Detection"), and particularly a "Tournament Contention Function” protocol (TCF). ).
  • WiFi wireless communication system
  • MAC layer Medium Access Control Layer
  • PHY layer Physical Layer
  • the MAC layer in collaboration with an intermediate layer called QosWiFi gives the controls to the PHY layer to perform the tournament protocol.
  • the PHY layer in demand of the MAC layer, generates one or more waveforms (the synchronization signals, the detection signals) which consists of 3 periods as described in the patent.
  • this waveform is constructed in the following way: the prefix cyclic, the quasi-orthogonal signal, the cyclic suffix for the synchronization signals; a repetition of the signal for the detection signals.
  • This protocol operates at the MAC layer level.
  • the PHY layer supports detection / synchronization.
  • FIG. 1 illustrates an exemplary synchronization signal implemented in the method according to the invention
  • FIG. 2 illustrates an example of a detection signal implemented in the method according to the invention.
  • this system is designed to achieve the new protocol called TCF, ("Tournament Contention Function"), at the MAC layer, in WiFi networks.
  • TCF Transmission Channel Contention Function
  • PHY Physical Layer
  • an intracellular synchronization and a mechanism for detecting the presence of a specific waveform are essential to succeed in this kind of protocol where access to the radio resources of several users is essential. possible.
  • PHY Physical Layer
  • this implementation offers fast and efficient waveform detection and more accurate time synchronization as well as that of the WiFi system.
  • the set of constant amplitude waveforms is proposed for detection and synchronization in WiFi networks. These waveforms are generated by the bit sequences provided by the PHY layer.
  • WiFi wireless communication takes place on the PHY layer which provides the reliable information transmission medium and the MAC layer which handles the remission / reception management in the context of multi-stations.
  • coordination of access to the radio resource is based on the CSMA / CA protocol. According to this protocol, when a station needs to send data packets, it listens to the channel for a random duration: if the channel is free, the station sends its frame; otherwise the station waits for the next interval. This mechanism takes into account that each station operates in half-duplex mode, that is, it can not listen and transmit at the same time. The listening time is a random multiple of the timeslot.
  • CSMA / CD Serial Advanced Carrier Multiple Access with Collision Detection
  • Phase 1 (initialization): Phase 1 consists of 3 steps.
  • Step 1 In TCF networks, a selected station is responsible for initiating the tournament by sending the synchronization signal S sy nci - All participating stations in the tournament synchronize in a distributed way by listening to S sy nci -
  • Step 2 An echo mode is designed to avoid the problem of "hidden stations". At this stage, the stations configured mode "with echo” will relay the syn sync signal S c2 with which stations that have not detected S sync i in step 1 can synchronize.
  • Step 3 the stations synchronized to the signal S synC 2 will send the signal Sdet3 in step 3 to confirm the echo mode. In case only S of t3 is detected, the stations will play the tournament in echo-free mode.
  • Phase 2 after the initialization phase, the stations are considered synchronized temporally.
  • the tournament is made in N exchanges whose duration T is constant.
  • echo mode an exchange is divided into 2 steps and the duration is 27 "
  • the stations having detected Sdeti send the signal S of t2 for hidden stations can participate in the tournament Au / 'th exchange, if a listening mode station detects Sdeti or S t2, it loses the tournament but achieves an S echo t2 each detection signal Sdeti.
  • Phase 3 finishing: After key exchanges, immediately or after a delay, the initiating station shall send the synchronization signal S ' sy n c i to indicate the packet sending interval for the winning station .
  • the emission of S ' sync i also targets resynchronization of TCF stations.
  • the stations having received S' syn ci send S ' syn c2 to synchronize the stations hidden before the emission of the winner then in echo-free mode all the stations wait this interval of S syn c2 - for hidden stations, S syn c2 also serves as a synchronizing signal.
  • the system must be able to synchronize with the syn ⁇ S synchronizing signals above, S s / nc2, S syn latter and S syn c2) and detect Sdeti detection signals and S t2) at the level of the PHY layer. Since S det i and S of t2 indicate channel occupancy, it is possible that S det i and S d and 2 are equal. However, it is remarkable that the system needs to distinguish S syn , S s / nc2 , S ' syn ci and S' syn c2 because these signals are used for different purposes.
  • the total phase 2 duration is NT (echo-free mode) or 2NT (echo mode) and so it is better to use S of ti / S of short t2 ( ⁇ small). For this purpose, it is necessary to refine the time synchronization by cleverly designing the synchronization signals to reduce the guard interval.
  • the transmitter sends a signal to be detected and / or synchronized at time t uniformly distributed in the interval ⁇ , ⁇ - ⁇ .
  • the purpose of synchronization is to find the instant of transmission of the signal. Under the condition that the signal has been detected, the synchronization amounts to finding the argument t which maximizes the conditional probability density p (y ⁇ t) of the received signal y (t):
  • the orthogonal cyclic signal is more desirable for constructing a sufficiently large waveform.
  • the channel realization h (t) is close to a Dirac pulse or a short response that characterizes the WiFi channels for indoor applications; the detection / synchronization criterion is approximated by: s ⁇ t) is transmitted at time i?
  • Y (i) is the signal y (t) filtered using the matched filter.
  • the output of the projection with the matched filter is checked with respect to the channel power.
  • the channel power is estimated using the orthogonal cyclic signal.
  • the use of the orthogonal cyclic signal makes it possible to design a detection / synchronization system with reduced complexity.
  • To realize the TCF protocol in the WiFi system it is necessary to optimize the waveform in order to simplify the processes that minimize system faults.
  • By implementing the detection / synchronization algorithm using the orthogonal cyclic signal it is proposed to use a constant amplitude waveform in BPSK (Binary Phase Shift Keying) modulation for the realization of the TCF protocol.
  • BPSK Binary Phase Shift Keying
  • the constant amplitude waveform makes it possible to minimize the impact of material imperfections, for example the non-linearity of the power amplifier (PA), the RF front-end, digital to analog converter, etc.
  • PA power amplifier
  • RF front-end RF front-end
  • digital to analog converter etc.
  • the constant amplitude waveform is generated by PSK (Phase-Shift Keying).
  • PSK Phase-Shift Keying
  • the IQ-mismatch is estimated and corrected in the dedicated modules that are integrated into the transmission and reception chain. The elimination of the IQ-mismatch processing using the BPSK modulation waveform thus makes it possible to speed up the processing and minimize the impact of the IQ-mismatch.
  • the pseudo-random bit sequence is used to generate the orthogonal cyclic signal.
  • ⁇ a n ⁇ be the binary sequence of size N
  • the orthogonal cyclic signal is generated by
  • MLS Maximum Length Sequence
  • LFSR Linear Feedback Shift Register
  • N 2 k - i with k the degree of the primitive polynomial generator.
  • This waveform is used to construct the signals S sy nci, S s / nc2 , S ' sync i and S' syn c2 -
  • the baseband signal is clocked at 20MHz and the following configuration is selected for the synchronization signals:
  • the cyclic prefix portion is also used to drive the automatic gain controller (AGC) which adjusts the gain of the radio frequency (RF) channel to the power of the received signal.
  • AGC automatic gain controller
  • RF radio frequency
  • Comsis has developed a fast algorithm to perform this AGC procedure. In practice, this procedure comes to an end by providing an optimized adaptation to the power level between -75dBm and -30dBm. For the weak signal with a lower level of -75dBm, this algorithm delivers an adapted gain faster, in less read.
  • the size of the cyclic prefix is large enough to cover the AGC procedure and the spread of the multipath channel.
  • the detection signals S of ti, S of t2 and S of t3, it is proposed to construct a waveform which is a repetition of the orthogonal cyclic signal. It suffices to choose the short orthogonal cyclic signal, for example, the signal S det i / S of t2 is generated by the repetition of the Barker-7 code, and the signal Sdet3 is generated by the repetition of the Barker-13 code, as illustrated. in Figure 2.
  • the detection of the signals S of ti, S of t2 and S of t3 can be performed using the same architecture of detection / synchronization of the synchronization signal.

Abstract

Procédé de détection et de synchronisation pour un système de communication sans fil multi-stations (WiFi) mettant en œuvre une couche, dite couche MAC (« Médium Access Control Layer »), prévue pour implémenter un protocole d'accès multiple et une couche physique, dite couche PHY (« Physical Layer »), prévue pour procurer des fonctions de synchronisation et de détection, la couche MAC transmettant à la couche PHY des commandes pour réaliser ledit protocole d'accès multiple et la couche PHY générant en réponse au moins une forme d'onde x(t) portant des signaux de synchronisation et des signaux de détection, caractérisé en ce qu'il met en œuvre un signal cyclique orthogonal ou quasi-orthogonal s(t) pour construire ladite au moins une forme d'onde x(t).

Description

« Procédé de synchronisation et de détection pour un système de communication sans fil multi-stations (WiFi), et système de communication sans fil mettant en œuvre ce procédé »
Domaine technique
La présente invention se rapporte à l'utilisation d'une forme d'onde particulière améliorant la performance de la détection et de la synchronisation dans le cadre d'un réseau WiFi. Cette forme d'onde permet de réaliser un bon compromis entre la performance et la complexité de la mise en œuvre de cette détection.
Etat de la technique antérieure
La communication sans fil WiFi se réalise sur la couche physique, appelée couche PHY (« Physical Layer »). La couche PHY fournit le support de transmission fiable d'information.
La couche MAC (« Médium Access Control Layer »), se charge de la gestion de rémission/réception dans le contexte de multi-stations.
Dans un réseau WiFi, la couche MAC comprend un protocole de coordination de l'accès à la ressource radio qui est basé sur le protocole CSMA/CA (« Carrier Sensé Multiple Access with Collision Avoidance »). Ce mécanisme tient compte du fait que chaque station fonctionne en mode « half-duplex », c'est-à-dire qu'elle ne peut pas écouter et émettre au même moment. Conformément au protocole CSMA/CA, une station commence par écouter le canal pendant une durée aléatoire lorsqu'elle a besoin d'envoyer des paquets de données. Lorsque le canal est libre, la station envoie sa trame. Dans le cas contraire, la station attend un prochain intervalle pour envoyer ses paquets de données. La durée d'écoute est un multiple aléatoire de l'intervalle de temps appelé « timeslot » .
Le but de la présente invention est de proposer un procédé de synchronisation et de détection qui soit plus efficace et plus robuste que les procédés actuels.
Exposé de l'invention Cet objectif est atteint avec un procédé de synchronisation et de détection pour un système de communication sans fil multi-stations (WiFi) mettant en œuvre une couche, dite couche MAC (« Médium Access Control Layer »), prévue pour implémenter un protocole d'accès multiple et une couche physique, dite couche PHY (« Physical Layer »), prévue pour procurer des fonctions de synchronisation et de détection,
la couche MAC transmettant à la couche PHY des commandes pour réaliser ledit protocole d'accès multiple et la couche PHY générant en réponse au moins une forme d'onde x(t) portant des signaux de synchronisation et des signaux de détection.
Selon l'invention, ce procédé de synchronisation et de détection met en œuvre un signal cyclique orthogonal ou quasi-orthogonal s(t) pour construire ladite au moins une forme d'onde x(t).
Dans un mode préféré de réalisation de l'invention, les signaux de synchronisation incluent un préfixe cyclique, le signal cyclique orthogonal ou quasi-orthogonal et un suffixe cyclique.
Les signaux de détection peuvent avantageusement inclure une répétition du signal cyclique orthogonal ou quasi-orthogonal, par exemple une répétition de codes Barker.
La forme d'onde spécifique mise en œuvre dans le procédé de synchronisation et de détection présente de préférence une amplitude sensiblement constante.
La forme d'onde d'amplitude sensiblement constante est par exemple générée par modulation PSK (« Phase Shift Keying »), et de préférence par modulation BPSK (« Binary Phase Shift Keying »).
Le signal cyclique orthogonal ou quasi-orthogonal peut être généré à partir d'une séquence binaire pseudo-aléatoire selon
¾ = (-iy\ 0 < « < N-1
où {an} est une séquence binaire de taille N .
La forme d'onde correspondant au signal de synchronisation peut être générée en utilisant une m-séquence, i.e. une suite périodique de valeurs produites par un registre à décalage à rétroaction linéaire (LFSR).
Le préfixe cyclique peut être avantageusement agencé pour commander un contrôleur de gain automatique (AGC). Dans un mode pratique de réalisation du procédé selon l'invention, celui-ci met en œuvre en outre une couche intermédiaire (QosWiFi) prévue pour coopérer avec la couche MAC pour transmettre des commandes à la couche physique PHY.
Le signal orthogonal ou quasi-orthogonal peut être du type s = (x0, ...,5,v I) de longueur N qui vérifie:
.V 1
E(s) = — s, = e
N-l
A(s,i = - } s,:
t=0 où E est l'espérance du signal et A(s,t) est la fonction d'autocorrélation du signal et e = 0 ou e 0 et f δ ou f ¾ S où S est une impulsion de Dirac telle que 10, t t 0
Le procédé de synchronisation et de détection peut être mis en œuvre pour implémenter un mécanisme d'accès multiple de type CSMA/CD (« Carrier Sensé Multiple Access with Collision Détection »), et particulièrement un protocole de type « Tournament Contention Function » (TCF).
Suivant un autre aspect de l'invention, il est proposé un système de communication sans fil multi-stations (WiFi) mettant en œuvre une couche, dite couche MAC (« Médium Access Control Layer »), prévue pour implémenter un protocole d'accès multiple et une couche physique, dite couche PHY (« Physical Layer »), prévue pour procurer des fonctions de synchronisation et de détection, mettant en œuvre le procédé de détection et de synchronisation selon l'invention.
Dans la présente invention, la couche MAC en collaboration avec une couche intermédiaire baptisée QosWiFi donne les commandes à la couche PHY pour réaliser le protocole de tournoi. La couche PHY, en demande de la couche MAC, engendre une ou plusieurs formes d'onde (les signaux de synchronisation, les signaux de détection) qui se compose de 3 périodes comme décrit dans le brevet.
On parle du signal orthogonal ou quasi orthogonal, s(t), qui sert à la base pour construire la forme d'onde spécifique x(t) : selon notre proposition, cette forme d'onde est construite de la façon suivante : le préfixe cyclique, le signal quasi-/orthogonal, le suffixe cyclique pour les signaux de synchronisation ; une répétition du signal pour les signaux de détection.
Ce protocole s'opère au niveau de couche MAC. La couche PHY prend en charge la détection/synchronisation.
On comprendra mieux l'invention en se reportant à la description correspondant aux figures ci-après, correspondant au mode préféré de réalisation de l'invention :
- la figure 1 illustre un exemple de signal de synchronisation mis en œuvre dans le procédé selon l'invention ;
- la figure 2 illustre un exemple de signal de détection mis en œuvre dans le procédé selon l'invention.
Description détaillée de l'invention
Initialement, ce système est conçu pour réaliser le nouveau protocole baptisé TCF, (« Tournament Contention Function »), au niveau de couche MAC, dans les réseaux WiFi. Au niveau de la couche PHY (« Physical Layer ») une synchronisation intracellulaire et un mécanisme de détection de la présence d'une forme d'onde spécifique sont essentiels pour réussir ce genre de protocole où l'accès aux ressources radio de plusieurs utilisateurs est possible. En optimisant l'architecture du design, cette implémentation offre une détection de forme d'onde rapide et efficace et une synchronisation temporelle plus précise ainsi que celle du système WiFi.
L'ensemble des formes d'onde à amplitude constante est proposé pour la détection et la synchronisation dans les réseaux WiFi. Ces formes d'onde sont engendrées par les séquences binaires fournies par la couche PHY. La communication sans fil WiFi se réalise sur la couche PHY qui fournit le support de transmission fiable d'information et la couche MAC qui se charge de la gestion de rémission/réception dans le contexte de multi- stations. Dans la couche MAC, la coordination de l'accès à la ressource radio est basée sur le protocole CSMA/CA. Conformément à ce protocole, quand une station a besoin d'envoyer des paquets de données, elle écoute le canal pendant une durée aléatoire : si le canal est libre, la station envoie sa trame ; sinon la station attend le prochain intervalle. Ce mécanisme tient compte du fait que chaque station fonctionne en mode « half-duplex », c'est-à-dire qu'elle ne peut pas écouter et émettre au même moment. La durée d'écoute est un multiple aléatoire de l'intervalle de temps « timeslot ».
Le protocole TCF est un mécanisme d'accès multiple connu comme CSMA/CD (« Carrier Sensé Multiple Access with Collision Détection »). L'accès au canal est basé sur le résultat d'un tournoi dédié qui se compose de N échanges. Avant le tournoi, chaque station se munit d'une séquence de N bits {£>,} (la clef, avec /= 1,2,...). Pendant le tournoi au iieme échange, la station participant au tournoi transmet une forme d'onde (le signal de tournoi) si £>,= 1 ou écoute si £>,= 0. En écoutant le canal, si la station entend (détecte) le signal de tournoi, elle est éliminée du tournoi et elle se met en mode d'écoute pour faire des échos. A la fin du tournoi, la station qui n'a détecté aucun signal de tournoi ou a participé au tournoi avec une clef tous 1 l ), est considérée comme le gagnant du tournoi et elle enverra sa trame de données dans le prochain intervalle de transmission disponible.
Afin de mieux gérer le tournoi, ce protocole se déroule en trois phases :
Phase 1 (initialisation) : la phase 1 se compose de 3 étapes.
Etape 1 : dans les réseaux s'opérant en protocole TCF, une station sélectionnée se charge d'initier le tournoi en envoyant le signal de synchronisation Ssynci - Toutes les stations participant au tournoi se synchronisent d'une façon distribuée en écoutant Ssynci -
Etape 2 : Un mode écho est conçu pour éviter le problème des « stations cachées » . A cette étape, les stations configurées en mode « avec écho » vont relayer le signal de synchronisation Ssync2 avec lequel les stations n'ayant pas détecté Ssynci à l'étape 1 peuvent se synchroniser.
Etape 3 : les stations synchronisées au signal SsynC2 vont envoyer le signal Sdet3 à l'étape 3 pour confirmer le mode écho. Au cas où seulement Sdet3 est détecté, les stations vont jouer le tournoi en mode sans écho.
Phase 2 (développement) : après la phase d'initialisation, les stations sont considérées synchronisées temporellement. Le tournoi s'effectue en N échanges dont la durée T est constante. En mode sans écho, au /'eme échange les stations ayant £>,= 1 (la clef) envoient le signal Sdeti et celles ayant £>,=0 écoutent le canal. En mode avec écho, un échange se divise en 2 étapes et la durée est 27". A la première étape, les stations se comportent comme en mode sans écho ; à la deuxième étape, les stations ayant détecté Sdeti envoient le signal Sdet2 pour que les stations cachées puissent participer au tournoi. Au /'eme échange, si une station en mode d'écoute détecte Sdeti ou Sdet2, elle perd le tournoi mais réalise un écho Sdet2 à chaque détection du signal Sdeti -
Phase 3 (finition) : après les échanges de clef, immédiatement ou après un délai, la station initiatrice doit envoyer le signal de synchronisation S'synci afin d'indiquer l'intervalle de l'envoi de paquet pour la station gagnante. L'émission de S'synci cible aussi une resynchronisation des stations en TCF. En mode avec écho, après la transmission de S'synci les stations ayant reçu S'synci envoient S'sync2 pour synchroniser les stations cachées avant l'émission du gagnant alors en mode sans écho toutes les stations attendent cet intervalle de S'sync2 - Pour les stations cachées, S'sync2 sert aussi comme un signal de synchronisation.
Selon le protocole TCF, le système doit être capable de synchroniser avec les signaux de synchronisation {Ssynci, Ss/nc2, S'synci et S'sync2) et de détecter les signaux de détection Sdeti et Sdet2) au niveau de la couche PHY. Sachant que Sdeti et Sdet2 indiquent l'occupation de canal, il est possible que Sdeti et Sdet2 soient égaux. Cependant, il est remarquable que le système ait besoin de distinguer Ssynci, Ss/nc2, S'synci et S'sync2 du fait que ces signaux sont employés pour des objectifs différents. De plus, la durée totale de phase 2 est NT (mode sans écho) ou 2NT (mode avec écho) et il est donc préférable d'utiliser Sdeti /Sdet2 courts (Γ petit). Pour ce but, il est nécessaire d'affiner la synchronisation temporelle en concevant astucieusement les signaux de synchronisation afin de diminuer l'intervalle de garde.
On suppose que pendant une certaine durée, l'émetteur envoie un signal à détecter et/ou à synchroniser à l'instant t uniformément distribué dans l'intervalle ΪΟ,Γ -Ιΐ .
La synchronisation a pour but de trouver l'instant d'émission du signal . Sous la condition que le signal ait été détecté, la synchronisation revient à trouver l'argument t qui maximise la densité de probabilité conditionnelle p(y \ t)du signal reçu y(t) :
t = argmax p(y \ t) (î)
t
Par rapport au signal idéal, le signal cyclique orthogonal est plus souhaitable pour construire une forme d'onde de taille suffisamment grande.
Dans les paragraphes suivants, on discute de la réalisation du système de détection/synchronisation du signal cyclique orthogonal .
En pratique, la réalisation de canal h(t) est proche d'une impulsion de Dirac ou une réponse courte qui caractérise les canaux WiFi pour les applications indoor ; le critère de détection/synchronisation est approximé par : s{t) est émis à l'instant i ?
Figure imgf000009_0002
où Y(i) est le signal y(t) filtré en utilisant le filtre adapté.
Ce critère vient de l'approximation :
Figure imgf000009_0001
quand h(t) s'approche à une impulsion courte.
La simplicité de cette approximation est évidente : au lieu de détecter la vraisemblance à la réalisation de canal, on vérifie la sortie de la projection avec le filtre adapté par rapport à la puissance de canal . La puissance de canal est estimée à l'aide du signal cyclique orthogonal . L'utilisation du signal cyclique orthogonal permet de concevoir un système de détection/synchronisation à complexité réduite. Pour réaliser le protocole TCF dans le système WiFi, il est nécessaire d'optimiser la forme d'onde afin de simplifier les traitements qui minimisent les défauts du système. En mettant en œuvre l'algorithme de détection/synchronisation utilisant le signal cyclique orthogonal, il est proposé d'utiliser une forme d'onde à amplitude constante en modulation BPSK (Binary Phase Shift Keying) pour la réalisation du protocole TCF.
Dans le système de communication selon l'invention, la forme d'onde à amplitude constante permet de minimiser l'impact des imperfections matérielles, par exemple la non-linéarité de l'amplificateur de puissance (PA, « Power Amplifier »), le front-end RF, le convertisseur numérique/analogique, etc.
La forme d'onde à amplitude constante est engendrée par la modulation PSK (Phase-Shift Keying). De plus, il est préférable d'employer la modulation BPSK qui permet de compenser IQ-mismatch, l'inadaptation de la voie In-phase et Quadrature. Dans le système WiFi existant, l'IQ- mismatch est estimé et corrigé dans les modules dédiés qui sont intégrées dans la chaîne de l'émission et réception. La suppression du traitement l'IQ- mismatch en utilisant la forme d'onde en modulation BPSK permet donc d'accélérer le traitement et de minimiser les impactes de l'IQ-mismatch.
La séquence binaire pseudo-aléatoire est employée pour générer le signal cyclique orthogonal. Soit {an} la séquence binaire de taille N, le signal cyclique orthogonal est généré par
sn = (-ï)afl , 0≤n≤N-\ (4)
On propose deux familles de code respectivement pour les signaux de synchronisation (Ssynci , Ss/nc2, S'synci et S'sync2) et les signaux de détection
(Sdetl et Sdef2) -
Pour la détection/synchronisation, on choisit la m-séquence, MLS (« Maximum Length Séquence ») qui est générée à l'aide du LFSR (« Linear Feedback Shift Register ») pour une taille N = 2k - i avec k le degré du polynôme primitif générateur. Cette forme d'onde est employée pour construire les signaux Ssynci , Ss/nc2, S'synci et S'sync2 - Dans le contexte du système WiFi, le signal de bande base est cadencé à 20M Hz et on choisit la configuration suivante pour les signaux de synchronisation :
1) la taille du préfixe cyclique est Np = 40 (2us) ;
2) la taille du signal cyclique orthogonal est N = 63 (3, 15us) ;
3) la taille du suffixe cyclique est Ns = 12(0, 6us), en référence à la figure 1.
La portion préfixe cyclique sert à aussi entraîner le contrôleur de gain automatique (AGC) qui adapte le gain de la chaîne radiofréquence (RF) à la puissance du signal reçu . Comsis a développé un algorithme rapide pour réaliser cette procédure AGC. En pratique, cette procédure se termine à environs lus en fournissant une adaptation optimisée au niveau de puissance comprise entre -75dBm et -30dBm. Pour le faible signal avec un niveau inférieur de -75dBm, cet algorithme délivre un gain adapté plus rapidement, en moins de lus. La configuration du signal tient compte des caractéristiques du canal WiFi dans l'environnement indoor dont l'impulsion de canal est très courte avec RMS (« Root Mean Square ») = 0,25us. La taille du préfixe cyclique est suffisamment grande pour couvrir la procédure AGC et l'étalement du canal à trajet-multiple. Une fois l'AGC s'établit, on commence la procédure de détection/synchronisation jusqu'au bout du suffixe cyclique.
Pour les signaux de détection, Sdeti, Sdet2 et Sdet3, on propose de construire une forme d'onde qui est une répétition du signal cyclique orthogonal . Il suffit de choisir le signal cyclique orthogonal court, par exemple, le signal Sdeti/Sdet2 est engendré par la répétition du code Barker- 7, et le signal Sdet3 est engendré par la répétition du code Barker-13, comme illustré dans la figure 2.
La détection des signaux Sdeti, Sdet2 et Sdet3 peut s'effectuer en utilisant la même architecture de détection/synchronisation du signal de synchronisation.

Claims

Revendications
Procédé de détection et de synchronisation pour un système de communication sans fil multi-stations (WiFi) mettant en œuvre une couche, dite couche MAC (« Médium Access Control Layer »), prévue pour implémenter un protocole d'accès multiple et une couche physique, dite couche PHY (« Physical Layer »), prévue pour procurer des fonctions de synchronisation et de détection,
la couche MAC transmettant à la couche PHY des commandes pour réaliser ledit protocole d'accès multiple et la couche PHY générant en réponse au moins une forme d'onde x(t) portant des signaux de synchronisation et des signaux de détection,
caractérisé en ce qu'il met en œuvre un signal cyclique orthogonal ou quasi-orthogonal s(t) pour construire ladite au moins une forme d'onde x(t).
2. Procédé selon la revendication 1, caractérisé en ce que les signaux de synchronisation incluent un préfixe cyclique, le signal cyclique orthogonal ou quasi-orthogonal et un suffixe cyclique.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les signaux de détection incluent une répétition du signal cyclique orthogonal ou quasi-orthogonal .
Procédé selon la revendication 3, caractérisé en ce que les signaux de détection sont générés par une répétition de codes Barker.
Procédé selon l'une quelconque des revendications précédente, caractérisé en ce que l'au moins une forme d'onde présente une amplitude sensiblement constante.
Procédé selon la revendication 5, caractérisé en ce que la forme d'onde d'amplitude sensiblement constante est générée par modulation PSK (« Phase Shift Keying »).
Procédé selon la revendication 6, caractérisé en ce que la forme d'onde d'amplitude sensiblement constante est générée par modulation BPSK (« Binary Phase Shift Keying »).
Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal cyclique orthogonal ou quasi- orthogonal est généré à partir d'une séquence binaire pseudoaléatoire selon
sn = (-!) 0≤n≤N-l
où {an} est une séquence binaire de taille N.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la forme d'onde correspondant au signal de synchronisation est générée en utilisant une m-séquence, i.e. une suite périodique de valeurs produites par un registre à décalage à rétroaction linéaire (LFSR).
10. Procédé selon l'une quelconque des revendications précédentes et la revendication 2, caractérisé en ce que le préfixe cyclique est agencé pour commander un contrôleur de gain automatique (AGC).
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il met en œuvre en outre une couche intermédiaire (QosWiFi) prévue pour coopérer avec la couche MAC pour transmettre des commandes à la couche physique PHY.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal orthogonal ou quasi-orthogonal est du type s = (x0, ... , 5,v I) de longueur N qui vérifie :
1
Figure imgf000013_0001
où E est l'espérance du signal et A (s. t) la fonction d'autocorrélation du signal et e = 0 ou e ¾ 0 et = δ ou f ¾ S où δ est une impulsion de Dirac telle que
Figure imgf000014_0001
13. Procédé selon l'une quelconque des revendications précédentes, mis en œuvre pour implémenter un mécanisme d'accès multiple de type CSMA/CD (« Carrier Sensé Multiple Access with Collision Détection »).
14. Procédé selon la revendication 13, mis en œuvre pour implémenter un protocole de type TCF (« Tournament Contention Function »).
15. Système de communication sans fil multi-stations (WiFi) mettant en œuvre une couche, dite couche MAC (« Médium Access Control Layer »), prévue pour implémenter un protocole d'accès multiple et une couche physique, dite couche PHY (« Physical Layer »), prévue pour procurer des fonctions de synchronisation et de détection, mettant en œuvre le procédé de détection et de synchronisation selon l'une quelconque des revendications 1 à 14.
PCT/EP2013/055896 2012-03-29 2013-03-21 Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede WO2013143959A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13714229.5A EP2832032B1 (fr) 2012-03-29 2013-03-21 Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede
US14/389,057 US9736800B2 (en) 2012-03-29 2013-03-21 Method of synchronization and detection for a multi-station wireless communication system (WiFi), and wireless communication system utilizing this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252841A FR2988941B1 (fr) 2012-03-29 2012-03-29 Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en œuvre ce procede
FR1252841 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013143959A1 true WO2013143959A1 (fr) 2013-10-03

Family

ID=48047990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055896 WO2013143959A1 (fr) 2012-03-29 2013-03-21 Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede

Country Status (4)

Country Link
US (1) US9736800B2 (fr)
EP (1) EP2832032B1 (fr)
FR (1) FR2988941B1 (fr)
WO (1) WO2013143959A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991308A (en) * 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US20030156603A1 (en) * 1995-08-25 2003-08-21 Rakib Selim Shlomo Apparatus and method for trellis encoding data for transmission in digital data transmission systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263119B1 (en) * 2001-11-29 2007-08-28 Marvell International Ltd. Decoding method and apparatus
US7245654B2 (en) * 2003-01-29 2007-07-17 Mediatek Inc. Carrier sensing, signal quality and link quality in a receiver
DE112005001934T5 (de) * 2004-08-10 2007-07-05 MeshNetworks, Inc., Maitland Softwarearchitektur und Hardware-Abstraktionsschicht für Multifunk-Routing und Verfahren zum Bereitstellen desselben
US7907614B2 (en) * 2005-11-11 2011-03-15 Broadcom Corporation Fast block acknowledgment generation in a wireless environment
US7782850B2 (en) * 2006-11-20 2010-08-24 Broadcom Corporation MAC to PHY interface apparatus and methods for transmission of packets through a communications network
US7961659B2 (en) * 2007-01-16 2011-06-14 Texas Instruments Incorporated Idle connection state power consumption reduction in a wireless local area network using variable beacon data advertisement
US20080181155A1 (en) * 2007-01-31 2008-07-31 Texas Instruments Incorporated Apparatus for and method of detecting wireless local area network signals using a low power receiver
US7904623B2 (en) * 2007-11-21 2011-03-08 Microchip Technology Incorporated Ethernet controller
US8050313B2 (en) * 2007-12-31 2011-11-01 Silicon Laboratories Inc. Single chip low power fully integrated 802.15.4 radio platform
US20140003819A1 (en) * 2012-06-29 2014-01-02 Electronics And Telecommunications Research Institute Cloud base station in fixed-mobile converged access network and operation method thereof
US9326122B2 (en) * 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991308A (en) * 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US20030156603A1 (en) * 1995-08-25 2003-08-21 Rakib Selim Shlomo Apparatus and method for trellis encoding data for transmission in digital data transmission systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAWFIQ, A. ET AL: "Cyclic orthogonal codes in CDMA-Based Asynchronous Wireless Body Area Networks", PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 25 March 2012 (2012-03-25), Kyoto, Japan, XP002680250 *

Also Published As

Publication number Publication date
US20150085837A1 (en) 2015-03-26
FR2988941B1 (fr) 2015-01-16
EP2832032A1 (fr) 2015-02-04
EP2832032B1 (fr) 2016-06-29
US9736800B2 (en) 2017-08-15
FR2988941A1 (fr) 2013-10-04

Similar Documents

Publication Publication Date Title
EP3360384B1 (fr) Methode et dispositif de communication sans fil entres des objets connectés et des passerelles
EP0658024B1 (fr) Réseau local à transmission radio
CN101379788A (zh) 用于无线局域网的射程扩大技术
FR3008266A1 (fr) Procede et systeme d&#39;acces multiple avec multiplexage frequentiel de requetes d&#39;autorisation d&#39;envoi de donnees
FR2892591A1 (fr) Gestion des transferts intercellulaires dans les communications de groupe
EP1260071A1 (fr) Procede et dispositif d&#39;estimation d&#39;un canal de propagation
FR2942576A1 (fr) Procede d&#39;estimation d&#39;un decalage de frequence porteuse dans un recepteur de signaux de telecommunication, notamment un dispositif mobile.
EP2577876B1 (fr) Procede et reseau de transmission de l&#39;information entre une pluralite de stations radioelectriques
EP2832032B1 (fr) Procede de synchronisation et de detection pour un systeme de communication sans fil multi-stations (wifi), et systeme de communication sans fil mettant en oeuvre ce procede
CA3130613A1 (fr) Methode et dispositif de modulation par sequences de zadoff-chu
WO2012085413A1 (fr) Protection contre la detection de signaux d&#39;alerte
EP1460773A1 (fr) Procédé et système de communication UWB
EP1427157B1 (fr) Procédé de detection d&#39;une rafale à partir d&#39;une estimation de canal et système recepteur pour la mise en oeuvre du procédé
FR2919133A1 (fr) Procede de detection de limite de trame et systeme de multiplexage
EP3127247A1 (fr) Procede de communication radio de donnees numeriques dans un environnement bruite
EP1065849B1 (fr) Procédé de transmission à modulation/démodulation multi-MOK
EP2368328B1 (fr) Procédé démission d&#39;impulsions dans un canal de transmission
EP0994580A1 (fr) Procédé de transmission dans un système de radiocommunication du type à accès multiple
BE1024408B1 (fr) Méthode et dispositif de communication sans fil
WO2013017614A1 (fr) Procédé de gestion de l&#39;accès à un médium de communication partagé
WO2007068666A1 (fr) Systeme de transmission de donnees a haut debit adapte a la transmission sur voie hf utilisant des emetteurs-recepteurs standard
Qiao et al. A new blind synchronization algorithm for UWB-IR systems
WO2010076481A1 (fr) Procede d&#39;emission de donnees par une entite d&#39;un reseau sans fil et entite
EP3607800A1 (fr) Système de communication sans fil comportant un canal physique d&#39;accès aléatoire global dans le temps et l&#39;espace
FR2934734A1 (fr) Procede d&#39;acces par un noeud requerant a un canal principal de transmission d&#39;un reseau de communication, noeud requerant, produit programme d&#39;ordinateur et moyen de stockage correspondants.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13714229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013714229

Country of ref document: EP