WO2013172244A1 - Metal pipe joining device and metal pipe joining method using same - Google Patents

Metal pipe joining device and metal pipe joining method using same Download PDF

Info

Publication number
WO2013172244A1
WO2013172244A1 PCT/JP2013/063024 JP2013063024W WO2013172244A1 WO 2013172244 A1 WO2013172244 A1 WO 2013172244A1 JP 2013063024 W JP2013063024 W JP 2013063024W WO 2013172244 A1 WO2013172244 A1 WO 2013172244A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
metal pipe
tool
central axis
joining tool
Prior art date
Application number
PCT/JP2013/063024
Other languages
French (fr)
Japanese (ja)
Inventor
知則 角
徹 池▲崎▼
哲也 岸口
有治 木坂
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to JP2014515586A priority Critical patent/JP5908071B2/en
Publication of WO2013172244A1 publication Critical patent/WO2013172244A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a joining apparatus and joining method for butt-joining metal pipes, and more particularly to a joining apparatus for joining butt-joining metal pipes by friction stir welding from the inside of the metal pipe and a joining method of metal pipes using the joining apparatus.
  • a friction stir welding method is conventionally known.
  • a cylindrical joining tool having a projection called a probe on the tip surface is used.
  • frictional heat is generated between the probe and the material, the material is softened, and the probe is buried in the material.
  • the base materials are joined by moving the joining tool along the joining line while maintaining the rotation and pressurization of the joining tool.
  • the friction stir welding method has a) small residual stress and strain at the joint, b) a smooth bead surface and excellent fatigue strength, and c) less defects such as bubbles and cracks. It has the following features.
  • Patent Document 1 metal pipes are coaxially butted against each other, and a joining tool provided with a probe concentrically at the tip is pushed in while rotating, and relatively moved in the circumferential direction.
  • the butt portion is joined by a friction stir welding method to obtain a pipe joined body, and the pipe joined body thus obtained is inflated by the pressure of the incompressible fluid filled therein, and the desired shape is obtained.
  • Techniques for manufacturing molded tubes are disclosed.
  • patent document 2 it is a discontinuous cylindrical shape by presence of the butting part extended in an axial direction obtained by bending the outer peripheral surface of a cylindrical core material into the cylindrical shape from the board
  • a clad tube having a desired outer diameter is obtained by mandrel extrusion of the obtained composite billet after manufacturing the composite billet by covering the cylindrical outer shell material exhibiting A forming technique is disclosed.
  • the shoulder surface of the welding tool is formed into a truncated cone, a probe protruding from the shoulder surface is provided, and a spiral groove is formed on the shoulder surface, whereby the posture of the welding tool with respect to the workpiece is changed.
  • a joining tool capable of obtaining stable joining quality is disclosed.
  • JP 2004-042049 A JP 2007-313541 A JP 2007-301579 A
  • the present invention has been made in view of such circumstances, and a metal pipe joining apparatus that does not cause an opening defect on the inner surface of the metal pipe when splicing and joining the metal pipes and does not generate spatter during joining.
  • An object of the present invention is to provide a method for joining metal pipes using a metal.
  • a metal pipe joining device is a metal pipe joining device that joins end faces of coaxially arranged metal pipes, and a probe that is pushed into a joined portion between the end faces of two metal pipes.
  • a joining tool formed at a distal end; a holder that holds the joining tool so as to be movable in a central axis direction of the joining tool; and a first tool that rotates the joining tool around the central axis via the holder.
  • a friction stirrer having a drive unit, a pressing unit that presses the welding tool in the direction of the central axis of the welding tool, and press-fits the probe into the welded part; and the first drive unit, A cylindrical casing having a holder and the pressing portion attached to one end thereof, and a second casing that moves the joining tool in a circumferential direction along the inner peripheral surface of the metal pipe via the casing. Circumferential direction with drive And a dynamic part, a joining device of the metal pipe to be joined by friction stir welding the metal pipe from the inside of the metal pipe.
  • This joining apparatus includes a first drive unit that rotates a joining tool having a probe at a tip thereof around a central axis thereof, a pressing unit that presses the joining tool in the direction of the central axis of the joining tool, and the joining tool that is attached to a metal pipe.
  • a second drive unit that moves in the circumferential direction along the inner circumferential surface. The probe is inserted into the metal pipe, the first drive unit is driven to rotate the welding tool around its central axis, and the pressing tool is pressed in the direction of the central axis of the welding tool by the pressing unit. Is pressed against the bonded portion, frictional heat is generated between the probe and the bonded portion, the bonded portion is softened, and the probe is buried in the bonded portion.
  • plastic flow occurs in a form in which the material around the probe is dragged by the rotation of the probe.
  • the reaction force that rolls on the inner peripheral surface of the metal pipe against the reaction force generated when the joining tool is pressed in the central axis direction of the joining tool is preferably provided.
  • produces when pressing a joining tool with a press part and pressing a probe on to-be-joined part can be received with a reaction force receiving roller, the state which pressed the joining tool is maintained.
  • the welding tool can be stably moved in the circumferential direction along the inner peripheral surface of the metal pipe.
  • the housing includes a front housing in which the holder and the pressing portion are attached to one end, and a rear housing in which the first driving unit is incorporated. And the front housing and the rear housing are connected by an Oldham shaft coupling that allows decentering (parallel error) and declination (angle error), and the first drive unit and the first drive
  • the rotating shaft that transmits the rotational force of the parts may be connected by a universal shaft joint that allows a declination.
  • the metal pipe may be bent in a direction different from the axis within the straightness tolerance. Therefore, even when the central axis of the metal pipe joining device according to the present invention is aligned with the axis of the metal pipe, the joining tool is placed in the circumferential direction along the inner circumferential surface of the metal pipe at the joint location of the metal pipe. An angle difference is generated between the rotating shaft and the axis of the metal pipe when moving, and the following problems may occur. a. Some of the reaction force receiving rollers do not contact the inner surface of the metal pipe, and a reaction force moment is generated. b. The probe cannot be pressed at an appropriate angle, for example, perpendicular to the inner surface of the metal pipe, resulting in poor quality joints. c. The pressing position of the probe deviates from the joining position, and a portion that is not joined in the circumferential direction of the metal pipe occurs.
  • the housing is divided into a front housing and a rear housing, the front housing and the rear housing are connected by an Oldham shaft joint, and the first driving unit and the first driving unit are connected to each other. Since the rotary shaft that transmits the rotational force is connected by a universal shaft joint, even if the metal pipe is bent halfway, the tolerance of the metal pipe can be absorbed by these shaft joint portions. Therefore, occurrence of the above problem can be suppressed.
  • the metal pipe joining apparatus preferably includes a first adjusting mechanism for adjusting a travel angle of the joining tool and a second adjusting mechanism for adjusting a work angle of the joining tool. .
  • the first adjustment mechanism includes a plate portion disposed between the joining tool, the holder, the pressing portion, and the housing, and a bolt that fastens the plate portion and the housing. It is preferable that the plate portion is formed with a long hole through which the bolt is inserted, and the long hole allows the rotation of the plate portion with respect to the housing with the tip of the probe as a fulcrum. .
  • the second adjustment mechanism is input from the angle detection means including a first sensor for measuring the angle of the joined portion and a second sensor for measuring the angle of the joining tool.
  • You may comprise the calculating means which calculates the said workpiece
  • the actuator is provided in the Oldham shaft coupling and adjusts the inclination of the central axis of the welding tool by driving the actuator in the central axis direction of the housing.
  • the angle of the center axis of the welding tool can be freely changed with the tip of the probe as a fulcrum. For this reason, the friction stir welding can be performed after adjusting the contact angle (travel angle, workpiece angle) between the welding tool and the bonded portion to be an appropriate value. Therefore, the problem as described in the above b occurs, the generation of burrs, the reduction in thickness, and the generation of processing marks called grooves can be suppressed, and good bonding quality can be realized.
  • the metal pipe joining device preferably includes a third adjusting mechanism that corrects a deviation between a joining line between the metal pipes and a course of the joining tool.
  • the third adjustment mechanism includes a third sensor that detects the joining line, and a calculation unit that calculates a deviation amount between the joined portion and the course of the joining tool based on a detection value of the third sensor. And a direction changing portion that changes a course of the joining tool in accordance with the amount of deviation.
  • the path of the welding tool 22 can be corrected by the third adjustment mechanism 91.
  • the metal pipe joining device described above is inserted into the metal pipe, and the metal pipes are butt-joined by friction stir welding from the inside of the metal pipe.
  • the present invention includes a first drive unit that rotates a welding tool having a probe at a tip about its central axis, a second drive unit that moves the welding tool in a circumferential direction along the inner peripheral surface of the metal pipe, and A metal pipe joining apparatus having a pressing portion that presses the joining tool in the direction of the central axis of the joining tool and a metal pipe joining method using the same, so that the metal pipes are connected to each other by friction stir welding from the inside of the metal pipe. Butt-joining is possible. For this reason, when the metal pipes are butt-joined, there is no opening defect on the inner surface of the metal pipe, no spattering occurs at the time of joining, and post-treatment after joining becomes unnecessary.
  • FIG. 7A it is a schematic diagram which shows a mode that the board part of FIG. 6 and the joining tool were seen from the axial direction front side.
  • FIG. 7A it is a schematic diagram which shows a mode that the board part and the joining tool were rotated.
  • It is a perspective view of an Oldham shaft coupling.
  • It is a disassembled perspective view of an Oldham shaft coupling.
  • It is the schematic diagram which looked at the mode of the Oldham shaft coupling and joining tool at the time of adjusting a work angle with the 2nd adjustment mechanism from the direction orthogonal to the central axis of a case and a joining tool.
  • FIG. 1 is a side cross-sectional view of a metal pipe joining device 10 (hereinafter, simply referred to as “joining device”) according to the first embodiment of the present invention, and the joining device 10 is a shaft of a metal pipe 11.
  • the metal pipe 11 is arranged so that its tube axis (axial core) is in the horizontal direction, and the butt joint side along the tube axis direction of the metal pipe 11 (see FIG.
  • the left side in FIG. 1 is called the “front” side, and the opposite side is called the “rear” side.
  • the side on which the probe 21 is located when the joining apparatus is stopped is referred to as the “lower” side, and the opposite side is referred to as the “upper” side.
  • the joining device 10 is a device that butt-joins metal pipes 11 from the inside of the metal pipe 11 by friction stir welding, and a joining tool in which a probe 21 press-fitted into a joined portion 12 (see FIG. 2) is formed at the tip.
  • Friction stirrer 20 that rotates 22 around its central axis R, and pressing unit 35 that presses the welding tool 22 in the direction of the central axis R (in the radial direction outside the metal pipe 11) and press-fits the probe 21 into the welded part 12.
  • a circumferential direction moving portion 40 that moves the joining tool 22 (probe 21) in the circumferential direction along the inner peripheral surface of the metal pipe 11.
  • the friction stirrer 20 includes a columnar joining tool 22, a probe 21 that is coaxial with the central axis R of the joining tool 22, protrudes from one end surface of the joining tool 22, a holder 25 that holds the joining tool 22, A first motor 30 (first drive unit) that rotates the welding tool 22 around the central axis R via the holder 25 is provided.
  • the bonding tool 22 and the probe 21 include, for example, polycrystalline cubic boron nitride (PCBN) or PCBN having a strength higher than that of the metal pipe 11 at a temperature higher than the melting point of the member to be bonded and the carbon steel material constituting the metal pipe 11.
  • PCBN polycrystalline cubic boron nitride
  • An alloy material with a tungsten composite material is used.
  • the holder 25 has a substantially cylindrical chuck member 23 having a fitting hole (not shown) into which the joining tool 22 is fitted at the center of one end surface, and is externally fitted to the chuck member 23, with the central axis R as a rotation axis. And a cylindrical member 24 that is rotatable.
  • the probe 21, the bonding tool 22, the chuck member 23, and the cylindrical member 24 have a central axis R as a common central axis.
  • a protrusion 24a extending in the direction of the central axis R is formed on the inner surface of the cylindrical member 24, a protrusion 24a extending in the direction of the central axis R is formed.
  • the chuck member 23 is movable in the direction of the central axis R in the cylindrical member 24 with the protruding portion 24 a as a guide, and rotates together with the cylindrical member 24.
  • the pressing part 35 is installed immediately above the cylindrical member 24 and moves the chuck member 23 in the direction of the central axis R to press-fit the probe 21 into the joined part 12 and press-fit the probe 21 into the joined part 12.
  • a plurality of reaction force receiving rollers 38 that roll on the inner peripheral surface of the metal pipe 11 against the reaction force generated at that time (see FIG. 2).
  • the tip of the rod 36 of the hydraulic cylinder 37 is inserted into a cylindrical connecting member 23 a connected to the upper end of the chuck member 23.
  • the tip of the rod 36 and the connecting member 23a (chuck member 23) are connected via a ball bearing 33, and the rod 36 does not rotate when the chuck member 23 rotates.
  • the reaction force receiving roller 38 is movable in the radial direction of the metal pipe 11.
  • the circumferential direction moving part 40 is disposed on a cylindrical casing 41 in which the holder 25 and the pressing part 35 are attached to one end part (front face part), and the other end side (rear face side) of the casing 41.
  • a second motor 44 (second drive unit) is provided for rotating the body 41 about the central axis S as a rotation axis.
  • a first motor 30 that rotates the holder 25 around the central axis R of the welding tool 22 is installed inside the housing 41.
  • the first motor 30 is installed such that a shaft (not shown) is positioned on the central axis S of the housing 41, and a rotating shaft 28 to which a bevel gear 27 is attached is connected to the shaft via a connecting member 29. ing.
  • the central axis S and the central axis R are orthogonal to each other and exist in the same plane.
  • a follower roller 42 is attached to the outer peripheral surface of the casing 41 so as to roll on the inner peripheral surface of the metal pipe 11 and move in the radial direction of the metal pipe 11.
  • the cylindrical member 24 constituting the holder 25 is covered with an outer shell member 31 attached to the front surface of the housing 41.
  • a tapered roller bearing 32 is interposed between the cylindrical member 24 and the outer shell member 31 so that the cylindrical member 24 can rotate about the central axis R as a rotation axis.
  • a bevel gear 26 that meshes with a bevel gear 27 that transmits the rotational force of the first motor 30 is provided around the outer peripheral surface of the cylindrical member 24.
  • the first motor 30 is driven, the rotational force of the rotary shaft 28 connected to the first motor 30 is transmitted from the bevel gear 27 to the cylindrical member 24 via the bevel gear 26, and the cylindrical member 24 together with the chuck member 23 has the central axis R. Rotate around the axis of rotation.
  • a driven roller 39 is attached to the outer surface of the outer shell member 31 so as to roll on the inner peripheral surface of the metal pipe 11 and move in the radial direction of the metal pipe 11 (see FIG. 2).
  • the second motor 44 is fixed in the metal pipe 11 by a support member 45 so that a shaft (not shown) is positioned on the central axis S of the housing 41.
  • the casing 41 and the second motor 44 are connected via a connecting member 43.
  • the housing 41 and the holder 25 and the pressing portion 35 attached to the front surface of the housing 41 rotate about the central axis S (see FIG. 2). That is, the probe 21 (joining tool 22) moves in the circumferential direction along the inner peripheral surface of the metal pipe 11.
  • the joining apparatus 10 is placed in the metal pipe 11 so that the center axis R of the joining tool 22 is located in a joining surface (a surface orthogonal to the tube axis of the metal pipe 11) where the end faces of the metal pipe 11 are abutted. Insert into. At that time, the reaction force receiving roller 38, the driven rollers 39 and 42, and the support member 45 provided in the joining device 10 are retracted inward in the radial direction of the metal pipe 11.
  • the first motor 30 is driven to rotate the welding tool 22 around its central axis R, and the rod 36 of the hydraulic cylinder 37 is moved to press the probe 21 against the welded part 12, thereby joining the joined part 12.
  • the probe 21 is buried (press-fitted) therein, and a plastic flow is generated in the bonded portion 12.
  • the second motor 44 is driven and the probe 21 (joining tool 22) is moved along the joining line (the part where the end faces of the metal pipe 11 are butted together) while maintaining the rotational speed and pressing force of the joining tool 22.
  • the inner peripheral surface side of the metal pipe 11 is joined.
  • the first motor 30 for rotating the joining tool 22 having the probe 21 at the tip thereof around the central axis R, and the joining tool 22 within the metal pipe 11. Since the second motor 44 that moves in the circumferential direction along the circumferential surface and the pressing portion 35 that presses the welding tool 22 in the direction of the central axis R of the welding tool 22 (outside in the radial direction of the metal pipe 11) are provided.
  • the end surfaces of the metal pipe 11 can be joined from the inside of the metal pipe 11 by friction stir welding. Therefore, when joining the metal pipes 11, there is no opening defect on the inner surfaces of the metal pipes, no spattering occurs at the time of joining, and post-treatment after joining becomes unnecessary.
  • the reaction force generated when the joining tool 22 is pressed by the pressing portion 35 and the probe 21 is pressed against the joined portion 12 can be received by the reaction force receiving roller 38.
  • the welding tool 22 can be stably moved in the circumferential direction of the metal pipe 11 while maintaining the pressed state of the welding tool 22.
  • FIG. 3 shows a side cross-section of the metal pipe joining device 18 according to the second embodiment of the present invention.
  • symbol is attached
  • the shaft of the first motor 30 and the rotary shaft 28 that transmits the rotational force of the first motor 30 are connected by the universal shaft joint 14 that allows the deflection angle, and the center of the shaft of the first motor 30.
  • the angle formed between the shaft and the central axis of the rotary shaft 28 is variable.
  • the declination is an angle formed between the shaft of the first motor 30 and the rotating shaft 28.
  • casing 46 rotated by the 2nd motor 44 is the cylindrical front housing
  • the decentering means that the central axis of the front casing 46a and the central axis of the rear casing 46b are not on the same straight line, and the declination is the center axis of the front casing 46a and the rear casing 46b. This is the angle between the central axis.
  • the Oldham shaft coupling 13 includes a cylindrical first hub 15 having two first protrusions 15a formed on one end face and a cylindrical second hub 16 having two second protrusions 16a formed on one end face. And a columnar slider 17 disposed between the first hub 15 and the second hub 16.
  • the first hub 15, the slider 17, and the second hub 16 are arranged along the tube axis of the metal pipe 11 so as to be coaxially arranged in this order. At this time, the first hub 15 and the second hub 16 are arranged with the first protrusion 15a and the second protrusion 16a facing the slider 17 side.
  • a first groove 17a into which the first protrusion 15a is fitted is formed on one end face of the slider 17 facing the first hub 15 side, and the other end face facing the second hub 16 side is formed on one end face facing the first hub 15 side.
  • a second groove 17b into which the second protrusion 16a is fitted is formed.
  • the pair of first projecting portions 15 a are formed so that their tip portions protrude toward the slider 17 side along the central axis of the first hub 15, and the first projecting portion 15 a is sandwiched between the first central axis of the first hub 15. It arrange
  • the pair of second protrusions 16 a are formed so that the tip ends protrude toward the slider 17 side along the center axis of the second hub 16, and the second protrusion 16 a is sandwiched between the second axis and the second axis. It arrange
  • the first hub 15 and the second hub 16 are configured so that the pair of first protrusions 15 a and the pair of second protrusions 16 a are alternately arranged at equal intervals along the circumferential direction of the slider 17. 17 is disposed with a 17 therebetween.
  • the tip portions of the pair of first protrusions 15a are each formed in a disk shape that bulges in a circular shape when viewed from the side. In that case, the front-end
  • the tip portions of the pair of second projecting portions 16a are also formed in the same manner as the pair of first projecting portions 15a.
  • the first groove 17a and the second groove 17b formed in the slider 17 are each formed in a circular shape in a side view corresponding to the shape of the first protrusion 15a and the second protrusion 16a on the groove bottom side. Therefore, the first imaginary line X that penetrates the center of the two first grooves 17 a on the groove bottom side along the radial direction of the slider 17 and the center of the two bottom grooves 17 b on the groove bottom side of the slider 17
  • the second virtual lines Y that penetrate each other in the radial direction are orthogonal to each other in a cross shape in a plane parallel to the end face of the slider 17.
  • the 1st hub 15, the slider 17, and The second hub 16 is connected with a gap between the end faces.
  • the base end portions of the first protrusion portion 15a and the second protrusion portion 16a are inserted into the recessed portions 15b and 16b formed on the end surfaces of the first hub 15 and the second hub 16, respectively. ing. And the spring 19 is interposed in the compressed state between the base end part of these 1st projection parts 15a and the 2nd projection part 16a, and the bottom face of the recessed parts 15b and 16b. Thereby, the first protrusion 15a and the second protrusion 16a are each urged toward the slider 17.
  • the first protrusion 15 a of the first hub 15 slides along the first groove 17 a of the slider 17 to absorb the eccentricity in the direction of the first groove 17 a (first imaginary line X direction).
  • the one protrusion 15 a rotates around the first imaginary line X of the first groove 17 a of the slider 17 to absorb the declination around the first groove 17 a (around the first imaginary line X).
  • the second protrusion 16a of the second hub 16 slides along the second groove 17b of the slider 17 to absorb the eccentricity in the direction of the second groove 17b (second imaginary line Y direction).
  • the sixteen second protrusions 16 a rotate around the second imaginary line Y of the second groove 17 b of the slider 17 to absorb the declination around the second groove 17 b (around the second imaginary line Y).
  • the joining device 18 can absorb the tolerance of the metal pipe 11 by the Oldham shaft joint 13 and the universal shaft joint 14 even if the metal pipe 11 is bent in the middle. Therefore, an angular difference is generated between the rotating shaft and the axis of the metal pipe 11 when the joining tool 22 is moved in the circumferential direction along the inner peripheral surface of the metal pipe 11 at the joint portion of the metal pipe 11. There is no.
  • FIG. 6 shows a cross-sectional side view of a metal pipe joining device 50 according to the third embodiment of the present invention.
  • symbol is attached
  • the joining device 50 is different from the joining device 18 according to the second embodiment in that it includes a travel angle and workpiece angle adjustment mechanism. That is, the joining device 50 sets the contact angle between the center axis R of the joining tool 22 and the joined portion 12 in a plane orthogonal to the center axis S and in a plane passing through the center axis S and the center axis R (center axis S). And a mechanism for adjusting in the plane in which the central axis R extends.
  • these adjustment mechanisms will be described in detail.
  • FIG. 7A is a view showing a first adjustment mechanism 61 that adjusts the travel angle, and is a view of the joining tool 22 of FIG. 6 and a plate portion 62 described later as viewed from the front side in the axial direction.
  • the travel angle refers to an angle formed by the central axis R of the welding tool 22 and the tangential direction of the bonded portion 12 at the contact point between the probe 21 and the bonded portion 12. That is, the first adjusting mechanism 61 adjusts the travel angle by adjusting the inclination angle of the central axis R in the plane orthogonal to the central axis S.
  • the first adjustment mechanism 61 includes an annular plate portion 62 disposed between the joining tool 22, the holder 25, the pressing portion 35, and the front housing 46a, and the plate portion 62 and the front housing 46a. And a bolt 63 for connecting.
  • the plate part 62 presses the probe 21 against the joining tool 22, the holding tool 25, the pressing part 35, that is, the joined part 12, which is disposed in front of the plate part 62 (left side in FIG. 6), and plastically flows to the joined part 12. It is connected with the member which generates.
  • the plate portion 62 is connected to the outer member 31 covering the holder 25 via the tapered roller bearing 32.
  • the joining tool 22, the holder 25, and the pressing part 35 are connected to the front housing 46a via the plate part 62.
  • the relative position of the joining tool 22 with respect to the circumferential movement unit 40 is orthogonal to the central axis S by fastening the front housing 46 a and the plate part 62 using the bolts 63. It is possible to adjust in the plane.
  • a plurality of long holes 62 a for inserting the bolts 63 are formed in the plate portion 62.
  • the plurality of long holes 62 a are formed at intervals in the circumferential direction of the plate portion 62.
  • Each elongated hole 62a is defined by a curved surface including two parallel cylindrical surfaces.
  • the cylindrical surface has a central axis that passes through the tip T of the probe 21 and is parallel to the central axis S. That is, each long hole 62a is formed long along the rotation direction so as to allow rotation of the plate portion 62 with the tip T of the probe 21 as a fulcrum in a plane orthogonal to the central axis S. .
  • the lengths of the elongated holes 62a are different depending on the formation position (depending on the distance from the tip T of the probe 21).
  • the plate portion 62 can be rotated within the range in which the long hole 62a is formed with the tip T of the probe 21 as a fulcrum. It is possible to adjust the fixing position of the plate part 62 with respect to the body 46a.
  • the plate portion 62 is moved with the tip T of the probe 21 as a fulcrum. Rotate. As a result, the inclination of the central axis R of the welding tool 22 changes in a plane orthogonal to the central axis S, and the front housing 46a and the plate portion 62 are relatively positioned so that the travel angle becomes an angle suitable for friction stir welding. The position is adjusted. Thereafter, the travel angle can be maintained at an angle suitable for joining by fastening the bolt 63 to fix the plate portion 62 to the front housing 46a.
  • the work angle refers to an angle formed by the central axis R of the joining tool 22 and the radial direction of the metal pipe 11 at the contact point between the probe 21 and the metal pipe 11.
  • the work angle is an angle formed by a normal line passing through the welded portion 12 and the tube axis of the metal pipe 11 and the central axis R of the welding tool 22, and the degree of inclination of the welding tool 22 with respect to the normal line. It is an angle shown.
  • the second adjustment mechanism 71 changes the angle of the central axis R of the welding tool 22 in a plane passing through the central axis S and the central axis R.
  • the second adjustment mechanism 71 includes an actuator 78, an angle detection unit 81, and a calculation unit 85.
  • the angle detection means 81 will be described with reference to FIG.
  • the angle detection unit 81 includes a first sensor 82 and a second sensor 83.
  • the first and second sensors 82 and 83 measure the angle of the metal pipe 11 (the joined portion 12) and the angle of the joining tool 22, respectively.
  • the first sensor 82 is attached to the outer peripheral surface of the ring 84 attached to the outer peripheral surface of the metal pipe 11.
  • the ring 84 is composed of two halved rings. By fastening the two halved rings with bolts or the like with the flanges (not shown) of the halved rings facing each other, the outer periphery of the joint line of the metal pipe 11 It is attached to the surface.
  • the metal pipe 11 is fixed by the ring 84 in a state where the metal pipe 11 is abutted, so that when the welding tool is pressed against the metal pipe, it is possible to prevent the bonded portion from spreading in a trumpet shape with the pressing.
  • the first sensor 82 is disposed on the outer side of the ring 84 on the side (upper side) opposite to the position of the welding tool 22 when the welding device 50 is stopped.
  • the second sensor 83 is attached to the vicinity of the welding tool 22, specifically, to the outer shell member 31.
  • the first sensor 82 measures the angle of the metal pipe 11 (the angle of the tube axis (or radial direction) of the metal pipe 11 with respect to the direction of gravity).
  • the second sensor 83 measures the installation angle of the bonding apparatus 50 (the angle of the central axis S (or R) with respect to the direction of gravity).
  • an angle sensor or a sensor that measures a shape by a light cutting method or the like can be used as the first and second sensors 82 and 83.
  • the measured angle is transmitted from the first and second sensors 82 and 83 to the calculation means 85.
  • the calculating means 85 calculates the work angle based on the difference between the angles measured by the first and second sensors 82 and 83. Then, the calculation means 85 drives an actuator 78 of the Oldham shaft coupling 73 described below based on the calculated work angle. Thereby, the work angle is adjusted.
  • FIG. 8A and 8B are a perspective view and an exploded perspective view for explaining the Oldham shaft coupling 73.
  • the Oldham shaft joint 73 includes a first hub 75, a second hub 76, and a slider 77, similarly to the Oldham shaft joint 13 according to the second embodiment.
  • the 1st hub 75 is the same composition as the 1st hub 15 of Oldham shaft coupling 13, and a pair of 1st projection parts 75a are provided in the end surface.
  • the second hub 76 has a recess 76a extending along the central axis.
  • An actuator 78 is fitted and fixed to the recess 76a.
  • the actuator 78 includes a cylindrical cylinder tube 78a extending along the central axis of the second hub 76, a piston 78b sliding inside the cylinder tube 78a, and a hydraulic pump (not shown) connected to the cylinder tube 78a. It is a hydraulic cylinder provided. The piston 78b reciprocates along the central axis of the second hub 76 by driving the hydraulic pump to change the hydraulic pressure in the cylinder tube 78a.
  • the actuator 78 is not limited to a hydraulic cylinder, and for example, an air cylinder or an electric actuator may be used.
  • the tip of the piston 78b has the same shape as the tip of the second protrusion 16a in the second embodiment.
  • the second hub 76 is provided with a second protrusion 76b at a portion located on the opposite side of the recessed portion 76a in the radial direction across the central axis of the second hub 76.
  • the second protrusion 76b is formed integrally with the second hub 76.
  • the distal end portion of the second projecting portion 76b has the same shape as the distal end portion of the second projecting portion 16a in the second embodiment, and the through hole is positioned on the axis of the second imaginary line. Is formed.
  • the slider 77 is formed with two first grooves 77a in which the first protrusions 75a are fitted, a second groove 77b in which the pistons 78b are fitted, and a recess 77c in which the second protrusions are fixed.
  • channel 77b are the same shapes as the 1st groove
  • a line connecting the centers of the two first grooves 77a is a first imaginary line X ′
  • a line connecting the centers of the second grooves 77b and the recesses 77c is a second imaginary line Y ′
  • both these imaginary lines are In a plane parallel to the end surface of the slider 77, the cross is orthogonal to the cross.
  • a bolt hole is formed in the recess 77c at a position corresponding to the through hole of the second protrusion 76b when the tip of the second protrusion 76b is disposed in the recess 77c.
  • the second hub 76 and the slider 77 are connected by inserting the bolt 76c through the through hole of the second protrusion 76b and screwing it with the bolt hole of the recess 77c.
  • the second protrusion 76b is not completely fixed to the recess 77c, but is attached in a state in which vertical movement and inclination with respect to the recess 77c are allowed.
  • a pin may be used instead of the bolt 76c.
  • the Oldham shaft joint 73 as described above is attached so that the positions of the second protrusion 76 b and the welding tool 22 coincide with each other in the circumferential direction of the welding device 50.
  • the actuator 78 is driven in a state where the probe 21 is disposed on the joined portion 12, so that the axial end surface of the Oldham shaft coupling 73 is on the front side or in the plane passing through the central axes R and S. Tilt backwards.
  • the central axis R of the welding tool 22 is tilted forward or rearward with the tip T of the probe 21 as a fulcrum. That is, the work angle can be adjusted by changing the inclination of the joining tool 22 with respect to the normal passing through the joined portion 12 and the tube axis of the metal pipe 11.
  • the mounting position of the plate portion 62 with respect to the front housing 46 a is adjusted, and the plate portion is adjusted by the bolt 63. 62 is fixed to the front housing 46a.
  • the joining device 50 is installed inside the metal pipe 11 so that the joining tool 22 contacts the joined portion 12.
  • a ring 84 is attached to the outer peripheral surface of the metal pipe 11, and a first sensor 82 is attached to the ring 84.
  • a second sensor 83 is attached to the outer shell member 31.
  • the rod 36 of the hydraulic cylinder 37 is moved to press the probe 21 against the joined portion 12.
  • the second adjustment mechanism 71 is used to adjust the work angle to be within the appropriate range. This appropriate range is determined by the shape of the joining tool 22 (probe 21) and the material of the metal pipe, and is input to the computing means 85 in advance.
  • the angle measured by the first sensor 82 and the second sensor 83 is transmitted to the calculation means 85.
  • the calculation means 85 obtains the work angle at that time based on the input angle.
  • the angle of the central axis R of the joining tool 22 can be freely rotated with the tip T of the probe 21 as a fulcrum. For this reason, the friction stir welding can be performed after adjusting the contact angle (travel angle, work angle) between the welding tool 22 and the bonded portion 12 to be an appropriate value. Thereby, generation
  • the probe 21 and the to-be-joined portion 12 are at an appropriate angle (work angle, travel angle). Can be contacted. As a result, good bonding quality can be realized.
  • the second adjustment mechanism 71 in the third embodiment is not limited to the above configuration.
  • the Oldham shaft coupling 73 includes one actuator 78, another concave portion 76a may be provided instead of the second protrusion 76b, and the second actuator 78 may be attached thereto.
  • the installation positions of the first and second sensors 82 and 83 are not limited to the positions shown in FIG. 6, and may be any positions where the angles of the metal pipe 11 and the welding tool 22 can be measured. What is necessary is just to arrange
  • the first sensor 82 and the second sensor 83 have the same direction in which the angle is measured with respect to the direction of gravity (for example, the axial direction, the radial direction, etc.).
  • the calculation means 85 can obtain the work angle only by calculating the difference between the values measured by the first and second sensors 82 and 83.
  • FIG. 10 shows a side cross section of a metal pipe joining device 90 according to a fourth embodiment of the present invention.
  • symbol is attached
  • the joining device 90 includes a third adjusting mechanism 91 that corrects the position of the probe 21 and the position of the joined portion 12 (joining line) during friction stir welding, and the joining device 50 according to the third embodiment. Is different. That is, the joining device 90 includes a third adjustment mechanism 91 that corrects the position of the probe 21 on the inner peripheral surface of the metal pipe 11.
  • the third adjusting mechanism 91 will be described in detail with reference to FIGS.
  • the third adjusting mechanism 91 includes a camera 92, a direction changing unit 93, and a calculation unit (not shown).
  • the camera 92 is disposed on the path of the welding tool 22, that is, in the forward direction of the welding tool 22 as a sensor for detecting the bonding line.
  • An image photographed by the camera 92 is input to a calculation unit (not shown) (may also be used as the calculation unit 85 of the third embodiment).
  • the calculation means determines whether or not the path of the welding tool 22 is out of the bonding line from the input image, and operates the direction changing unit 93 based on the result.
  • the path of the welding tool 22 refers to the path of the tip T of the probe 21 when the welding tool 22 moves on the inner peripheral surface of the metal pipe 11 while maintaining the center of rotation at that moment.
  • the direction changing section 93 includes a steering roller 94, a rack 96, a pinion 95, and a motor (not shown).
  • the steering roller 94 adjusts the traveling direction of the tip of the probe 21.
  • two of the four reaction force receiving rollers 38 located on the side close to the joining tool 22 (the right side in FIG. 10) in the traveling direction of the joining tool 22 are used as the steering roller 94. is doing.
  • the steering roller 94 also functions as a reaction force receiving roller that receives a reaction force generated when the probe 21 is pressed against the bonded portion 12.
  • the pinion 95 is connected to a motor (not shown), and the rotation of the motor is input.
  • the pinion 95 is disposed so as to mesh with a rack 96 disposed so as to be reciprocally movable in parallel with the tube axis of the metal pipe 11, and the pinion 95 and the rack 96 constitute a rack and pinion mechanism.
  • Steering rollers 94 are respectively connected to both ends of the rack 96, and the direction of the steering roller 94 is changed by moving the rack 96 in the longitudinal direction (the tube axis direction of the metal pipe 11).
  • the second motor 44 is driven, and the probe 21 (joining tool 22) is moved in the circumferential direction along the inner peripheral surface of the metal pipe 11.
  • the following operations (3-1) to (3-3) are repeated until the probe 21 is rotated 360 degrees and all the joining lines are joined.
  • (3-1) The joining line is photographed by the camera 92 disposed in front of the probe 21 (joining tool 22) in the traveling direction, and the photographed data (image) is transmitted to the calculation means.
  • the computing means calculates a deviation amount between the course of the probe 21 (joining tool 22) and the joining line based on the input data.
  • the process returns to (3-1).
  • the direction changing unit 93 is driven to change the path of the probe 21 (joining tool 22) in a direction in which the deviation is eliminated.
  • the arithmetic means controls the motor to rotate the motor by a necessary amount of rotation, and the rotation of the motor transmitted to the pinion 95 is converted into a linear motion of the rack 96 by the rack and pinion mechanism.
  • the direction of the roller 94 for steering can be changed, and the course of the probe 21 (joining tool 22) can be changed.
  • the first hub 75 of the Oldham shaft coupling 73 moves in accordance with the change in the path of the probe 21 (joining tool 22). Absorption is possible at the connection between the hub 75 and the slider 77. After the direction of the steering roller 94 is changed, the process returns to (3-1).
  • the course of the joining tool 22 is corrected by the third adjusting mechanism 91. Can do. Further, the deviation between the course of the joining tool 22 and the joining line is repeatedly detected using the camera 92 and the calculation means, and the probe 21 is reliably run (rotated) along the joining line while appropriately correcting the deviation. be able to. For this reason, it can prevent that friction stir welding is performed in the state where the probe 21 and the joining line do not match, and friction stir welding is performed in the state where the joining line and the probe 21 do not match, thereby preventing the joining strength from being lowered. Is done. As a result, good bonding quality can be realized.
  • the steering roller 94 since the steering roller 94 has the function of a reaction force receiving roller, it is not necessary to provide both separately. Then, since the reaction force is applied to the steering roller 94, the steering roller 94 is prevented from sliding on the inner peripheral surface of the metal pipe 11, so that the correction by the third adjustment mechanism 91 is appropriately performed. .
  • the direction change part 93 in the 3rd adjustment mechanism 91 is not limited to the above-mentioned structure.
  • the Oldham shaft coupling 73 according to the third embodiment may be configured with an Oldham shaft coupling 93A including an actuator 98 instead of the two first protrusions 75a.
  • the Oldham shaft coupling 93A includes a first hub 97, a second hub 76, and a slider 77.
  • the second hub 76 and the slider 77 have the same configuration as the Oldham shaft coupling 73.
  • the first hub 97 includes two actuators 98.
  • the actuator 98 has the same shape and configuration as the actuator 78 of the second hub 76, and the tip end of the piston 98b of the actuator 98 is the first groove of the slider 77, respectively. Fits 77a.
  • a method for correcting the advancing direction of the welding tool 22 using a third adjusting mechanism including the Oldham shaft coupling 93A will be described.
  • the third adjusting mechanism the following operation is repeated until the probe 21 is rotated 360 degrees and the joining line is completely joined.
  • Data obtained by photographing the joining line with the camera 92 disposed in front of the traveling direction of the probe 21 (joining tool 22) is transmitted to the calculation means.
  • the calculation means calculates a deviation amount between the expected path of the probe 21 (joining tool 22) and the joining line based on the input data.
  • the process returns to (1). If the deviation is not negligible, the actuator 98 of the Oldham shaft coupling 93A is driven to change the path of the probe 21 (joining tool 22) in a direction to eliminate the deviation. Specifically, the required drive amounts of the two actuators 98 are calculated by the calculation means, and an instruction to drive the actuators 98 is given. The two actuators 98 are driven to change the direction of the first hub 97 (see FIG. 12). As a result, the path of the probe 21 (joining tool 22) is changed. Then return to (1).
  • the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims.
  • Other embodiments and modifications are also included.
  • the second drive unit is disposed in the metal pipe.
  • the shaft that connects the housing and the second drive unit is lengthened so that the second drive unit is outside the metal pipe. You may arrange in.
  • the third adjustment mechanism is used in combination with the first and second adjustment mechanisms of the third embodiment, but the third adjustment mechanism is used in the second embodiment.
  • the third adjusting mechanism may be used alone in combination with the form.

Abstract

A joining device (10) that butts together and joins metal pipes by means of friction stir welding from the interiors of the metal pipes, and that addresses the problems of preventing the generation of opening defects at the inner surface of the metal pipes and of preventing the generation of sputter when the pipes are butted together and joined, said joining device being equipped with: a friction stir unit (20), which has a joining tool (22) at the tip of which is formed a probe (21) that is pushed into the parts to be joined, a retaining jig (25) that holds the joining tool (22) so as to be capable of moving in the direction of the central axis (R) of the joining tool, and a first motor (30) that rotates the joining tool (22) around the central axis (R) via the holding jig (25); a pressing part (35), which presses the joining tool (22) in the direction of the central axis (R); and a circumferential direction movement unit (40), which has a tubular case (41) to one end of which the holding jig (25) and the pressing part (35) are attached, and a second motor (44) that moves the joining tool (22) in the circumferential direction along the inner circumferential surface of the metal pipes (11), via the case (41).

Description

金属パイプの接合装置及びそれを用いた金属パイプの接合方法Metal pipe joining apparatus and metal pipe joining method using the same
 本発明は、金属パイプ同士を突合せ接合するための接合装置及び接合方法に関し、特に金属パイプの内部から摩擦撹拌接合により金属パイプ同士を突合せ接合する接合装置及びそれを用いた金属パイプの接合方法に関する。
 本願は、2012年5月16日に、日本に出願された特願2012-112671号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a joining apparatus and joining method for butt-joining metal pipes, and more particularly to a joining apparatus for joining butt-joining metal pipes by friction stir welding from the inside of the metal pipe and a joining method of metal pipes using the joining apparatus. .
This application claims priority based on Japanese Patent Application No. 2012-112671 filed in Japan on May 16, 2012, the contents of which are incorporated herein by reference.
 金属材の接合方法の一つとして、摩擦撹拌接合法が従来より知られている。摩擦撹拌接合法では、先端面にプローブと呼ばれる突起を有する円柱状の接合ツールを使用する。接合ツールを中心軸回りに回転させながら、接合すべき材料の接合部にプローブを押し付けることにより、プローブと材料の間に摩擦熱が発生して材料が軟化し、材料中にプローブが埋没する。これにより、プローブ周辺の材料がプローブの回転に引きずられる形で塑性流動を起こす。接合ツールの回転と加圧を維持しながら接合線に沿って接合ツールを移動させることにより、母材同士が接合される。
 摩擦撹拌接合法は、アーク溶接に比べて、a)接合部の残留応力や歪が小さい、b)ビード表面が平滑となるため疲労強度に優れる、c)気泡や割れなどの欠陥が発生しにくいといった特長を有している。
As one method for joining metal materials, a friction stir welding method is conventionally known. In the friction stir welding method, a cylindrical joining tool having a projection called a probe on the tip surface is used. By pressing the probe against the joint portion of the material to be joined while rotating the joining tool around the central axis, frictional heat is generated between the probe and the material, the material is softened, and the probe is buried in the material. This causes plastic flow in a form in which the material around the probe is dragged by the rotation of the probe. The base materials are joined by moving the joining tool along the joining line while maintaining the rotation and pressurization of the joining tool.
Compared with arc welding, the friction stir welding method has a) small residual stress and strain at the joint, b) a smooth bead surface and excellent fatigue strength, and c) less defects such as bubbles and cracks. It has the following features.
 例えば、特許文献1では、金属パイプ同士を同軸的に突き合わせ、その突合せ部に対して、先端にプローブが同心的に設けられた接合ツールを回転させつつ押し込み、周方向に相対移動させることにより、突合せ部を摩擦撹拌接合法により接合しパイプ接合体を得ると共に、そのようにして得られたパイプ接合体を、その内部に充填された非圧縮性流体の圧力によって膨らませて、目的とする形状の成形管を製造する技術が開示されている。 For example, in Patent Document 1, metal pipes are coaxially butted against each other, and a joining tool provided with a probe concentrically at the tip is pushed in while rotating, and relatively moved in the circumferential direction. The butt portion is joined by a friction stir welding method to obtain a pipe joined body, and the pipe joined body thus obtained is inflated by the pressure of the incompressible fluid filled therein, and the desired shape is obtained. Techniques for manufacturing molded tubes are disclosed.
 また、特許文献2では、円筒状の芯材の外周面に、芯材とは材質の異なる板材を円筒状に曲げ加工して得られた、軸方向に延びる突合せ部の存在によって不連続円筒形状を呈する筒状外皮材を被せ、かかる突合せ部に沿って摩擦撹拌接合することによって複合ビレットを製作した後、得られた複合ビレットをマンドレル押出しすることにより、目的とする外径を有するクラッド管を形成する技術が開示されている。 Moreover, in patent document 2, it is a discontinuous cylindrical shape by presence of the butting part extended in an axial direction obtained by bending the outer peripheral surface of a cylindrical core material into the cylindrical shape from the board | plate material different from a core material. A clad tube having a desired outer diameter is obtained by mandrel extrusion of the obtained composite billet after manufacturing the composite billet by covering the cylindrical outer shell material exhibiting A forming technique is disclosed.
 特許文献3では、接合ツールのショルダ面を円錐台形とし、このショルダ面から突出したプローブを設け、ショルダ面に渦状の溝条を形成することにより、被加工材に対する接合ツールの姿勢が変化しても安定した接合品質を得ることができる接合ツールが開示されている。 In Patent Document 3, the shoulder surface of the welding tool is formed into a truncated cone, a probe protruding from the shoulder surface is provided, and a spiral groove is formed on the shoulder surface, whereby the posture of the welding tool with respect to the workpiece is changed. In addition, a joining tool capable of obtaining stable joining quality is disclosed.
特開2004-042049号公報JP 2004-042049 A 特開2007-313541号公報JP 2007-313541 A 特開2007-301579号公報JP 2007-301579 A
 硫化水素などが多量に含まれる天然ガス等の流体を輸送する配管では、配管内面が高腐食環境となるため、配管として用いる金属パイプの端面同士の突合せ接合において配管内面に開口する欠陥が存在すると、該欠陥を起点とする応力腐食割れが生じることがある。 In piping that transports fluids such as natural gas containing a large amount of hydrogen sulfide, etc., the inner surface of the piping becomes highly corrosive, so there is a defect that opens on the inner surface of the piping in the butt joint between the end surfaces of the metal pipe used as piping. , Stress corrosion cracking starting from the defect may occur.
 一方、金属パイプの内面からアーク溶接を行うと、前記欠陥の発生を防止できるが、溶接時に発生したスパッタが配管内面に付着し、スパッタを起点とする応力腐食割れが生じることがある。このため、溶接後のスパッタ除去の作業が必要となる。 On the other hand, when arc welding is performed from the inner surface of a metal pipe, the occurrence of the defect can be prevented, but spatter generated during welding adheres to the inner surface of the pipe, and stress corrosion cracking starting from the spatter may occur. For this reason, the work of spatter removal after welding is required.
 本発明はかかる事情に鑑みてなされたもので、金属パイプ同士を突合せ接合する際、金属パイプの内面に開口欠陥を生じさせず、且つ接合時におけるスパッタも発生させない、金属パイプの接合装置及びそれを用いた金属パイプの接合方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a metal pipe joining apparatus that does not cause an opening defect on the inner surface of the metal pipe when splicing and joining the metal pipes and does not generate spatter during joining. An object of the present invention is to provide a method for joining metal pipes using a metal.
 本発明に係る金属パイプの接合装置は、同軸上に並べられた金属パイプの端面同士を接合する金属パイプの接合装置であって、2つの金属パイプの端面間の被接合部に押し込まれるプローブが先端に形成された接合ツールと、前記接合ツールを該接合ツールの中心軸方向に移動可能に保持する保持具と、前記保持具を介して前記接合ツールを前記中心軸回りに回転させる第1の駆動部とを有する摩擦撹拌部と、前記接合ツールを該接合ツールの中心軸方向に押圧し、前記プローブを前記被接合部に圧入する押圧部と、前記第1の駆動部が内蔵され、前記保持具と前記押圧部とが一端部に取り付けられた筒状の筐体と、前記筐体を介して前記接合ツールを前記金属パイプの内周面に沿って円周方向に移動させる第2の駆動部を有する円周方向移動部とを備える、金属パイプを該金属パイプの内部から摩擦撹拌接合により接合する金属パイプの接合装置である。 A metal pipe joining device according to the present invention is a metal pipe joining device that joins end faces of coaxially arranged metal pipes, and a probe that is pushed into a joined portion between the end faces of two metal pipes. A joining tool formed at a distal end; a holder that holds the joining tool so as to be movable in a central axis direction of the joining tool; and a first tool that rotates the joining tool around the central axis via the holder. A friction stirrer having a drive unit, a pressing unit that presses the welding tool in the direction of the central axis of the welding tool, and press-fits the probe into the welded part; and the first drive unit, A cylindrical casing having a holder and the pressing portion attached to one end thereof, and a second casing that moves the joining tool in a circumferential direction along the inner peripheral surface of the metal pipe via the casing. Circumferential direction with drive And a dynamic part, a joining device of the metal pipe to be joined by friction stir welding the metal pipe from the inside of the metal pipe.
 この接合装置は、プローブを先端に有する接合ツールをその中心軸回りに回転させる第1の駆動部と、接合ツールを該接合ツールの中心軸方向に押圧する押圧部と、接合ツールを金属パイプの内周面に沿って円周方向に移動させる第2の駆動部とを備えている。金属パイプ内に本接合装置を挿入し、第1の駆動部を駆動して接合ツールをその中心軸回りに回転させながら、押圧部で接合ツールを該接合ツールの中心軸方向に押圧してプローブを被接合部に押し付けることにより、プローブと被接合部の間に摩擦熱が発生して被接合部が軟化し、被接合部中にプローブが埋没する。そして、プローブ周辺の材料がプローブの回転に引きずられる形で塑性流動を起こす。接合ツールの回転数と押圧力を維持した状態で第2の駆動部を駆動させ、接合ツールを金属パイプの内周面に沿って円周方向に移動させることにより、金属パイプ同士が塑性流動によって一体化され接合される。 This joining apparatus includes a first drive unit that rotates a joining tool having a probe at a tip thereof around a central axis thereof, a pressing unit that presses the joining tool in the direction of the central axis of the joining tool, and the joining tool that is attached to a metal pipe. A second drive unit that moves in the circumferential direction along the inner circumferential surface. The probe is inserted into the metal pipe, the first drive unit is driven to rotate the welding tool around its central axis, and the pressing tool is pressed in the direction of the central axis of the welding tool by the pressing unit. Is pressed against the bonded portion, frictional heat is generated between the probe and the bonded portion, the bonded portion is softened, and the probe is buried in the bonded portion. Then, plastic flow occurs in a form in which the material around the probe is dragged by the rotation of the probe. By driving the second drive unit while maintaining the rotational speed and the pressing force of the welding tool and moving the welding tool in the circumferential direction along the inner peripheral surface of the metal pipe, the metal pipes are caused by plastic flow. Integrated and joined.
 また、本発明に係る金属パイプの接合装置では、前記接合ツールを該接合ツールの中心軸方向に押圧した際に発生する反力に抗し、前記金属パイプの内周面上を転動する反力受けローラを備えることを好適とする。 In the metal pipe joining device according to the present invention, the reaction force that rolls on the inner peripheral surface of the metal pipe against the reaction force generated when the joining tool is pressed in the central axis direction of the joining tool. A force receiving roller is preferably provided.
 当該構成によれば、押圧部で接合ツールを押圧し、プローブを被接合部に押し付けた際に発生する反力を反力受けローラで受けることができるので、接合ツールを押圧した状態を維持しつつ、金属パイプの内周面に沿って円周方向に接合ツールを安定的に移動させることができる。 According to the said structure, since the reaction force which generate | occur | produces when pressing a joining tool with a press part and pressing a probe on to-be-joined part can be received with a reaction force receiving roller, the state which pressed the joining tool is maintained. However, the welding tool can be stably moved in the circumferential direction along the inner peripheral surface of the metal pipe.
 また、本発明に係る金属パイプの接合装置では、前記筐体が、前記保持具と前記押圧部が一端部に取り付けられた前部筐体と、前記第1の駆動部が内蔵された後部筐体とを備え、前記前部筐体と前記後部筐体が偏心(平行誤差)及び偏角(角度誤差)を許容するオルダム軸継手で連結され、前記第1の駆動部と該第1の駆動部の回転力を伝達する回転軸が偏角を許容する自在軸継手で連結されていてもよい。 In the metal pipe joining device according to the present invention, the housing includes a front housing in which the holder and the pressing portion are attached to one end, and a rear housing in which the first driving unit is incorporated. And the front housing and the rear housing are connected by an Oldham shaft coupling that allows decentering (parallel error) and declination (angle error), and the first drive unit and the first drive The rotating shaft that transmits the rotational force of the parts may be connected by a universal shaft joint that allows a declination.
 金属パイプは真直度の公差内で軸芯と異なる方向に曲がっている場合がある。そのため、本発明に係る金属パイプの接合装置の中心軸と金属パイプの軸芯を一致させた場合でも、金属パイプの接合箇所では、接合ツールを金属パイプの内周面に沿って円周方向に移動させる際の回転軸と金属パイプの軸芯との間に角度差が生じ、以下のような問題が発生するおそれがある。
a.一部の反力受けローラが金属パイプの内面に当接せず、反力モーメントが発生する。
b.金属パイプの内面に対してプローブを適切な角度、例えば垂直に押し付けられず、接合部の品質不良が発生する。
c.プローブの押し付け位置が接合位置から外れ、金属パイプの円周方向で接合されない箇所が発生する。
The metal pipe may be bent in a direction different from the axis within the straightness tolerance. Therefore, even when the central axis of the metal pipe joining device according to the present invention is aligned with the axis of the metal pipe, the joining tool is placed in the circumferential direction along the inner circumferential surface of the metal pipe at the joint location of the metal pipe. An angle difference is generated between the rotating shaft and the axis of the metal pipe when moving, and the following problems may occur.
a. Some of the reaction force receiving rollers do not contact the inner surface of the metal pipe, and a reaction force moment is generated.
b. The probe cannot be pressed at an appropriate angle, for example, perpendicular to the inner surface of the metal pipe, resulting in poor quality joints.
c. The pressing position of the probe deviates from the joining position, and a portion that is not joined in the circumferential direction of the metal pipe occurs.
 当該構成では、筐体を前部筐体と後部筐体に分割し、前部筐体と後部筐体とをオルダム軸継手で連結すると共に、第1の駆動部と該第1の駆動部の回転力を伝達する回転軸とを自在軸継手で連結しているので、金属パイプが途中で曲がっていても、これら軸継手部で金属パイプの公差を吸収することができる。そのため、上記問題の発生を抑制できる。 In this configuration, the housing is divided into a front housing and a rear housing, the front housing and the rear housing are connected by an Oldham shaft joint, and the first driving unit and the first driving unit are connected to each other. Since the rotary shaft that transmits the rotational force is connected by a universal shaft joint, even if the metal pipe is bent halfway, the tolerance of the metal pipe can be absorbed by these shaft joint portions. Therefore, occurrence of the above problem can be suppressed.
 また、本発明に係る金属パイプの接合装置では、前記接合ツールのトラベル角を調節する第1の調節機構と、前記接合ツールのワーク角を調節する第2の調節機構と、を備えることが好ましい。 Further, the metal pipe joining apparatus according to the present invention preferably includes a first adjusting mechanism for adjusting a travel angle of the joining tool and a second adjusting mechanism for adjusting a work angle of the joining tool. .
 前記第1の調節機構は、前記接合ツール、前記保持具及び前記押圧部と前記筐体との間に配される板部と、前記板部と前記筐体とを締結するボルトとを備え、前記板部には、前記ボルトを挿通する長孔が形成され、前記長孔により、前記プローブの先端を支点とした前記板部の前記筐体に対する回動が許容される構成とすることが好ましい。 The first adjustment mechanism includes a plate portion disposed between the joining tool, the holder, the pressing portion, and the housing, and a bolt that fastens the plate portion and the housing. It is preferable that the plate portion is formed with a long hole through which the bolt is inserted, and the long hole allows the rotation of the plate portion with respect to the housing with the tip of the probe as a fulcrum. .
 前記第2の調節機構は、前記被接合部の角度を測定する第1のセンサと前記接合ツールの角度を測定する第2のセンサとを備える角度検出手段と、前記角度検出手段から入力された値に基づき前記ワーク角を算出する演算手段と、前記演算手段の算出結果に基づき、前記接合ツールの中心軸の傾きを調節するアクチュエータとで構成されていても良い。この場合、前記アクチュエータは、前記オルダム軸継手に設けられ、前記筐体の中心軸方向に前記アクチュエータを駆動することにより、前記接合ツールの中心軸の傾きを調節する構成とすることが好ましい。 The second adjustment mechanism is input from the angle detection means including a first sensor for measuring the angle of the joined portion and a second sensor for measuring the angle of the joining tool. You may comprise the calculating means which calculates the said workpiece | work angle based on a value, and the actuator which adjusts the inclination of the center axis | shaft of the said joining tool based on the calculation result of the said calculating means. In this case, it is preferable that the actuator is provided in the Oldham shaft coupling and adjusts the inclination of the central axis of the welding tool by driving the actuator in the central axis direction of the housing.
 当該構成では、接合ツールの中心軸の角度を、プローブの先端を支点として自在に変更することが可能である。このため、接合ツールと被接合部との接触角(トラベル角、ワーク角)を、適正値となるように調節した上で摩擦撹拌接合を行うことができる。そのため、上記bのような問題が生じ、バリの発生、肉厚の減少、グルーブと呼ばれる加工痕の発生を抑制でき、良好な接合品質を実現できる。 In this configuration, the angle of the center axis of the welding tool can be freely changed with the tip of the probe as a fulcrum. For this reason, the friction stir welding can be performed after adjusting the contact angle (travel angle, workpiece angle) between the welding tool and the bonded portion to be an appropriate value. Therefore, the problem as described in the above b occurs, the generation of burrs, the reduction in thickness, and the generation of processing marks called grooves can be suppressed, and good bonding quality can be realized.
 また、本発明に係る金属パイプの接合装置では、前記金属パイプ同士の接合線と前記接合ツールの進路とのずれを補正する第3の調節機構を備えることが好ましい。 Further, the metal pipe joining device according to the present invention preferably includes a third adjusting mechanism that corrects a deviation between a joining line between the metal pipes and a course of the joining tool.
 前記第3の調節機構は、前記接合線を検出する第3のセンサと、前記第3のセンサの検出値に基づき前記被接合部と前記接合ツールの進路とのずれ量を算出する演算手段と、前記ずれ量に応じて前記接合ツールの進路を変更する方向転換部と、を備えていても良い。 The third adjustment mechanism includes a third sensor that detects the joining line, and a calculation unit that calculates a deviation amount between the joined portion and the course of the joining tool based on a detection value of the third sensor. And a direction changing portion that changes a course of the joining tool in accordance with the amount of deviation.
 当該構成では、接合ツールの進路と接合線とがずれている場合でも、第3の調節機構91により接合ツール22の進路を補正することができる。また、カメラ92と演算手段を用いて繰り返し接合ツールの進路と接合線(接合箇所)とのずれを検出し、補正をして接合線上でプローブを回転させることができる。このため、上記cのような問題が生じて接合強度が落ちることが防止される。その結果、高い接合精度を得られる。 In this configuration, even when the path of the welding tool and the bonding line are misaligned, the path of the welding tool 22 can be corrected by the third adjustment mechanism 91. In addition, it is possible to detect the deviation between the path of the joining tool and the joining line (joining location) repeatedly using the camera 92 and the calculation means, correct the rotation, and rotate the probe on the joining line. For this reason, it is prevented that the above-mentioned problem c occurs and the bonding strength is lowered. As a result, high joining accuracy can be obtained.
 また、本発明に係る金属パイプの接合方法では、上述の金属パイプの接合装置を前記金属パイプ内に挿入し、該金属パイプの内部から摩擦撹拌接合により前記金属パイプ同士を突合せ接合する。 In the metal pipe joining method according to the present invention, the metal pipe joining device described above is inserted into the metal pipe, and the metal pipes are butt-joined by friction stir welding from the inside of the metal pipe.
 本発明は、プローブを先端に有する接合ツールをその中心軸回りに回転させる第1の駆動部、接合ツールを金属パイプの内周面に沿って円周方向に移動させる第2の駆動部、並びに接合ツールを該接合ツールの中心軸方向に押圧する押圧部とを備えた金属パイプの接合装置及びそれを用いた金属パイプの接合方法なので、金属パイプの内部から摩擦撹拌接合により該金属パイプ同士を突合せ接合することができる。そのため、金属パイプ同士を突合せ接合する際、金属パイプの内面に開口欠陥が生じることがなく、接合時におけるスパッタも発生せず接合後の後処理が不要となる。 The present invention includes a first drive unit that rotates a welding tool having a probe at a tip about its central axis, a second drive unit that moves the welding tool in a circumferential direction along the inner peripheral surface of the metal pipe, and A metal pipe joining apparatus having a pressing portion that presses the joining tool in the direction of the central axis of the joining tool and a metal pipe joining method using the same, so that the metal pipes are connected to each other by friction stir welding from the inside of the metal pipe. Butt-joining is possible. For this reason, when the metal pipes are butt-joined, there is no opening defect on the inner surface of the metal pipe, no spattering occurs at the time of joining, and post-treatment after joining becomes unnecessary.
本発明の第1の実施の形態に係る金属パイプの接合装置の側断面を示す模式図である。It is a schematic diagram which shows the side cross section of the joining apparatus of the metal pipe which concerns on the 1st Embodiment of this invention. 同接合装置を金属パイプの軸方向から見た断面を示す模式図である。It is the schematic diagram which shows the cross section which looked at the same joining apparatus from the axial direction of the metal pipe. 本発明の第2の実施の形態に係る金属パイプの接合装置の側断面を示す模式図である。It is a schematic diagram which shows the side cross section of the joining apparatus of the metal pipe which concerns on the 2nd Embodiment of this invention. オルダム軸継手の斜視図である。It is a perspective view of an Oldham shaft coupling. オルダム軸継手の分解斜視図である。It is a disassembled perspective view of an Oldham shaft coupling. ハブに設けられている突起部の詳細を示した部分断面図である。It is the fragmentary sectional view which showed the detail of the projection part provided in the hub. 本発明の第3の実施の形態に係る金属パイプの接合装置の側断面を示す模式図である。It is a schematic diagram which shows the side cross section of the joining apparatus of the metal pipe which concerns on the 3rd Embodiment of this invention. 図6の板部と接合ツールを軸方向前側から見た様子を示す模式図である。It is a schematic diagram which shows a mode that the board part of FIG. 6 and the joining tool were seen from the axial direction front side. 図7Aにおいて、板部と接合ツールを回動させた様子を示す模式図である。In FIG. 7A, it is a schematic diagram which shows a mode that the board part and the joining tool were rotated. オルダム軸継手の斜視図である。It is a perspective view of an Oldham shaft coupling. オルダム軸継手の分解斜視図である。It is a disassembled perspective view of an Oldham shaft coupling. 第2の調節機構でワーク角を調節する際のオルダム軸継手及び接合ツールの様子を、筐体及び接合ツールの中心軸と直交する方向から見た模式図である。It is the schematic diagram which looked at the mode of the Oldham shaft coupling and joining tool at the time of adjusting a work angle with the 2nd adjustment mechanism from the direction orthogonal to the central axis of a case and a joining tool. 本発明の第4の実施の形態に係る金属パイプの接合装置の側面図を示す模式図である。It is a schematic diagram which shows the side view of the joining apparatus of the metal pipe which concerns on the 4th Embodiment of this invention. 同接合装置を金属パイプの軸方向から見た断面を示す模式図である。It is the schematic diagram which shows the cross section which looked at the same joining apparatus from the axial direction of the metal pipe. 第3の調節機構で接合ツールの進路を修正した際のオルダム軸継手及び接合ツールの様子を、接合ツールの中心軸方向から見た模式図である。It is the schematic diagram which looked at the mode of the Oldham shaft coupling and joining tool when the course of a joining tool was corrected with the 3rd adjustment mechanism from the central axis direction of the joining tool. 本発明の第4の実施の形態の変形例に係るオルダム軸継手の斜視図である。It is a perspective view of the Oldham shaft coupling which concerns on the modification of the 4th Embodiment of this invention. オルダム軸継手の分解斜視図である。It is a disassembled perspective view of an Oldham shaft coupling.
 図面を参照しつつ、本発明を具体化した実施の形態について説明する。 Embodiments embodying the present invention will be described with reference to the drawings.
[第1の実施の形態に係る金属パイプの接合装置]
 本発明の第1の実施の形態に係る金属パイプの接合装置10(以下では、単に「接合装置」と呼ぶことがある。)の側断面を図1に、接合装置10を金属パイプ11の軸方向から見た断面を図2に示す。
 なお、以下では、説明の便宜上、金属パイプ11はその管軸(軸芯)が水平方向となるように配置されているものとし、金属パイプ11の管軸方向に沿った突合せ接合部側(図1では左側)を「前」側、その反対側を「後」側と呼ぶ。また、管軸に直交する方向において、接合装置の停止時にプローブ21が位置する側を「下」側、その反対側を「上」側と呼ぶことにする。
[Metal Pipe Joining Device According to First Embodiment]
FIG. 1 is a side cross-sectional view of a metal pipe joining device 10 (hereinafter, simply referred to as “joining device”) according to the first embodiment of the present invention, and the joining device 10 is a shaft of a metal pipe 11. A cross section viewed from the direction is shown in FIG.
In the following, for convenience of explanation, it is assumed that the metal pipe 11 is arranged so that its tube axis (axial core) is in the horizontal direction, and the butt joint side along the tube axis direction of the metal pipe 11 (see FIG. The left side in FIG. 1 is called the “front” side, and the opposite side is called the “rear” side. In the direction perpendicular to the tube axis, the side on which the probe 21 is located when the joining apparatus is stopped is referred to as the “lower” side, and the opposite side is referred to as the “upper” side.
 接合装置10は、金属パイプ11同士を金属パイプ11の内部から摩擦撹拌接合により突合せ接合する装置であり、被接合部12(図2参照)に圧入されるプローブ21が先端に形成された接合ツール22をその中心軸R回りに回転させる摩擦撹拌部20と、接合ツール22を中心軸R方向(金属パイプ11の半径方向外側)に押圧し、プローブ21を被接合部12に圧入する押圧部35と、接合ツール22(プローブ21)を金属パイプ11の内周面に沿って円周方向に移動させる円周方向移動部40とを備えている。 The joining device 10 is a device that butt-joins metal pipes 11 from the inside of the metal pipe 11 by friction stir welding, and a joining tool in which a probe 21 press-fitted into a joined portion 12 (see FIG. 2) is formed at the tip. Friction stirrer 20 that rotates 22 around its central axis R, and pressing unit 35 that presses the welding tool 22 in the direction of the central axis R (in the radial direction outside the metal pipe 11) and press-fits the probe 21 into the welded part 12. And a circumferential direction moving portion 40 that moves the joining tool 22 (probe 21) in the circumferential direction along the inner peripheral surface of the metal pipe 11.
 摩擦撹拌部20は、円柱状の接合ツール22と、接合ツール22の中心軸Rと同軸とされ、接合ツール22の一端面から突出するプローブ21と、接合ツール22を保持する保持具25と、保持具25を介して接合ツール22を中心軸R回りに回転させる第1モータ30(第1の駆動部)とを備えている。 The friction stirrer 20 includes a columnar joining tool 22, a probe 21 that is coaxial with the central axis R of the joining tool 22, protrudes from one end surface of the joining tool 22, a holder 25 that holds the joining tool 22, A first motor 30 (first drive unit) that rotates the welding tool 22 around the central axis R via the holder 25 is provided.
 接合ツール22及びプローブ21には、金属パイプ11を構成する被接合部材及び炭素鋼材の融点より高い温度において金属パイプ11よりも強度の大きな、例えば多結晶立方晶窒化ホウ素(PCBN)や、PCBNとタングステン複合材料との合金材などが使用される。 The bonding tool 22 and the probe 21 include, for example, polycrystalline cubic boron nitride (PCBN) or PCBN having a strength higher than that of the metal pipe 11 at a temperature higher than the melting point of the member to be bonded and the carbon steel material constituting the metal pipe 11. An alloy material with a tungsten composite material is used.
 保持具25は、接合ツール22が嵌入される嵌入穴(図示省略)を一端面の中心部に有する概略円柱状のチャック部材23と、チャック部材23に外嵌され、中心軸Rを回転軸として回転可能とされた円筒部材24とを有している。プローブ21、接合ツール22、チャック部材23、及び円筒部材24は、中心軸Rを共通の中心軸としている。
 円筒部材24の内面には、中心軸R方向に延在する突条部24aが形成されている。チャック部材23は、突条部24aをガイドとして円筒部材24内を中心軸R方向に移動可能とされると共に、円筒部材24と一緒に回転する。
The holder 25 has a substantially cylindrical chuck member 23 having a fitting hole (not shown) into which the joining tool 22 is fitted at the center of one end surface, and is externally fitted to the chuck member 23, with the central axis R as a rotation axis. And a cylindrical member 24 that is rotatable. The probe 21, the bonding tool 22, the chuck member 23, and the cylindrical member 24 have a central axis R as a common central axis.
On the inner surface of the cylindrical member 24, a protrusion 24a extending in the direction of the central axis R is formed. The chuck member 23 is movable in the direction of the central axis R in the cylindrical member 24 with the protruding portion 24 a as a guide, and rotates together with the cylindrical member 24.
 押圧部35は、円筒部材24の直上に設置されチャック部材23を中心軸R方向に移動させてプローブ21を被接合部12に圧入する油圧シリンダ37と、被接合部12にプローブ21を圧入した際に発生する反力に抗し、金属パイプ11の内周面上を転動する複数の反力受けローラ38とを備えている(図2参照)。
 油圧シリンダ37のロッド36の先端部は、チャック部材23の上端に接続された円筒状の接続部材23a内に挿入されている。ロッド36の先端部と接続部材23a(チャック部材23)は玉軸受33を介して連結されており、チャック部材23が回転した際にロッド36が回転しない機構になっている。
 なお、反力受けローラ38は、金属パイプ11の半径方向に移動可能とされている。
The pressing part 35 is installed immediately above the cylindrical member 24 and moves the chuck member 23 in the direction of the central axis R to press-fit the probe 21 into the joined part 12 and press-fit the probe 21 into the joined part 12. A plurality of reaction force receiving rollers 38 that roll on the inner peripheral surface of the metal pipe 11 against the reaction force generated at that time (see FIG. 2).
The tip of the rod 36 of the hydraulic cylinder 37 is inserted into a cylindrical connecting member 23 a connected to the upper end of the chuck member 23. The tip of the rod 36 and the connecting member 23a (chuck member 23) are connected via a ball bearing 33, and the rod 36 does not rotate when the chuck member 23 rotates.
The reaction force receiving roller 38 is movable in the radial direction of the metal pipe 11.
 円周方向移動部40は、保持具25と押圧部35が一端部(前面部)に取り付けられた円筒状の筐体41と、筐体41の他端側(後面側)に配置され、筐体41をその中心軸Sを回転軸として回転させる第2モータ44(第2の駆動部)とを備えている。 The circumferential direction moving part 40 is disposed on a cylindrical casing 41 in which the holder 25 and the pressing part 35 are attached to one end part (front face part), and the other end side (rear face side) of the casing 41. A second motor 44 (second drive unit) is provided for rotating the body 41 about the central axis S as a rotation axis.
 筐体41の内部には、保持具25を接合ツール22の中心軸R回りに回転させる第1モータ30が設置されている。第1モータ30は、シャフト(図示省略)が筐体41の中心軸S上に位置するように設置されており、ベベルギア27が装着された回転軸28が連結部材29を介してシャフトに接続されている。なお、中心軸Sと中心軸Rは直交し、且つ同一平面内に存在する。
 一方、筐体41の外周面には、金属パイプ11の内周面上を転動し、金属パイプ11の半径方向に移動可能とされた従動ローラ42が取り付けられている。
A first motor 30 that rotates the holder 25 around the central axis R of the welding tool 22 is installed inside the housing 41. The first motor 30 is installed such that a shaft (not shown) is positioned on the central axis S of the housing 41, and a rotating shaft 28 to which a bevel gear 27 is attached is connected to the shaft via a connecting member 29. ing. The central axis S and the central axis R are orthogonal to each other and exist in the same plane.
On the other hand, a follower roller 42 is attached to the outer peripheral surface of the casing 41 so as to roll on the inner peripheral surface of the metal pipe 11 and move in the radial direction of the metal pipe 11.
 保持具25を構成する円筒部材24は、筐体41の前面に取り付けられた外殻部材31で覆われている。円筒部材24と外殻部材31の間には、中心軸Rを回転軸として円筒部材24が回転できるように円錐ころ軸受32が介装されている。また、円筒部材24の外周面には、第1モータ30の回転力を伝達するベベルギア27と噛合するベベルギア26が環装されている。
 第1モータ30が駆動すると、第1モータ30に連結された回転軸28の回転力は、ベベルギア27からベベルギア26を介して円筒部材24に伝達され、円筒部材24はチャック部材23と共に中心軸Rを回転軸として回転する。
 なお、外殻部材31の外面には、金属パイプ11の内周面上を転動し、金属パイプ11の半径方向に移動可能とされた従動ローラ39が取り付けられている(図2参照)。
The cylindrical member 24 constituting the holder 25 is covered with an outer shell member 31 attached to the front surface of the housing 41. A tapered roller bearing 32 is interposed between the cylindrical member 24 and the outer shell member 31 so that the cylindrical member 24 can rotate about the central axis R as a rotation axis. A bevel gear 26 that meshes with a bevel gear 27 that transmits the rotational force of the first motor 30 is provided around the outer peripheral surface of the cylindrical member 24.
When the first motor 30 is driven, the rotational force of the rotary shaft 28 connected to the first motor 30 is transmitted from the bevel gear 27 to the cylindrical member 24 via the bevel gear 26, and the cylindrical member 24 together with the chuck member 23 has the central axis R. Rotate around the axis of rotation.
Note that a driven roller 39 is attached to the outer surface of the outer shell member 31 so as to roll on the inner peripheral surface of the metal pipe 11 and move in the radial direction of the metal pipe 11 (see FIG. 2).
 第2モータ44は、シャフト(図示省略)が筐体41の中心軸S上に位置するように、支持部材45により金属パイプ11内に固定されている。また、筐体41と第2モータ44とは、連結部材43を介して接続されている。
 第2モータ44が駆動すると、筐体41並びに筐体41の前面に取り付けられた保持具25及び押圧部35が中心軸Sを回転軸として回転する(図2参照)。即ち、プローブ21(接合ツール22)が金属パイプ11の内周面に沿って円周方向に移動する。
The second motor 44 is fixed in the metal pipe 11 by a support member 45 so that a shaft (not shown) is positioned on the central axis S of the housing 41. The casing 41 and the second motor 44 are connected via a connecting member 43.
When the second motor 44 is driven, the housing 41 and the holder 25 and the pressing portion 35 attached to the front surface of the housing 41 rotate about the central axis S (see FIG. 2). That is, the probe 21 (joining tool 22) moves in the circumferential direction along the inner peripheral surface of the metal pipe 11.
 次に、上記構成を有する接合装置10を用いて金属パイプ11同士を接合する方法について説明する。
(1)金属パイプ11の端面同士が突き合わされた接合面(金属パイプ11の管軸と直交する面)内に接合ツール22の中心軸Rが位置するように、接合装置10を金属パイプ11内に挿入する。その際、接合装置10に設けられた反力受けローラ38、従動ローラ39、42、及び支持部材45を金属パイプ11の半径方向内側に引っ込めておく。
(2)接合ツール22の中心軸Rを金属パイプ11の接合面内に配置した後、反力受けローラ38、従動ローラ39、42、及び支持部材45を金属パイプ11の半径方向外側に移動させる。そして、反力受けローラ38及び従動ローラ39、42を金属パイプ11の内周面に当接させると共に、筐体41の中心軸Sが金属パイプ11の管軸上に位置するように、第2モータ44を支持部材45で金属パイプ11内に固定する。
Next, a method of joining the metal pipes 11 using the joining device 10 having the above configuration will be described.
(1) The joining apparatus 10 is placed in the metal pipe 11 so that the center axis R of the joining tool 22 is located in a joining surface (a surface orthogonal to the tube axis of the metal pipe 11) where the end faces of the metal pipe 11 are abutted. Insert into. At that time, the reaction force receiving roller 38, the driven rollers 39 and 42, and the support member 45 provided in the joining device 10 are retracted inward in the radial direction of the metal pipe 11.
(2) After the central axis R of the joining tool 22 is disposed within the joining surface of the metal pipe 11, the reaction force receiving roller 38, the driven rollers 39 and 42, and the support member 45 are moved outward in the radial direction of the metal pipe 11. . Then, the reaction force receiving roller 38 and the driven rollers 39 and 42 are brought into contact with the inner peripheral surface of the metal pipe 11, and the second axis so that the central axis S of the housing 41 is positioned on the tube axis of the metal pipe 11. The motor 44 is fixed in the metal pipe 11 by the support member 45.
(3)第1モータ30を駆動して接合ツール22をその中心軸R回りに回転させると共に、油圧シリンダ37のロッド36を移動させて被接合部12にプローブ21を押し付けて、被接合部12中にプローブ21を埋没(圧入)させ、被接合部12に塑性流動を発生させる。接合ツール22の回転数と押圧力を維持しながら、第2モータ44を駆動して接合線(金属パイプ11の端面同士を突合せた部分)に沿ってプローブ21(接合ツール22)を移動させることにより、金属パイプ11の内周面側の接合を行う。 (3) The first motor 30 is driven to rotate the welding tool 22 around its central axis R, and the rod 36 of the hydraulic cylinder 37 is moved to press the probe 21 against the welded part 12, thereby joining the joined part 12. The probe 21 is buried (press-fitted) therein, and a plastic flow is generated in the bonded portion 12. The second motor 44 is driven and the probe 21 (joining tool 22) is moved along the joining line (the part where the end faces of the metal pipe 11 are butted together) while maintaining the rotational speed and pressing force of the joining tool 22. Thus, the inner peripheral surface side of the metal pipe 11 is joined.
 第1の実施の形態に係る金属パイプの接合装置10によれば、プローブ21を先端に有する接合ツール22をその中心軸R回りに回転させる第1モータ30、接合ツール22を金属パイプ11の内周面に沿って円周方向に移動させる第2モータ44、並びに接合ツール22を該接合ツール22の中心軸R方向(金属パイプ11の半径方向外側)に押圧する押圧部35を備えているため、金属パイプ11の内部から摩擦撹拌接合により金属パイプ11の端面同士を接合することができる。そのため、金属パイプ11同士を接合する際、金属パイプの内面に開口欠陥が生じることがなく、接合時におけるスパッタも発生せず接合後の後処理が不要となる。 According to the metal pipe joining apparatus 10 according to the first embodiment, the first motor 30 for rotating the joining tool 22 having the probe 21 at the tip thereof around the central axis R, and the joining tool 22 within the metal pipe 11. Since the second motor 44 that moves in the circumferential direction along the circumferential surface and the pressing portion 35 that presses the welding tool 22 in the direction of the central axis R of the welding tool 22 (outside in the radial direction of the metal pipe 11) are provided. The end surfaces of the metal pipe 11 can be joined from the inside of the metal pipe 11 by friction stir welding. Therefore, when joining the metal pipes 11, there is no opening defect on the inner surfaces of the metal pipes, no spattering occurs at the time of joining, and post-treatment after joining becomes unnecessary.
 また、この接合装置10によれば、押圧部35で接合ツール22を押圧し、プローブ21を被接合部12に押し付けた際に発生する反力を反力受けローラ38で受けることができるので、接合ツール22を押圧した状態を維持しつつ、金属パイプ11の円周方向に接合ツール22を安定的に移動させることができる。 Further, according to the joining apparatus 10, the reaction force generated when the joining tool 22 is pressed by the pressing portion 35 and the probe 21 is pressed against the joined portion 12 can be received by the reaction force receiving roller 38. The welding tool 22 can be stably moved in the circumferential direction of the metal pipe 11 while maintaining the pressed state of the welding tool 22.
[第2の実施の形態に係る金属パイプの接合装置]
 本発明の第2の実施の形態に係る金属パイプの接合装置18の側断面を図3に示す。なお、第1の実施の形態に係る接合装置10と同じ構成要素には同じ符号を付し、説明を省略する。
[Metal Pipe Joining Device According to Second Embodiment]
FIG. 3 shows a side cross-section of the metal pipe joining device 18 according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same component as the joining apparatus 10 which concerns on 1st Embodiment, and description is abbreviate | omitted.
 接合装置18では、第1モータ30のシャフトと第1モータ30の回転力を伝達する回転軸28が、偏角を許容する自在軸継手14で連結されており、第1モータ30のシャフトの中心軸と回転軸28の中心軸とがなす角度が可変とされている。なお、偏角は、第1モータ30のシャフトと回転軸28がなす角度のことである。 In the joining device 18, the shaft of the first motor 30 and the rotary shaft 28 that transmits the rotational force of the first motor 30 are connected by the universal shaft joint 14 that allows the deflection angle, and the center of the shaft of the first motor 30. The angle formed between the shaft and the central axis of the rotary shaft 28 is variable. The declination is an angle formed between the shaft of the first motor 30 and the rotating shaft 28.
 また、接合装置18では、第2モータ44によって回転させられる筐体46が、保持具25と押圧部35が一端部に取り付けられた筒状の前部筐体46aと、第1モータ30が内蔵された筒状の後部筐体46bとから構成されている。そして、前部筐体46aと後部筐体46bは、偏心及び偏角を許容するオルダム軸継手13で連結されている。なお、偏心とは、前部筐体46aの中心軸と後部筐体46bの中心軸が同一直線上にないことをいい、偏角は、前部筐体46aの中心軸と後部筐体46bの中心軸とがなす角度のことである。 Moreover, in the joining apparatus 18, the housing | casing 46 rotated by the 2nd motor 44 is the cylindrical front housing | casing 46a with which the holder 25 and the press part 35 were attached to the one end part, and the 1st motor 30 is incorporated. And a cylindrical rear casing 46b. And the front housing | casing 46a and the rear housing | casing 46b are connected by the Oldham shaft coupling 13 which accept | permits eccentricity and a declination. The decentering means that the central axis of the front casing 46a and the central axis of the rear casing 46b are not on the same straight line, and the declination is the center axis of the front casing 46a and the rear casing 46b. This is the angle between the central axis.
 偏心及び偏角を許容するオルダム軸継手13の斜視図及び分解斜視図を図4A、図4Bに示す。
 オルダム軸継手13は、一端面に2つの第1突起部15aが形成された円柱状の第1ハブ15と、一端面に2つの第2突起部16aが形成された円柱状の第2ハブ16と、これら第1ハブ15及び第2ハブ16の間に配置された円柱状のスライダ17と、を備えている。
 第1ハブ15、スライダ17及び第2ハブ16は、金属パイプ11の管軸に沿って、この順序で同軸上に並ぶように配置されている。この際、第1ハブ15及び第2ハブ16は、第1突起部15a及び第2突起部16aをそれぞれスライダ17側に向けた状態で配置されている。
 スライダ17における両端面のうち、第1ハブ15側に向いた一端面には、第1突起部15aが嵌合する第1溝17aが形成され、第2ハブ16側に向いた他端面には、第2突起部16aが嵌合する第2溝17bが形成されている。
4A and 4B are a perspective view and an exploded perspective view of the Oldham shaft coupling 13 that allows the eccentricity and the deflection angle.
The Oldham shaft coupling 13 includes a cylindrical first hub 15 having two first protrusions 15a formed on one end face and a cylindrical second hub 16 having two second protrusions 16a formed on one end face. And a columnar slider 17 disposed between the first hub 15 and the second hub 16.
The first hub 15, the slider 17, and the second hub 16 are arranged along the tube axis of the metal pipe 11 so as to be coaxially arranged in this order. At this time, the first hub 15 and the second hub 16 are arranged with the first protrusion 15a and the second protrusion 16a facing the slider 17 side.
A first groove 17a into which the first protrusion 15a is fitted is formed on one end face of the slider 17 facing the first hub 15 side, and the other end face facing the second hub 16 side is formed on one end face facing the first hub 15 side. A second groove 17b into which the second protrusion 16a is fitted is formed.
 一対の第1突起部15aは、その先端部が第1ハブ15の中心軸に沿ってスライダ17側に向けて突出するように形成されており、第1ハブ15の中心軸を挟んで第1ハブ15の半径方向に向かい合うように配置されている。
 一対の第2突起部16aは、その先端部が第2ハブ16の中心軸に沿ってスライダ17側に向けて突出するように形成されており、第2ハブ16の中心軸を挟んで第2ハブ16の半径方向に向かい合うように配置されている。
 なお、第1ハブ15及び第2ハブ16は、一対の第1突起部15aと一対の第2突起部16aとがスライダ17の円周方向に沿って交互に且つ等間隔で並ぶように、スライダ17を間に挟んで配置されている。
 一対の第1突起部15aの先端部は、それぞれ側面視円形状に膨出した円板状に形成されている。その際、一対の第1突起部15aの先端部は、第1ハブ15の中心軸を挟んで面同士が対向し合うように形成されている。一対の第2突起部16aの先端部も、一対の第1突起部15aと同様に形成されている。
 一方、スライダ17に形成された第1溝17a及び第2溝17bは、それぞれ溝底部側が第1突起部15a及び第2突起部16aの形状に対応した側面視円形状に形成されている。従って、2つの第1溝17aにおける溝底部側の中心を、スライダ17の半径方向に沿って互いに貫く第1仮想線Xと、2つの第2溝17bにおける溝底部側の中心を、スライダ17の半径方向に互いに貫く第2仮想線Yとは、スライダ17の端面と平行な面内において十字状に直交する。
 そして、第1突起部15aの先端部が第1溝17a内に嵌合し、第2突起部16aの先端部が第2溝17b内に嵌合することで、第1ハブ15、スライダ17及び第2ハブ16は各端面間に隙間をあけた状態で連結されている。
The pair of first projecting portions 15 a are formed so that their tip portions protrude toward the slider 17 side along the central axis of the first hub 15, and the first projecting portion 15 a is sandwiched between the first central axis of the first hub 15. It arrange | positions so that the radial direction of the hub 15 may be opposed.
The pair of second protrusions 16 a are formed so that the tip ends protrude toward the slider 17 side along the center axis of the second hub 16, and the second protrusion 16 a is sandwiched between the second axis and the second axis. It arrange | positions so that the radial direction of the hub 16 may be opposed.
The first hub 15 and the second hub 16 are configured so that the pair of first protrusions 15 a and the pair of second protrusions 16 a are alternately arranged at equal intervals along the circumferential direction of the slider 17. 17 is disposed with a 17 therebetween.
The tip portions of the pair of first protrusions 15a are each formed in a disk shape that bulges in a circular shape when viewed from the side. In that case, the front-end | tip part of a pair of 1st projection part 15a is formed so that surfaces may oppose on both sides of the center axis | shaft of the 1st hub 15. As shown in FIG. The tip portions of the pair of second projecting portions 16a are also formed in the same manner as the pair of first projecting portions 15a.
On the other hand, the first groove 17a and the second groove 17b formed in the slider 17 are each formed in a circular shape in a side view corresponding to the shape of the first protrusion 15a and the second protrusion 16a on the groove bottom side. Therefore, the first imaginary line X that penetrates the center of the two first grooves 17 a on the groove bottom side along the radial direction of the slider 17 and the center of the two bottom grooves 17 b on the groove bottom side of the slider 17 The second virtual lines Y that penetrate each other in the radial direction are orthogonal to each other in a cross shape in a plane parallel to the end face of the slider 17.
And the front-end | tip part of the 1st projection part 15a fits in the 1st groove | channel 17a, and the front-end | tip part of the 2nd projection part 16a fits in the 2nd groove | channel 17b, The 1st hub 15, the slider 17, and The second hub 16 is connected with a gap between the end faces.
 なお、第1突起部15a及び第2突起部16aの基端部は、図5に示すように、第1ハブ15及び第2ハブ16の端面に形成された凹陥部15b、16bにそれぞれ挿入されている。そして、これら第1突起部15a及び第2突起部16aの基端部と凹陥部15b、16bの底面との間には、スプリング19が圧縮された状態で介装されている。これにより、第1突起部15a及び第2突起部16aは、それぞれスライダ17方向に付勢されている。 As shown in FIG. 5, the base end portions of the first protrusion portion 15a and the second protrusion portion 16a are inserted into the recessed portions 15b and 16b formed on the end surfaces of the first hub 15 and the second hub 16, respectively. ing. And the spring 19 is interposed in the compressed state between the base end part of these 1st projection parts 15a and the 2nd projection part 16a, and the bottom face of the recessed parts 15b and 16b. Thereby, the first protrusion 15a and the second protrusion 16a are each urged toward the slider 17.
 第1ハブ15の第1突起部15aがスライダ17の第1溝17aに沿ってスライドすることで第1溝17a方向(第1仮想線X方向)の偏心を吸収し、第1ハブ15の第1突起部15aがスライダ17の第1溝17aの第1仮想線X回りに回動することで第1溝17a回り(前記第1仮想線X回り)の偏角を吸収する。同様に、第2ハブ16の第2突起部16aがスライダ17の第2溝17bに沿ってスライドすることで第2溝17b方向(第2仮想線Y方向)の偏心を吸収し、第2ハブ16の第2突起部16aがスライダ17の第2溝17bの第2仮想線Y回りに回動することで第2溝17b回り(前記第2仮想線Y回り)の偏角を吸収する。 The first protrusion 15 a of the first hub 15 slides along the first groove 17 a of the slider 17 to absorb the eccentricity in the direction of the first groove 17 a (first imaginary line X direction). The one protrusion 15 a rotates around the first imaginary line X of the first groove 17 a of the slider 17 to absorb the declination around the first groove 17 a (around the first imaginary line X). Similarly, the second protrusion 16a of the second hub 16 slides along the second groove 17b of the slider 17 to absorb the eccentricity in the direction of the second groove 17b (second imaginary line Y direction). The sixteen second protrusions 16 a rotate around the second imaginary line Y of the second groove 17 b of the slider 17 to absorb the declination around the second groove 17 b (around the second imaginary line Y).
 上記構成により、接合装置18では、金属パイプ11が途中で曲がっていても、オルダム軸継手13及び自在軸継手14で金属パイプ11の公差を吸収することができる。そのため、金属パイプ11の接合箇所において、接合ツール22を金属パイプ11の内周面に沿って円周方向に移動させる際の回転軸と金属パイプ11の軸芯との間に角度差が生じることがない。 With the above configuration, the joining device 18 can absorb the tolerance of the metal pipe 11 by the Oldham shaft joint 13 and the universal shaft joint 14 even if the metal pipe 11 is bent in the middle. Therefore, an angular difference is generated between the rotating shaft and the axis of the metal pipe 11 when the joining tool 22 is moved in the circumferential direction along the inner peripheral surface of the metal pipe 11 at the joint portion of the metal pipe 11. There is no.
[第3の実施の形態に係る金属パイプの接合装置]
 本発明の第3の実施の形態に係る金属パイプの接合装置50の側断面を図6に示す。なお、第2の実施の形態に係る接合装置18と同じ構成要素には同じ符号を付し、説明を省略する。
[Metal Pipe Joining Device According to Third Embodiment]
FIG. 6 shows a cross-sectional side view of a metal pipe joining device 50 according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same component as the joining apparatus 18 which concerns on 2nd Embodiment, and description is abbreviate | omitted.
 接合装置50は、トラベル角及びワーク角の調節機構を備える点で第2の実施の形態に係る接合装置18と異なっている。即ち、接合装置50は、接合ツール22の中心軸Rと被接合部12との接触角度を、中心軸Sに直交する面内、及び中心軸Sと中心軸Rを通る面内(中心軸S及び中心軸Rが延在し合う面内)で調節する機構を備えている。以下、これらの調節機構について詳述する。 The joining device 50 is different from the joining device 18 according to the second embodiment in that it includes a travel angle and workpiece angle adjustment mechanism. That is, the joining device 50 sets the contact angle between the center axis R of the joining tool 22 and the joined portion 12 in a plane orthogonal to the center axis S and in a plane passing through the center axis S and the center axis R (center axis S). And a mechanism for adjusting in the plane in which the central axis R extends. Hereinafter, these adjustment mechanisms will be described in detail.
 図7Aは、トラベル角を調節する第1の調節機構61を示す図であり、図6の接合ツール22及び後述する板部62を軸方向前側から見た図である。トラベル角とは、接合ツール22の中心軸Rと、プローブ21と被接合部12との接点における被接合部12の接線方向と、のなす角を指す。つまり、第1の調節機構61は、中心軸Sに直交する面内における中心軸Rの傾き角度を調節することで、トラベル角を調節する。 FIG. 7A is a view showing a first adjustment mechanism 61 that adjusts the travel angle, and is a view of the joining tool 22 of FIG. 6 and a plate portion 62 described later as viewed from the front side in the axial direction. The travel angle refers to an angle formed by the central axis R of the welding tool 22 and the tangential direction of the bonded portion 12 at the contact point between the probe 21 and the bonded portion 12. That is, the first adjusting mechanism 61 adjusts the travel angle by adjusting the inclination angle of the central axis R in the plane orthogonal to the central axis S.
 第1の調節機構61は、接合ツール22、保持具25及び押圧部35と前部筐体46aとの間に配される円環状の板部62と、板部62と前部筐体46aとを接続するボルト63と、を備える。 The first adjustment mechanism 61 includes an annular plate portion 62 disposed between the joining tool 22, the holder 25, the pressing portion 35, and the front housing 46a, and the plate portion 62 and the front housing 46a. And a bolt 63 for connecting.
 板部62は、板部62より前側(図6の左側)に配された接合ツール22、保持具25、押圧部35、即ち被接合部12にプローブ21を押し付けて被接合部12に塑性流動を発生させる部材と連結されている。例えば、板部62は、円錐ころ軸受32を介して保持具25を覆っている外郭部材31に対して連結されている。これにより、接合ツール22、保持具25及び押圧部35は、板部62を介して前部筐体46aに連結されている。
 第1の調節機構61では、前部筐体46aと板部62とをボルト63を用いて締結することにより、円周方向移動部40に対する接合ツール22の相対位置を、中心軸Sに直交する面内で調整することが可能とされる。
The plate part 62 presses the probe 21 against the joining tool 22, the holding tool 25, the pressing part 35, that is, the joined part 12, which is disposed in front of the plate part 62 (left side in FIG. 6), and plastically flows to the joined part 12. It is connected with the member which generates. For example, the plate portion 62 is connected to the outer member 31 covering the holder 25 via the tapered roller bearing 32. Thereby, the joining tool 22, the holder 25, and the pressing part 35 are connected to the front housing 46a via the plate part 62.
In the first adjustment mechanism 61, the relative position of the joining tool 22 with respect to the circumferential movement unit 40 is orthogonal to the central axis S by fastening the front housing 46 a and the plate part 62 using the bolts 63. It is possible to adjust in the plane.
 板部62には、ボルト63を挿通するための複数の長孔62aが形成されている。これら複数の長孔62aは、板部62の円周方向に間隔をあけて形成されている。各長孔62aは、2つの平行な円筒面を含む曲面で画定される。この円筒面は、プローブ21の先端Tを通り中心軸Sと平行な中心軸を有する。
 つまり、各長孔62aは、中心軸Sに直交する面内においてプローブ21の先端Tを支点とした板部62の回動を許容するように、その回動方向に沿って長く形成されている。この際、各長孔62aは、その形成位置に応じて(プローブ21の先端Tからの距離に応じて)、延在する長さが異なっている。
A plurality of long holes 62 a for inserting the bolts 63 are formed in the plate portion 62. The plurality of long holes 62 a are formed at intervals in the circumferential direction of the plate portion 62. Each elongated hole 62a is defined by a curved surface including two parallel cylindrical surfaces. The cylindrical surface has a central axis that passes through the tip T of the probe 21 and is parallel to the central axis S.
That is, each long hole 62a is formed long along the rotation direction so as to allow rotation of the plate portion 62 with the tip T of the probe 21 as a fulcrum in a plane orthogonal to the central axis S. . At this time, the lengths of the elongated holes 62a are different depending on the formation position (depending on the distance from the tip T of the probe 21).
 このような第1の調節機構61では、図7Bに示すように、プローブ21の先端Tを支点として、長孔62aが形成された範囲だけ板部62を回動することができ、前部筐体46aに対する板部62の固定位置を調節することが可能である。 In such a first adjustment mechanism 61, as shown in FIG. 7B, the plate portion 62 can be rotated within the range in which the long hole 62a is formed with the tip T of the probe 21 as a fulcrum. It is possible to adjust the fixing position of the plate part 62 with respect to the body 46a.
 具体的には、長孔62aに挿通した複数のボルト63を前部筐体46aの不図示のボルト孔に緩めた状態で螺合させた後、プローブ21の先端Tを支点として板部62を回動させる。これにより、中心軸Sに直交する面内で接合ツール22の中心軸Rの傾きが変わり、トラベル角が摩擦撹拌接合に適した角度となるように前部筐体46aと板部62との相対位置が調節される。その後、ボルト63を締め付けて板部62を前部筐体46aに固定することにより、接合に適した角度にトラベル角を維持することができる。 Specifically, after a plurality of bolts 63 inserted through the long holes 62a are screwed into a bolt hole (not shown) of the front housing 46a in a loosened state, the plate portion 62 is moved with the tip T of the probe 21 as a fulcrum. Rotate. As a result, the inclination of the central axis R of the welding tool 22 changes in a plane orthogonal to the central axis S, and the front housing 46a and the plate portion 62 are relatively positioned so that the travel angle becomes an angle suitable for friction stir welding. The position is adjusted. Thereafter, the travel angle can be maintained at an angle suitable for joining by fastening the bolt 63 to fix the plate portion 62 to the front housing 46a.
 次に、ワーク角を調節する第2の調節機構71について説明する。ワーク角とは、接合ツール22の中心軸Rと、プローブ21と金属パイプ11との接点における金属パイプ11の半径方向とのなす角を指す。即ち、ワーク角とは、被接合部12と金属パイプ11の管軸とを通過する法線と、接合ツール22の中心軸Rとのなす角度であり、法線に対する接合ツール22の傾き度合いを示す角度である。
 第2の調節機構71は、中心軸S及び中心軸Rを通る面内で接合ツール22の中心軸Rの角度を変更する。図6、図8A及び図8Bに示すように、第2の調節機構71は、アクチュエータ78と、角度検出手段81と、演算手段85とを備える。
Next, the second adjustment mechanism 71 that adjusts the work angle will be described. The work angle refers to an angle formed by the central axis R of the joining tool 22 and the radial direction of the metal pipe 11 at the contact point between the probe 21 and the metal pipe 11. In other words, the work angle is an angle formed by a normal line passing through the welded portion 12 and the tube axis of the metal pipe 11 and the central axis R of the welding tool 22, and the degree of inclination of the welding tool 22 with respect to the normal line. It is an angle shown.
The second adjustment mechanism 71 changes the angle of the central axis R of the welding tool 22 in a plane passing through the central axis S and the central axis R. As shown in FIGS. 6, 8 </ b> A, and 8 </ b> B, the second adjustment mechanism 71 includes an actuator 78, an angle detection unit 81, and a calculation unit 85.
 図6を参照して、角度検出手段81について説明する。角度検出手段81は、第1のセンサ82と、第2のセンサ83とを備える。第1及び第2のセンサ82、83はそれぞれ、金属パイプ11(被接合部12)の角度と接合ツール22の角度を測定するものである。 The angle detection means 81 will be described with reference to FIG. The angle detection unit 81 includes a first sensor 82 and a second sensor 83. The first and second sensors 82 and 83 measure the angle of the metal pipe 11 (the joined portion 12) and the angle of the joining tool 22, respectively.
 第1のセンサ82は、金属パイプ11の外周面に取り付けられたリング84の外周面に取り付けられている。このリング84は、2つの半割りリングから構成され、各半割リングのフランジ(不図示)を対向させてボルト等により2つの半割リングを締結することで、金属パイプ11の接合線の外周面に取り付けられている。これにより金属パイプ11が突合せられた状態で、リング84によって固定されているため、接合ツールを金属パイプに押圧した際に押圧に伴い被接合部がラッパ状に広がることを抑制できる。第1のセンサ82は、リング84の外周面のうち、接合装置50の停止状態における接合ツール22の位置と反対側(上側)に設置される。第2のセンサ83は、接合ツール22近傍、具体的には外殻部材31に取り付けられている。 The first sensor 82 is attached to the outer peripheral surface of the ring 84 attached to the outer peripheral surface of the metal pipe 11. The ring 84 is composed of two halved rings. By fastening the two halved rings with bolts or the like with the flanges (not shown) of the halved rings facing each other, the outer periphery of the joint line of the metal pipe 11 It is attached to the surface. Thus, the metal pipe 11 is fixed by the ring 84 in a state where the metal pipe 11 is abutted, so that when the welding tool is pressed against the metal pipe, it is possible to prevent the bonded portion from spreading in a trumpet shape with the pressing. The first sensor 82 is disposed on the outer side of the ring 84 on the side (upper side) opposite to the position of the welding tool 22 when the welding device 50 is stopped. The second sensor 83 is attached to the vicinity of the welding tool 22, specifically, to the outer shell member 31.
 第1のセンサ82は、金属パイプ11の角度(重力方向に対する金属パイプ11の管軸(または半径方向)の角度)を測定する。第2のセンサ83は、接合装置50の設置角度(重力方向に対する中心軸S(またはR)の角度)を測定する。第1及び第2のセンサ82、83としては、例えば角度センサや、光切断法などにより形状を計測するセンサを用いることができる。測定された角度は、第1、第2のセンサ82、83から演算手段85に送信される。 The first sensor 82 measures the angle of the metal pipe 11 (the angle of the tube axis (or radial direction) of the metal pipe 11 with respect to the direction of gravity). The second sensor 83 measures the installation angle of the bonding apparatus 50 (the angle of the central axis S (or R) with respect to the direction of gravity). As the first and second sensors 82 and 83, for example, an angle sensor or a sensor that measures a shape by a light cutting method or the like can be used. The measured angle is transmitted from the first and second sensors 82 and 83 to the calculation means 85.
 演算手段85は、第1及び第2のセンサ82、83により測定された角度の差分に基づいて、ワーク角を算出する。そして、演算手段85は、算出したワーク角に基づき、次に説明するオルダム軸継手73のアクチュエータ78を駆動する。これによりワーク角が調節される。 The calculating means 85 calculates the work angle based on the difference between the angles measured by the first and second sensors 82 and 83. Then, the calculation means 85 drives an actuator 78 of the Oldham shaft coupling 73 described below based on the calculated work angle. Thereby, the work angle is adjusted.
 図8A及び図8Bは、オルダム軸継手73を説明するための斜視図及び分解斜視図である。オルダム軸継手73は、第2の実施の形態に係るオルダム軸継手13と同様に、第1ハブ75と、第2ハブ76と、スライダ77とで構成されている。第1ハブ75は、オルダム軸継手13の第1ハブ15と同じ構成であり、その一端面に一対の第1突起部75aが設けられている。 8A and 8B are a perspective view and an exploded perspective view for explaining the Oldham shaft coupling 73. FIG. The Oldham shaft joint 73 includes a first hub 75, a second hub 76, and a slider 77, similarly to the Oldham shaft joint 13 according to the second embodiment. The 1st hub 75 is the same composition as the 1st hub 15 of Oldham shaft coupling 13, and a pair of 1st projection parts 75a are provided in the end surface.
 第2ハブ76には、中心軸に沿って延びる凹陥部76aが形成されている。この凹陥部76aにはアクチュエータ78が嵌合固定されている。 The second hub 76 has a recess 76a extending along the central axis. An actuator 78 is fitted and fixed to the recess 76a.
 アクチュエータ78は、第2ハブ76の中心軸に沿って延びる円筒状のシリンダチューブ78aと、このシリンダチューブ78a内を摺動するピストン78bと、シリンダチューブ78aと接続された不図示の油圧ポンプとを備える油圧シリンダである。油圧ポンプを駆動してシリンダチューブ78a内の油圧を変化させることにより、ピストン78bは第2ハブ76の中心軸に沿って往復移動する。
 なお、アクチュエータ78としては、油圧シリンダに限定されず、例えばエアシリンダや電動アクチュエータを用いてもよい。ピストン78bの先端部は、第2の実施の形態における第2突起部16aの先端部と同様の形状とされている。
The actuator 78 includes a cylindrical cylinder tube 78a extending along the central axis of the second hub 76, a piston 78b sliding inside the cylinder tube 78a, and a hydraulic pump (not shown) connected to the cylinder tube 78a. It is a hydraulic cylinder provided. The piston 78b reciprocates along the central axis of the second hub 76 by driving the hydraulic pump to change the hydraulic pressure in the cylinder tube 78a.
The actuator 78 is not limited to a hydraulic cylinder, and for example, an air cylinder or an electric actuator may be used. The tip of the piston 78b has the same shape as the tip of the second protrusion 16a in the second embodiment.
 第2ハブ76には、第2ハブ76の中心軸を挟んで凹陥部76aとは半径方向の反対側に位置する部分に、第2突起部76bが設けられている。第2突起部76bは、第1突起部75aやピストン78bと異なり、第2ハブ76と一体に形成されている。第2突起部76bの先端部は、第2の実施の形態における第2突起部16aの先端部と同様の形状とされていると共に、第2の仮想線の軸上に位置するように貫通孔が形成されている。 The second hub 76 is provided with a second protrusion 76b at a portion located on the opposite side of the recessed portion 76a in the radial direction across the central axis of the second hub 76. Unlike the first protrusion 75a and the piston 78b, the second protrusion 76b is formed integrally with the second hub 76. The distal end portion of the second projecting portion 76b has the same shape as the distal end portion of the second projecting portion 16a in the second embodiment, and the through hole is positioned on the axis of the second imaginary line. Is formed.
 スライダ77には、第1突起部75aが嵌合する2つの第1溝77a、ピストン78bが嵌合する第2溝77b、第2突起部が固定される凹部77cが形成されている。このうち、第1溝77a及び第2溝77bは、第2の実施の形態のオルダム軸継手13の第1溝17a、第2溝17bと同じ形状である。
 従って、2つの第1溝77aの中心を結ぶ線が第1仮想線X’とされ、第2溝77bと凹部77cの中心を結ぶ線が第2仮想線Y’とされ、これら両仮想線はスライダ77の端面と平行な面内で十字状に直交する。
The slider 77 is formed with two first grooves 77a in which the first protrusions 75a are fitted, a second groove 77b in which the pistons 78b are fitted, and a recess 77c in which the second protrusions are fixed. Among these, the 1st groove | channel 77a and the 2nd groove | channel 77b are the same shapes as the 1st groove | channel 17a and the 2nd groove | channel 17b of the Oldham shaft coupling 13 of 2nd Embodiment.
Therefore, a line connecting the centers of the two first grooves 77a is a first imaginary line X ′, a line connecting the centers of the second grooves 77b and the recesses 77c is a second imaginary line Y ′, and both these imaginary lines are In a plane parallel to the end surface of the slider 77, the cross is orthogonal to the cross.
 凹部77c内には、該凹部77c内に第2突起部76bの先端部を配置させた際に、第2突起部76bの貫通孔に対応する位置にボルト孔が形成されている。ボルト76cを第2突起部76bの貫通孔に挿通させ、凹部77cのボルト孔と螺合させることで、第2ハブ76とスライダ77とが連結される。このとき、第2突起部76bは凹部77cに完全に固定されるのではなく、上下方向の動きや凹部77cに対する傾きが許容された状態で取り付けられる。なお、ボルト76cの代わりにピンを用いても良い。 A bolt hole is formed in the recess 77c at a position corresponding to the through hole of the second protrusion 76b when the tip of the second protrusion 76b is disposed in the recess 77c. The second hub 76 and the slider 77 are connected by inserting the bolt 76c through the through hole of the second protrusion 76b and screwing it with the bolt hole of the recess 77c. At this time, the second protrusion 76b is not completely fixed to the recess 77c, but is attached in a state in which vertical movement and inclination with respect to the recess 77c are allowed. A pin may be used instead of the bolt 76c.
 以上のようなオルダム軸継手73は、第2突起部76bと接合ツール22との位置が、接合装置50の円周方向において一致するように取り付けられている。図9に示すように、プローブ21を被接合部12に配置した状態でアクチュエータ78が駆動されることにより、中心軸R及びSを通る面内で、オルダム軸継手73の軸方向端面が前側または後ろ側に傾く。
 この結果、接合ツール22の中心軸Rが、プローブ21の先端Tを支点として前側または後側に傾く。つまり、被接合部12と金属パイプ11の管軸とを通過する法線に対する接合ツール22の傾きを変化させて、ワーク角を調節することができる。
The Oldham shaft joint 73 as described above is attached so that the positions of the second protrusion 76 b and the welding tool 22 coincide with each other in the circumferential direction of the welding device 50. As shown in FIG. 9, the actuator 78 is driven in a state where the probe 21 is disposed on the joined portion 12, so that the axial end surface of the Oldham shaft coupling 73 is on the front side or in the plane passing through the central axes R and S. Tilt backwards.
As a result, the central axis R of the welding tool 22 is tilted forward or rearward with the tip T of the probe 21 as a fulcrum. That is, the work angle can be adjusted by changing the inclination of the joining tool 22 with respect to the normal passing through the joined portion 12 and the tube axis of the metal pipe 11.
 次に、上記の第1の調節機構61及び第2の調節機構71を備える接合装置50におけるトラベル角及びワーク角を調節する方法について説明する。
(1)はじめに、接合装置50を金属パイプ11の外部に設置した状態で、トラベル角が適正範囲内となるように第1の調節機構61を用いて調節を行う。この適正範囲は、接合ツール22(プローブ21)の形状や、金属パイプ11の材質等の接合条件から決定される。接合装置50の実際のトラベル角は、金属パイプ11の形状や接合装置50の形状から求められる。トラベル角が適正範囲内となるように、プローブ21の先端Tを支点として板部62を回動させることにより、板部62の前部筐体46aに対する取り付け位置を調節し、ボルト63により板部62を前部筐体46aに固定する。
Next, a method for adjusting the travel angle and the work angle in the joining apparatus 50 including the first adjustment mechanism 61 and the second adjustment mechanism 71 will be described.
(1) First, adjustment is performed using the first adjustment mechanism 61 so that the travel angle is within an appropriate range in a state where the joining device 50 is installed outside the metal pipe 11. This appropriate range is determined from the joining conditions such as the shape of the joining tool 22 (probe 21) and the material of the metal pipe 11. The actual travel angle of the joining device 50 is obtained from the shape of the metal pipe 11 and the shape of the joining device 50. By rotating the plate portion 62 with the tip T of the probe 21 as a fulcrum so that the travel angle is within an appropriate range, the mounting position of the plate portion 62 with respect to the front housing 46 a is adjusted, and the plate portion is adjusted by the bolt 63. 62 is fixed to the front housing 46a.
(2)トラベル角の調節後、接合ツール22が被接合部12と接触するように、接合装置50を金属パイプ11の内部に設置する。この時、金属パイプ11の外周面上にはリング84が取り付けられ、リング84には第1のセンサ82が取り付けられている。また、第2センサ83が外殻部材31に取り付けられている。この状態で、油圧シリンダ37のロッド36を移動させて被接合部12にプローブ21を押し付ける。
(3)次いで、ワーク角が適正範囲内となるように第2の調節機構71を用いて調節する。この適正範囲は、接合ツール22(プローブ21)の形状や、金属パイプの材質により決定され、予め演算手段85に入力されている。第1のセンサ82と第2のセンサ83とで測定した角度を、演算手段85に送信する。演算手段85において、入力された角度に基づきその時点におけるワーク角が求められる。
(2) After adjusting the travel angle, the joining device 50 is installed inside the metal pipe 11 so that the joining tool 22 contacts the joined portion 12. At this time, a ring 84 is attached to the outer peripheral surface of the metal pipe 11, and a first sensor 82 is attached to the ring 84. A second sensor 83 is attached to the outer shell member 31. In this state, the rod 36 of the hydraulic cylinder 37 is moved to press the probe 21 against the joined portion 12.
(3) Next, the second adjustment mechanism 71 is used to adjust the work angle to be within the appropriate range. This appropriate range is determined by the shape of the joining tool 22 (probe 21) and the material of the metal pipe, and is input to the computing means 85 in advance. The angle measured by the first sensor 82 and the second sensor 83 is transmitted to the calculation means 85. The calculation means 85 obtains the work angle at that time based on the input angle.
(4)演算手段85で得られたワーク角が予め入力された適正範囲内である場合には、アクチュエータ78をロックし、ピストン78bが動かないように規制する。これに対して、演算手段85で得られたワーク角が予め入力された適正範囲内でない場合は、演算手段85においてワーク角と適正範囲とのずれ量を算出する。演算手段85はそのずれ量に基づきアクチュエータ78を駆動し、ワーク角が適正範囲となるように調節する。(3)におけるワーク角の算出以降の手順を繰り返し行いワーク角が適正範囲内となった場合には、アクチュエータ78をロックし、ピストン78bが動かないように規制する。
(5)第1の実施の形態の方法により、接合装置50を駆動し、金属パイプ11同士を接合する。
(4) When the work angle obtained by the calculation means 85 is within the appropriate range inputted in advance, the actuator 78 is locked and the piston 78b is restricted from moving. On the other hand, when the work angle obtained by the calculation means 85 is not within the appropriate range input in advance, the calculation means 85 calculates a deviation amount between the work angle and the appropriate range. The calculation means 85 drives the actuator 78 based on the deviation amount, and adjusts the work angle to be within an appropriate range. The procedure after calculation of the workpiece angle in (3) is repeated, and when the workpiece angle falls within the appropriate range, the actuator 78 is locked and the piston 78b is restricted from moving.
(5) The joining apparatus 50 is driven and the metal pipes 11 are joined to each other by the method of the first embodiment.
 第3の実施の形態に係る金属パイプの接合装置50によれば、接合ツール22の中心軸Rの角度を、プローブ21の先端Tを支点として自在に回動することが可能である。このため、接合ツール22と被接合部12との接触角(トラベル角、ワーク角)を、適正値となるように調節した上で摩擦撹拌接合を行うことができる。これにより、特殊な形状の接合ツールを用いることなく、バリの発生や肉厚の減少、加工痕の発生を抑制できる。また、金属パイプ11に管軸方向の反りや、被接合部がラッパ形状である等の形状不良がある場合にも、プローブ21と被接合部12とを適切な角度(ワーク角、トラベル角)で接触させることができる。この結果、良好な接合品質を実現できる。 According to the metal pipe joining device 50 according to the third embodiment, the angle of the central axis R of the joining tool 22 can be freely rotated with the tip T of the probe 21 as a fulcrum. For this reason, the friction stir welding can be performed after adjusting the contact angle (travel angle, work angle) between the welding tool 22 and the bonded portion 12 to be an appropriate value. Thereby, generation | occurrence | production of a burr | flash, thickness reduction, and generation | occurrence | production of a process mark can be suppressed, without using the joining tool of a special shape. Further, even when the metal pipe 11 is warped in the tube axis direction or has a shape defect such as a trumpet shape, the probe 21 and the to-be-joined portion 12 are at an appropriate angle (work angle, travel angle). Can be contacted. As a result, good bonding quality can be realized.
 なお、第3の実施の形態における第2の調節機構71は上記の構成に限定されない。例えば、オルダム軸継手73は、一つのアクチュエータ78を備えているが、第2突起部76bの代わりに凹陥部76aをもう一つ設け、そこに第2のアクチュエータ78を取り付けても良い。また、第1及び第2のセンサ82、83の設置位置は図6に示す位置に限定されず、金属パイプ11や接合ツール22の角度を測定できる位置であれば良く、それぞれ被接合部12の近傍や接合ツール22の近傍に配置されていれば良い。但し、第1のセンサ82と第2のセンサ83とで、重力方向に対し角度を測る方向(例えば、軸方向、半径方向等)を同じ方向とすることが好ましい。この場合、演算手段85において、第1、第2のセンサ82、83で測定した値の差分の計算のみでワーク角を得ることができる。 Note that the second adjustment mechanism 71 in the third embodiment is not limited to the above configuration. For example, although the Oldham shaft coupling 73 includes one actuator 78, another concave portion 76a may be provided instead of the second protrusion 76b, and the second actuator 78 may be attached thereto. In addition, the installation positions of the first and second sensors 82 and 83 are not limited to the positions shown in FIG. 6, and may be any positions where the angles of the metal pipe 11 and the welding tool 22 can be measured. What is necessary is just to arrange | position in the vicinity and the vicinity of the joining tool 22. However, it is preferable that the first sensor 82 and the second sensor 83 have the same direction in which the angle is measured with respect to the direction of gravity (for example, the axial direction, the radial direction, etc.). In this case, the calculation means 85 can obtain the work angle only by calculating the difference between the values measured by the first and second sensors 82 and 83.
[第4の実施の形態に係る金属パイプの接合装置]
 本発明の第4の実施の形態に係る金属パイプの接合装置90の側断面を図10に示す。なお、第3の実施の形態に係る接合装置50と同じ構成要素には同じ符号を付し、説明を省略する。
[Metal Pipe Joining Device According to Fourth Embodiment]
FIG. 10 shows a side cross section of a metal pipe joining device 90 according to a fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same component as the joining apparatus 50 which concerns on 3rd Embodiment, and description is abbreviate | omitted.
 接合装置90は、摩擦撹拌接合中にプローブ21の位置と被接合部12(接合線)との位置を補正する第3の調節機構91を備える点で第3の実施の形態に係る接合装置50と異なっている。即ち、接合装置90は、金属パイプ11の内周面において、プローブ21の位置を補正する第3の調節機構91を備えている。以下、図10~12を参照し、第3の調節機構91について詳述する。 The joining device 90 includes a third adjusting mechanism 91 that corrects the position of the probe 21 and the position of the joined portion 12 (joining line) during friction stir welding, and the joining device 50 according to the third embodiment. Is different. That is, the joining device 90 includes a third adjustment mechanism 91 that corrects the position of the probe 21 on the inner peripheral surface of the metal pipe 11. Hereinafter, the third adjusting mechanism 91 will be described in detail with reference to FIGS.
 第3の調節機構91は、カメラ92、方向転換部93、及び不図示の演算手段を備えている。
 カメラ92は、接合線を検出するセンサとして、接合ツール22の進路上、即ち、接合ツール22の進行方向前方に配置されている。カメラ92で撮影された画像は、不図示の演算手段(第3の実施の形態の演算手段85と兼用しても良い)に入力される。演算手段は、この入力された画像から、接合ツール22の進路が接合線から外れているか否かを判定し、その結果に基づき方向転換部93を操作する。ここで、接合ツール22の進路とは、その瞬間における回転中心が維持された状態で接合ツール22が金属パイプ11の内周面を移動した場合のプローブ21の先端Tの進路を指す。
The third adjusting mechanism 91 includes a camera 92, a direction changing unit 93, and a calculation unit (not shown).
The camera 92 is disposed on the path of the welding tool 22, that is, in the forward direction of the welding tool 22 as a sensor for detecting the bonding line. An image photographed by the camera 92 is input to a calculation unit (not shown) (may also be used as the calculation unit 85 of the third embodiment). The calculation means determines whether or not the path of the welding tool 22 is out of the bonding line from the input image, and operates the direction changing unit 93 based on the result. Here, the path of the welding tool 22 refers to the path of the tip T of the probe 21 when the welding tool 22 moves on the inner peripheral surface of the metal pipe 11 while maintaining the center of rotation at that moment.
 方向転換部93は、ステアリング用ローラ94と、ラック96と、ピニオン95と、不図示のモータとで構成される。ステアリング用ローラ94は、プローブ21の先端の進行方向を調整するものである。なお、本実施の形態では、4つの反力受けローラ38のうち、接合ツール22の進行方向において接合ツール22に近い側(図10の右側)に位置する2つを、ステアリング用ローラ94として利用している。このため、ステアリング用ローラ94は、被接合部12にプローブ21を押し付けた際に発生する反力を受ける反力受けローラとしても機能する。 The direction changing section 93 includes a steering roller 94, a rack 96, a pinion 95, and a motor (not shown). The steering roller 94 adjusts the traveling direction of the tip of the probe 21. In the present embodiment, of the four reaction force receiving rollers 38, two of the four reaction force receiving rollers 38 located on the side close to the joining tool 22 (the right side in FIG. 10) in the traveling direction of the joining tool 22 are used as the steering roller 94. is doing. For this reason, the steering roller 94 also functions as a reaction force receiving roller that receives a reaction force generated when the probe 21 is pressed against the bonded portion 12.
 ピニオン95は、不図示のモータに接続され、モータの回転が入力される。ピニオン95は、金属パイプ11の管軸に平行に往復移動可能に配置されたラック96と噛み合うように配置され、ピニオン95とラック96とでラックアンドピニオン機構が構成される。ラック96の両端部にステアリング用ローラ94がそれぞれ接続されており、ラック96がその長手方向(金属パイプ11の管軸方向)に移動することにより、ステアリング用ローラ94の向きが変更される。 The pinion 95 is connected to a motor (not shown), and the rotation of the motor is input. The pinion 95 is disposed so as to mesh with a rack 96 disposed so as to be reciprocally movable in parallel with the tube axis of the metal pipe 11, and the pinion 95 and the rack 96 constitute a rack and pinion mechanism. Steering rollers 94 are respectively connected to both ends of the rack 96, and the direction of the steering roller 94 is changed by moving the rack 96 in the longitudinal direction (the tube axis direction of the metal pipe 11).
 次に、接合装置90における第3の調節機構91を用いた接合ツール22の進行方向の補正方法について説明する。
(1)第3の実施の形態と同じ方法により、接合ツールのトラベル角及びワーク角を調節する。
(2)第1の実施の形態と同じ方法により、接合ツール22をその中心軸R回りに回転させると共に、被接合部12にプローブ21に押し付けて被接合部12中にプローブ21を埋没(圧入)させ、塑性流動を発生させる。
Next, a method for correcting the advancing direction of the welding tool 22 using the third adjusting mechanism 91 in the welding apparatus 90 will be described.
(1) The travel angle and workpiece angle of the welding tool are adjusted by the same method as in the third embodiment.
(2) The welding tool 22 is rotated about its central axis R by the same method as in the first embodiment, and the probe 21 is pressed against the probe 21 to be buried in the joint 12 (press-fit). ) To generate plastic flow.
(3)第2モータ44を駆動し、プローブ21(接合ツール22)を金属パイプ11の内周面に沿って円周方向に移動させる。このとき、プローブ21が360度回転して接合線を全て接合し終えるまで、以下の操作(3-1)~(3-3)を繰り返す。
(3-1)プローブ21(接合ツール22)の進行方向前方に配置されたカメラ92で接合線を撮影し、撮影したデータ(画像)を演算手段に送信する。
(3-2)演算手段は、入力されたデータに基づき、プローブ21(接合ツール22)の進路と接合線とのずれ量を算出する。
(3) The second motor 44 is driven, and the probe 21 (joining tool 22) is moved in the circumferential direction along the inner peripheral surface of the metal pipe 11. At this time, the following operations (3-1) to (3-3) are repeated until the probe 21 is rotated 360 degrees and all the joining lines are joined.
(3-1) The joining line is photographed by the camera 92 disposed in front of the probe 21 (joining tool 22) in the traveling direction, and the photographed data (image) is transmitted to the calculation means.
(3-2) The computing means calculates a deviation amount between the course of the probe 21 (joining tool 22) and the joining line based on the input data.
(3-3)ずれがない、またはずれ量が無視できる場合は、(3-1)に戻る。一方、ずれが無視できない程度に生じている場合は、方向転換部93を駆動してずれを無くす方向にプローブ21(接合ツール22)の進路を変更する。
 具体的には、演算手段がモータを制御して該モータを必要な回転量だけ回転させ、ピニオン95に伝達されたモータの回転をラックアンドピニオン機構によりラック96の直線運動に変換させる。これにより、ステアリング用ローラ94の向きを変更でき、プローブ21(接合ツール22)の進路を変更することができる。このとき、図12に示すように、プローブ21(接合ツール22)の進路の変更に合せてオルダム軸継手73の第1ハブ75が移動するので、プローブ21の進路の中心のずれを、第1ハブ75とスライダ77との接続部で吸収することができる。
 なお、ステアリング用ローラ94の向きが変更された後、(3-1)に戻る。
(3-3) If there is no deviation or the deviation amount can be ignored, the process returns to (3-1). On the other hand, in the case where the deviation is not negligible, the direction changing unit 93 is driven to change the path of the probe 21 (joining tool 22) in a direction in which the deviation is eliminated.
Specifically, the arithmetic means controls the motor to rotate the motor by a necessary amount of rotation, and the rotation of the motor transmitted to the pinion 95 is converted into a linear motion of the rack 96 by the rack and pinion mechanism. Thereby, the direction of the roller 94 for steering can be changed, and the course of the probe 21 (joining tool 22) can be changed. At this time, as shown in FIG. 12, the first hub 75 of the Oldham shaft coupling 73 moves in accordance with the change in the path of the probe 21 (joining tool 22). Absorption is possible at the connection between the hub 75 and the slider 77.
After the direction of the steering roller 94 is changed, the process returns to (3-1).
 第4の実施の形態に係る金属パイプの接合装置90によれば、接合ツール22の進路と接合線とがずれている場合でも、第3の調節機構91により接合ツール22の進路を補正することができる。また、カメラ92と演算手段を用いて繰り返し接合ツール22の進路と接合線とのずれを検出し、適宜そのずれを補正をしながら、接合線上に沿ってプローブ21を確実に走行(回転)させることができる。このため、プローブ21と接合線とが一致しない状態で摩擦撹拌接合が行われることを防止でき、接合線とプローブ21とが一致しない状態で摩擦撹拌接合が行われて接合強度が落ちることが防止される。その結果、良好な接合品質を実現できる。 According to the metal pipe joining device 90 according to the fourth embodiment, even when the course of the joining tool 22 and the joining line are deviated, the course of the joining tool 22 is corrected by the third adjusting mechanism 91. Can do. Further, the deviation between the course of the joining tool 22 and the joining line is repeatedly detected using the camera 92 and the calculation means, and the probe 21 is reliably run (rotated) along the joining line while appropriately correcting the deviation. be able to. For this reason, it can prevent that friction stir welding is performed in the state where the probe 21 and the joining line do not match, and friction stir welding is performed in the state where the joining line and the probe 21 do not match, thereby preventing the joining strength from being lowered. Is done. As a result, good bonding quality can be realized.
 また、接合装置90では、ステアリング用ローラ94に反力受けローラの機能を持たせたことにより、両者を別々に設ける必要がない。そして、ステアリング用ローラ94に反力が負荷されることにより、ステアリング用ローラ94が金属パイプ11の内周面を滑ることが抑制されるため、第3の調節機構91による補正が適切に行われる。 Also, in the joining device 90, since the steering roller 94 has the function of a reaction force receiving roller, it is not necessary to provide both separately. Then, since the reaction force is applied to the steering roller 94, the steering roller 94 is prevented from sliding on the inner peripheral surface of the metal pipe 11, so that the correction by the third adjustment mechanism 91 is appropriately performed. .
 なお、第3の調節機構91における方向転換部93は上述の構成に限定されない。例えば、図13A、13Bに示すように、第3の実施の形態におけるオルダム軸継手73において2つの第1突起部75aの代わりにアクチュエータ98を備えるオルダム軸継手93Aで構成しても良い。 In addition, the direction change part 93 in the 3rd adjustment mechanism 91 is not limited to the above-mentioned structure. For example, as shown in FIGS. 13A and 13B, the Oldham shaft coupling 73 according to the third embodiment may be configured with an Oldham shaft coupling 93A including an actuator 98 instead of the two first protrusions 75a.
 オルダム軸継手93Aは、第1ハブ97と、第2ハブ76と、スライダ77とを備え、第2ハブ76及びスライダ77はオルダム軸継手73と同じ構成である。第1ハブ97は、2つのアクチュエータ98を備えており、このアクチュエータ98は第2ハブ76のアクチュエータ78と同じ形状及び構成を有し、アクチュエータ98のピストン98bの先端がそれぞれスライダ77の第1溝77aに嵌合する。 The Oldham shaft coupling 93A includes a first hub 97, a second hub 76, and a slider 77. The second hub 76 and the slider 77 have the same configuration as the Oldham shaft coupling 73. The first hub 97 includes two actuators 98. The actuator 98 has the same shape and configuration as the actuator 78 of the second hub 76, and the tip end of the piston 98b of the actuator 98 is the first groove of the slider 77, respectively. Fits 77a.
 次に、このオルダム軸継手93Aを備える第3の調節機構を用いた接合ツール22の進行方向の補正方法について説明する。この第3の調節機構では、プローブ21が360度回転して接合線を接合し終えるまでに次の操作を繰り返す。
(1)プローブ21(接合ツール22)の進行方向前方に配置されたカメラ92で接合線を撮影したデータを演算手段に送信する。
(2)演算手段では、入力されたデータに基づき、プローブ21(接合ツール22)の予想される進路と接合線とのずれ量を算出する。
Next, a method for correcting the advancing direction of the welding tool 22 using a third adjusting mechanism including the Oldham shaft coupling 93A will be described. In the third adjusting mechanism, the following operation is repeated until the probe 21 is rotated 360 degrees and the joining line is completely joined.
(1) Data obtained by photographing the joining line with the camera 92 disposed in front of the traveling direction of the probe 21 (joining tool 22) is transmitted to the calculation means.
(2) The calculation means calculates a deviation amount between the expected path of the probe 21 (joining tool 22) and the joining line based on the input data.
(3)ずれがない、またはずれ量が無視できる場合は、(1)に戻る。ずれが無視できない程度に生じている場合は、オルダム軸継手93Aのアクチュエータ98を駆動してずれを無くす方向にプローブ21(接合ツール22)の進路を変更する。具体的には、演算手段で2つのアクチュエータ98の必要な駆動量を算出し、アクチュエータ98を駆動する指示をする。2つのアクチュエータ98が駆動されて、第1ハブ97の向きが変更される(図12参照)。その結果、プローブ21(接合ツール22)の進路が変更される。その後(1)に戻る。 (3) If there is no deviation or the deviation amount can be ignored, the process returns to (1). If the deviation is not negligible, the actuator 98 of the Oldham shaft coupling 93A is driven to change the path of the probe 21 (joining tool 22) in a direction to eliminate the deviation. Specifically, the required drive amounts of the two actuators 98 are calculated by the calculation means, and an instruction to drive the actuators 98 is given. The two actuators 98 are driven to change the direction of the first hub 97 (see FIG. 12). As a result, the path of the probe 21 (joining tool 22) is changed. Then return to (1).
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、第2の駆動部を金属パイプ内に配置しているが、筐体と第2の駆動部とを連結するシャフトを長くして第2の駆動部を金属パイプ外に配置してもよい。また、第4の実施の形態では第3の調節機構を、第3の実施の形態の第1及び第2の調節機構と組み合わせて用いているが、第3の調節機構を第2の実施の形態に組み合わせて、第3の調節機構単独で用いる構成としても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. For example, in the above embodiment, the second drive unit is disposed in the metal pipe. However, the shaft that connects the housing and the second drive unit is lengthened so that the second drive unit is outside the metal pipe. You may arrange in. In the fourth embodiment, the third adjustment mechanism is used in combination with the first and second adjustment mechanisms of the third embodiment, but the third adjustment mechanism is used in the second embodiment. The third adjusting mechanism may be used alone in combination with the form.
 本発明では、プローブを先端に有する接合ツールをその中心軸回りに回転させる第1の駆動部、接合ツールを金属パイプの内周面に沿って円周方向に移動させる第2の駆動部、並びに接合ツールを該接合ツールの中心軸方向に押圧する押圧部とを備えた金属パイプの接合装置及びそれを用いた金属パイプの接合方法なので、金属パイプの内部から摩擦撹拌接合により該金属パイプの端面同士を接合することができる。そのため、金属パイプの端面同士を接合する際、金属パイプの内面に開口欠陥が生じることがなく、接合時におけるスパッタも発生せず接合後の後処理が不要となる。また、第1~第3の調節機構を設けることにより、良好な接合品質を実現できる。 In this invention, the 1st drive part which rotates the joining tool which has a probe at the front-end | tip to the surroundings of the central axis, the 2nd drive part which moves a joining tool to the circumferential direction along the internal peripheral surface of a metal pipe, and A metal pipe joining device having a pressing portion that presses the joining tool in the direction of the central axis of the joining tool and a metal pipe joining method using the same, and the end face of the metal pipe by friction stir welding from the inside of the metal pipe They can be joined together. Therefore, when joining the end surfaces of the metal pipes, there is no opening defect on the inner surface of the metal pipe, no spattering occurs at the time of joining, and post-treatment after joining becomes unnecessary. In addition, by providing the first to third adjusting mechanisms, it is possible to realize good bonding quality.
10、18  接合装置(金属パイプの接合装置)
11  金属パイプ
12  被接合部
13  オルダム軸継手
14  自在軸継手
15  第1ハブ
15a  第1突起部
15b  凹陥部
16  第2ハブ
16a  第2突起部
16b  凹陥部
17  スライダ
17a  第1溝
17b  第2溝
19  スプリング
20  摩擦撹拌部
21  プローブ
22  接合ツール
23  チャック部材
23a  接続部材
24  円筒部材
24a  突条部
25  保持具
26、27  ベベルギア
28  回転軸
29、43  連結部材
30  第1モータ(第1の駆動部)
31  外殻部材
32  円錐ころ軸受
33  玉軸受
35  押圧部
36  ロッド
37  油圧シリンダ
38  反力受けローラ
39、42  従動ローラ
40  円周方向移動部
41、46  筐体
46a  前部筐体
46b  後部筐体
44  第2モータ(第2の駆動部)
45  支持部材
R、S  中心軸
10, 18 Joining device (metal pipe joining device)
DESCRIPTION OF SYMBOLS 11 Metal pipe 12 Joint part 13 Oldham shaft coupling 14 Universal shaft coupling 15 1st hub 15a 1st projection part 15b Recessed part 16 2nd hub 16a 2nd projection part 16b Recessed part 17 Slider 17a 1st groove | channel 17b 2nd groove | channel 19 Spring 20 Friction stirring part 21 Probe 22 Joining tool 23 Chuck member 23a Connection member 24 Cylindrical member 24a Projection part 25 Holder 26, 27 Bevel gear 28 Rotating shaft 29, 43 Connecting member 30 First motor (first drive part)
31 outer shell member 32 tapered roller bearing 33 ball bearing 35 pressing portion 36 rod 37 hydraulic cylinder 38 reaction force receiving rollers 39, 42 driven roller 40 circumferential direction moving portions 41, 46 housing 46a front housing 46b rear housing 44 Second motor (second drive unit)
45 Support members R, S Center axis

Claims (10)

  1.  同軸上に並べられた金属パイプの端面同士を接合する金属パイプの接合装置であって、
     金属パイプの端面間の被接合部に押し込まれるプローブが先端に形成された接合ツールと、前記接合ツールを該接合ツールの中心軸方向に移動可能に保持する保持具と、前記保持具を介して前記接合ツールを前記中心軸回りに回転させる第1の駆動部とを有する摩擦撹拌部と、
     前記接合ツールを該接合ツールの中心軸方向に押圧し、前記プローブを前記被接合部に圧入する押圧部と、
     前記第1の駆動部が内蔵され、前記保持具と前記押圧部とが一端部に取り付けられた筒状の筐体と、前記筐体を介して前記接合ツールを前記金属パイプの内周面に沿って円周方向に移動させる第2の駆動部とを有する円周方向移動部と、
    を備える、金属パイプを該金属パイプの内部から摩擦撹拌接合により接合する金属パイプの接合装置。
    A metal pipe joining device for joining end faces of metal pipes arranged on the same axis,
    A joining tool in which a probe to be pushed into a joined portion between the end faces of the metal pipe is formed at the tip, a holding tool that holds the joining tool movably in the central axis direction of the joining tool, and the holding tool A friction stirrer having a first drive for rotating the welding tool about the central axis;
    A pressing portion that presses the joining tool in the direction of the central axis of the joining tool and press-fits the probe into the joined portion;
    A cylindrical housing in which the first driving unit is built in, and the holder and the pressing unit are attached to one end, and the joining tool is placed on the inner peripheral surface of the metal pipe via the housing A circumferentially moving portion having a second drive portion that is moved circumferentially along the circumferential direction;
    A metal pipe joining device for joining a metal pipe by friction stir welding from the inside of the metal pipe.
  2.  請求項1に記載の金属パイプの接合装置において、前記接合ツールを該接合ツールの中心軸方向に押圧した際に発生する反力に抗し、前記金属パイプの内周面上を転動する反力受けローラを備える金属パイプの接合装置。 The metal pipe joining device according to claim 1, wherein the metal pipe is rolled on an inner peripheral surface of the metal pipe against a reaction force generated when the joining tool is pressed in a central axis direction of the joining tool. Metal pipe joining device with force receiving roller.
  3.  請求項1又は2に記載の金属パイプの接合装置において、前記筐体が、前記保持具と前記押圧部が一端部に取り付けられた前部筐体と、前記第1の駆動部が内蔵された後部筐体とを備え、前記前部筐体と前記後部筐体が偏心及び偏角を許容するオルダム軸継手で連結され、
     前記第1の駆動部と該第1の駆動部の回転力を伝達する回転軸が偏角を許容する自在軸継手で連結されている金属パイプの接合装置。
    The metal pipe joining apparatus according to claim 1 or 2, wherein the housing includes the front housing in which the holder and the pressing portion are attached to one end, and the first driving unit. A rear housing, and the front housing and the rear housing are connected by an Oldham shaft coupling that allows eccentricity and declination,
    An apparatus for joining metal pipes, wherein the first drive unit and a rotary shaft that transmits the rotational force of the first drive unit are connected by a universal shaft joint that allows a declination.
  4.  請求項3に記載の金属パイプの接合装置において、
     前記接合ツールのトラベル角を調節する第1の調節機構と、
     前記接合ツールのワーク角を調節する第2の調節機構と、を備える金属パイプの接合装置。
    In the metal pipe joining device according to claim 3,
    A first adjusting mechanism for adjusting a travel angle of the welding tool;
    And a second adjusting mechanism for adjusting a work angle of the joining tool.
  5.  請求項4に記載の金属パイプの接合装置において、
     前記第1の調節機構は、前記接合ツール、前記保持具及び前記押圧部と前記筐体との間に配される板部と、前記板部と前記筐体とを締結するボルトとを備え、
     前記板部には、前記ボルトを挿通する長孔が形成され、
     前記長孔により、前記プローブの先端を支点とした前記板部の前記筐体に対する回動が許容される金属パイプの接合装置。
    The metal pipe joining device according to claim 4,
    The first adjustment mechanism includes a plate portion disposed between the joining tool, the holder, the pressing portion, and the housing, and a bolt that fastens the plate portion and the housing.
    The plate portion is formed with a long hole through which the bolt is inserted,
    An apparatus for joining metal pipes, in which rotation of the plate portion with respect to the housing with the tip of the probe as a fulcrum is allowed by the long hole.
  6.  請求項4または5に記載の金属パイプの接合装置において、
     前記第2の調節機構は、前記被接合部の角度を測定する第1のセンサと前記接合ツールの角度を測定する第2のセンサとを備える角度検出手段と、
     前記角度検出手段から入力された値に基づき前記ワーク角を算出する演算手段と、
     前記演算手段の算出結果に基づき、前記接合ツールの中心軸の傾きを調節するアクチュエータと
    を備える金属パイプの接合装置。
    The metal pipe joining device according to claim 4 or 5,
    The second adjustment mechanism includes an angle detection unit including a first sensor that measures an angle of the joined portion and a second sensor that measures an angle of the joining tool;
    Arithmetic means for calculating the workpiece angle based on a value input from the angle detection means;
    An apparatus for joining metal pipes, comprising: an actuator for adjusting an inclination of a central axis of the joining tool based on a calculation result of the computing means.
  7.  請求項6に記載の金属パイプの接合装置において、
     前記アクチュエータは、前記オルダム軸継手に設けられ、前記筐体の中心軸方向に前記アクチュエータを駆動することにより、前記接合ツールの中心軸の傾きを調節する接合装置。
    The metal pipe joining device according to claim 6,
    The said actuator is provided in the said Oldham shaft coupling, The joining apparatus which adjusts the inclination of the center axis | shaft of the said joining tool by driving the said actuator to the center axis direction of the said housing | casing.
  8.  請求項3~7のいずれか1項に記載の金属パイプの接合装置において、
     前記金属パイプ同士の接合線と前記接合ツールの進路とのずれを補正する第3の調節機構を備える接合装置。
    The metal pipe joining device according to any one of claims 3 to 7,
    A joining apparatus provided with the 3rd adjustment mechanism which correct | amends the shift | offset | difference of the joining line of the said metal pipes, and the course of the said joining tool.
  9.  請求項8に記載の金属パイプの接合装置において、
     前記第3の調節機構は、前記接合線を検出する第3のセンサと、
     前記第3のセンサの検出値に基づき前記被接合部と前記接合ツールの進路とのずれ量を算出する演算手段と、
     前記ずれ量に応じて前記接合ツールの進路を変更する方向転換部と、
    を備える接合装置。
    The metal pipe joining device according to claim 8,
    The third adjusting mechanism includes a third sensor that detects the joint line;
    An arithmetic means for calculating a deviation amount between the joined portion and the course of the joining tool based on a detection value of the third sensor;
    A direction changing unit that changes a course of the welding tool according to the amount of deviation;
    A joining apparatus comprising:
  10.  請求項1~9のいずれか1項に記載の金属パイプの接合装置を前記金属パイプ内に挿入し、該金属パイプの内部から摩擦撹拌接合により前記金属パイプ同士を突合せ接合する金属パイプの接合方法。 A method for joining metal pipes, wherein the metal pipe joining device according to any one of claims 1 to 9 is inserted into the metal pipe, and the metal pipes are butt joined together by friction stir welding from the inside of the metal pipe. .
PCT/JP2013/063024 2012-05-16 2013-05-09 Metal pipe joining device and metal pipe joining method using same WO2013172244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515586A JP5908071B2 (en) 2012-05-16 2013-05-09 Metal pipe joining apparatus and metal pipe joining method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-112671 2012-05-16
JP2012112671 2012-05-16

Publications (1)

Publication Number Publication Date
WO2013172244A1 true WO2013172244A1 (en) 2013-11-21

Family

ID=49583650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063024 WO2013172244A1 (en) 2012-05-16 2013-05-09 Metal pipe joining device and metal pipe joining method using same

Country Status (2)

Country Link
JP (1) JP5908071B2 (en)
WO (1) WO2013172244A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180029154A1 (en) * 2013-05-23 2018-02-01 Crc-Evans Pipeline International, Inc. Rotating welding system and methods
US10480862B2 (en) 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US10695876B2 (en) 2013-05-23 2020-06-30 Crc-Evans Pipeline International, Inc. Self-powered welding systems and methods
US10828715B2 (en) 2014-08-29 2020-11-10 Crc-Evans Pipeline International, Inc. System for welding
US11458571B2 (en) 2016-07-01 2022-10-04 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US11767934B2 (en) 2013-05-23 2023-09-26 Crc-Evans Pipeline International, Inc. Internally welded pipes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339792A (en) * 1990-02-07 1994-12-13 Agip Spa Inner centering device
JPH0929489A (en) * 1995-07-21 1997-02-04 Sumitomo Metal Ind Ltd Inner surface welding equipment
JPH11226756A (en) * 1998-02-09 1999-08-24 Nippon Light Metal Co Ltd Production method of cylinder with use of friction agitation joining and production device to be used for its method
JPH11285896A (en) * 1998-03-31 1999-10-19 Kurimoto Ltd Fixing device for pipe welding
US6364197B1 (en) * 2000-08-04 2002-04-02 The Boeing Company Friction stir welding of containers from the interior
JP2006518671A (en) * 2003-01-30 2006-08-17 スミス インターナショナル、インコーポレテッド Out-of-position friction stir welding of high melting point materials
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repairing method and repairing device
WO2011053361A2 (en) * 2009-11-02 2011-05-05 Megastir Technologies, LLC Out of position friction stir welding of casing and small diameter tubing or pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339792A (en) * 1990-02-07 1994-12-13 Agip Spa Inner centering device
JPH0929489A (en) * 1995-07-21 1997-02-04 Sumitomo Metal Ind Ltd Inner surface welding equipment
JPH11226756A (en) * 1998-02-09 1999-08-24 Nippon Light Metal Co Ltd Production method of cylinder with use of friction agitation joining and production device to be used for its method
JPH11285896A (en) * 1998-03-31 1999-10-19 Kurimoto Ltd Fixing device for pipe welding
US6364197B1 (en) * 2000-08-04 2002-04-02 The Boeing Company Friction stir welding of containers from the interior
JP2006518671A (en) * 2003-01-30 2006-08-17 スミス インターナショナル、インコーポレテッド Out-of-position friction stir welding of high melting point materials
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repairing method and repairing device
WO2011053361A2 (en) * 2009-11-02 2011-05-05 Megastir Technologies, LLC Out of position friction stir welding of casing and small diameter tubing or pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180029154A1 (en) * 2013-05-23 2018-02-01 Crc-Evans Pipeline International, Inc. Rotating welding system and methods
US10480862B2 (en) 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US10589371B2 (en) * 2013-05-23 2020-03-17 Crc-Evans Pipeline International, Inc. Rotating welding system and methods
US10695876B2 (en) 2013-05-23 2020-06-30 Crc-Evans Pipeline International, Inc. Self-powered welding systems and methods
US11175099B2 (en) 2013-05-23 2021-11-16 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US11767934B2 (en) 2013-05-23 2023-09-26 Crc-Evans Pipeline International, Inc. Internally welded pipes
US10828715B2 (en) 2014-08-29 2020-11-10 Crc-Evans Pipeline International, Inc. System for welding
US11458571B2 (en) 2016-07-01 2022-10-04 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline

Also Published As

Publication number Publication date
JP5908071B2 (en) 2016-04-26
JPWO2013172244A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5908071B2 (en) Metal pipe joining apparatus and metal pipe joining method using the same
US6450395B1 (en) Method and apparatus for friction stir welding tubular members
US10099319B2 (en) Device for connecting the ends of pipes made of steel by means of an orbital welding process
AU2012206506B2 (en) Method for mutually positioning tubes
JP6284444B2 (en) Friction stir welding method and friction stir welding apparatus
US7461769B2 (en) Method and apparatus for friction stir welding
JP2008504137A (en) Cutting and chamfering tools
KR101344343B1 (en) automatic welding system
EP3478441A1 (en) Fluid system and method of manufacture via friction welding
JP5074315B2 (en) Welding apparatus and welding method
JP2005523160A (en) Swivel roller groove forming device for pipe
CN111413213B (en) Circular radial butt weld failure torque testing method
JP3959198B2 (en) Superconducting cavity, manufacturing method thereof, and superconducting accelerator
JP5578910B2 (en) Spinning processing equipment
JP2012139721A (en) Friction stir bonding method
JP2015226925A (en) Joint assembly device
CN113039032A (en) Internal clamping and welding device
JP2007211882A (en) Double row bearing and manufacturing method of double row bearing
JP2017006978A (en) Welding device and method
JP2009103210A (en) Power transmission shaft and power transmission device
JP2009174713A (en) Feed screw device and worm gear device
JP2004358529A (en) Laser beam welding device
JP4537100B2 (en) Cylindrical welding method and welding apparatus
JP2000351094A (en) Tube alignment device
US20200158151A1 (en) Systems and methods for friction bit joining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790999

Country of ref document: EP

Kind code of ref document: A1