WO2014120044A1 - Method for doping an aluminium oxide ceramic - Google Patents

Method for doping an aluminium oxide ceramic Download PDF

Info

Publication number
WO2014120044A1
WO2014120044A1 PCT/RU2014/000016 RU2014000016W WO2014120044A1 WO 2014120044 A1 WO2014120044 A1 WO 2014120044A1 RU 2014000016 W RU2014000016 W RU 2014000016W WO 2014120044 A1 WO2014120044 A1 WO 2014120044A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
temperature
strength
slip
doping
Prior art date
Application number
PCT/RU2014/000016
Other languages
French (fr)
Russian (ru)
Inventor
Пётр Яковлевич ДЕТКОВ
Валентин Кириллович МЯКИН
Игорь Леонидович ПЕТРОВ
Original Assignee
Detkov Pyotr Yakovlevich
Myakin Valentin Kirillovich
Petrov Igor Leonidovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Detkov Pyotr Yakovlevich, Myakin Valentin Kirillovich, Petrov Igor Leonidovich filed Critical Detkov Pyotr Yakovlevich
Priority to CN201480004611.1A priority Critical patent/CN105189407B/en
Publication of WO2014120044A1 publication Critical patent/WO2014120044A1/en
Priority to HK16106888.4A priority patent/HK1219942A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to technologies for producing ceramic materials, in particular to methods of doping ceramics, and can be used in the field of electrical engineering and mechanical engineering for the manufacture of high-strength ceramic products.
  • a known method of manufacturing ceramic products based on zirconium and aluminum oxides including the preparation of a workpiece from ultrafine powders of the aforementioned oxides, its preliminary sintering and subsequent high-temperature deformation at a temperature of 1400-1600 ° C, according to the invention, high-temperature deformation of the workpiece is carried out at a pressure 3-10 MPa and then subjected to recrystallization calcined under vacuum at a residual a pressure of not lower than 5 to 10 "5 torr and a temperature of 1500-1700 ° C, the content of aluminum hydroxy yes a mixture of ultrafine powders is 10 to 80 wt.% (the invention according to the patent RU 2304566).
  • a known method of producing alumina ceramics by mixing alumina and an organotitanium additive, drying, molding and firing, according to the invention, in the process of mixing an additional zirconium-organic compound and water are introduced in the following ratio of components, wt.%: Alumina - 96.0-97 , 8, organo-titanium compound - 0.6-1.5, organo zirconium compound - 0.6-1.5, water - the rest (invention according to the copyright certificate SU 1747424).
  • the high strength properties provided by the introduction of a zirconium-containing additive in the form of an organ zirconium compound can be achieved at a temperature of 1400-1500 ° C.
  • the powder of corundum ceramics containing magnesium oxide, sodium oxide, silicon oxide, micro impurities and alumina is mixed with partially stabilized zirconia and calcium fluoride in the following ratio of components, May: stabilized zirconia - 5.0-15, 0, calcium fluoride - 0.5-6.0, magnesium oxide - 0.2-0.4, sodium oxide - 0.1-0.2, silicon oxide - 0.1-0.2, trace elements - 0, 02-0.04, alumina 78.16-94.08.
  • Ceramics are prepared as follows: a casting slurry is prepared from a fine powder, the composition of the slurry, May: a mixture of powders - 85.5, a binder - 14.5 (paraffin - 14, wax - 0.5), the products are molded by hot casting under a pressure of 1-4 atm. at a slurry temperature of 60-65 ° C, preliminary burning of the binder in a bed of aluminum oxide to 90 ° C with a temperature rise of 50 ° C per hour, final firing in air.
  • the process of high-temperature firing mainly shows, but does not determine, as is commonly believed, the level of homogeneity and homogeneity of the material incorporated in the manufacture of slip and workpieces.
  • the technical task of the alleged invention is the creation of a simpler and more economical way to obtain durable ceramics, providing products of any shape.
  • the technical result of the invention is to increase the strength and reduce the dispersion of the strength of alumina ceramics.
  • the preparation is impregnated with an aqueous solution of zirconyl nitrate ⁇ ( ⁇ 0 3 ) 2 * 2 ⁇ 2 0, then it is heated with increasing temperature to 400 ° ⁇ .
  • Impregnation of zirconyl nitrate with an aqueous solution ensures saturation of the internal capillary-porous structure of the preform with the solution, which contributes to the uniform coating of each A1 2 0 3 particle with the micro-layer of the solution.
  • the water content in the ZrO (N0 3 ) 2 x 2 ⁇ 2 0 salt ensures the maximum possible density of the solution, which allows to achieve a high concentration of zirconium dioxide in the product and to provide the required strength.
  • zirconium dioxide was introduced in the form of aqueous solutions of salts into a ceramic semi-finished product, which represents a ceramic preform after forming and removing a technological binder from it.
  • the ceramic semi-finished product having a capillary-porous structure was saturated with an aqueous solution of zirconyl nitrate ZrO (N0 3 ) 2 ⁇ 2 H 2 0.
  • Subsequent stepwise heating of the ceramic billet removes moisture, decomposes zirconyl nitrate to zirconium dioxide, and removes volatile products.
  • zirconyl nitrate is in a state of molecular dis-
  • the arrangement of zirconia introduced in the aqueous solution mirrors the porous structure of the preform.
  • Capillaries and pores represent is the free volume previously occupied by the technological bundle covering the surface of aluminum oxide particles at the stage of preparing the slip.
  • capillary potential is much greater than gravity ( ⁇ ⁇ > fpt.) -
  • Zirconia nanoparticles formed as a result of thermal decomposition of zirconyl nitrate are tetragonal crystals with a size of tens of nanometers, which provide an increase in the strength of ceramics.
  • the proposed method can be implemented on an industrial scale and will find application in the field of electrical engineering and mechanical engineering for the manufacture of high-strength ceramic products, i.e. characterized by the criterion of “industrial applicability”.
  • the essence of the claimed technical solution is illustrated on the graph of the dependence of the temperature of the furnace on time when removing a temporary binder from ceramic billets.
  • the method is as follows.
  • a preform is obtained.
  • a ceramic billet having a capillary-porous internal structure is obtained.
  • the shape, volume, spatial structure of the pores repeat the remote temporal ligament and consists mainly of pores and capillaries, the radius of which is ⁇ 10 "7 m.
  • the preform After removal of the temporary ligament, the preform is saturated with an aqueous solution of zirconyl nitrate ZrO (N0 3 ) 2 ⁇ 2 H 2 0.
  • an aqueous solution of zirconyl nitrate fills the capillary-porous interior of the ceramic billet, covering the surface of each particle A1 2 0 3 with a micro layer.
  • Subsequent removal of water, decomposition of zirconyl nitrate to zirconium dioxide and removal of volatile products is carried out in the process of heating the workpiece with increasing temperature to 400 ° C.
  • ultrafine particles of Zr0 2 are formed in the monoclinic phase.
  • the particles of zirconium dioxide transfer to the tetragonal phase, which is maintained upon cooling to room temperature.
  • the firing of the ceramic sample is carried out at a temperature of ⁇ 1600 - 1650 ° C.
  • a feature of the present method of doping alumina ceramics is that doping occurs with zirconia released during the thermal dissociation of aqueous solutions of salts. Zirconium dioxide is formed in a highly dispersed state and is evenly distributed in the volume of the ceramic.
  • a sample was prepared from a slip of the following composition:
  • the studies were carried out on cylindrical samples with a diameter of 7 ⁇ 1 mm and a length of 60 ⁇ 5 mm.
  • the samples were made from a slip industrial production brand VK94-1.
  • the strength of the samples was evaluated according to the results of tests for three-point bending according to the Russian standard.
  • Billets of cylindrical samples were made from a slip of the VK94-1 grade, consisting of 87.5% (May.) Ceramic powder and 12.5% paraffin.
  • the slip slip injection method was used, subject to the following process conditions:
  • the obtained ceramic preforms were placed in a ceramic cell and filled with alumina so that the alumina layer between the preforms was not less than 5 mm, between the blanks and the walls of the cell - at least 10 mm.
  • alumina with a mass fraction of a - A1 2 0 3 - not less than 35%, specific surface area - 10 m 2 / g, mass fraction of moisture - not more than 2.5%.
  • the cuvette with the blanks was placed in a high-temperature laboratory chamber electric resistance furnace.
  • the used electric furnace allows heat treatment at temperatures up to 1,100 ° C.
  • the cuvette with blanks was removed from the furnace, the blanks were removed from alumina.
  • the preforms were impregnated with an aqueous solution of ZrO (N0 3 ) 2 ⁇ 2 ⁇ 2 0. salt. Samples were placed horizontally in the aqueous solution of salt and kept for some time, periodically turning them around its axis.
  • the samples were removed from the solution and dried to remove moisture, thermal destruction of the zirconium salt and removal of the products of thermal destruction.
  • the blanks After drying the blanks, they were fired in air at high temperatures in a furnace with fibrous insulation, a stainless steel casing, designed for universal use at temperatures up to 1800 ° C.
  • the preforms were placed on corundum substrates.
  • the temperature regime of firing consisted of several stages:
  • the tests were carried out using the three-point bending method for cylindrical specimens with a diameter of 7 ⁇ 1 mm and a length of 60 ⁇ 5 mm with a distance between supports of 50 mm according to the scheme.
  • the table shows the strength test results of ceramic samples at three-point bending.

Abstract

A method for doping an aluminium oxide ceramic involves producing a blank from slurry, removing the technical binder, and firing, wherein, according to the invention, upon removal of the technical binder, the blank is saturated with an aqueous solution of zirconyl nitrate ZrO(NO3)2×2H2O, and is then heated, the temperature being increased to 400ºC.

Description

СПОСОБ ЛЕГИРОВАНИЯ АЛЮМООКСИДНОЙ КЕРАМИКИ  METHOD FOR ALLOYING ALUMINUM OXIDE CERAMICS
Изобретение относится к технологиям получения керамических материалов, в частности к способам легирования керамики, и может быть использовано в области электротехники и машиностроения для изготовления высокопрочных керамических изделий. The invention relates to technologies for producing ceramic materials, in particular to methods of doping ceramics, and can be used in the field of electrical engineering and mechanical engineering for the manufacture of high-strength ceramic products.
Известен способ изготовления керамических изделий на основе оксидов цирко- ния и алюминия, включающий получение заготовки из ультрадисперсных порошков вышеназванных оксидов, ее предварительное спекание и последующую высокотем- пературную деформацию при температуре 1400-1600°С, согласно изобретению вы- сокотемпературную деформацию заготовки осуществляют при давлении 3-10 МПа, а затем подвергают рекристаллизационному обжигу в вакууме при остаточном давле- нии не ниже 5- 10"5 мм рт.ст. и температуре 1500-1700°С, при этом содержание окси- да алюминия в смеси ультрадисперсных порошков составляет от 10 до 80 вес.% (изобретение по патенту RU 2304566). A known method of manufacturing ceramic products based on zirconium and aluminum oxides, including the preparation of a workpiece from ultrafine powders of the aforementioned oxides, its preliminary sintering and subsequent high-temperature deformation at a temperature of 1400-1600 ° C, according to the invention, high-temperature deformation of the workpiece is carried out at a pressure 3-10 MPa and then subjected to recrystallization calcined under vacuum at a residual a pressure of not lower than 5 to 10 "5 torr and a temperature of 1500-1700 ° C, the content of aluminum hydroxy yes a mixture of ultrafine powders is 10 to 80 wt.% (the invention according to the patent RU 2304566).
Известен способ получения алюмооксидной керамики путем смешения оксида алюминия и титаноорганической добавки, сушки, формования и обжига, согласно изобретению, в процессе смешивания дополнительно вводят цирконийорганическое соединение и воду при следующем соотношении компонентов, мас.%: оксид алюми- ния - 96,0-97,8, титаноорганическое соединение - 0,6-1,5, цирконийорганическое со- единение - 0,6-1,5, вода - остальное (изобретение по авторскому свидетельству SU 1747424). При этом высокие прочностные свойства, обеспечиваемые введением цир- конийсодержащей добавки в виде цирконийорганического соединения, могут быть достигнуты при температуре 1400-1500°С.  A known method of producing alumina ceramics by mixing alumina and an organotitanium additive, drying, molding and firing, according to the invention, in the process of mixing an additional zirconium-organic compound and water are introduced in the following ratio of components, wt.%: Alumina - 96.0-97 , 8, organo-titanium compound - 0.6-1.5, organo zirconium compound - 0.6-1.5, water - the rest (invention according to the copyright certificate SU 1747424). At the same time, the high strength properties provided by the introduction of a zirconium-containing additive in the form of an organ zirconium compound can be achieved at a temperature of 1400-1500 ° C.
Известен способ получения и состав керамического материала, описанный в па- тенте на изобретение RU 1793576, выбранный в качестве прототипа. Порошок ко- рундовой керамики содержащий оксид магния, оксид натрия, оксид кремния, микро- примеси и оксид алюминия, смешивают с частично стабилизированным диоксидом циркония и фторидом кальция при следующем соотношении компонентов, мае: ста- билизированный диоксид циркония - 5,0-15,0, фтористый кальций - 0,5-6,0, оксид магния - 0,2-0,4, оксид натрия - 0,1-0,2, оксид кремния - 0,1-0,2, микропримеси - 0,02-0,04, оксид алюминия - 78,16-94,08. Керамику получают следующим образом: приготавливают литьевой шликер из мелкодисперсного порошка, состав шликера, мае: смесь порошков - 85,5, связующее - 14,5 (парафин - 14, воск - 0,5), проводят формование изделий горячим литьем под давлением 1-4 атм. при температуре шли- кера 60-65 °С, предварительный выжиг связки в засыпке из оксида алюминия до 90°С с подъемом температуры по 50°С в час, окончательный обжиг на воздухе. A known method for producing and composition of ceramic material described in patent for invention RU 1793576, selected as a prototype. The powder of corundum ceramics containing magnesium oxide, sodium oxide, silicon oxide, micro impurities and alumina is mixed with partially stabilized zirconia and calcium fluoride in the following ratio of components, May: stabilized zirconia - 5.0-15, 0, calcium fluoride - 0.5-6.0, magnesium oxide - 0.2-0.4, sodium oxide - 0.1-0.2, silicon oxide - 0.1-0.2, trace elements - 0, 02-0.04, alumina 78.16-94.08. Ceramics are prepared as follows: a casting slurry is prepared from a fine powder, the composition of the slurry, May: a mixture of powders - 85.5, a binder - 14.5 (paraffin - 14, wax - 0.5), the products are molded by hot casting under a pressure of 1-4 atm. at a slurry temperature of 60-65 ° C, preliminary burning of the binder in a bed of aluminum oxide to 90 ° C with a temperature rise of 50 ° C per hour, final firing in air.
Недостатки всех указанных выше способов применения диоксида циркония для повышения прочности алюмооксидной керамики будут указаны ниже.  The disadvantages of all the above methods of using zirconia to increase the strength of alumina ceramics will be described below.
В современных промышленных технологиях высокодисперсный диоксид цирко- ния вводят в порошок оксида алюминия на технологическом этапе приготовления порошкообразной смеси. Неоднородность смешивания компонентов увеличивается при введении в смесь технологической связки и создает опасность возникновения критических дефектов, приводящих при спекании к различной усадке в зонах него- могенности, возникновению напряжений и других дефектов. Дефекты, появляющие- ся при подготовке керамической массы (шликера), далее появляются при формова- нии (литье) изделий в результаты деформирования массы и возникновения поверх- ностей скольжения. Появление дефектов при массоподготовке и формовании приво- дят по существу к неуправляемости процессов воспроизведения хорошей прочности керамических изделий в различных зонах, особенно сложной конфигурации.  In modern industrial technologies, finely dispersed zirconia is introduced into alumina powder at the technological stage of preparation of the powder mixture. The heterogeneity of the mixing of the components increases when a technological bond is introduced into the mixture and creates the risk of critical defects, which, when sintering, lead to various shrinkage in the zones of non-homogeneity, the occurrence of stresses and other defects. Defects that appear during the preparation of the ceramic mass (slip), then appear during the molding (molding) of the products as a result of the deformation of the mass and the emergence of sliding surfaces. The appearance of defects during mass preparation and molding essentially leads to uncontrollability of the processes of reproducing good strength of ceramic products in various zones, especially of a complex configuration.
Методы горячего прессования и горячего изостатического прессования позво- ляют обеспечить наиболее высокую прочность керамических материалов на основе оксида алюминия, однако данные методы являются дорогостоящими и требуют применение сложного оборудования и оснастки, а также ограничены простыми фор- мами изготавливаемых изделий.  The methods of hot pressing and hot isostatic pressing make it possible to provide the highest strength of ceramic materials based on aluminum oxide, however, these methods are expensive and require the use of sophisticated equipment and accessories, and are also limited by simple forms of manufactured products.
Процесс высокотемпературного обжига (спекания) в основном проявляет, а не определяет, как принято полагать, уровень гомогенности и однородности материала, заложенной при изготовлении шликера и заготовок изделий.  The process of high-temperature firing (sintering) mainly shows, but does not determine, as is commonly believed, the level of homogeneity and homogeneity of the material incorporated in the manufacture of slip and workpieces.
Технической задачей предполагаемого изобретения является создание более простого и экономичного способа получения прочной керамики, обеспечивающего получение изделий любой формы.  The technical task of the alleged invention is the creation of a simpler and more economical way to obtain durable ceramics, providing products of any shape.
Техническим результатом изобретения является повышение прочности и сниже- ние рассеяния прочности алюмооксидной керамики.  The technical result of the invention is to increase the strength and reduce the dispersion of the strength of alumina ceramics.
Для достижения поставленной задачи в способе легирования алюмооксидной керамики, включающем получение заготовки из шликера, удаление технологической связки и обжиг, согласно изобретению, после удаления технологической связки за- готовку пропитывают водным раствором нитрата цирконила ΖΓΟ(Ν03)2 * 2 Н20, за- тем осуществляют ее нагрев с повышением температуры до 400°С. To achieve the task in a method of doping alumina ceramics, including obtaining a workpiece from a slip, removing technological ligaments and firing, according to the invention, after removing the technological ligaments, the preparation is impregnated with an aqueous solution of zirconyl nitrate ΖΓΟ (Ν0 3 ) 2 * 2 Н 2 0, then it is heated with increasing temperature to 400 ° С.
Пропитка водным раствором нитрата цирконила обеспечивает насыщение внут- ренней капиллярно-пористой структуры заготовки раствором, что способствует рав- номерному покрытию каждой частицы А1203 микро-слоем раствора. Impregnation of zirconyl nitrate with an aqueous solution ensures saturation of the internal capillary-porous structure of the preform with the solution, which contributes to the uniform coating of each A1 2 0 3 particle with the micro-layer of the solution.
Содержание воды в соли ZrO(N03)2 х 2 Н20 обеспечивает максимально возмож- ную плотность раствора, что позволяет достигнуть высокой концентрации диоксида циркония в изделии и обеспечить требуемую прочность. The water content in the ZrO (N0 3 ) 2 x 2 Н 2 0 salt ensures the maximum possible density of the solution, which allows to achieve a high concentration of zirconium dioxide in the product and to provide the required strength.
Последующий нагрев заготовки с повышение температуры до 400°С обеспечи- вает удаление влаги, разложение нитрата цирконила до диоксида циркония с образо- ванием на поверхности частиц А1203 равномерно распределенного слоя частиц Zr02 в моноклинной фазе и удаление летучих продуктов разложения. При дальнейшем высокотемпературном обжиге при температуре 1600 - 1650 °С частицы диоксида циркония переходят в тетрагональную фазу, сохраняющуюся при охлаждении до комнатной температуры, что обеспечивает повышение прочности керамики и сни- жение рассеяния прочности. Subsequent heating of the preform with an increase in temperature to 400 ° C ensures moisture removal, decomposition of zirconyl nitrate to zirconium dioxide with the formation of a uniformly distributed layer of Zr0 2 particles in the monoclinic phase on the surface of A1 2 0 3 particles, and removal of volatile decomposition products. Upon further high-temperature firing at a temperature of 1600–1650 ° С, zirconia particles pass into the tetragonal phase, which is preserved upon cooling to room temperature, which ensures an increase in ceramic strength and a decrease in strength dispersion.
В наших работах диоксид циркония вводили в виде водных растворов солей в керамический полуфабрикат, представляющий керамическую заготовку после фор- мования и удаления из нее технологической связки. После удаления связки керами- ческий полуфабрикат, имеющий капиллярно-пористую структуру насыщали водным раствором нитрата цирконила ZrO(N03)2 χ 2 Н20. Последующий ступенчатый нагрев керамической заготовки обеспечивает удаление влаги, разложение нитрата циркони- ла до диоксида циркония и удаления летучих продуктов. In our works, zirconium dioxide was introduced in the form of aqueous solutions of salts into a ceramic semi-finished product, which represents a ceramic preform after forming and removing a technological binder from it. After ligament removal, the ceramic semi-finished product having a capillary-porous structure was saturated with an aqueous solution of zirconyl nitrate ZrO (N0 3 ) 2 χ 2 H 2 0. Subsequent stepwise heating of the ceramic billet removes moisture, decomposes zirconyl nitrate to zirconium dioxide, and removes volatile products.
В водном растворе нитрат цирконила находится в состоянии молекулярной дис- о  In an aqueous solution, zirconyl nitrate is in a state of molecular dis-
персности (размер частиц меньше 10"° м) и заполняет собой все дефекты и микроде- фекты алюмооксидной заготовки. После термического разложения нитрата цирко- нила, удаления влаги и летучих продуктов диоксид циркония, полученный таким способом в ультрадисперсном состоянии распределяется в объеме керамики на всей поверхности каждой частицы оксида алюминия. (particle size less than 10 " ° m) and fills all defects and microdefects of the alumina preform. After thermal decomposition of zirconyl nitrate, removal of moisture and volatile products, zirconia obtained in this way in an ultrafine state is distributed throughout the ceramic the surface of each alumina particle.
Расположение диоксида циркония, введенного в составе водного раствора, зер- кально отражает пористую структуру заготовки. Капилляры и поры представляют собой свободный объем, ранее занимаемый технологической связкой, покрывающей поверхность частиц оксида алюминия на этапе приготовления шликера. The arrangement of zirconia introduced in the aqueous solution mirrors the porous structure of the preform. Capillaries and pores represent is the free volume previously occupied by the technological bundle covering the surface of aluminum oxide particles at the stage of preparing the slip.
На этапе исследования по насыщению водным раствором нитрата цирконила были выполнены эксперименты по выявлению природы насыщения, характера взаи- модействия заготовки с раствором и равномерность (неравномерность) распределе- ния раствора в объеме заготовки. Эти знания необходимы для оценки возможностей насыщения водным раствором керамических заготовок сложных конфигураций, а в конечном итоге для оценки возможностей изготовления керамических изделий про- стой и сложной формы с повышенной прочностью.  At the stage of the study on saturation of zirconyl nitrate with an aqueous solution, experiments were performed to identify the nature of saturation, the nature of the interaction of the preform with the solution, and the uniformity (unevenness) of the distribution of the solution in the volume of the preform. This knowledge is necessary for assessing the possibilities of saturating ceramic billets with complex configurations with an aqueous solution, and ultimately for assessing the possibilities of manufacturing ceramic products of simple and complex shapes with increased strength.
Экспериментальным и расчетным путем установлено полное заполнение капил- лярнор-пористой структуры заготовки нитратом цирконила независимо от располо- жения (горизонтальное, вертикальное, наклонное) заготовки в растворе. Полное за- полнение дает основание отнести такие капилляры и поры к системе, в которой по- верхность жидкости (водный раствор нитрата цирконила) принимает форму, обу- словленную силами поверхностного натяжения, мало искаженную силами тяжести, т.е. капиллярный потенциал значительно больше силы тяжести (φκ > фпт.)- Это означает возможность одновременного насыщения керамических заготовок сложной формы нитратом цирконила, а в конечном результате - наночастицами диоксида циркония и возможность получения разнообразных керамических изделий с повы- шенной прочностью. Наночастицы диоксида циркония, образующиеся в результате термического разложения нитрата цирконила представляют собой тетрагональные кристаллы размером десятки нанометров, которые обеспечивают повышения проч- ности керамики. It has been established experimentally and by calculation that the capillary-porous structure of the preform is completely filled with zirconyl nitrate regardless of the location (horizontal, vertical, inclined) of the preform in the solution. The full filling gives reason to attribute such capillaries and pores to a system in which the surface of a liquid (an aqueous solution of zirconyl nitrate) takes the form due to surface tension forces, slightly distorted by gravity, i.e. capillary potential is much greater than gravity (φ κ > fpt.) - This means the possibility of simultaneous saturation of ceramic billets of complex shape with zirconyl nitrate, and in the end, with zirconia nanoparticles and the possibility of obtaining a variety of ceramic products with increased strength. Zirconia nanoparticles formed as a result of thermal decomposition of zirconyl nitrate are tetragonal crystals with a size of tens of nanometers, which provide an increase in the strength of ceramics.
Патентные исследования не выявили способов, характеризующихся заявляемой совокупностью признаков, следовательно, можно предположить, что указанный спо- соб соответствует критерию «новизна».  Patent studies did not reveal methods characterized by the claimed combination of features, therefore, it can be assumed that this method meets the criterion of "novelty."
Предлагаемый способ может быть реализован в промышленных масштабах и найдет применение в области электротехники и машиностроения для изготовления высокопрочных керамических изделий, т.е. характеризуется критерием «промыш- ленная применимость». Сущность заявляемого технического решения поясняется на графике зависимо- сти температуры печи от времени при удалении временной связки из керамических заготовок. The proposed method can be implemented on an industrial scale and will find application in the field of electrical engineering and mechanical engineering for the manufacture of high-strength ceramic products, i.e. characterized by the criterion of “industrial applicability”. The essence of the claimed technical solution is illustrated on the graph of the dependence of the temperature of the furnace on time when removing a temporary binder from ceramic billets.
Способ осуществляется следующим образом.  The method is as follows.
Сначала согласно основным технологическим требованиям метода шликерного литья получают заготовку. После удаления временной технологической связки в ре- зультате частичного спекания получают керамическую заготовку, имеющую капил- лярно-пористую внутреннюю структуру. Форма, объем, пространственная структура пор повторяют удаленную временную связку и складывается в основном из пор и капилляров, радиус которых составляет ~10"7 м. First, according to the basic technological requirements of the slip casting method, a preform is obtained. After removal of the temporary technological binder as a result of partial sintering, a ceramic billet having a capillary-porous internal structure is obtained. The shape, volume, spatial structure of the pores repeat the remote temporal ligament and consists mainly of pores and capillaries, the radius of which is ~ 10 "7 m.
После удаления временной связки заготовку насыщают водным раствором нит- рата цирконила ZrO(N03)2 χ 2 Н20. При насыщении внутренняя капиллярно- пористая структура заготовки заполняется водным раствором, который прочно удерживается в капиллярах и порах. Водный раствор нитрата цирконила заполняет капиллярно-пористое внутреннее пространство керамической заготовки, покрывая поверхность каждой частицы А1203 микро-слоем. Последующее удаление воды, раз- ложение нитрата цирконила до диоксида циркония и удаление летучих продуктов выполняется в процессе нагрева заготовки с повышением температуры до 400 °С. После разложения нитрата цирконила на поверхности частиц А1203 образуются уль- традисперсные частицы Zr02 в моноклинной фазе. При последующем нагревании > 1200 °С частицы диоксида циркония переходят в тетрагональную фазу, сохраняю- щуюся при охлаждении до комнатной температуры. Обжиг керамического образца выполняется при температуре ~1600 - 1650 °С. After removal of the temporary ligament, the preform is saturated with an aqueous solution of zirconyl nitrate ZrO (N0 3 ) 2 χ 2 H 2 0. When saturated, the internal capillary-porous structure of the preform is filled with an aqueous solution that is firmly held in the capillaries and pores. An aqueous solution of zirconyl nitrate fills the capillary-porous interior of the ceramic billet, covering the surface of each particle A1 2 0 3 with a micro layer. Subsequent removal of water, decomposition of zirconyl nitrate to zirconium dioxide and removal of volatile products is carried out in the process of heating the workpiece with increasing temperature to 400 ° C. After decomposition of zirconyl nitrate on the surface of A1 2 0 3 particles, ultrafine particles of Zr0 2 are formed in the monoclinic phase. Upon subsequent heating> 1200 ° C, the particles of zirconium dioxide transfer to the tetragonal phase, which is maintained upon cooling to room temperature. The firing of the ceramic sample is carried out at a temperature of ~ 1600 - 1650 ° C.
Особенность настоящего способа легирования алюмооксидной керамики состо- ит в том, что легирование происходит диоксидом циркония, выделяющимся при термической диссоциации водных растворов солей. Диоксид циркония образуется в высоко дисперсном состоянии и равномерно распределяется в объеме керамики.  A feature of the present method of doping alumina ceramics is that doping occurs with zirconia released during the thermal dissociation of aqueous solutions of salts. Zirconium dioxide is formed in a highly dispersed state and is evenly distributed in the volume of the ceramic.
Применение водных растворов солей циркония позволяет решить ряд проблем: The use of aqueous solutions of zirconium salts allows us to solve a number of problems:
- диоксид циркония вводится и равномерно распределяется непосредственно в матрице из оксида алюминия; - zirconium dioxide is introduced and uniformly distributed directly in the matrix of aluminum oxide;
- частицы диоксида циркония образуются в ультрадисперсном состоянии;  - particles of zirconium dioxide are formed in an ultrafine state;
- обеспечивается гомогенизация получаемой керамической структуры и сни- жение (устранение) в ней дефектов, особенно пор; - provides homogenization of the resulting ceramic structure and lower burning (elimination) of defects in it, especially pores;
- обеспечивается возможность варьирования количества вводимого диоксида циркония;  - it is possible to vary the amount of introduced zirconium dioxide;
- тетрагональная фаза диоксида циркония сохраняется в керамическом матери- але до комнатной температуры;  - the tetragonal phase of zirconia is stored in the ceramic material to room temperature;
- снижение уровня внутренних напряжений;  - decrease in the level of internal stresses;
- снижение рассеяния прочности;  - reduction of strength dispersion;
- повышение прочности и надежности керамических изделий.  - increase the strength and reliability of ceramic products.
Предлагаемый способ легирования алюмооксидной керамики диоксидом цирко- ния был опробован на примере промышленно выпускаемой и широко используемой в России керамики ВК-94-1. The proposed method for doping alumina ceramics with zirconia was tested on the example of VK-94-1 ceramics, industrially produced and widely used in Russia.
Образец готовили из шликера следующего состава:  A sample was prepared from a slip of the following composition:
- содержание А1203 - 95%масс - the content of A1 2 0 3 - 95% of the mass
- плотность - 2,6 г/см  - density - 2.6 g / cm
- удельная поверхность керамического порошка - 5500 см /г  - specific surface of ceramic powder - 5500 cm / g
- содержание парафина - 12,5 %масс  - paraffin content - 12.5% of the mass
- плотность парафина - 0,92 г/см  - paraffin density - 0.92 g / cm
В результате введения ~ 9 % (по массе) диоксида циркония предлагаемым спо- собом значение прочности на изгиб изменилось с 250-300 МПа до 500-600 МПа.  As a result of introducing ~ 9% (by weight) of zirconium dioxide by the proposed method, the value of bending strength changed from 250-300 MPa to 500-600 MPa.
С точки зрения наименьшего вложения средств при заметном (в 1,5 раза) уве- личении прочностных свойств и возможности встраивания в существующие техно- логии мы предлагаем развитие новых способов легирования алюмооксидной кера- мики, получаемой методом горячего литья шликера.  From the point of view of the smallest investment with a noticeable (1.5-fold) increase in strength properties and the possibility of incorporation into existing technologies, we propose the development of new methods for alloying alumina ceramics obtained by hot slip casting.
Заявителем были проведены эксперименты по упрочнению алюмооксидной ке- рамики.  The applicant conducted experiments on hardening alumina ceramics.
Исследования проводили на цилиндрических образцах диаметром 7 ± 1мм, дли- ной 60 ± 5 мм. Образцы изготавливали из шликера промышленного производства марки ВК94-1. Прочность образцов оценивали по результатам испытаний на трехто- чечный изгиб согласно российскому стандарту.  The studies were carried out on cylindrical samples with a diameter of 7 ± 1 mm and a length of 60 ± 5 mm. The samples were made from a slip industrial production brand VK94-1. The strength of the samples was evaluated according to the results of tests for three-point bending according to the Russian standard.
В процессе проведения предварительных исследований были выбраны:  In the process of conducting preliminary studies, the following were selected:
- температурные режимы предварительного обжига образцов для удаления вре- меннои связки; - temperature regimes of preliminary firing of samples to remove time ligaments;
- требуемое количество солей циркония (ориентировочно);  - the required amount of zirconium salts (tentatively);
- режим высокотемпературного обжига образцов на воздухе.  - high-temperature firing of samples in air.
Для контрольной группы образцов были проведены:  For the control group of samples were carried out:
- отливка методом литья шликера под давлением;  - injection molding of a slip under pressure;
- предварительный обжиг (для удаления временной связки, Ттах = 1050 - 1 100- preliminary firing (to remove a temporary bundle, T max = 1050 - 1 100
°С); ° C);
- насыщение растворами солей циркония и сушка образцов (Ттах = 400 °С); - saturation with solutions of zirconium salts and drying of samples (T max = 400 ° C);
- высокотемпературный обжиг на воздухе {Ттах = 1600 - 1650 °С); - high-temperature firing in air (T max = 1600 - 1650 ° C);
- испытания на прочность при трехточечном изгибе.  - Strength tests in three-point bending.
Заготовки цилиндрических образцов (диаметр 7 ± 1 мм, длина 60 ± 5 мм) изго- тавливали из шликера марки ВК94-1, состоящего из 87,5% (мае.) керамического по- рошка и 12,5 % парафина.  Billets of cylindrical samples (diameter 7 ± 1 mm, length 60 ± 5 mm) were made from a slip of the VK94-1 grade, consisting of 87.5% (May.) Ceramic powder and 12.5% paraffin.
Компоненты шликера имели следующие характеристики:  Slip components had the following characteristics:
Керамическая шихта, мае . :  Ceramic charge, May. :
- содержание А1203 95%; - content of A1 2 0 3 95%;
- общее содержание Si02 и МпО 5%; - the total content of Si0 2 and MnO 5%;
- плотность 2,6 г/см ;  - density 2.6 g / cm;
- удельная поверхность 5500 см /г;  - specific surface area 5500 cm / g;
Парафин:  Paraffin:
- плотность 0,92 г/см .  - density 0.92 g / cm.
Использовали метод шликерного литья под давлением при соблюдении следу- ющих технологических режимов:  The slip slip injection method was used, subject to the following process conditions:
- отливка в форму комнатной температуры;  - casting at room temperature;
- температура шликера 90 ± 2 °С;  - slip temperature 90 ± 2 ° C;
- давление подачи шликера в форму 5,2 - 6,4 кгс/см ;  - the pressure of the slip in the form of 5.2 - 6.4 kgf / cm;
- время подачи шликера в форму 30 ± 5 сек.  - slip feed time in the form 30 ± 5 sec.
После заполнения литьевой формы шликером давление снижали до атмосферно- го. Затем форму разбирали и вынимали заготовку. Проводили визуальный контроль на наличие видимых дефектов.  After filling the mold with a slip, the pressure was reduced to atmospheric. Then the mold was disassembled and the blank was taken out. Conducted visual inspection for visible defects.
Полученные керамические заготовки помещали в керамическую кювету и засы- пали глиноземом так, чтобы слой глинозема между заготовками не был менее 5 мм, между заготовками и стенками кюветы - не менее 10 мм. Использовали глинозем с массовой долей а - А1203 - не мене 35 %, удельной поверхностью - 10 м2/г, массовой долей влаги - не более 2,5%. The obtained ceramic preforms were placed in a ceramic cell and filled with alumina so that the alumina layer between the preforms was not less than 5 mm, between the blanks and the walls of the cell - at least 10 mm. Used alumina with a mass fraction of a - A1 2 0 3 - not less than 35%, specific surface area - 10 m 2 / g, mass fraction of moisture - not more than 2.5%.
Кювету с заготовками помещали в высокотемпературную лабораторную камер- ную электропечь сопротивления. Использованная электропечь позволяет проводить термообработку при температуре до 1 100 °С.  The cuvette with the blanks was placed in a high-temperature laboratory chamber electric resistance furnace. The used electric furnace allows heat treatment at temperatures up to 1,100 ° C.
График изменения температуры печи от времени (Рис.1) состоял из нескольких этапов:  The graph of the furnace temperature change over time (Fig. 1) consisted of several stages:
- ступенчатый нагрев до температуры 1050 - 1100 °С - 16 часов;  - stepwise heating to a temperature of 1050 - 1100 ° C - 16 hours;
- выдержка при температуре 1050 - 1 100 °С - 100 мин;  - exposure at a temperature of 1050 - 1 100 ° C - 100 min;
- охлаждение до комнатной температуры - 8 часов.  - cooling to room temperature - 8 hours.
После охлаждения кювету с заготовками вынимали из печи, заготовки извлека- ли из глинозема.  After cooling, the cuvette with blanks was removed from the furnace, the blanks were removed from alumina.
После удаления временной связки проводили пропитку заготовок водным рас- твором соли ZrO(N03)2 х2Н20. Образцы помещали в водный раствор соли горизон- тально и вьщерживали некоторое время, периодически поворачивая их вокруг своей оси. After removal of the temporal ligament, the preforms were impregnated with an aqueous solution of ZrO (N0 3 ) 2 × 2Н 2 0. salt. Samples were placed horizontally in the aqueous solution of salt and kept for some time, periodically turning them around its axis.
После завершения пропитки образцы вынимали из раствора и сушили с целью удаления влаги, термической деструкции соли циркония и удаления продуктов тер- мической деструкции.  After completion of the impregnation, the samples were removed from the solution and dried to remove moisture, thermal destruction of the zirconium salt and removal of the products of thermal destruction.
Сушку проводили по следующей схеме:  Drying was carried out according to the following scheme:
при температуре +80 - 90 °С - 1 час;  at a temperature of +80 - 90 ° С - 1 hour;
при температуре +400 °С - 1 час.  at a temperature of +400 ° С - 1 hour.
После сушки заготовок проводили их высокотемпературный обжиг в воздушной среде в печи с волокнистой теплоизоляцией, корпусом из нержавеющей стали, пред- назначенной для универсального использования при температурах до 1800 °С. Заго- товки размещались на корундовых подложках.  After drying the blanks, they were fired in air at high temperatures in a furnace with fibrous insulation, a stainless steel casing, designed for universal use at temperatures up to 1800 ° C. The preforms were placed on corundum substrates.
Температурный режим обжига состоял из нескольких этапов:  The temperature regime of firing consisted of several stages:
- равномерный нагрев до температуры 1600 - 1650 °С - 12 часов;  - uniform heating to a temperature of 1600 - 1650 ° C - 12 hours;
- выдержка при температуре 1600 °С - 1 час;  - exposure at a temperature of 1600 ° C - 1 hour;
- охлаждение до комнатной температуры - 3 - 4 часа.  - cooling to room temperature - 3 to 4 hours.
Для 15 образцов, полученных описанным способом, были проведены испытания на прочность согласно принятому в России федеральному стандарту испытаний.For 15 samples obtained by the described method, tests were conducted strength according to the federal test standard adopted in Russia.
Испытания проводили методом трехточечного изгиба для цилиндрических об- разцов диаметром 7 ± 1 мм и длиной 60 ± 5 мм при расстоянии между опорами 50 мм по схеме. The tests were carried out using the three-point bending method for cylindrical specimens with a diameter of 7 ± 1 mm and a length of 60 ± 5 mm with a distance between supports of 50 mm according to the scheme.
В таблице приведены результаты испытаний керамических образцов на проч- ность при трехточечном изгибе.  The table shows the strength test results of ceramic samples at three-point bending.
Figure imgf000010_0001
Figure imgf000010_0001
Проведенные экспериментальные исследования позволяют сделать следующий вывод: предлагаемый способ легирования алюмооксидной керамики с использова- нием пропитки керамических заготовок растворами солей циркония с последующим их обжигом, позволяет повысить прочность цилиндрических образцов (диаметром 7 мм, длиной 60 мм) на 30 - 40 %. The conducted experimental studies allow us to draw the following conclusion: the proposed method of doping alumina ceramics using the impregnation of ceramic billets with solutions of zirconium salts with their subsequent firing, increases the strength of cylindrical samples (7 mm in diameter, 60 mm long) by 30 - 40%.

Claims

ФОРМУЛА  FORMULA
Способ легирования алюмооксидной керамики, включающий получение заго- товки из шликера, удаление технологической связки и обжиг, отличающийся тем, что после удаления технологической связки заготовку пропитывают водным раство- ром нитрата цирконила ZrO(N03)2 х 2 Н20, затем осуществляют ее нагрев с повыше- нием температуры до 400°С. A method of doping alumina ceramics, including obtaining a blank from a slip, removing the technological binder and firing, characterized in that after removing the technological binder, the preform is impregnated with an aqueous solution of zirconyl nitrate ZrO (N0 3 ) 2 x 2 H 2 0, then it is carried out heating with increasing temperature up to 400 ° С.
PCT/RU2014/000016 2013-01-30 2014-01-15 Method for doping an aluminium oxide ceramic WO2014120044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480004611.1A CN105189407B (en) 2013-01-30 2014-01-15 Method for doping an aluminium oxide ceramic
HK16106888.4A HK1219942A1 (en) 2013-01-30 2016-06-15 Method for doping an aluminium oxide ceramic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013106318/03A RU2525889C1 (en) 2013-01-30 2013-01-30 Method of doping alumooxide ceramics
RU2013106318 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014120044A1 true WO2014120044A1 (en) 2014-08-07

Family

ID=51262649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000016 WO2014120044A1 (en) 2013-01-30 2014-01-15 Method for doping an aluminium oxide ceramic

Country Status (4)

Country Link
CN (1) CN105189407B (en)
HK (1) HK1219942A1 (en)
RU (1) RU2525889C1 (en)
WO (1) WO2014120044A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728911C1 (en) * 2019-08-06 2020-08-03 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of making corundum ceramics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1747424A1 (en) * 1990-07-19 1992-07-15 Институт Химии Силикатов Им.И.В.Гребенщикова Method of preparing aluminium oxide ceramics
US5164348A (en) * 1987-05-27 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive grits formed by ceramic impregnation method of making the same, and products made therewith
RU2148567C1 (en) * 1995-04-05 2000-05-10 Сент-Гобэн Индастриал Керамикс, Инк. Method of producing alpha-aluminum oxide (versions), abrasive particles and abrasive material (versions)
US6206942B1 (en) * 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU610829A1 (en) * 1976-07-21 1978-06-15 Украинский научно-исследовательский институт огнеупоров Refractory heat-insulating material
SU865859A1 (en) * 1979-12-17 1981-09-23 Московский Ордена Трудового Красного Знамени Институт Химического Машиностроения Method of making ceramic articles
SU1379285A1 (en) * 1983-09-27 1988-03-07 Усть-Каменогорский Строительно-Дорожный Институт Ceramic material
RU1793576C (en) * 1990-07-05 1995-09-27 Тамара Георгиевна Карпова Dental implant and composition for manufacture of dental implants
CN100393413C (en) * 2006-05-19 2008-06-11 河北工业大学 Method for preparing load-type zirconium oxide and its using method
CN102173815B (en) * 2011-02-17 2012-07-04 中国人民解放军国防科学技术大学 Method for preparing ceramic material by process steps of powder green body dipping and precursor cracking
CN103084150B (en) * 2011-11-08 2016-04-06 中国地质大学(北京) A kind of degree of depth removes the preparation method of fluorine ion porous material in water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164348A (en) * 1987-05-27 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive grits formed by ceramic impregnation method of making the same, and products made therewith
SU1747424A1 (en) * 1990-07-19 1992-07-15 Институт Химии Силикатов Им.И.В.Гребенщикова Method of preparing aluminium oxide ceramics
RU2148567C1 (en) * 1995-04-05 2000-05-10 Сент-Гобэн Индастриал Керамикс, Инк. Method of producing alpha-aluminum oxide (versions), abrasive particles and abrasive material (versions)
US6206942B1 (en) * 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARAPETYANTS M. KH. ET AL.: "Obschaya i neorganicheskaya khimiya.", KHIMIYA, 1994, MOSCOW, pages 491 *

Also Published As

Publication number Publication date
CN105189407A (en) 2015-12-23
RU2525889C1 (en) 2014-08-20
CN105189407B (en) 2017-04-19
HK1219942A1 (en) 2017-04-21
RU2013106318A (en) 2014-08-10

Similar Documents

Publication Publication Date Title
Meir et al. Synthesis and densification of transparent magnesium aluminate spinel by SPS processing
Laberty-Robert et al. Dense yttria stabilized zirconia: sintering and microstructure
Lemke et al. Sintering and grain growth in SrTiO3: impact of defects on kinetics
US5505865A (en) Synthesis process for advanced ceramics
RU2691207C1 (en) Method of producing porous ceramic with bimodal porosity distribution
RU2536593C1 (en) Method of producing zirconium dioxide-based ceramic for restoration dentistry
JP5931542B2 (en) Firing member made of zirconia sintered body
Ganesh et al. Formation and densification behavior of MgAl2O4 spinel: the influence of processing parameters
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
WO2014120044A1 (en) Method for doping an aluminium oxide ceramic
RU2549945C2 (en) Method of production of ceramic composite material based on aluminium and zirconium oxides
JPH064487B2 (en) Finely powdered magnesium oxide and its uses
Suárez et al. Sintering kinetics of 8Y–cubic zirconia: Cation diffusion coefficient
RU2585291C1 (en) Method of producing porous ceramic material based on zirconium dioxide
Dulian et al. Dielectric properties of vanadium doped barium titanate synthesized via high-energy ball milling
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
RU2491253C1 (en) Method of making workpieces of ceramic products
RU2641358C2 (en) Method of obtaining technological trainings of ceramic articles from silicon nitride
US20100272997A1 (en) Densification of metal oxides
Morozova et al. Preparation and properties of porous ceramics based on alumomagnesium spinel and zirconium dioxide
RU2307110C2 (en) Method for producing ceramic mass
Fan et al. Synthesis of modified PbTiO3 powders and fibers by a liquid mix process
Burg et al. Effect of sintering on microstructure of TiO2 ceramics
RU2640546C1 (en) Method of producing porous membranes based on zirconium dioxide for filtering liquids and gases
KR102510280B1 (en) High Purity and High Density Yttrium Aluminum Garnet Sintered Body And Manufacturing Method Thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480004611.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746826

Country of ref document: EP

Kind code of ref document: A1